

©2077 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Elastic Components:
Addressing Variance of Quality Properties in Components

George Kakarontzas
Dept. of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece, and

Dept. of Information Technology and Telecom.
T.E.I. of Larissa
Larissa, Greece.

gkakaron@teilar.gr

Panagiotis Katsaros and Ioannis Stamelos
Dept. of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece.

{katsaros,stamelos}@csd.auth.gr

Abstract

The quality properties of a software component, al-
though verified by the component developer and even cer-
tified by a trusted third-party, might very well be inappro-
priate for the requirements of a new system. This is what
we call the quality mismatch problem: the mismatch be-
tween the quality requirements of a new system with the
quality properties exhibited by the components that we want
to use for its development. This work contributes to the un-
derstanding of the quality mismatch problem between com-
ponent properties and component-based systems require-
ments. To solve this problem we introduce the concept of
elastic components. An elastic component is an open-ended
hierarchy of the same pure component with variants that
differ between them to the quality properties that they ex-
hibit. We present a quality-driven design approach that can
be effectively applied for the design and implementation of
elastic components.

1 Introduction

In Component-Based Software Engineering (CBSE) we
distinguish between two largely independent activities [1]:

1. Development for reuse or Component Development:
This is the activity of component development, in
which software components are developed to be reused
in several future software products

2. Development with reuse or Component-Based System
Development: This is the activity in which software
systems or parts of these systems are built by integrat-
ing prefabricated components.

In a previous article [2], we have described TactPC
(Tactic-Driven Process for Component design), a process
used during component development, in which software
components are designed using a model-based testing ap-
proach. In TactPC, the component under development and
the component architectural dependencies are modeled in
a formal specification language (e.g. Abstract State Ma-
chines Language – AsmL) and then model-based testing is
used to discover quality defects. The defects are then mit-
igated with the application of tactics (e.g. some of the ar-
chitectural tactics from [3, 4]) both inside the component’s
assembly model and at the component’s context dependen-
cies. The process is iterative and is repeated as many times
as necessary to address all quality-related concerns.

An important issue that arises with a methodology such
as TactPC is the issue of quality adaptation of components
to new systems. As we elaborate further on Sec. 2, the
quality mismatch between assumptions made during com-
ponent development and quality requirements of systems
during component-based system development, is unavoid-
able if the component’s quality properties are fixed. In this
work we try to address this issue by introducing the con-
cept of elastic components: components which provide the
means for adaptation of conflicting quality properties for
the satisfaction of system quality requirements during sys-
tem design.

In the rest of the paper in Sec. 2 we provide the con-
ceptual definition of elastic components and motivate their
use by elaborating on the quality mismatch issue. Then in
Sec. 3 we discuss the design of elastic components. A short
example demonstrating elastic component development is
provided in Sec. 4. Related work is presented in Sec. 5.
Finally in Sec. 6 we provide future research directions and
conclude.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

2 Quality mismatch and the concept of elastic
components

Quality properties are properties like performance, avail-
ability, usability etc. Quality is considered orthogonal to
a system’s functionality [3]: we can achieve several dif-
ferent quality levels in relation to the same system func-
tion. Functional requirements are those requirements that
describe what the system must do in order to function cor-
rectly (deliver the required result). To quote the ISO/IEC
9126-1 standard quality model [5], functionality is “The ca-
pability of the software product to provide functions which
meet stated and implied needs when the software is used un-
der specified conditions”. Quality requirements are usually
linked to functional requirements and constrain the accepted
solutions in relation to a quality property. An example of a
quality requirement could be that “The processing of order
requests would always terminate in no more than 2 seconds”
in which the 2 second constraint is a quality requirement
linked to the functional requirement of order processing.
We observe that quality requirements are essential for the
system in order to satisfy its functional requirements. This
is why they are considered “requirements” and not merely
“good-to-have”. They are sometimes mentioned separately
simply because they concern quality properties, although in
our view this is a questionable practice since a developer
might overlook them or consider them as not as essential.

Quality requirements create an interesting dichotomy be-
tween the two CBSE activities of component development
and component-based system development. From a compo-
nent developer standpoint, they are absent: the component
developer cannot assume a particular system in order to re-
ally answer the question whether a particular quality prop-
erty is essential for the system, and therefore a system’s
quality requirement since without it the system wouldn’t
function correctly, or is it just good to have, and therefore
merely enhances system’s quality. If for example the com-
ponent computes r then what are the performance require-
ments for this? We can’t really answer this question unless
we have a specific system in mind. For component-based
system development on the other hand, the quality require-
ments are known. The component-based system developer
knows exactly what the performance requirements for r’s
computation are. If we assume that the component should
deliver r in t seconds or otherwise the system would fail,
then if a given component ca delivers r in ta seconds and
ta < t the component satisfies the quality requirement. The
difference t− ta, assuming that faster is better for the given
system (which might not always be the case e.g. real-time
systems), is a performance enhancement. A component cb

that delivers r in tb seconds with tb < t would also satisfy
the quality requirement, but would be of poorer quality if
ta < tb. The discussion so far, might lead to the conclu-

sion that the component developer should try to enhance all
quality properties as much as possible. This approach how-
ever would be overly simplistic, since quality properties are
often conflicting. Consider for example performance and
availability. Higher availability is usually achieved with
redundant components and computations. But redundancy
has a cost in performance since, for example updates should
take place in all redundant copies. This situation, somewhat
simplified, is depicted in Fig. 1 in which the functional and
associated quality requirements are depicted as a gap in a
system.

Figure 1. Component quality tradeoffs and
their relationship to system requirements.

In Fig. 1 we have a functional requirement fri for a sys-
tem in which the component is to be placed. The compo-
nent was developed independently by a component devel-
oper at some earlier time. The system functional require-
ment is linked with a performance requirement pri and an
availability requirement ari. We emphasize that these qual-
ity requirements are unknown to the component developer
since they are part of a future system description. The com-
ponent developer simply tries to score as high as possible on
both or uses some estimates based on an imaginary system
or in some cases in an actual system under development for
which this component is developed. However since these
requirements are conflicting the component developer is
forced to proceed to a rather uninformed or system-specific

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

decision, for the provided performance ppi and the provided
availability pai. The decision might be to balance perfor-
mance and availability as in the component A in Fig. 1, in
which the differences in provided performance and avail-
ability from the required performance and availability (pdi

and adi respectively) are zero, and therefore the component
happens to satisfy exactly the quality requirements of the
future system. If the component developer however, de-
cided to balance performance and availability as in the com-
ponent B, favoring performance over availability, then al-
though the component would satisfy system’s performance
requirements since pdi > 0, it would fail to satisfy system’s
availability requirements since adi < 0.

The important observation here is that the balancing of
quality properties for a component cannot possibly be a per-
fect match for all future systems that the component will
be used and therefore fixing these properties to specific val-
ues during component development is an extremely limiting
factor for the component’s suitability. To avoid this seem-
ingly unavoidable quality mismatch between components
and component-based systems we introduce the concept of
elastic components.

An elastic component is a family of components
in which a base component called pure is refined
by a number of variant components. Variants are
produced through quality-driven transformations
of the pure component. Variants provide the same
essential functionality with the pure component
but differ on a number of quality properties which
they improve.

Before proceeding to the design of elastic components
in Sec. 3, we make the following important observations:
(1) In the literature there is a distinction between execution
quality attributes and evolution quality attributes (e.g. [6]).
Execution quality attributes are attributes that are observ-
able at system runtime (e.g. performance, security, avail-
ability, usability etc.). Evolution quality attributes are ob-
servable in the development and maintenance phases of the
system lifecycle (e.g. flexibility, reusability, testability etc.).
In this work we consider only execution quality attributes.
(2) We don’t try to evaluate components in isolation to their
assemblies. We accept the argument in [7] that this is mean-
ingless. We are concerned instead with quality adaptive
components that can be used in the context of a system eval-
uation method. (3) Finally, elastic components are a con-
cept as we explained in this section. As a concept they are
independent from the design methods and implementation
techniques that can be used for their development. The de-
sign and implementation techniques proposed in this work,
is only one possible way but other methods might also be
appropriate.

3 Design and implementation of elastic com-
ponents

The components presented to the customers should not
be “frozen” entities, with fixed quality properties. Instead
the client should be able to select a general component that
satisfies the required functionality first, and then specialize
the component by traversing a hierarchy of possible compo-
nents extending the general component with specific non-
functional enhancements that interest the client. This se-
lection hierarchy is depicted in Fig. 2, where the general
component is called pure and the different variations of it
are called variants.

Figure 2. Elastic components as a selection
process deliverable.

Each variant affects a number of quality properties (e.g.
q1,q2, and q3). Symbols ↑, ↓ and ↔, stand for improved,
diminished and indifferent effect on the quality property.
Each variant comes with additional architectural require-
ments that might be necessary for the quality enhancement.
Also each variant is parameterized to further allow the tai-
loring of the variant in the new system. Additional services
and dependencies are depicted as additional provided and
required interfaces. During the selection process the client
consults the quality properties of each variant as well as
the architectural dependencies to find the most appropriate
component variant for the application in hand. The selec-
tion process is then the creation of an appropriate variant
component with the required quality properties and archi-
tectural dependencies. The selection process is essentially
a composition of the interfaces and parameters from the hi-
erarchy, that looks promising in satisfying the client’s re-

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

quirements. Conceptually the component doesn’t exist prior
to its selection, although in practice certain popular vari-
ants might be already available. Notice also that the client
might select the pure component, without any quality en-
hancements, in case that the client is not interested in any of
them.

The refinement hierarchy depicted in Fig. 2 seems in-
evitable if we want to have any chance in achieving true
reusability of components in many applications. However
in order to be successful the process for the creation of vari-
ants should be easy and automated as possible. For this we
must carefully address both the design and the implementa-
tion of elastic components.

In Fig. 3 we can see the basic classes for the design of
elastic components.

Figure 3. Class diagram for the elastic com-
ponent design.

Each pure component provides a number of provided in-
terfaces and might require a number of required interfaces.
Interfaces are sets of operations. In addition each pure com-
ponent provides some quality contracts that include the di-
mensions of interest. Dimensions are application domain
specific quality properties, such as timing, latency, etc. Di-
mensions of the same type are comparable to each other.
Also each dimension that is mentioned in a quality contract
can be verified by using a model. The model describes the
method that the component developer used to determine the
value of the dimension. For example the model might de-
scribe that the dimension value was determined by simulat-
ing the component and its environmental assumptions and
provide details for the simulation. A variant component is
obtained by applying a number of tactics in the pure com-
ponent. Tactics are also associated with the dimensions that
they improve. This results in a variant component that has
improved quality contracts in these dimensions, but might
have impaired quality contracts in other dimensions. In any
case the component developer after applying the tactic uses
the same model that was used for the pure component’s con-

tracts, to produce a new set of contracts for the variant com-
ponent in which at least one dimension will be improved
and zero or more dimensions might be impaired.

Tactics are reusable quality aspects that can be composed
with pure components for the creation of variants. They
might be architectural tactics [3, 4] which are specific de-
sign alternatives that can be applied during software archi-
tecture design to improve certain quality properties, design
patterns [8], or more domain specific techniques such as
real-time design patterns [9]. All these techniques, which
we collectively call tactics, are indispensable for the design
of systems with the general goal of improving system qual-
ity and are widely applied in the context of system devel-
opment in which a system is analyzed, designed and im-
plemented from scratch. In our work we apply them in
the context of component development, in which compo-
nents are developed independently from the systems, to in-
troduce the required variability in the main functionality of
the components, essentially allowing the tailoring of com-
ponents to different applications. Tactics can have: (a) com-
ponent scope, affecting only the internals of a component
while leaving the interface of the component unmodified,
(b) component interface scope, changing the interface of
the component and (c) assembly scope, requiring modifi-
cations that span multiple components and complex inter-
action patterns between the collaborating parts. Although
component scope tactics are preferable since they do not
introduce any additional dependencies, in general what is
required is a precise documentation of components that will
allow their use in new systems.

For documenting tactics in a systematic way we can use
the notation suggested in [10]. In this work Ivar Jacobson
and Pan-Wei Ng, propose a method that respects the sepa-
ration of concerns all the way from requirement specifica-
tion with use-cases to the implementation of the system with
Aspect-Oriented Programming (AOP). In fact each use case
is a crosscutting concern, since its design and implementa-
tion will require use case specific code to appear in many
different objects. The authors capture these concerns in use
case slices, a new modularity unit, which contains collab-
orations, specific classes and specific extensions. Collab-
orations contain class diagrams, interaction diagrams etc.
needed for the realization of the use case. Specific classes
are classes not needed by other use cases in a system but
are specifically introduced for the use case captured in the
use case slice. Finally extensions are extensions of exist-
ing classes with operations to specifically support the use
case modeled by a use case slice. On particular interest to
us are extension use cases. These use cases represent addi-
tional steps during the execution of a use case path, that are
triggered by some condition (e.g. the calling of a method).
The base use case that they extend can operate and provide
the functionality without the extension, but with the exten-

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

sion it provides some additional functionality that modifies
the basic functionality in some way. We can model exten-
sions separately and then weave them in specific points at
the base use case execution path. For tactics modeling we
can use the use case slice concept in its abstract format. By
this we mean that the tactic defines the participating roles
instead of specifying interface methods that it applies to by
naming them. An abstract tactic can be instantiated with a
concrete tactic, by binding the roles to specific components,
and interface operations.

For the implementation of variants we currently use
Aspect-Oriented Programming (AOP) with pointcuts de-
fined on methods of the component interface. The tactic
is implemented as an abstract aspect, that can be instanti-
ated to provide a more specific aspect instance for a given
component. The implementation of tactics as abstract as-
pects brings similar advantages to those for the implemen-
tation of design patterns as abstract aspects in [11], namely
(i) locality since the code of the tactic is localized in the
tactic aspect, (ii) reusability since the abstract tactic can
be instantiated in different tactic instances, (iii) composi-
tion transparency since tactic instances are independent, and
(iv) (un)plguggability which allows the introduction and re-
moval of tactics from the component at will. In addition
to AOP we also plan to evaluate other available variabil-
ity introduction techniques such as inheritance and aspect-
component composition.

4 An example from the real-time control
problem domain

In this section we provide an example elastic component
from the real-time control systems domain. Before proceed-
ing we provide a short introduction to the problems faced in
the problem domain. In any (embedded) realtime control
system, a control task is a granule of computation treated
by the scheduler as a unit of work to be allocated proces-
sor time, or scheduled. Tasks execute in parallel with other
tasks, including other control tasks. The system has to be
able to predict the evolution of the running tasks and guar-
antee in advance that all tasks have bounded resource and
processing time requirements and are allocated sufficient
processor time to complete by their deadlines (predictabil-
ity). This concern is undermined by outstanding market re-
quirements like reduced time-to-market, which result in a
strong trend to use commercial-off-the-self (hardware and
software) components. In order to guarantee predictable
behavior we usually use off-line design methodologies that
aim to maximize the determinism. Also the constant de-
mand for reduced development costs yields systems that are
subject to resource constraints such as limited CPU speed,
and limited memory and network bandwidth of the underly-
ing platform. Thus, in addition to adequate predictability a

tradeoff goal is to aim in more efficient use of the available
resources (improved efficiency).

Figure 4. The basic control loop task model.

Controllers are assumed to be periodic tasks consisting
of three parts: input data collection (A/D), control algorithm
computation, and output signal transmission (D/A). Figure
4 introduces the critical timing parameters of the basic task
model for periodic controller tasks (task period T equal to
the task’s relative deadline). The task release time is the
time when the task is woken from its sleep. The sampling
interval Ti is the time interval between two subsequent A/D
conversions. The computational delay or input-output la-
tency Ci is the time interval between a couple of A/D and
D/A conversions. Simulation experiments [12] show that if
the control performance is measured by some appropriate
cost function say J (e.g. the stationary variance of some
target control variable), it degrades and the control loop be-
comes unstable (J →∞), when the average value of the de-
lay C → T . In general, we can compensate a too large com-
putational delay by decreasing the speed of the controller
system. The sampling jitter is the variation in sampling in-
terval and the computational delay jitter (input-output la-
tency jitter) is the variation in Ci. Simulation experiments
show that control performance also degrades as the jitter
level increases. Thus, ideally the sampling jitter should be
zero and the computational delay should be jitter-free.

Today control systems basically operate in highly dy-
namic environments, where the application characteristics
are not fixed a priori and also, when a new control task is
admitted this raises a need for readaptation.

A task overrun may occur if some control task does not
meet its design specifications during run-time, e.g. if the ex-
ecution time of the control algorithm is getting larger than
the predicted worst-case execution time (execution over-
run) or because input samples arrive more frequently than
expected (activation overrun). Overruns cause a transient
overload condition because they affect the scheduling of
other concurrently running tasks in a way that depends on
the applied scheduling algorithm (static or dynamic prior-
ity scheme). In general, a task overrun does not necessarily
cause an overload, but a large unexpected overrun or a se-
quence of overruns can cause very unpredictable effects on
the system, if not properly handled by an adaptive sched-
uler.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

The example given in the sequel introduces an elas-
tic EDF (Earliest Deadline First) scheduler component for
flexible and adaptive real-time control applications, where
some of their constraints can be occasionally lost thus de-
creasing the provided control performance without causing
critical system faults.

Control tasks’ schedulability is not successfully guaran-
teed off line if systems suffer from sudden variations in
computational load and overloaded situations and worst-
case execution times have been underestimated. The vari-
ants of the example are derived from the related bibliogra-
phy ([13, 14, 15]). Each variant preserves the system’s pre-
dictability by different tactics that result in prominent im-
pacts on control performance, efficiency in the use of avail-
able CPU time and incurred overhead.

The job skipping scheduling approach [13] is an “open
loop” tactic where once schedules are created they are not
“adjusted” based on continuous feedback. The associated
Skip-Over Algorithms permit skips in periodic tasks thus
making better use of the available CPU time in order to
achieve a feasible schedule in systems that would other-
wise be overloaded. The maximum number of skips for
each taskj is controlled by a specific parameter associated
with the task. In particular, each periodic taskj is charac-
terized by a worst-case computation time C, a period T , a
relative deadline D equal to its period and a skip param-
eter S(2 ≤ S ≤ ∞), which gives the minimum distance
between two consecutive skips. The skip parameter can be
viewed as a task-specific Quality of Service (QoS) metric
(the higher S, the better the quality of service). Every in-
stance of a periodic task with skips can be red or blue. A red
instance must complete before its deadline; a blue instance
can be aborted at any time. When a blue instance is aborted,
we say that it was skipped. The fact that S ≥ 2 implies that,
if a blue instance is skipped, then the next S − 1 instances
must be red. On the other hand, if a blue instance com-
pletes successfully, the next task instance is also blue. The
Blue When Possible (BWP) EDF scheduler shown in Fig. 5
schedules blue instances whenever there are no released red
tasks to execute. Red instances are scheduled according to
EDF.

Feedback Control - U EDF (FC-U EDF) adopts the feed-
back control scheduling tactic and it is one of the schedul-
ing algorithms proposed in [14]. The employed architecture
(Fig. 6) forms a feedback control loop composed of a moni-
tor, a controller, a QoS actuator and a basic scheduler. Each
task has N QoS levels (N ≥ 2), which in the simplest case
of only two levels these correspond to the rejection and the
admission of the task. Each QoS level m (0 ≤ m ≤ N − 1)
of taskj is characterized by: (i) the period T [m], (ii) the
estimated (not the worst-case) execution time EC[m], (iii)
the relative deadline D[m], which in the shown component
is considered to be equal to T [m] and (iv) the value V [m]

that taskj contributes if it is completed at QoS m before its
deadline D[m]. Every QoS level contributes a value V [0] if
it misses its deadline. In the described architecture the mon-
itor measures the controlled variable, i.e. the actual CPU
utilization U(k) and feeds the samples back to the controller
at every sampling instant k. The controller compares the
utilization reference parameter US with the corresponding
controlled variable to get the current errors and computes
a change - called control input - to the total estimated re-
quested utilization based on the errors. The QoS actuator
dynamically changes the total estimated requested utiliza-
tion at each sampling instant according to the control input
by adjusting the QoS levels of tasks. This is accomplished
by the use of a QoS optimization algorithm that aims in
maximizing the system value.

Figure 6. The feedback control scheduling ar-
chitecture.

The FC-U EDF scheduler guarantees that the deadline
miss ratio (number of deadline misses divided by the to-
tal number of completed and aborted tasks) is 0 in steady
state, if the input reference US is lower than the schedule
utilization threshold. In EDF this threshold is 100% for a
task set with independent and periodic tasks. Although US

cannot be very close to 100% (to avoid potential saturation
on the control performance) it is still possible to perform in
utilization levels well above 90%. If we take into account
that Basic EDF and BWP EDF guarantee schedulability on
the basis of pessimistic estimations for the task execution
times, this justifies why the published theory and simula-
tion results show that the FC-U EDF scheduler makes more
efficient use of the available CPU time. Of course, this hap-
pens at the cost of additional processing overhead (Fig. 5).

The last mentioned EDF variant views each task as flex-
ible as a spring with a given rigidity coefficient and length
constraints. More precisely, the so-called Elastic EDF
scheduler [15] treats the utilization of served tasks as an
elastic parameter, whose value can be modified by chang-
ing their periods. Each task is characterized by five param-
eters (Fig. 5): a nominal period T , an estimation C for the
task’s worst-case execution time, a minimum period Tmin,
a maximum period Tmax and an elastic coefficient e ≥ 0,
which specifies the flexibility of the task to vary its utiliza-
tion for adapting the system to a new feasible rate configu-

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Figure 5. An elastic EDF scheduler component.

ration. The greater e, the more elastic the task. The elastic
scheduler mechanism is based on a high priority task, the
QoS manager that is activated by the other tasks when they
are created or when there is a need to change their period.
Whenever activated, the QoS manager calculates the new
periods such as to succeed the desired utilization level UD

and changes them atomically. The described solution pre-
serves the system’s predictability at the desired level with-
out incurring significant processing overhead as in the pre-
ceding feedback control scheduling architecture.

5 Related Work

In [16] components are also accompanied by contracts
expressed in CQML+. The approach is that the component
realtime container ConQoS RT enforces the component
quality contracts in runtime and supports dynamic adapta-
tion by using different versions of components. Compo-
nents can be Composite Components [17], which are com-
ponents that modify their internal structure to support dif-
ferent quality requirements. A composite component, sup-
ports variance during runtime by reconfiguration of its inter-
nal structure. Internally, glue code and aspect operators are
used to modify the structure of the component with com-
ponents in a component repository. Composite components
are similar to our elastic components, with the main differ-
ence being that we don’t modify the internal structure of
the component in runtime, but instead provide more flexi-
bility through a tactic-driven process (which requires some
human intuition) during design time. This doesn’t exclude
the use of our elastic components in runtime: different vari-
ants can be deployed in a container that matches application
requirements to the appropriate variants similar to ConQoS
RT. We view the two approaches, of runtime internal re-
configuration and of design-time tactic-driven variation, as

complementary research tracks.
Tactics are inspired by [3, 4] which describe architectural

tactics as a means to achieve quality requirements during
architectural design.

Reasoning frameworks were proposed in [18] as the ve-
hicle for systematic reuse of analytical theories that can be
used for the evaluation of software architectures. We note
that the so-called models of our approach could be reason-
ing frameworks. We are strongly interested in tradeoff anal-
ysis metrics and models like the ones introduced in [19].

Another work using aspects for component adaptation
of realtime embedded systems is described in [20]. Their
approach is similar to ours in that aspects are applied to in-
terface operations and advice internal mechanisms used by
these operations. Aspects however are not related directly
with quality improvements or impairments: they are not tac-
tics in the sense described in this work. Therefore the de-
termination of appropriate methods for improving qualities
is left unspecified. Also the adaptation should maintain the
same interface which can conceivably be restrictive in some
cases.

6 Conclusions and Future Research Direc-
tions

In this work we presented the quality mismatch problem
between components and component-based systems. This
mismatch severely affects reuse and adaptation of compo-
nents in new systems and requires an effective solution.
We view our elastic components as a means to address this
problem. Essentially our approach suggests that having just
one fixed component for all systems is very restricting. In-
stead we proposed a decomposition of the component to
functional and quality parts, that we call pure components

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

and tactics respectively. The quality parts can be com-
posed with the pure components to produce new variants
satisfying the requirements of new applications. Feedback
from the component-based system development can be fed
back in the component development process to yield new
reusable quality parts and new variants, in an ever growing
hierarchy of components. The whole hierarchy is the elastic
component.

The proposed process assigns the various responsibili-
ties to the right parties. System developers have a goal to
create correct systems. With elastic components they have
more information than what is usually available, and can use
this information to discover if a component provides the re-
quired quality properties. They can contact the component
vendor to provide a new variant if one is unavailable. The
component vendors have a quality-driven reuse process in
place to quickly produce a new variant if one is requested,
and also have a very good incentive in doing so: expanding
their market.

Future work includes:

1. Tool support for the creation of elastic components
coupled to a repository of reusable tactics as aspects.

2. The formal definition of tactics as well as their com-
position with components, which is essential for both
tool support and potential expansion of the method.

3. Delivery of a set of tactics for component-based em-
bedded realtime systems, which seems to be a demand-
ing CBSE application area.

References

[1] H.-G. Gross: “Component-Based Software Testing
with UML”, Springer, 2005

[2] G. Kakarontzas and I. Stamelos: “A Tactic-Driven
Process for Developing Reusable Components”, 9th
International Conf. on Software Reuse, LNCS 4039,
pp. 273–286, 2006

[3] L. Bass et. al.: “Software Architecture in Practice, 2nd
ed.”, Addison-Wesley, 2003

[4] F. Bachmann et. al.: “Deriving Architectural Tactics:
A Step Toward Methodical Architectural Design”,
Tech. Rep., CMU/SEI-2003-TR-004, March 2003

[5] ISO/IEC 9126-1: “Software Engineering - Product
Quality - Part 1: Quality Model”. ISO/IEC Standard,
ISO/IEC 9126-1:2001(E), 2001

[6] M. Mari and N. Eila: “The Impact of Maintainability
on Component-Based Software Systems”, 29th EU-
ROMICRO Conference, IEEE, 2003

[7] K. Wallnau J. A. Stafford: “Dispelling the Myth
of Component Evaluation”, in Building Reliable
Component-Based Software Systems, I. Crnkovic M.
Larsson (eds.),pp. 157-177, Artech House, 2002

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides:
“Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 1997

[9] B. P. Douglass: “Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems”, Addi-
son Wesley, 2002

[10] I. Jacobson and P.-W. Ng: “Aspect-Oriented Software
Development with Use Cases”, Addison Wesley Pro-
fessional, 2004

[11] J. Hannemann and G. Kickzales: “Design pattern
implementation in Java and AspectJ”, OOPLSA’02,
ACM Press, 2002.

[12] A. Cervin: “Towards the integration of control and
real-time scheduling design”, Licentiate Thesis, Lund
Institute of Technology, May 2000

[13] G. Koren and D. Shasha, “Algorithms and complexity
for overloaded systems that allow skips”, IEEE Real-
Time Systems Symposium, December 1995

[14] C. Lu, J. Stankovic, S. Son and G. Tao, “Feedback
control real-time scheduling: Framework, Modeling
and Algorithms”, Real-Time Systems 23, pp. 85-126,
2002

[15] G. Buttazo et. al., “Elastic scheduling for flexible
workload management”, IEEE Transactions on Com-
puters 51 (3), pp. 289-302, 2002

[16] H. Härtig et. al.: “Enforceable component-based re-
altime contracts: Supporting realtime properties from
software development to execution”, Real-Time Sys-
tems Journal, vol.35, no.1, pp. 1-31, Springer, 2007

[17] Steffen Göbel: “Encapsulation of structural adapta-
tion by composite components”, Workshop on Self-
healing systems, pp.64-68,ACM Press, 2004.

[18] L. Bass et. al.: “Reasoning frameworks”, CMU/SEI-
2005-TR-007, 2005.

[19] P. Katsaros et. al.: “Performance and effectiveness
trade-off for checkpointing in fault-tolerant distributed
systems”, Concurrency and Computation: Practice
and Experience, 19(1), pp. 37-63, Wiley, 2007

[20] A. Tecanovic et. al.: “Aspects and Components in
Real-Time System Development: Towards Reconfig-
urable and Reusable Software”, Journal of Embedded
Computing, October 2004.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

	CopyrightNotice
	29770031

