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Abstract. A formal semantics is introduced for a Process Network model,
which combines streaming and reactive control processing with task par-
allelism properties suitable to exploit multi-cores. Applications that react
to environment stimuli are implemented by communicating sporadic and
periodic tasks, programmed independently from an execution platform.
Two functionally equivalent semantics are defined, one for sequential
execution and one real-time. The former ensures functional determinism
by implying precedence constraints between jobs (task executions), hence,
the program outputs are independent from the task scheduling. The latter
specifies concurrent execution on a real-time platform, guaranteeing all
model’s constraints; it has been implemented in an executable formal
specification language. The model’s implementation runs on multi-core
embedded systems, and supports integration of run-time managers for
shared HW/SW resources (e.g. for controlling QoS, resource interference
or power consumption). Finally, a model transformation approach has
been developed, which allowed to port and statically schedule a real
spacecraft on-board application on an industrial multi-core platform.
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� Introduction

The proliferation of multi-cores in timing-critical embedded systems requires
a programming paradigm that addresses the challenge of ensuring predictable
timing. Two prominent paradigms and a variety of associated languages are widely
ı The research leading to these results has received funding from the European Space
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used today. For streaming signal processing, synchronous dataflow languages [��]
allow writing programs in the form of directed graphs with nodes for their
functions and arcs for the data flows between functions. Such programs can
exploit concurrency when they are deployed to multi-cores [��], while their
functions can be statically scheduled [��] to ensure a predictable timing behavior.

On the other hand, the reactive-control synchronous languages [��] are used
for reactive systems (e.g., flight control systems) expected to react to stimuli
from the environment within strict time bounds. The synchronicity abstraction
eliminates the non-determinism from the interleaving of concurrent behaviors.

The synchronous languages lack appropriate concepts for task parallelism and
timing-predictable scheduling on multiprocessors, whereas the streaming models
do not support reactive behavior. The Fixed Priority Process Network (FPPN)
model of computation has been proposed as a trade-o� between streaming and
reactive control processing, for task parallel programs. In FPPNs, task invocations
depend on a combination of periodic data availability (similar to streaming models)
and sporadic control events. Static scheduling methods for FPPNs [��] have
demonstrated a predictable timing on multi-cores. A first implementation of the
model [��] in an executable formal specification language called BIP (Behavior,
Interaction, Priority) exists, more specifically in its real-time dialect [�] extended
to tasks [��]. In [��], the FPPN scheduling was studied by taking into account
resource interference; an approach for incrementally plugging online schedulers
for HW/SW resource sharing (e.g., for QoS management) was proposed.

This article presents the first comprehensive FPPN semantics definition, at
two levels: semantics for sequential execution, which ensures functional deter-
minism, and a real-time semantics for concurrent task execution while adhering
to the constraints of the former semantics. Our definition is related to a new
model transformation framework, which enables programming at a high level by
embedding FPPNs into the architecture description, and allows an incremental
refinement in terms of task interactions and scheduling�. Our approach is demon-
strated with a real spacecraft on-board application ported onto the European
Space Agency’s quad-core Next Generation Microprocessor (NGMP).

� Related work

Design frameworks for embedded applications, like Ptolemy II [�] and PeaCE [��],
allow designing systems through refining high-level models. They are based on
various models of computation (MoC), but we focus mainly on those that support
task scheduling with timing constraints. Dataflow MoCs that stem from the
Kahn Process Networks [��] have been adapted for the timing constraints of
signal processing applications and design frameworks like CompSoC [��] have
been introduced; these MoCs do not support reactive behavior and sporadic
tasks as in the FPPN MoC that can be seen as an extension in that direction.
DOL Critical [��] ensures predictable timing, but its functional behavior depends

� The framework is online at [�]
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on scheduling. Another timing-aware reactive MoC that does not guarantee
functional determinism is the DPML [�]. The Prelude design framework [�]
specifies applications in a synchronous reactive MoC, but due to its expressive
power it is hard to derive scheduling analyses, unless restricting its semantics.
Last but not the least, though the reactive process networks (RPN) [�] do not
support scheduling with timing constraints, they lay an important foundation for
combining the streaming and reactive control behaviors. In the FPPN semantics
we reuse an important principle of RPN semantics, namely, performing the
maximal execution run of a dataflow network in response to a control event.

� A PN model for streaming and reactive control

An FPPN model is composed of Processes, Data Channels and Event Generators.
struct SQ_Inititialize

SQ_index = 0; 

SQ_length = 200

}

void SQ_PeriodicJob

float x, y; float x, y; 

bool x_valid; 

if (SQ_index < 

XIF_Read

if(x_valid

y = x * x;

y_valid

YIF_Write

}

}   

SQ_index++;

}

SQ_Inititialize(){

200;

SQ_PeriodicJob() {

< SQ_length)  {

XIF_Read(&x, &x_valid);

x_valid == true)    {

y = x * x;

y_valid = true;                      

YIF_Write(&y); 

Fig. �. Example code for “Square” process

A Process represents a software
subroutine that operates with inter-
nal variables and input/output chan-
nels connected to it through ports. The
functional code of the application is de-
fined in processes, whereas the neces-
sary middleware elements of the FPPN
are channels, event generators, and
functional priorities, which define a
relation between the processes to en-
sure deterministic execution.

An example process is shown in
Fig. �. This process performs a check
on the internal variables, if the check
succeeds then it reads from the input
channel, and, if the value read is valid
(refer to the channel definition below)
its square is computed. The write op-
eration on an output channel is then performed. A call to the process subroutine
is referred to as a job. Like the real-time jobs, the subroutine should have a
bounded execution time subject to WCET (worst-case execution time) analysis.

SQ
FP=2

400ms

X sporadic
FP=3

4 per 100ms

higher-to-lower priority relation
(at each channel)

mailbox  
(FIFO)

sporadic process

periodic process
blackboard 

(shared variable)

Y periodic

FP=1
600ms

burst size and min. period priority index

Input Channel
Output Channel

Fig. �. Example Fixed Priority Process Network
An FPPN is defined by two directed graphs. The first is a (possibly cyclic)

graph (P, C), whose nodes P are processes and edges C are channels for pairs
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of communicating processes with a dataflow direction, i.e., from the writer to
the reader (there are also external channels interacting with the environment). A
channel is denoted by a c œ C or a pair (p1, p2) of writer and reader. For p1 the
channel is said to be an output and for p2 an input. The second graph (P, FP) is
the functional priority directed acyclic graph (DAG) defining a functional priority
relation between processes. For any two communicating processes we require,

(p1, p2) œ C =∆ (p1, p2) œ FP ‚ (p2, p1) œ FP
i.e., a functional priority either follows the direction of dataflow or the opposite.
Given a (p1, p2) œ FP, p1 is said to have a higher priority than p2.

The FPPN in Fig. �, represents an imaginary data processing application,
where the “X” sporadic process generates values, “Square” calculates the square
of the received value and the “Y” periodic process serves as sink for the squared
value. A sporadic event (command from the environment) invokes “X”, which is
annotated by its minimal inter-arrival time. The periodic processes are annotated
by their periods. The two types of non-blocking channels are also illustrated. The
FIFO (or mailbox) has a semantics of a queue. The blackboard remembers the
last written value that can be read multiple times. The arc depicted above the
channels indicates the functional priority relation FP . Additionally, the external
input/output channels are shown. In this example, the dataflow in the channels
go in the opposite direction of the functional priority order. Note that, by analogy
to the scheduling priorities, a convenient method to define priority is to assign
a unique priority index to every process, the smaller the index the higher the
priority. This method is demonstrated in Fig. �. In this case the minimal required
FP relation would be defined by joining each pair of communicating processes
by an arc going from the higher-priority process to the lower-priority one.

Let us denote by Var the set of all variables. For a variable x or an ordered
set (vector) X of variables we denote by D(x) (resp. D(X)) its domain (or vector
of domains), i.e., the set(s) of values that the variable(s) may take. Valuations of
variables X are shown as X0, X1 . . ., or simply as X, dropping the superscript.
Each variable is assumed to have a unique initial valuation. From the software
point of view, this means that all variables are initialized by a default value.

Var includes all process state variables Xp and the channel state variables “c.
The current valuation of a state variable is often referred to simply as state. For
a variable of channel c, an alphabet Àc and a type CT c are defined; a channel
type consists of write ‘operations’ (Wc) and read ‘operations’ (Rc) defined as
functions specifying the variable evolution. Function Wc : D(c) ◊ Àc æ D(c)
defines the update after writing a symbol s œ Àc to the channel, whereas
Rc : D(c) æ D(c) ◊ Àc maps the channel state to a pair (Rc1, Rc2), where Rc1
is the new channel state and Rc2 is the symbol that is read from the channel. For
a FIFO channel, its state “c is a (initially empty) string and the write operation
left-concatenates symbol s to the string: Wc(“c, s) = s ¶ “c. For the same channel,
Rc(“c ¶ s) = (“c, s), i.e., we read and remove the last symbol from the string.
The write and read functions are defined for each possible channel state, thus
rendering the channels non-blocking. This is implemented by including ‹ in
the alphabet, in order to define the read operation when the channel does not
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contain any ‘meaningful’ data. Thus, reading from an empty FIFO is defined
by: Rc(‘) = (‘, ‹), where ‘ denotes an empty string. For blackboard channel, its
state is a (initially empty) string that contains at most one symbol – the last
symbol written to the channel: Wc(“c, s) = s, Rc(“c) = (“c, “c), Rc(‘) = (‘, ‹).

An external channel’s state is an infinite sequence of samples, i.e., variables
c[1], c[2], c[3], . . . with the same domain. For a sample c[k], k is the sample index.
Though the sequence is infinite, no infinite memory is required, because each
sample can be accessed (as will be shown) within a limited time interval. If c is an
external output, the channel type defines the sample write operation in the form
W Õ

c : D

Õ(c) ◊ N+ ◊ Àc æ D

Õ(c), where D

Õ(c) is the sample domain, the second
argument is the sample index and the result is the new sample value. For an
external input, we have the sample read operation Rc : D

Õ(c) ◊N+ æ D

Õ(c) ◊ Àc.
The set of outputs is denoted by O and the set of inputs by I.

The program expressions involve variables. Let us call Act the set of all possible
actions that represent operations on variables. An assignment is an action written
as Y := f(X). For the channels, two types of actions are defined, x!c for writing a
variable x, and x?c for reading from the channel, where D(x) = Àc. For external
channels, we have x![k]c, c œ O and y?[k]c, c œ I, where [k] is the sample index.
Actions are defined by a function E�ect : Act ◊ D(Var) æ D(Var), which for
every action a states how the new values of all variables are calculated from their
previous values. The actions are assumed to have zero delay. The physical time
is modeled by a special action for waiting until time stamp · , w(·).

An execution trace – œ Actú is a sequence of actions, e.g.,
– = w(0), x?[1]I1, x := x2, x!c1, w(100), y?c1, O1![2]y

The time stamps in the execution are non-decreasing, and denote the time
until the next time stamp, at which the following actions occur. In the example,
at time 0 we read sample [1] from I1 and we compute its square. Then we write
to channel c1. At time 100, we read from c1 and write the sample [2] to O1 .

A process models a subroutine with a set of locations (code line numbers),
variables (data) and operators that define a guard on variables (‘if’ condition),
the action (operator body) and the transfer of control to the next location.

Definition � (Process). Each process p is associated with a deterministic tran-
sition system (¸p

0, Lp, Xp, Xp
0, Ip, Op, Ap, Tp), with Lp a set of locations,

¸p
0 œ Lp an initial location, and Xp the set of state variables with initial val-

ues Xp
0. Ip, Op are (internal and external) input/output channels. Ap is a set

actions with variable assignments for Xp, reads from Ip, and writes to Op. Tp

is transition relation Tp : Lp ◊ Gp ◊ Ap ◊ Lp, where Gp is the set of predicates
(guarding conditions) defined on the variables from Xp.

One execution step (¸1, X1, “1) g:aæ (¸2, X2, “2) for the valuations X1, X2 of
variables in Xp and the valuations “1, “2 of channels in Ip fi Op, implies that
there is transition (¸1, g, a, ¸2) œ Tp, such that X1 satisfies guarding condition g
(i.e., g(X1) = True) and (X2, “2) = E�ect(a, (X1, “1)).

Def. � prescribes a deterministic transition system: for each location ¸1 the
guarding conditions enable for each possible valuation Xi a single execution step.
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Definition � (Process job execution). A job execution (X1, “1) –≠æp (X2, “2)
is a non-empty sequence of process p execution steps starting and ending in p’s
initial location ¸0, without intermediate occurrences of ¸0:

(¸0, X1, “1) g1:–1æ (¸1, X1, “1) . . .
gn:–næ (¸0, X2, “2), for n Ø 1, ¸i ”= ¸0

From a software point of view, a job execution is seen as a subroutine run
from a caller location that returns control back to the caller. We assume that at
k-th job execution, external channels Ip, Op are read/written at sample index [k].

In an FPPN, there is a one-to-one mapping between every process p and the
respective event generator e that defines the constraints of interaction with the
environment. Every e is associated with (possibly empty) subsets Ie, Oe of the
external input/output (I/O) channels. Those are the external channels that the
process p can access: Ie ™ Ip, Oe ™ Op. The I/O sets of di�erent event generators
are disjoint, so di�erent processes cannot share external channels.

Every e defines the set of possible sequences of time stamps ·k for the ‘event’
of k-th invocation of process p and a relative deadline de œ Q+. The intervals
[·k, ·k + de] determine when the k-th job execution can occur. This timing
constraint has two important reasons. First, if the subsets Ie or Oe are not empty
then these intervals should indicate the timing windows when the environment
opens the k-th sample in the external I/O channels for read or write access at the
k-th job execution. Secondly, ·k defines the order in which the k-th job should
execute, the earlier it is invoked the earlier it should execute. Concerning the ·k

sequences, two event generator types are considered, namely multi-periodic and
sporadic. Both are parameterized by a burst size me and a period Te. Bursts of me

periodic events occur at 0, Te, 2Te, etc. For sporadic events, at most me events
can occur in any half-closed interval of length Te. In the sequel we associate the
attributes of an event generator with the corresponding process, e.g., Tp and dp.

Definition � (FPPN). An FPPN is a tuple PN = (P, C, FP, ep, Ie, Oe, de, Àc,
CT c), where P is a set of processes and C ™ P ◊ P is a set of internal channels,
with (P, C) defining a (possibly cyclic) directed graph. An acyclic directed graph
(P, FP) is also defined, with FP µ P ◊ P a functional priority relation (if
(p1, p2) œ FP, we also write p1 æ p2). This relation should be defined at least
for processes accessing the same channel, i.e., (p1, p2) œ C∆p1 æ p2‚p2 æ p1.
ep maps every process p to a unique event generator, whereas Ie and Oe map
each event generator to (possibly empty) partitions of the global set of external
input channels I and output channels O, resp. de defines the relative deadline
for accessing the I/O channels of generator e, Àc defines alphabets for internal
and external I/O channels and CT c specifies the channel types.

The priority FP defines the order in which two processes are executed when
invoked at the same time. It is not necessarily a transitive relation. For example,
if (p1, p2) œ FP, (p2, p3) œ FP, and both p1 and p3 get invoked simultaneously
then FP does not imply any execution-order constraint between them unless
p2 is also invoked at the same time. The functional priorities di�er from the
scheduling priorities. The former disambiguate the order of read/write accesses
to internal channels, whereas the latter ensure satisfaction of timing constraints.
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� Zero-delay semantics for the FPPN model

The functional determinism requirement prescribes that the data sequences and
time stamps at the outputs are a well-defined function of the data sequences and
time stamps at the inputs. This is ensured by the so-called functional priorities.
In essence, functional priorities control the process job execution order, which is
equivalent to the e�ect of fixed priorities on a set of tasks under uniprocessor
fixed-priority scheduling with zero task execution times. A distinct feature of the
FPPN model is that priorities are not used directly in scheduling, but rather in
the definition of model’s semantics. From now on, the term ‘task’ will refer to
an FPPN process. Following the usual real-time systems terminology, invoking
a task implies generation of a job which has to be executed before the task’s
deadline. The so-called precedence constraints, i.e., the semantical restrictions
of FPPN job execution order are implied firstly from the time stamps when the
tasks are invoked and secondly from the functional priorities. In this section, we
define these constraints in terms of a sequential order (an execution trace).

The FPPN model requires that all simultaneous process invocations should
be signaled synchronously. This can be realized by introducing a periodic clock
with su�ciently small period (the gcd of all Tp), such that invocations events can
only occur at clock ticks, synchronously. Two variant semantics are then defined,
namely the zero-delay and the real-time semantics.

The zero-delay semantics imposes an ordering of the job executions assuming
that they have zero delay and that they are never postponed to the future. Since
in this case the deadlines are always met even without exploiting parallelism, a
sequential execution of processes is considered for simplicity. The semantics is
defined in terms of the rules for constructing the execution trace of the FPPN for
a given sequence (t1, P

1), (t2, P

2) . . . , where t1 < t2 < . . . are time stamps and
P

i is the multiset of processes invoked at time ti. For convenience, we associate
each ‘invoked process’ p in P

i with respective invocation event, ep. The execution
trace has the form:

Trace(PN ) = w(t1) ¶ –1 ¶ w(t2) ¶ –2 . . .

where –i is a concatenation of job executions of processes in P

i included in an
order, such that if p1 æ p2 then the job(s) of p1 execute earlier than those of p2.

Definition � (Configuration). An FPPN configuration (fi, “, P) consists of:
– a process configuration fi, a function that assigns to every process a state

fi(p) œ D(Xp)
– a channel configuration “, i.e., the states of internal and external channels
– a set of pending events P

Executing one job in a process network:
(fi(p), “) –≠æp (X Õ, “Õ) · ep œ P

·
@pÕ : epÕ œ P · (pÕ, p) œ FP

(fi, “, P) –≠æPN (fi{X Õ/p}, “Õ, P \ {ep})
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where fi{X Õ/p} is obtained from fi by replacing the state of p by X Õ.
Given a non-empty set of events P invoked at time t, a maximal execution

run of a process network is defined by a sequence of job executions that continues
until the set of pending events is empty.

(fi0, “0, P) –1≠æPN (fi1, “1, P \ {ep1}) –2≠æPN . . . (fi1, “1, ÿ)

(fi0, “0) w(t)¶–1¶–2¶...‘≠æ PN (P) (fi1, “1)
Given an initial configuration (fi0, “0) and a sequence (t1, P

1), (t2, P

2) . . . of
events invoked at times t1 < t2 < . . ., the run of process network is defined by a
sequence of maximal runs that occur at the specified time stamps.

Run(PN ) = (fi0, “0) –1
‘≠æPN (P1) (fi1, “1) –2

‘≠æPN (P2) . . .

The execution trace of a process network is a projection of the process network
run to actions:

Trace(PN ) = –1 ¶ –2 . . .

This trace represents the time stamps (w(t1), w(t2) . . .) and the data processing
actions executed at every time stamp. From the e�ect of these actions it is possible
to determine the sequence of values written to the internal and external channels.
These values depend on the states of the processes and internal channels. The
concurrent activities – the job executions – that modify each process/channel
states are deterministic themselves and are ordered relatively to each other in a
way which is completely determined by the time stamps and the FP relation.
Therefore we can make the following claim.

Proposition � (Functional determinism). The sequences of values written
at all external and internal channels are functionally dependent on the time
stamps of the event generators and on the data samples at the external inputs.

Basically, this property means that the outputs calculated by FPPN depend
only on the event invocation times and the input data sequences, but not on the
scheduling. To exploit task parallelism, in the real-time semantics of Section �
the sequential order of execution and the zero-delay assumption are relaxed.

� Real-time semantics for the FPPN model

In the real-time semantics, job executions last for some physical time and can start
concurrently with each other at any time after their invocation. Certain precedence
constraints are respected which for certain jobs impose the same relative order
of execution as in the zero-delay semantics, so that non-deterministic updates of
the states of processes and channels are excluded. To ensure timeliness, the jobs
should complete their execution within the deadline after their invocation. The
semantics specifies the entities for communication, synchronization, scheduling
and is defined by compilation to an executable formal specification language.

Our approach is based on (real-time) ‘BIP’ [�] for modeling networks of
connected timed automata components [��]. We adopt the extension in [��],
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which introduces the concept of continuous (asynchronous) automata transitions,
which, unlike the default (discrete) transitions take a certain physical time. Next
to support of tasks (via continuous transitions), BIP supports the urgency in
timing constraints, and those are timed-automata features required for adequate
modeling and timing verification of dataflow languages [�]. An important BIP
language feature for implementing the functional code of tasks is the possibility
to specify data actions in imperative programming language (C/C++).

SQR_Start

S1

Invoke
reset x

SQR_Finish

Deadline
when [ x = T ]

SQR_Start SQR_Finish

EventGenerator ( T )

void SQR_Init() {

index = 0;

}

void SQR_Execute() {

XIF_Read(&x, &x_valid);

if (x_valid) { 

y  = x * x;

YIF_Write(&y);

}

index = index + 1;

}

discrete transition

continuous transition

port

when [x = T] timing condition

[ valid ] data condition

reset x timing action

y := x*x data action

multi-port
connector

location 

Initial location 

Fig. �. Compilation of functional code to BIP

Fig. � illustrates how an FPPN process is compiled to a BIP component.
The source code is parsed, searching for primitives that are relevant for the
interactions of the process with other components. The relevant primitives are
the reads and writes from/to the data channels. For those primitives the generated
BIP component gets ports, e.g., ‘XIF_Read(IN x,IN valid)’, through which the
respective transitions inside the component synchronize and exchange data with
other components. In line with Definition �, every job execution corresponds to
a sequence of transitions that starts and ends in an initial location. The first
transition in this sequence, ‘Start’, is synchronized with the event generator
component, which enables this transition only after the process has been invoked.
The event generator shown in Fig. � is a simplified variant for periodic tasks
whose deadline is equal to the period. In [��] it is also described how we model
internal channels and give more details on event generator modelling.

To ensure a functional behavior equivalent to zero-delay semantics, the job
executions have to satisfy precedence constraints between subsequent jobs of
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the same process, and the jobs of process pairs connected by a channel. In
both cases, the relative execution order of these subsets of jobs is dictated by
zero-delay semantics, whereby the jobs are executed in the invocation order and
the simultaneously invoked jobs follow the functional priority order. In this way,
we ensure deterministic updates in both cases: (i) for the states of processes by
excluding auto-concurrency, and (ii) for the data shared between the processes
by excluding data races on the channels. The precedence constraints for (i) are
satisfied by construction, because BIP components for processes never start a
new job execution until the previous job of the same process has finished. For the
precedence constraints in (ii), an appropriate component is generated for each
pair of communicating processes and plugged incrementally into the network of
BIP components.

Invoke! FalseInvoke!

FunctionalPriority (δδδδ!	, δδδδ$, %!,	%$) Imposing precedence when (', () ∈ +,
δδδδ!	, δδδδ$		– invocation poll period;     -!,	-$– anticipated invocation time

%!,	%$ – job queue size;                .!,	.$ – queue of  struct (time, active)

Invoke!
invoke!();

advance!();

FalseInvoke!
cancel!();

advance!()

Invoke$
invoke$();

advance$();

Start!
[ not busy 

and ready!()()()() ]

Q!.Pop();

busy:=True;

Finish!
busy:=False;

Finish$
busy:=False;

Start! Finish! Invoke$ FalseInvoke$ Start$ Finish$

FalseInvoke$
cancel$();

advance$()

Start$
[ not busy 

and ready$()()()() ]

Q$.Pop();

busy:=True;

init!();

init$();

init/()

-/:=0;

Q/.Allocate ():= struct ( time=>0, active=>false);

Q/.Push(); 

invoke/()

Q/.Tail.active:= true; 

advance/()

-/:= -/+ δδδδ/
Q/.Allocate ():=  struct ( time=>-/, active=>false);

Q/.Push();       

cancel/()

Q/.Pull();

ready /()

[ Q/.Head.active ] and

[   (Q/.Head.time) < (Q	/0 . Head .time) ]

or 

[ [ (Q/.Head.time) = (Q /0. Head .time) ] and / = ! ]

Fig. �. Imposing precedence order between “A”, “B” (“A” has higher functional priority)

Figure � shows such a component generated a given pair of processes “A”
and “B”, assuming (A, B) œ FP. We saw in Fig. � that the evolution of a job
execution goes through three steps: ‘invoke’, ‘start’ and ‘finish’. The component
handles the three steps of both processes in almost symmetrical way, except in
the method that determines whether the job is ready to start: if two jobs are
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simultaneously invoked, then first the job of process “A” gets ready and then,
after it has executed, the job of “B” becomes ready. The “Functional Priority”
component maintains two job queues� denoted Q– where – œ {A, B} indicates a
process selection. In our notation, – means ‘other than –’, i.e., if – = A then
– = B and if – = B then – = A.

The component receives from the event generator of process ‘–’ at regular
intervals with period ”– either ‘Invoke –’ or ‘FalseInvoke –’. In the latter case
(i.e., no invocation), the job in the tail of the queue is ‘pulled’ away�.

� Model transformation framework

The model-based design philosophy for embedded systems which we follow [��] is
grounded on the evolutionary design using models, which support the gradual
refinement (refined models are more accurate than those refined) and the setting
of real-time attributes that ensure predictable timing. Such a process allows
considering various design scenarios and promotes the late binding to design
decisions. Our approach to refinement is based on incremental component-based
models, where the system is evolved by incrementally plugging new components
and transforming existing ones.

Functional 
code

Architectural 
model

Static 
schedule

Plugging the FPPN 
data channels
and priorities

Task graph

FPPN BIP 
model

System BIP 
model

TASTE-to-BIP model 
transformation

Schedule-to-BIP 
transformation

Plugging 
the online scheduler

Fig. �. Evolutionary design of time-critical systems using FPPNs

We propose such a design approach (Fig. �), in which we take as a starting
point a set of tasks defined by their functional code and real-time attributes
(e.g., periods, deadlines, WCET, job queue capacity). We assume that these tasks
are encapsulated into software-architecture functional blocks, corresponding to
� Queues are implemented by a circular bu�er with the following operations:
– Allocate() picks an available (statically allocated) cell and gives reference to it
– Push() push the last allocated cell into the tail
– Pull() undo the push
– Pop() retrieve the data from the head of the queue

� Thanks to ‘init –’ and ‘advance –’, the queue tail always contains the next anticipated
job, which is conservatively marked as non-active until ‘Invoke –’ transition.
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FPPN processes. Before being integrated into a single architectural model they
can be compiled and tested separately by functional simulation or by running on
embedded platform.
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Fig. �. Model and graph transformations for the FPPN semantics

The high-level architecture description framework of our choice is the TASTE
toolset [��], [��], whose front-end tools are based on the AADL (Architecture
Analysis & Design Language) syntax [�]. An architecture model in TASTE
consists of functional blocks – so-called ‘functions’ – which interact with each
other via pairs of interfaces (IF) ‘required IF’/‘provided IF’, where the first
performs a procedure call in the second one. In TASTE, the provided interfaces
can be explicitly used for task invocations, i.e., they may get attributes like
‘periodic’/‘sporadic’, ‘deadline’ and ‘period’. The FPPN processes are represented
by TASTE ‘functions’ that ‘provide’ such interfaces, implementing job execution
of the respective task in C/C++. Our TASTE-to-BIP framework is available for
download at [�].

The first refinement step is plugging the data channels for explicit commu-
nication between the processes. The data channels are also modeled as TASTE
functions, whereas reads and writes are implemented via interfaces. We have
amended the attributes of TASTE functions to reflect the priority index of pro-
cesses and the parameters of FPPN channels, such as capacity of FIFO channels.
The resulting model can be compiled and simulated in TASTE.

The second and final refinement step is scheduling. To schedule on multi-
cores while respecting the real-time semantics of FPPN this step is preceded by
transformation from TASTE architectural model into BIP FPPN model. The
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transformation process implements the FPPN-to-BIP ‘compilation’ sketched in
the previous section, and we believe it could be formalized by a set of transfor-
mation rules. For example, as illustrated in Fig. �, one of the rules could say
that if there are two tasks ·1 and ·2 related by FP relation then their respective
BIP components B1 and B2 are connected (via ‘Start’ and ’Finish’ ports) to a
functional priority component.

The scheduling is done o�ine, by first deriving a task graph from the ar-
chitectural model, taking into account the periods, functional priorities and
WCET of processes. The task graph represents a maximal set of jobs invoked
in a hyperperiod and their precedence constraints; it defines the invocation and
the deadline of jobs relatively to the hyperperiod start time. The task graph
derivation algorithm is detailed in [��].

Definition � (Task Graph). A directed acyclic graph T G(J , E) whose nodes
J = {Ji} are jobs defined by tuples Ji = (pi, ki, Ai, Di, Wi), where pi is the
job’s process, ki is the job’s invocation count, Ai œ QØ0 is the invocation time,
Di œ Q+ is the absolute deadline and Wi œ Q+ is the WCET. The k-th job of
process p is denoted by p[k]. The edges E represent the precedence constraints.

The task graph is given as input to a static scheduler. The schedule obtained
from the static scheduler is translated into parameters for the online-scheduler (cf.
Fig. �), which, on top of the functional priority components, further constraints
the job execution order and timing, with the purpose of ensuring deadline
satisfaction. The joint application/scheduler BIP model is called System Model.
This model is eventually compiled and linked with the BIP-RTE, which ensures
correct BIP semantics of all components online [��].

� Case study: guidance, navigation & control application

Our design flow was applied to a Guidance Navigation & Control (GNC) on-board
spacecraft application that was ported onto ESA’s NGMP, more specifically the
quad-core LEON�FT processor [�]. In the space industry, multi-cores provide a
means for integrating more software functions onto a single platform, which con-
tributes to reducing size, weight, cost, and power consumption. On-board software
has to e�ciently utilize the processor resources, while retaining predictability.

A GNC application a�ects the movement of the vehicle by reading the sensors
and controlling the actuators. We estimated the WCETs of all tasks, Wp, by
measurements. There are four tasks: the Guidance Navigation Task (Tp = ���ms,
dp = ���ms, Wp=��ms), the Control Output Task (Tp = ��ms, dp = ��ms,
Wp = �ms) that sends the outputs to the appropriate spacecraft unit, the
Control FM Task (Tp=��ms, dp=��ms, Wp=�ms) which runs the control and
flight management algorithms, and the Data Input Dispatcher Task (Tp=��ms,
dp=��ms, Wp=�ms), which reads, decodes and dispatches data to the right
destination whenever new data from the spacecraft’s sensors are available. The
hyperperiod of the system was therefore ���ms, and it includes one execution
of the Guidance Navigation Task and ten executions of each other task, which
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results in �� jobs. The Guidance Navigation and Control Output tasks were
invoked with relative time o�sets ���ms and ��ms, respectively. Fig. � shows
the GNC FPPN, where the functional priorities impose precedence from the
numerically smaller FP index (i.e., higher-priority) to the numerically larger
ones, we defined them based on analysis of the specification documents and the
original implementation of task interactions by inter-thread signalling.

The architectural model in TASTE format was automatically transformed
into a BIP model and the task-graph model of the hyperperiod was derived. The
task graph was passed to the static scheduler, which calculated the system load
to be ���% (i.e., at least two cores required, taking into account precedences [��]
and interference [��]) and generated the static schedule.

Fig. �. The GNC FPPN model
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The BIP model was compiled and linked with the BIP RTE and the executables
were loaded and ran on the LEON�FT board. Fig. � shows the measured Gantt
chart of a hyper-period (���ms) plus ���ms. We label the process executions
as ‘P<id>’, where ‘<id>’ is a numeric process identifier. Label ‘P��’ is an
exception, it indicates the execution of the BIP RTE engine and all discrete-event
controllers – event generators, functional priority controllers, and the online
scheduler. Since there are four discrete transitions per one job execution and
�� jobs per hyperperiod, 31◊4=124 discrete transitions are executed by BIP RTE
per hyperperiod. The P�� activities were mapped to Core �, whereas the jobs of
tasks (P�, P�, P�, P�) were mapped to Core � and Core �. P� stands for the Data
Input Dispatcher, P� for the Control FM, P� for the Control Output and P�
for the Guidance Navigation task. Right after �� consecutive jobs of P�, P�, P�
the job on P� is executed. The job of P� is delayed due to the ���ms invocation
o�set and the least functional priority. Since P� and P� do not communicate via
the channels, in our framework (P3, P4) /œ FP and they can execute in parallel,
which was actually programmed in our static schedule. Due to more than ���%
system load this was necessary for deadline satisfaction.

� Conclusion

We presented the formal semantics of the FPPN model, at two levels: zero-delay
semantics with precedence constraints on the job execution order to ensure
functional determinism, and real-time semantics for scheduling. The semantics
was implemented by a model transformational framework. Our approach was
validated through a spacecraft on-board application running on a multi-core. In
future work we consider it important to improve the e�ciency of code generation,
formal proofs of equivalence of the scheduling constraints (like the task graph)
and the generated BIP model. The o�ine and online schedulers need to be
enhanced to a wider spectrum of online policies and a better awareness of
resource interference.
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