Coloured Petri Nets

TOOLS

e editing
e simulation

THEORY e verification
* models

* basic concepts

e analysis methods

PRACTICAL USE
e specification
e validation

e verification

kiensen@daimi.au.dk e implementation
www.daimi.au.dk/~kjensen/

© Kurt Jensen
Department of Computer Science
University of Aarhus, Denmark

This slide set can be downloaded from:
http://www.daimi.au.dk/CPnets/slides/

What is a Coloured Petri Net?

& Modelling language for systems where synchronisation,
communication, and resource sharing are important.

¢ Combination of Petri Nets and Programming Language.

m Control structures, synchronisation, communication,
and resource sharing are described by Pefri Nets.

n Data and data manipulations are described by
functional programming language.

¢ CPN models are validated by means of simulation and
verified by means of state spaces and place invariants.

¢ Coloured Petri Nets is developed at University of Aarhus,
Denmark over the last 25 years. =]
]

Why do we make models?

¢ \We make models to:

m Learn new things about a
system.

s To check that the system
design has certain
expected properties.

=
—
-
|
—
-
)
—

¢ CPN models are dynamic:
s They can be executed on a computer.
s This allows us to play and investigate different scenarios.

Overview of talk

Modelling Analysis

¢ Basic language ¢ State spaces
= syntax a full
= semantics

_ s symmetries
¢ Extensions ,
m equivalence classes

= modules
= time = sweep-line
¢ Tool support ¢ Place invariants
= editing = check of invariants

= Simulation m use of invariants

e OlMpPle protocol

11
INTXDATA 142,'g and An")+
1 |{ alysmh }+ i
1 (5 "of Colou")+
1°(8,"red Petr")+ DATA
(} 17" NetstH")+
n, 17(B, AR .
P . if Ok(s,) | str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) .~ (n.0) | Transmit | !se empty p<>stop
Packet | then strig
i else str
i s e
i 8 =P s
' Int_0_10 1 :
| @‘ Receive
! 8 Packet
| @ L INT if n=k
i int_0_10 qlm""‘*-.._h then k+1
i S T.else k if n=k
‘ | then k+1
Receive : () . | Transmit else k
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 5

24/01/20058

1,"Modellin")+

Simple protocol

1
INTXDATA 142,'g and An")+
1°(3,"alysis b")+ -
1°(4,"y Means ")+ _
1°(5,"of Colou™)+
1°(6,"red Petr")+ DATA
(} 17" NetstH")+
n, 1°(8, "R .
° ‘ - if Ok(s,r) | str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (n,p) Transmit I else empty p<>stop
Packet Packet then strp
| else sir
] Places } .. é))
Receive
INT i 8 L INT ey Packet
| Int_0_10 — then k+1
| T else k if n=k
‘ | then k+1
Receive . () . Transmﬂ else k
Acknow. - | Acknow.
N i Ok(s,r) " INT
. then 1'n
| else empty
Sender | Network Receiver

INTxDATA

Sender

(1
L
13,
14,
1
L
L
18/’

e OlMpPle protocol

2,"g and An")+

"alysis b")+ "

"y Means ")+ Received
5,"of Colou™)+
6,"red Petr")+ DATA

7, |Nets##'j|

if Ok(s,r) i str| |if n=k

then 1°(n,p) INTxDATA andalso

else empty p<>stop
then strg

else sir

rm
-
e
e
-
-

=
L

if Ok(s,r)
then 1'n
else empty

Network Receiver

o OlMPle protocol

(2,"g and An")+

1
INTXDATA ! A
1 (3 alvsis b+
Place) ! _@
" DATA
.
(n.p) b ! : : str | |if n=k
INTXDATA then 1°(n,p) NTxDATA andalso
Send | (np) s~ (np) | Transmit | else empty p<>stop
Packet Packet | then strig
else str

{ ‘ Receive

8 INT e Packet
int_0_10 ST then k+1
T else k if n=k
then k+1

Receive : () 1 Transmit else k
Acknow. - | Ack .
N = if Ok(s,r) | 2CKNOW
. then 1'n
| else empty
Sender | Network Receiver

INTxDATA

Receive
Acknow.

Sender

g () : | Transmit
n if Dk(} Acknow. n

-] Slmple protocol

1'(1
1'(2,"g and An")+
1'(3,"alysis b")+
1'(4,"y Means "j+ Received
1'(5,"of Colou")+
1'(6,"red Petr")+ TA
1'(7."i Nets##")+
1° (B, HHHHHEH) :
: it Ok(s,r) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) _~~ (np) Transmit I else empty p<>stop
Packet | then strig
else str

if n=k
e then k+1

T.else k if n=k
then k+1
else k

1
(@‘ Receive
L Packet

S,r
then 1'n
else empty

INT

Network Receiver

" (1,"Modellin") +
"(2,"g and An") +
" (3,"alysis b") +

" (4,"y Means ") +
" (5,"of Colou™) +

Marking of Send
" (6,"red Petr") +
" (7,"i Nets##") +

INTXDATA
* (8, HHHHHHHE")
Number of tokens l /

/

_—ee e e e e = =

o OlMPle protocol

INTXDATA (2,"g and An")+

1
1
1'(3,"alysis b"}+
1'(5,"of Colou")+
1'(6,"red Petr")+ DATA
- 1°(7." Nets##")+
n,p 1°(8, " HHHHHEEHE) .
! if Dk(s‘,r} , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send | |(n,pk A~~~ (p) | Transmit | e'se empty p<>stop
Packet Packet I then strp
+ . A else str
ol A L T T
1
INT L Packet
)] Int_0_ m?

Receive - (). Transmﬂ
Acknow. : | Ack

N == if Ok(s,r) | 2CKNOW.

then 1°n

else empty

Sender Network Receiver

e OlMPle protocol

Received
DATA

INTxDATA

if Ok(s,r) str | | if n=k
then 1°(n,p) andalso
Transmit I else empty p<>stop
Packet then strig
else sir
v
Int_ 0 m :
Receive
Packet
Int_0_ m .
S ' if n=k
: then k+1
Receive Transmd else k
Acknow.) if Ok(s,r) | Acknow.

then 1'n
else empty

Coloured Petri Nets
24/01/20058

1

2

e OlMpPle protocol

(1)
INTXDATA 142,'g and An")+
1 |{ alysmh }+ m
1 (5 "of Colou")+
1°(6,"red Petr")+ DATA
(} 17" Netsti")+
n, 17 (8, "L ,
P , if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) nTxDATA andalso
Send (n,p) (n,p) Transmit I else empty p<>stop
Packet Packet | then strig
else sir
x
h 4
1 BUffer places a‘ Receive
Packet

Interface

Receive | Transmit |‘
Acknow. [4 n @Ff@k(s,r} Acknow. n

INT
then 1'n
else empty

é

INT

Sender Network Receiver

INTxDATA

-] olmple protocol

g and An")+

"alysis b")+

"y Means ")+ ~ (Received
,'of Colou")+
Vred Petr")+ DATA

i Nets##")+
B if Ok(s,r) | tr
INTXDATA _ then 1°(n,p) NTxDATA

Packets to be sent

-
-
e
e
-
.-‘-"'

if n=k
andalso
p<>stop
then strg
else str

Int_ 0 m .
Receive
INT Packet

Receive
Acknow.

Sender

int_0_ ‘.'G L .o thEﬁ k+1
T else k if n=
then k+1

k

‘_@‘_ Transmﬂ else k
N if Ok(s,r) Acknow. n
; then 1'n
| else empty
i Network Receiver

Simple protocol

1°(1,"Modellin")+
INTXDATA 142,'g and An")+
1° |{ alysmh }+ -
1 (5 "of Colou")+
1°(6,"red Petr")+ DATA
(} 17" NetstH")+
n, 1" (8, .
° ‘ - if Ok(s,r) | str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (n,p) Transmit I else empty p<>stop
Packet Packet I then strp
| else sir
| S .
i 8 =P =
' Int_0_10 1
| (@‘ Receive
! 8 Packet
| LT e
| Ff][_ﬂ 10 “N"*-..._ 'thEI"I k+.1
C S T else k if n=k
ounter then k+1
~ Transmit else k
Acknow. e if Ok(s,r) Acknow.
. then 1'n
| else empty
Sender | Network Receiver

e OlMpPle protocol

(1)
INTXDATA 1(2,"g and An")+
1 |{ alysmh }+ "
1 (5 "of Colou")+
1'(8,"red Petr")+ DATA
() 17" NetstH")+
n, 1°(8, ") ,
g . if Ok(s.) | str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) .~ (np) | Transmit I else empty p<>stop
Packet then strg
| else str
' Int_0_ m :
| Receive
| Packet
i Int_0_1
Receive . (j) 1 | Transmit
Acknow. n \ if Ok(s,r) Acknow.
then 1'n
else empty

Sender Network Receiver

o OlMPle protocol

(2,"g and An")+

1
INTXDATA i @A
1°(3,"alysis b")+
1°(4,"y Means ")+ i >
@ 17(D,"of Colou™)+ -
1°'(6,"red Petr")+
(np) 1°(7."i Nets##")+
n, 1° (8, "M .
g ! if Ok(s, ") | str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(np)_r~ 5 p<>stop
Data received | |tensts
else str

Int_0_ m .
INT Packet

int_0_ ?'15' L --r.,,_ then k+1
T else k if n=k
then k+1

Receive : () 1 Transmﬂ else k
Acknow. n if Ok(s,r) | Acknow. n
IN
; then 1'n
| else empty
Sender | Network Receiver

Simple protocol

1°{1,"Modellin™)+
INTXDATA 142,'g and An")+
1°(3,"alysis b")+ i
1°(4,"y Means ")+ _@
1°(5,"of Colou™)+
1'(6,"red Petr")+ DATA
17" NetstH")+
1°(8, ") .
. if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) Transmit I else empty p<>stop
Packet | then strig
i else str
| S -
i 8 s
1 | rn!_ﬂ_m@ 1 |
INT ! 8 Packet
i int_0_10 "'“‘*n.,_h_ then k+1
i S T.else k if n=k
‘ | then k+1
Receive - () - | Transmit else k
. then 1'n
| else empty
Sender ! Network Receiver

Coloured Petri Nets
24/01/20058

18

p = "Modellin"

INTXDATA
.+ 1 (3 ‘alysis b")
@ +1°(4,"y Means ")
+ 1°(5,"of Colou")
<n=1 ,B="Modellin"> (1,p +11(6,red Petr’)

+ 1°(7,"i Netstt#")
IS enabled.

Send packet
¢ The binding

+ 1°(8, " HHHHHHHH")

INTXDATA
¢ When the binding occurs it (n.p)

adds a token to place A.

¢ This represents that the @ 11 Modelir
packet (1,"Modellin")
Is sent to the network. 1

¢ The packet is not removed it
from place Send and the

NextSend counter is not
changed. E

INTxDATA

e OlMpPle protocol

(1)

1°(2,"g and An")+
1°(3,"alysis b")+
1'{4,"y Means ")+
1°(5,"of Colou")+
1°(6,"red Petr"}+
1°(7, |Nets##'j|
178/ '

Receive
Acknow.

Received
DATA

n O'ka(3

I s,r

Sender

Coloured Petri Nets
24/01/20058

Transmit
Acknow.

INT
then 1'n

else empty

if Ok(s,r) i str | | if n=k

then 1°(n,p) INTxDATA andalso

else empty p<>stop
then strg
else sir

rm
-\.-‘""-n-ﬂ

-
=
-
-

1
(@‘ Receive
L Packet

if n=k
RS then k+1
T.else k if n=k
then k+1
else k
Receiver

Network

20

Transmit packet ret. 10

if Ok(
INTXDATA then 177 INTXDATA

else empty .

¢ All enabled bindings are on the form:
x <n=1,p= "Modellin",s=8,r=...>

= where rel..10

Coloured Petri Nets
24/01/20058

21

if Ok(s,r)

Loss of packets |then 1°(n,p)
else empty

¢ The function OKk(s,r) checks whether r <'s.

m Forr 1. .8, Ok(s,r)=true.
The token is moved from A to B. This means

that the packet is successfully transmitted
over the network.

m Forr € 9. .10, Ok(s,r)=false.
No token is added to B. This means that the
packet is /ost.

¢ The CPN simulator makes random choices

between bindings: 80% chance for successful
transfer.

e OlMpPle protocol

(1)
INTXDATA 142,'g and An")+
1 |{ alysmh }+ "
1 (5 "of Colou")+
1'(6,"red Petr")+ DATA
() 17" NetstH")+
n, 1 (8, "HHHHHHRRE) _
P . if Ok(s,r) , str| |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n.p) ~~\ (np) | Transmit | €se empty p<>stop
Packet | then strg
else str

8

Int_0_10

Receive - (). | Transmit
Acknow. n if Ok(s,r) Acknow. n

=
LT

INT | Sl INT
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 23

24/01/20058

Receive packet oAt —T&
if n=k
¢ The number of the NTYOATA
incoming packe 1 en st
and the number 0Of the else str

expected pack

are compared.
]

Coloured Petri Nets
24/01/20058 24

Correct Received) (1)1 Wereling and
packet number Ve

if n=k
: - *(3 "alvsis b" dal
¢ The data in the packetis /@™ _ ey 000
concatenated to the data R tqu

already received.

¢ The NextRec counter is
Increased by one.

1"Modelling and Analysis b

Receive

¢ An acknowledgement Packet

IS sent. It contains the

14
number of the next packet =K i na
the receiver wants to get. tehl:
Coloured Petri Nets 25

24/01/20058

WrOng @ @1 'Modelling and Al
packet number T

if n=k
\ andalso
1°(2,"g and An") m p<>stop

(n,p) then str\p

¢ The data in the packet is
ignored.

¢ The NextRec counter is
unchanged.

1""Modelling and An"

¢ An acknowledgement

is sent. It contains the (D13 jocia ™y
number of the next packet E'S .
I then k+1
the receiver wants to get. W
Coloured Petri Nets 26

24/01/20058

s OlMPle protocol
INTXDATA 1(2,"g and An")+
17(3,"alysis b")+ "
@ 1°(4,"y Means ")+ - @
1°(5,"of Colou™)+
1°(6,"red Petr")+ 2 G
(np) 1°(7,"i Nets##")+
n, 1°(8, " .
P | " if Ok(s.r) | str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) .~ (n.0) | Transmit | !se empty p<>stop
Packet | then strig
! else str
| [e
i 8 =P s
' Int_0_10 (1 :
| Receive
i 8 Packet
| L T if n=k
' Rl then k+1
| T.else k if n=k
‘ | then k+1
Receive Transmit else k
Acknow. if Ok(s,r) Acknow. n
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 27

24/01/20058

Transmit acknowledgement

If Ok(s,I)
then 1'n INT

else empty @ 12

INT

¢ This transition works in a similar way
as Transmit Packet.

¢ The marking of RA determines the
success rate.

INTxDATA

(n,p)

Send
Packet

Sender

Coloured Petri Nets
24/01/20058

e OlMpPle protocol

171
1'(2,"g and An")+
1°(3,"alysis b")+ "
1°{4,"y Means ")+ _@
1°(5,"of Colou™)+
1°(8,"red Petr")+ DATA
17" NetstH")+
178, "HHHHHHHAE) .
. if Dk(s‘,r} , str| |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) _~~ (np) Transmit I else empty p<>stop
Packet | then strg
else str

{ ‘ Receive

INT s Packet
R then k+1
T.else k if n=k
then k+1

| Transmit else k
if Dk(S,I’} Acknow.
. then 1'n
| else empty
| Network Receiver

29

Receive acknowledgement

¢ When an acknowledgement arrives to the Sender
it is used to update the NextSend counter.

= In this case the counter value becomes 2,
and hence the Sender will begin to send
packet number 2.

Intermediate state

1 1°(1,"Modellin")
& Receiver expects wnoam 11 Modeli) |
+ 17(3,"alysis b") 1™"Modelling and - -
paCket No. 6 - @ + 1'(4,"y Means ") @ Analysis by Means of @
+1°(5,"of Colou™) Colou” DATA
+1°(6,"red Petr")
. . (n.p) + 1°(7." Nets##") ,
‘ Sender IS Stl ” il e if Ok(s,r) i gr?:E:(IS
H INTXDATA then 1'(n,p) NTXDATA str | |peoste
sending packet o —— ten i pos

no 5 else st
& Acknowledgement e
requesting packet : |
1 n7i INT i : i
no. 6 is arriving. COD | e GO

then k+1
else k

& Then NextSend | -
is updated and —(De— —(
INT then 1'n

Sender will start b o
sending packet O

no. 6 . Sender | Network Receiver

CP-nets has a formal definition

¢ The existence of a formal definition is important:
m Basis for simulation, i.e., execution of the CP-net.

m Basis for the formal verification methods (e.g.,
state spaces and place invariants).

s Without the formal definition, it would have been
Impossible to obtain a sound net class.

& It is not necessary for a user to know the formal
definition of CP-nets:

m Correct syntax is checked by the CPN editor.

m Correct semantics is guaranteed by the CPN
simulator and the CPN verification tools.

High-level Petri nets

¢ The relationship between CP-nets and ordinary
Petri nets (PT-nets) is analogous to the relationship
between high-level programming languages and
assembly code.

m In theory, the two levels have exactly the same
computational power.

m In practice, high-level languages have much more
modelling power — because they have better
structuring facilities, e.g., types and modules.

¢ Several other kinds of high-level Petri Nets exist.
However, Coloured Petri Nets is the most widely used
— in particular for practical work.

Overview of talk

Modelling Analysis

¢ Basic language ¢ State spaces
= syntax a full
= semantics

_ s symmetries
¢ Extensions ,
m equivalence classes

= modules
= time = sweep-line
¢ Tool support ¢ Place invariants
= editing = check of invariants

= Simulation m use of invariants

CP-nets are used for large systems

¢ A CPN model consists of a number of modules.

m Also called subnets or pages.
m Well-defined interfaces and clear semantics.

¢ A typical industrial application of CP-nets has:

= 10-200 modules.
s 50-1000 places and transitions.
= 10-200 types.

¢ Industrial applications of this size would be totally
impossible without:
s Data types and token values.
= Modules.
= [ool support.

oy Modules

INTxDATA

Received
DATA

if Ok(s,r) str | | if n=k
then 1°(n,p) andalso
Transmit I else empty p<>stop
Packet then strig
else str
v
Int_ 0 m :
Receive
Packet
Int_0_ m .
s ' if n=k
: then k+1
Receive Transmd else k
Acknow.) if Ok(s,r) | Acknow.

then 1'n
else empty

Coloured Petri Nets
24/01/20058

3

6

Three different modules

Sender

INTxDATA

1°(1,"Modellin")+
1°(2,"g and An")+
1°(3,"alysis b")+
1°(4,"y Means ")+
1"(5,"of Colou")+
1°(6,"red Petr"}+
1°(7."i Nelst#")+
17(8,"HEHHHRAE)

INTxDATA

(n.p)l @

Receive
Acknow.

Out

INTXDATA
(n,p)

Out

OifOk('

S,r
then 1°n
else empty

INT

Transmit
Packet

Transmit
Acknow.

Network

if Ok(s,r)
then 1°(n,p) INTxDATA

else empty .

Out

In
1
‘:@ Receive
Packet

Receiver

/0
DATA

str| |if n=k
INTXDATA andalso
9 (n,p) p<>stop
then strp
else str

k A 4

if n=k
then k+1

else k if n=k
then k+1

Out

else k

INT

¢ Port places are used to exchange tokens
between modules.

Coloured Petri Nets

24/01/20058

37

Abstract view

Protocol
| |

INTXDATA INTXxDATA

SEI"IdEF N{_ztl,.ﬂ‘,'[]rk R&CEW&F

DATA

HS HS

Network Receiver

¢ Substitution transitions refer to modules.
& Socket places are related to port places.

Modules can be reused
Protocol

| INTxDATA

INTXDATA @

RecNo1 - _
INTXDATA
@ DATA
HS

' Receiver

HS HS @
- RecNo2 -
Sender Network NT -

DATA
INTXINT @

HS

Receiver

Protocol with multiple receivers
Network

Sender

1°(1,"Modellin")+
1°(2,"g and An")+

INTxDATA : .
1°(3,"alysis b")+
1°(5,"of Colou")+
1°(6,"red Petr")+
1°(7."i Netstt#")+

(n,p) 1°(8,"HH ")
INTXDATA
Send (n,p)
Packet
Out
(Rerisend
INT
min(n1,n2)
In

Receive
Acknow.

1(n1,1)+
1'(n2,2) INTXINT

Coloured Petri Nets

24/01/20058

INTxDATA

INTXINT

Transmit
Packet

Int_0_10 @

if Ok(s.r)
then 1°(n,1)
else empty

if Ok(s.r)
then 1(n,2)
else empty

s

INTXDATA

6y

Out

INTXxDATA
if Ok(s,r2) @
then 1" (n,p)

else empty
Out

if Ok(s,r1)
then 1" (n,p)
else empty

Transmit
Acknow.

Transmit
Acknow.

S

i

Int_0_10

Receiver

/0

~ (Received
DATA

str
INTXxDATA

e (n,p)

k v

if n=k
andalso
p<>stop
then strip
else sir

Receive
Packet

if n=k

then k+1
else k

Out

else

INT

if n=
then k+1

k

K

40

Transmit packets

if Ok(s,r1) INTxDATA
then 1 (n,p)
else empty

INTxDATA

Transmit
\n.p) Packet

S

INTxDATA

if Ok(s,r2)
then 1°(n,p)

8 @ else empty
Int_0_10

¢ Packets are broadcasted to the two receivers.
m Some of the packets may be lost.

Coloured Petri Nets
24/01/20058

Transmit acknowledgments

8
Int_0_10

if Ok(s,r) 1
then 1°(n,1) Transmit
else empt Acknmw

INTXINT I .
if Ok(s.r) Transmit n
then 1°(n.2)
i Acknow. | I @

INT

5

(RA
Iint_ 0 10
Coloured Petri Nets

24/01/20058

42

Receive acknowledgments

Recelve
Acknow.

(n1,1
(n2.2) INTxINT

& The sender follows the slowest receiver.

Hierarchical descriptions

¢ We use modules to structure large and complex
descriptions.

¢ Modules allow us to hide details that we do not
want to consider at a certain /level of abstraction.

¢ Modules have well-defined interfaces, consisting of
socket and port places, through which the modules
exchange tokens with each other.

¢ Modules can be reused.

(rec, ™) ++

(rec2,™) :
. Received
Another solution RECXDATA ?

& Multiple receivers (rec,if n=k
dal
may also be RECXINTXDATA (rec,sir) ——
modelled by addmg @ (rec,(n.p)) then strp
a hew component to else str)
the token colours.
¢ Similar changes 1
for Transmit Packet Geshi]™ (reck v
i\\h(;l(Trall?SCI;vit t - " Receive
cknowledgment. -
9 RECXINT freq if mox L aCKet
(rec,
then K+1
else k) (rec,if n=k
then k+1
else k)

RECy INT

Protocol for ISDN network

Message
UserToNetwork

NetworkToUser

Message

¢ Most abstract view of the system.

Overview of user site

_—(NetworkToUser

Message
UintReq

IntUserReq

NS N N N eSO I D R

Message

Typical module

InternalUserReq

UlntReq

UserState

(u cref, b)

[in |

um) T

(u{mt=CLEAR_REQ, /
ai=Callref cref}) /
AV v

N

NetworkToUser

Message

CLEAR_REQ [#mtm = #mtm = D|SC [#mt m = REL, [#mtm = [#mtm =
CONN_ACK, E;ref- #or m cref= #cr m] REL_COM, STATUS_ENQ,
cref= #cr m] cref= #cr m] cref=#crm]

(u,{mt=DISC, (u,{mt = REL_COM, (u, {mt=S
cr=cref, cr = cref, cr=cref,
ai=null}) ai = null}) ai=Status 8})
Message
- UserToNetwork =
\ /
(u,cref,b) (u,cref,b) (u,cref,b) (u,0,none)
UserState UserState UserState UserState

¢ This module describes the actions that can

happen when the user site is in state US.

& The node shapes have a meaning in SDL.

NetworkToUser

Typical transition g\

. (u,m)
Sta tus Enqu’ } Vi type MessageRec =
_ record mt: MessageType
message (u,cref,b,s) > [;#'Ir'nAtTTJ; ENQ * cr : CallReference
g g L ’ * ai : MessageData,;
recelved in UserState cref= #cr m] type Message =
Sta te U8 product User * MessageRec;
type UserState =
yI;roduct User (U, {mt=STATUS,
* CallRef cr=cref,
* BChanName ai=Status 8})
* HoldStatus;

UserToNetwork

Message

¢ Guard checks:
= Message is a Status Enquiry message.

m Call Reference is correct (i.e., matches the
one in the User State token at place US8).

¢ A Status message is sent to the network site.
It tells that the user site is in state US.

Some modules are used many times

ISDN#1 i Prime DECLARE#4

{ USER_TOP#2 }—>{UREQ_GEN#39}

uo
N—of NULL#3 }——5f NULL_SET#5 }

o > CALL_INI#6
u2
;Di OVERLAP#9 i

U — S
N——>{OUTGOING#15 }——{ U_HOLD#45

U4

N—{ CALL_DEL#16

{U_REL_CO#40}
J

3

{ NET_TOP#19 }—{ ROUTING#24 }

N_SETUP#22 |

u10
¥(>i ACTIVE#7 i
ull
;D{\ DISCONNE#8 ;
u12
;DE DISC_IND#18 s
u19
\—{>{ RELEASE#17 F

NO

NULL#20 U_SETUP#21

',

N2
> OVERLAP#29
N3 ‘
;DE OUTGOING#26
: N

N {CALL DEL#28

AV
{ N_E_PART#27 } {N_D_PART#31}
A A

|

{ N_HOLD#44

N6

CALL_PRE#38J

N7 o
N——f CALL_REC#32 } M
) }

N8

CONNECT#30

N9 ~
N—f INCOMING#37 | J
|)

N10
ACTIVE#36 J

N11 o
;Di DISCONNE#33 ;

N12

> DISCONNE#34
N19
;Di RELEASE#35 }

¢ 43 modules with more than 700 instances.

& Entire model was made in only 3 man-weeks.

Time analysis

¢ CP-nets can be extended with a fime concept. This
means that the same modelling language can be
used to investigate:

m Logical correctness.
Desired functionality, absence of deadlocks, etc.

m Performance.
How fast is the system and how many resources
are used.

How to add time

¢ Time has been added to Petri net models in many
different ways — typically by specifying delays on
places or transitions.

CPN model

./ data value (token colour)

token
time value (time stamp)

¢ [ime stamp determines when the token can be used,
l.e., consumed by a transition.

m Delays can be fixed.
s Determined by an arbitrary distribution.

A timed CP-net for protocol

INTXDATA
. Send

.

(e} |(n,p)@+wait

Wait Send {n,p)
Packet
TIME @
n
Retrans-
mission L
i, NextSend
delay INT =" - -
k f
Receive
Acknow.
Sender

Coloured Petri Nets
24/01/20058

Fixed delay

INTxDATA

.. Received

nata” T [k
i if n=k
then 1(n,p) LLEL 2 str| |p==slop
Transmit alsa emply e (n.p) then st
Packet alse sif
!
1
.-«---'”"""-ﬂ-I
g L
: 5 al
| kP ! " b
10 et e
i i MNextRec i HPEG‘-“:VE
g - - i - — - acket
_l'fHﬁ?' | INT -y
0" . ther k+1 |
“-'u.,.__“‘

~__ alsek

[
I
I
I
I

Transmit

| than k+1
Acknow.

alse K

it CIK5.F)
than 1 n
else amply

Receiver

93

Network \

Variable delay

Application areas

Protocols and Networks

Intelligent Networks at Deutsche Telekom

IEEE 802.6 Configuration Control at Telstra Research Labs
Allocation Policies in the Fieldbus Protocol in Japan

ISDN Services at Telstra Research Laboratories

Protocol for an Audio/Video System at Bang & Olufsen
TCP Protocols at Hewlett-Packard

Local Area Network at University of Las Palmas

UPC Algorithms in ATM Networks at University of Aarhus
BRI Protocol in ISDN Networks

Network Management System at RC International A/S
Interprocess Communication in Pool IDA at King's College

00000600090

Software

Mobile Phones at Nokia

Bank Transactions & Interconnect Fabric at Hewlett-Packard
Mutual Exclusion Algorithm at University of Aarhus
Distributed Program Execution at University of Aarhus
Internet Cache at the Hungarian Academy of Science
Electronic Funds Transfer in the US

Document Storage System at Bull AG

ADA Program at Draper Laboratories

A A A R R R X -

Control of Systems

¢ Security and Access Control Systems at Dalcotech A/S

¢ Mechatronic Systems in Cars at Peugeot-Citroén in France
¢ European Train Control System in Germany

¢ Flowmeter System at Danfoss

¢ Traffic Signals in Brazil

¢ Chemical Production in Germany

¢ Model Train System at University of Kiel

Hardware

¢ Superscalar Processor Architectures at Univ. of Newcastle
¢ VLSI Chip in the US
¢ Arbiter Cascade at Meta Software Corp.

Military Systems

¢ Military Communications Gateway in Australia
¢ Influence Nets for the US Air Force

¢ Missile Simulator in Australia

¢ Naval Command and Control System in Canada

Other Systems

¢ Bank Courier Network at Shawmut National Coop.
¢ Nuclear Waste Management Programme in the US

Overview of talk

Modelling

¢ Basic language
= syntax
= semantics

¢ Extensions
= modules
= time

¢ Tool support
= editing
= simulation

Analysis

¢ State spaces
= full
s symmetries
m equivalence classes
= sweep-line
¢ Place invariants

m check of invariants
m use of invariants

Computer tools

¢ Design/CPN was developed in the late 80'ies '
and early 90'ies.

= Until recently, it was the most widely used Petri net
package.

s Used by 7000 different organisations in more than 60
countries — including 200 commercial companies.

¢ CPN Tools is the next generation of tool support for
Coloured Petri Nets.

s It has now replaced Design/CPN with 1250 users in
more than 75 countries.

s Development sfarted in 1999 and a total of
25 man-years have been used.

m Development continues with an
expected effort of 5 man-years per year.

Coloured Petri Nets
24/01/20058

S7

CPN Tools and Design/CPN

The functionality of the two tools is the same:
¢ Editing and syntax check of CP-nets.
¢ Interactive and automatic simulation.
¢ Construction and analysis of state spaces.

¢ Communication with other tools.
¢ Simulation based performance analysis.

¢ Graphical animation of simulation results.

What is new in CPN Tools?

¢ Windows XP. Later versions will also support Linux.
¢ On-the-fly, incremental syntax check.

¢ Much more efficient simulation engine in particular for:
s Models with many tokens.
s [imed models.

¢ New user interface with a number of state-of-the-art
Interaction mechanisms:

m Possible to have a mouse in each hand.

= Tool glasses, floating palettes and
circular marking menus.

istory
nol box
-Alixiliary
-Clreate
-iey
-Hierarchy
-[et
-Simulation
-Statespace
- Syl
elp
plions
ierarchicalProtocol.cpn
Step: 0
Time: 0
"Declarations
B color IMT
= color DATA
B color INTxDATA
B colon IMTHINT
Evar nknl n2
Fyar postr

kval stop = "REEREERE

B color Tend
= color Tent
Fvar 5

Evar o2

- fin Okis: Tend,nTenl)=

e fun iminfiiint jint)=
FTop
Sender
Metawork
Receaivar (13
Receiver (2}

Clase
Binder 12
color INTxIR

color IMTRT Yndo

Binder 4
Receiver (1)

Receive
FPacket

=

then k+1
else k

if n=k
then k+1
glse k

Binder i
Receiver(1)

Wien

y

y
y'

Binder 3
Top

Metwork Receiver(1)

INTxDATA

Sender

Sendar

Binder

Redo

Delete
Binder

[REETA

INTHINT

Receiver(2)

[N THDATA

IMTHDATA

Sender

r

it n=k
andalso
p==stop
then strip
else =t

n=k

Receive
Facket

.~

then k+1
glse k

1]

Qut] — INT

Mone

it n=k
then k+1
glse k

Rechal

e

FecHo2

Hierarhical Protocol

VR

5 1)

DATA

> @D @)1

DATA

Creat
]

e Hierarchy

X

G2 | x

-
]

Standard ML

¢ Types, arc expressions and guards are specified
iIn Standard ML, which is a strongly typed,
functional programming language developed by
Robin Milner.

¢ Data types can be:

s Atomic (integers, strings, booleans and
enumerations).

m Structured (products, records, unions, lists,
and subsets).

¢ Arbitrary complex functions and operations can
be defined (e.g., using polymorphism).

¢ Standard ML is well-known, well-tested and very
general. Several text books are available.

Support for hierarchical models
Database

Update
and
Send Messages

A ST
Ei,l Mes(s) IIh
ollf MESL .2
| An::twe I| UI'ILISEUJ II—’assweI

|I|I Mes(s) |||

|.||||_.|I_

Receive all
Acknowledg- Acknowledg-
ments ment

tﬁ’ Ac:l-cnm-.rledged

MES

¢ We want to move the selected part to a new module

Coloured Petri Nets 4 This is done by a single operation. 62
24/01/20058

i Sockets (interf:
Abstract view 17 ockets (interface)

Database
Mes(s) Con.oo . ™ L
= Substitution
Update (s.0) transition

and
=end Messages

—TF

I||' Mes(s) "||I
|||II MEEJ— M

|| ‘Active 14 L_lnuaed } IF"assv HS @
.':I MEEF ||||I ‘

e ||II Mes(s) |||E
AL

Receive all
Acknowledg- Name of
I ments (5,r)
new module

:::"ﬁ;:knﬂwledgéf:l- “‘*

Coloured Petri Nets
24/01/20058

Name of

Detailed view new module]

(5.1) 1

Recaive
a
Message

lﬂ.f]

T
! Recevead)

Te- 1 -TMES
LS | I-]

Send an
Acknowledg-
ment

Ciut i'-;ﬁnchnﬂw

Interfaces and detailed relationship
between the two modules

are automatically determined by the

CPN editor.

ME

Simulation of CP-nets

¢ When a syntactical correct CPN diagram has been
constructed, the CPN tool generates the necessary code to
perform simulations.

m Calculates whether the individual transitions and
bindings are enabled.

m Calculates the effect of occurring transitions and
bindings.

¢ The syntax check and code generation are incremental.
Hence it is fast to make small changes to the CPN diagram.

¢ We distinguish between two kinds of simulations:

m In an interactive simulation the user is in control,but
most of the work is done by the system.

= In an aufomatic simulation the system does all the work.

= /fS_Er'I_dH a BAR ; : Li;ﬁeceivea‘f}'

Interactive -3¢ ©: i sty Mearsof | EONY
[| | |

simulation

INTxDATA 1°(1,"Modellin®)
+1'(2,"g and An")
+ 1(3"alysis b") @ 1""Modelling and

+ 17(6,"red Patr")

+ 1°(7," Netst# if n=k

+1(8" 3 i .
V(B k) if Ok(s,r) | andals
INTxDATA

1
then 1"{n,p) INTxDATA str | |p<=si
Transmit glze ampty then s
Packet ke

n,m (n,p)

Send
Packet

-
e
e
-

l___.-—— —- : Inf O 10 -+ i __ _.
{_NextSend
INT == g~
Inf_0

if n=k
then k+1
alse k

if Ok(s,r)
INT then 17N

@1'6 : else empty @ 16

Sender ! Network Receiver

& Simulation results are shown directly on the CP-net.
m Transitions are chosen by the user or the simulator.
s User can observe all details and set breakpoints.

Automatic simulation

¢ The user does noft intend to follow the simulation:

m Simulation can be very fast - several
thousand steps per second.

m User specifies some sfop criteria, which
determine the duration of the simulation.

» When the simulation stops the graphics of the
CP-net is updated.

s Then the user can inspect all details of the
graphics, e.g., the enabling and the marking.

¢ Automatic simulations can be mixed with
Interactive simulations.

¢ To find out what happens during an automatic
simulation the user has a number of choices.

Simulation report

SendPack@ (1:Top#1l) {n=1,p="Modellin"}
TranPack@ (1:Top#l) {n=1,p="Modellin" ,6 r=6,s=8
SendPack@ (1:Top#1l) {n=1,p="Modellin"}
TranPack@ (1:Top#l) {n=1,p="Modellin" ,6 r=3, s=8
RecPack(@ (1:Top#1l) {k=1,n=1,p="Modellin", str

o U1 &~ W DN B

SendPack@ (1:Top#l) {n=1,p="Modellin"}

Message sequence chart

Sender Network Receiver
1 1 1 1
SendPack:
(1 'Modelliny |
TranPack: |
(1,"Modellin")
RecPack:
(1."Modellin"y |
SendAck:
2
Ack TJost: 2
my
SendPack:
(1,"Modellin")
TranPack: |
(1,"Modellin")
SendPack:
(1,"Modellin")

[1 [1 [1 [1

0 1

2 3 45 6 7 8 9 10

Business | ..
K2
charts
pack3
pack4
pack$
packé
Packet No
10 T
9 1
8
7
6
5
4
3
2
| 1

Packets Received

7 8 9 10

A O 9 U W

Packets

| Enroute
Z1.ost
= Failures

\[[U SuccessesJ

Step No.

20 40 60 80 100 120 140 160 180 200

Automatic code generation

¢ CPN models are often used to specify and
validate new software.

¢ It is also possible to implement the software by
automatic code generation.

= This method has been applied to develop a
system for access control to buildings.

= The source code for the final implementation
was generated aufomatically from the CPN
specification - by extracting parts of the
Standard ML code used by the CPN simulator.

= The approach is only adequate for systems
that are not time critical and systems that are
produced in small numbers.

Overview of talk

Modelling Analysis

¢ Basic language ¢ State spaces
= syntax = full
= semantics

_ s symmetries
¢ Extensions ,
m equivalence classes

= modules
= time = sweep-line
¢ Tool support ¢ Place invariants
= editing = check of invariants

= Simulation m use of invariants

State spaces

¢ A state space is a directed graph with:
m A node for each reachable marking (i.e., state).

= An arc for each occurring binding element. 4-‘
transition + binding

State space tool

¢ State spaces are often very large.

¢ The CPN state space tool allows the user to:
m Generate state spaces.

m Analyse state spaces to obtain information
about the behaviour of the modelled
system.

& Generation is totally automatic while analysis
IS automatic or semi-automatic (based on
queries from the user).

State space report

¢ Generation of the state space report takes
often only a few seconds.

= The report contains a lot of useful
information about the behaviour of the
CP-net.

= The report is excellent for locating errors
or to increase our confidence in the
correctness of the system.

1°(1,"Maodellin") 1o
INTXDATA @ +1°(2,"g and An") @
+ 1°(3,"alysis&==") - :
DATA

State

(n.,p)

: if n=k

space | R | s
INTXDATA then 1°(n,p) INTXDATA str] | p<>stc

(n.pj in.p) Transmit else ampty (n.p) then si

Packet Flse st

Send
for

protocol .

if Ok
then empty
else 1'e

© 2‘e<:

if Ok

then k+1
else k

——
\ then k+1
else k

Receive (D) : Transmit >

Acknow. N if Ok Acknow.

INT then 1°n INT
| alse empty @ |

¢ To obtain a finite state space, we:
= Only have 4 packets.
m Limit the number of tokens on A, B, C, and D.

Coloured Petri Nets . . .
A e m Binary choice between success and failure. 76

State space report for protocol

Occurrence Graph Statistics

Nodes: 428
Arcs: 1130
Secs: 0
Status: Full
Scc Graph Statistics
Nodes: 182
Arcs: 673

Secs: 0

Integer bounds

A, B, C, D, Limit: 0-2
NextSend, NextRec, Received: 1
Send: 4

¢ Integer bounds tell the maximal and
minimal number of tokens on the
Individual places.

Integer bounds
INTxDATA @

(1,"Modellin”)
17(2,"g and An")
1°(3,"alysis##")
1

1
+
+
+ 1 (A,)

INTXDATA

in,p)

(n.p)

if Ok
then empty
alse 1'e

Transmit

If Ok

then 1(n,p)
else emply

Packet

@ 2¢]0-2

if Ok

then empty

else 1'e \
Receive (D) . Transmit
Acknow. n if Ok Acknow.

NT then 1'n

0-2 | else empty

Coloured Petri Nets
24/01/20058

ols

INTXDATA

(n.p)

DATA

1

If n=k
andalso
str] | p<>stop
then strp
elsa sir

0-2

1

INT@ 11

if n=k
then k+1
alse k

4

Receive
Packet

if n=k
then k+1
glse k

79

Upper multi-set bounds

A, B: 2 (1,"Modellin") + 2°(2,"g and An") +
2°(3,"alysis##") + 2°(4,"#iHHHHHHE")

C, D: 22+23+24+25

Limit: 2'e

NextSend,

NextRec: 11+12+13+14+15

Received: 1 "" + 1™ Modellin" +
1 "Modelling and An" +
1 "Modelling and Analysis##"

Send: 1°(1,"Modellin") + 1°(2,"g and An") +
1°(3,"alysis##") + 1°(4, "HHHHHIE")

Home and liveness properties

Home Properties
Home Markings: [2395]

Liveness Properties
Dead Markings: [235]
Live Transitions: None

I NextSend =5
I NextRec = 5

I
| Received = "Modelling and Analysis##"

@ Marking no. 235 is the desired final
marking where all packets have been

recelved in correct order.

Investigation of dead marking

¢ Marking 235 is the only dead marking.

= This implies that the protocol is partially
correct (if execution stops it stops in the
desired final marking).

¢ Marking 235 is a home marking.

m This implies that we always have a
chance to finish correctly (it is impossible
to reach a state from which we cannot
reach the desired final marking).

Fairness properties

Send Packet: Impartial
Transmit Packet: Impartial
Receive Packet: No Fairness
Transmit Acknow: No Fairness
Receive Acknow: No Fairness

& Fairness properties tell how often
the individual transitions occur.

Investigation of shortest path

¢ We want to find one of the shortest paths
from the initial marking to the dead marking.

val path = (> val path = h

NodesInPath(1,235);|| [1,2,3,4,6,8,10,15,20,27,50,
64,80,102,133,164,179,192,

\201,215,235] : Node list

Length(path); (> 20 : int)

Y I

Query Answer

Drawing of shortest path
DisplayNodePath [1,2,3,4,6,8]; |(> () : unit)

¢ We want to investigate |vextsend: 171 |

NextRec: 171

the beginning of the Received: 1°nn |\ 2F2
calculated shortest path. SendPack:

{p="Modellin",n=1}

NextSend: 171
NextRec: 171 2
B: 1°(1,"Modellin") 1:2
Received: 1°nn

TranPack:
{p="Modellin",n=1, Ok=true}

NextSend: 171
NextRec: 1~1 3

B: 1°(1,"Modellin®) || 1:1
Received: 1°M"
RecPack:
{str="",p="Modellin",
n=1,k=1}
NextSend: 171
NextRec: 172 4
Cc: 1°2 2:2
Received: 1" "Modellin®

Draw more complex subgraph

RecPack:

NextSend: 1°1 {gtr="Modellin",
MextREec: 172 4 p="MDdellin",n=l,k=2}
C: 172 2:z
Eeceived: 17" "Modellin® ﬁ\

Trankck: Tranick:

{n=2,0k=true} {n=2,0k=false|
ek gl hlese gL pe - NextSend: 1°1 :
LR ARl L NextRec: 1°2 -
D: 172 ’ Received: 1" "Modellin” '
Feceived: 17" "Modellin®

Rechck: SendPack:

{n=2,k=1} {p="Modellin", n=1|
NextSend: 1°2 : e Ae el e e
Received: 1 "Modellin"” A llflf Modellin -

Eeceived: 1" "Modellin®
SendPack : TranPack:
{p="g and An",n=2} {p="Modellin", n=1,C0k=true}

NextSend: 172 NextSend: 171
NextRec: 172 10 NextRec: 1°2 2

1:2 1:1

A: 17(2,"g and BEn"}

Eeceived:

1" "Modellin®

B: 17{1,"Mod=11lin"}

Feceived:

1" "Mode1l1in"

Non-standard queries

INTXDATA

(n,pj

Receive
Acknow.

@ 1°(1,"Modellin")
+172,"g and An')
+ 17(3,"alysis==")
+ 14, "FEeaaaas"

HHHTHTAH)

@ 1

" (Received
DATA

if n=k
| If Ok | andalso
INTXDATA then 1°(n.p) INTxDATA strl | p<>stop
Transmit else empty (n.p) then str*p
Packet else sir

if Ok
then empty
else 1'e

(@ 2e

if Ok
then empty

else 1'e
N

Transmit
Acknow.

If Ok
INT then 1'n
| alse empty

then k+1

else k)
if n=k

then k+1
alse K

Can the NextSend counter be decreased?

Query in Standard ML

PredAllArcs
(fn a => ((ms_to_col(Mark.NextSend 1
(SourceNode a))) >

(ms_to_col(Mark.NextSend 1
(DestNode a))));

/;|973,951 ,934,921,920,895,894,845,844,818,81 7,\
753,729,663,648,587,573,567,517,499,497,429,

\ 428,360,310,271,233] : Arc list @_/

Counter example

DisplayArcs [973];

(> (): unit)

Next Send = 4

Next Rec = 5

Recei ved = "Mbdel | i ng
and Anal ysi s##"

B = 1 (4, " ########H")
D=13

Next Send
Next Rec

Recei ved
and Anal ys

3
5
"Model 11 ng
| SH#"

B = 1 (4, " #it#t##")

RecAck = {n=3, k=4}

- IMProved protocol

(1)
INTXDATA 142,'g and An")+
1 |{ alysmh }+ i
1 (5 "of Colou")+
1'(8,"red Petr")+ DATA
(} 17" NetstH")+
n, 1°(8, " .
? ‘ . if Ok(s.r) | str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) 7~~~ (np) Transmit I else empty p<>stop
Packet Packet | then strig
! else str
| [e
n i 8 ==
1 ' rnr_.r:l_m 1 :
INT ! 8 Packet
| LT e
k max(n,k) ' 010 T then k+1
| S T.else k if n=k
‘ | then k+1
Receive : () . | Transmit else k
Acknow. n = if Ok(s,r) Acknow.
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 90

24/01/20058

Temporal logic

¢ It is also possible to make state space queries
by means of a CTL-like temporal logic.

m States.
m [ransitions.
m Binding elements.

State spaces - pro/contra

¢ State spaces are powerful and easy to use.
m Construction and analysis can be automated.

s No need to know the mathematics behind the
analysis methods.

¢ The main drawback is the state explosion, i.e., the
size of the state space.

m The present version of our tool handles graphs
with one million states.

» For many systems this is not sufficient.

Statistics — full state spaces

Limit: 1 2 3 4 5 6
Original | 33 428 3,329 | 18,520 | 82,260 310,550
Nodes Max 33 293 1,829 9,025 37,477 136,107
Ratio 1.0 1.46 1.82 2.05 2.19 2.28
Original | 44 | 1,130 | 12,825 | 91,220 | 483,562 | 2,091,223
Arcs Max 44 764 6,860 | 43,124 | 213,902 | 891,830
Ratio 1.0 1.48 1.87 2.12 2.26 2.34
Original 0 0 3 41 560 7,686
Secs Max 0 0 2 16 153 1,634
Ratio | - | - 1.5 2.56 3.66 4.70

= Intel Pentium lll, 1GHz, 1 GB RAM

Condensed state spaces

¢ Fortunately,it is sometimes possible to construct
much more compact state spaces — without
loosing information.

¢ This is done by exploiting:
m Symmetries in the modelled system.
m Other kinds of equivalent behaviour.
m Progress measure.
m Concurrency between events.

Protocol with multiple receivers

INTXDATA

(n,p)

1°(1,"Modellin")+
1°(2,"g and An")+
1°(3,"alysis b")+
1°(4,"y Means ")+
1°(5,"of Colou™)+
1°(6,"red Petr")+
1°(7."i Nels##")+
17(8,"HEHHHRRE)

INTxDATA

Send
Packet

(n'p)l @

Receive
Acknow.

Out

Coloured Petri Nets

24/01/20058

Network

R []
if Ok(s,r1) INTXDATA cCelver
then 1°(n,p) @
else empty
INTXDATA Out IIO
Transmit = B
IV
Packet il
INTXDATA DATA
3 if Ok(s,r2) @
then 1°(n,p)
else empty str if n=k
Out INTXxDATA andalso
e (n,p) p<>stop
then str'p
else str
Int_0_10 In
if Ok(s.r) _ 1 K y
then 1°(n,1) Transmit Receive
alse empty
else emp Acknow. INT 1 Packet
if n=k
then k+1
INTXINT ; if n=
if Ok(s,r) Transtﬂmt Out E|Se k |f n k
{ -
then 1'(n.2) Acknow. then k+1
else empty else k

S

&3

Int_0_10

INT

95

State space for three receivers

Send Packet lt 0 Transmit Packet

/\.

Init

L
— [l _B_ = __B — _BB B_B — BB_ — BBB
Receive
Packet
- C_ ~ C ce|[Bcl[c Bl[B Cc][cB |[BC_ ceB|[BcB][BBC

¢ The red nodes are equivalent (or symmetrical).

¢ They also have equivalent:
m direct successors,
m enabled binding elements.

Condensed state space

Init

Send Packet

A1 0

D

Transmit Packetl 1\

B i

Receive Packet

Transmit Acknowledgment

D

3

for three receivers

BB |—p BBB |-

— CBB |

—»-*"1 BB | |DBB| [CCB |-

v

21 nodes instead
— of 62 nodes

Symmetries

¢ A symmetry is a function ¢ that maps:
m markings into equivalent markings,
m binding elements into equivalent binding elements.

& A symmetlry specification is a set of functions
® < [MuUBE — M uU BE]| such that:

= Voe®: (¢|M)e[M - M] A (6| BE)<[BE — BE].
m (®,°) Is an algebraic group.

Each element of ® is called a symmetry.

Equivalent markings

¢ Two markings M and M* are equivalent iff there exist
a symmetry ¢ that maps M* into M:

M=, M* < FJped: M = o(M*).
¢ Two binding elements b and b* are equivalent iff

there exist a symmetry ¢ that maps b* into b:
M=, M < Foed: b = ¢(b").

¢ (@,°) is an algebraic group. This implies that
=, and =, are equivalence relations.

Consistency

¢ We demand that equivalent markings must have:
m equivalent direct successors,
m equivalent enabled binding elements.

¢ A symmetry specification ® is consistent iff the
following properties are satisfied for all symmetries
¢ed, all reachable markings M,, M, and all binding
elements b:

s M—2M, < oM,) 22 4(M,).
= O(My) =M

Protocol with multiple receivers

& Symmetries are defined as consistent permutations
of receiver-IDs:

= \When we model each receiver by a separate
module we permute the markings of these
modules.

x When we model all receivers by a single module
(adding a new component to the token colours)
we permute the colour values in the type:

REC = {rec,, rec,, recs,...}.

Construction of state spaces
with symmetries

& State spaces with symmetries are constructed
In the same way as ordinary state spaces,
except that:

m Before adding a new node we check whether
the marking is equivalent to the marking of
an existing node.

m Before adding a new arc we check whether
the binding element is equivalent to the
binding element of an existing arc (from the
same source node).

What can we prove from state
spaces with symmetries?

¢ State spaces with symmetries can be used to
investigate the same kinds of behavioural properties as
ordinary state spaces, but only modulo equivalence.

¢ As an example, this means that:

m We cannot investigate whether a certain marking is
reachable itselr.

= Instead we can investigate whether there is an
equivalent marking which is reachable.

Statistics — symmetries

Limit = Receivers 2 3 g 5 6
(3 packets) | (2 packets) (2 packets)
Full 921 22,371 172,581 486,767 5,917,145
Nodes Sym 477 4,195 0,888 8,387 24,122
Ratio 1.93 5.33 17.45 58.04 245.30
Full 1,832 | 64,684 | 671,948 | 2,392,458 | 35,068,448
Arcs Sym 924 11,280 32,963 31,110 101,240
Ratio 1.98 5.73 20.38 76.90 346.39
Full 2secs| 4mins | 191 mins | = | = =
Time Sym 3secs | 2mins 8 mins 8 mins 1 hour
Ratio 0.7 2.0 239 | - |
Perms n! 2 6 24 120 720

Prototype implementation in 1998.

We can be more general

¢ We have defined the equivalence relations for
markings and bindings elements from a set of
symmetry functions.

¢ Instead we may define the equivalence relations
directly (i.e. from scratch).

¢ An equivalence specification is a pair (=,, ,=;:) where:

m =, IS an equivalence relation on the
set of all markings.

m =, IS an equivalence relation on the
set of all binding elements.

Consistency

¢ As before, we demand that equivalent markings
must have:

m equivalent direct successors,
m equivalent enabled binding elements.

¢ An equivalence specification (=, ,=) is consistent iff
for all reachable markings M,, M,, M and all binding
elements b:
M=, M, A M, —2>M =
b*

IM*=,M Ib*=,.b: M,—> M*.

State spaces with
equivalence classes

¢ State spaces with equivalence classes are
constructed in the same way as state spaces
with symmetries.

¢ They can be used to investigate the same kinds
of behavioural properties.

¢ State spaces with symmetries is a special case
of state spaces with equivalence classes.

Intermediate state of protocol

1 1°(1,"Modellin"
¢ Receiver expects nnoam T oo
+1°(3,"alysis b") 1""Modelling and - ~
paCket no. 6 . @ + 1(4,"y Means) @ Analysis by Means of @
+1°(5,"f Colou") Colou" DATA

+ 1°(6,"red Petr")

. . (n.p) +1°(7."i Nets##") .
& Sender is still b L | | f ek
5 wnfmm if Ok(s.r) .-'NTxéATA andals
then 1°(n,p) f t
Send | ng paCket (n.p) Transmit | else empty . 511233
no. 5. Packet else st

¢ This packet will |
be ignored. 1 int_0.10
itis old. oD

| 8 .
. o BAOTL
max(n,k) ;

& This acknowledg- | |] nen v
ment will also —(De— — (O
be ignored. T ten o
Itis ofd. o O]
Sender | Network i Receiver
Coloured Petri Nets
24/01/2005 1 08

Equivalence relation

¢ A marking M(p) where p is one of the network
places A,B,C,D is split into two parts:

= M(p) = M(p)oLp +* M(P)new

t t

Old packets/acks All remaining packets/acks

¢ Two markings M, and M, are equivalent iff:
= My(p) =My(p) for pe{A,B,C,D}

O | M1(p)OLD| = | Mz(p)OLDl } for pG{A B C D}
= My(Pnew = MaP)new

INTxDATA

Coloured Petri Nets

24/01/20058

(n.p)

Two equivalent states

1°(1,"Modellin®)

+ 1'(2,"g and An")
+ 1°(3,"alysis b")
+1°(4,"y Means ")
+ 1°(5,"of Colou")
+ 1°(6,"red Petr")
+ 1°(7."i Nels##")
+ 17(8,"HIHHHHHHE")

INTXDATA

if Ok(s.r)
then 1'n
else empty

Transmit
Packet

Analysis by Means of

1""Modelling and - Received
Colou" DATA

Int_0_10

8

Transmit
Acknow.

int_0_10

if n=k
if Ok(s.r)] andalso
then 1°(n,p) INTXDATA str| |p<>stop
else empty (n,p) then strip
else str

e

']

Greded

INT

'\""-h-_‘.- i

iy
o 1'(4,"y Means ")

@1'5 if n=k
then k+1
. else k
T —— if n=k
i then k+1
else k
INT

Statistics — equivalence classes

Limit: 1 2 3 4 5 6
Full 33 293 1,829 9,025 37,477 | 136,107
Nodes | Equiv 33 155 492 1,260 2,803 5,635
Ratio 1.0 1.89 3.72 7.16 13.37 24.15
Full 44 764 6,860 43,124 | 213,902 | 891,830
Arcs Equiv 44 383 1,632 5,019 12,685 | 28,044
Ratio 1.0 1.99 4.20 8.99 16.86 31.80
Full 1 1 6 56 642 7,507
Secs Equiv 1 1 7 36 157 553
Ratio 1.0 1.0 0.9 1.56 4.09 13.58

= Sun Ultra Sparc 3000, 512 MB in 1997.

Timed protocol

INTxDATA

{n.p?@wail}:

1°(1,"Modellin") @ [218]
1°(2,"g and An") @ [234]
1°(3,"alysis b") @ [324]
1°(4,"y Means ") @ [741]
1°(5,"of Colou") @ [887]
1°(6,"red Petr") @ [0O]

(7,"i Nets##") @ [0]

Creation time 787 - 0

1 "Modelling and
Analysis by Means of
Coloured Pelrl Nets&%"

'(éeceiueé)
DATA

@ 1100 (8,"#e nelp | if n=k
If OK(s.r} andalso
100 INTXDATA _ then 1°(n.p) INTXDATA str| |p<>stop
Send (n.p) A (n.p) Transmit alse empty (n.p) then strip
Packet Y Packet else str
TIME G) i
@+9 1'5 @ [796] @+DEL()
n
(1) 15@179]
18
INT 19
then k+1 +17
max(n,k) else k
()|15 @803
Receive | it
0 Transmit ficn be
Acknow. n itoKis.n | Acknow. else k
: INT then1'n 5 INT
@+7 @+DEL()

else empty

Timed protocol

INTxDATA

Send
Packet

(n,p)}@+wail

(n.p)

1°(1,"Modellin")

1'(2,"g and An") @ [0]

1°(3,"alysis b")

5,"of Colou")
6,"red Petr")

1
1(
1(
1°(7,"i Nets##")
1

INTXDATA

(4,"y Means ") @ [0]
@ [100]

8, "HHHHHHE") @ [O]

Receive
Acknow.

@+7

Aj in,p)

Dl|rsew

()]s @nel

D

it OKis.r
INT then1'n
else empty

Creation time 787 - 0

Transmit
Packet

1"Modelling and
Analysis by Means of

Coloured Pelrl Netszz"

it OK(s.r) |
then 17(n.p)
&lsa amptly

@+DEL()

Transmit

Acknow.

@+DEL()

INTXDATA

'(éeceiueé)

DATA

itn=k
andalso

Sir] | p<>stop

then str*p
else str

then k+1
else k

if n=k
then k+1
elsa K

1°(1,"Modellin™}+ S
e SimMple protocol
1'(3,"alysis b")+
1'(5,"of Colou")+
1°(6,"red Petr")+ DATA
1°(7." Nets#")+
n, 17 (8, "HHHHAARE .
L “ = if Ok(s.1) | str | | ifn=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) ~~ (.p) | Transmit | €ISe empty (n,p) p<>stop
Packet then strig
else str
The two counters A 4
are monotonously ' Receive
increased. e i e
max(n,k) - then k+1
—..else k if n=k
. then k+1
Receive : () . | Transmit le else k
Acknow. n i Ok(s,r) Acknow. n
; They can be used as
Sender | a progress measure. [Rceiver

Progress measure
- t with li
o PM : STATES > A

== 2=

¢ Monotonous (non-decreasing):
X Y

o—»0
PM(X) < PM(Y)

¢ Protocol: (NextSend,NextRec)
lexicographical ordering.

States sorted by progress measure

Progress measure

Construction of state space

¢ All nodes to be processed
¥ are in front of the sweep-line.

h A T e i S

& ¢ All arcs go left-to-right or
- e e i |

*-*F"L' vertical.

\ = .

33#‘-7!}1) . _ .

h ¢ All new nodes are added in
front of the sweep-line.

A S e 1Y

-
¢ We do not need the nodes
sweep-line behind the sweep-line. They

can be deleted from memory.

@ Processed
B Unprocessed

We continue the construction

¢ The sweep-line moves from left to right.

= |n front of it, we add new nodes.
= Behind it, we remove nodes.

Statistics — sweep-line

Limit: 1 2 3 4 5 6
Full 33 293 1,829 9,025 37,477 | 136,107
Nodes | Sweep 33 134 758 4,449 20,826 | 82,586
Ratio 1.0 219 2.41 2.03 1.80 1.65
Full 44 764 6,860 43,124 | 213,902 | 891,830
Arcs Sweep | - | - | | e | e | e
R | - [=== [e | e [mmeee | e
Full 0 0 2 16 153 1,634
Secs Sweep 0 0 0 9 93 1,083
Ratio | --——- | =—— | - 1.78 1.65 1.51

= Intel Pentium lll, 1GHz, 1 GB RAM

Statistics — sweep-line

Packets: g 5 6 7 8
Full 9,025 20,016 38,885 68,720 113,121
Nodes | Sweep 4,449 8,521 14,545 22,905 33,985
Ratio 2.03 2.35 2.67 3.00 3.33
Full 43,124 99,355 | 198,150 | 356,965 | 596,264
Arcs Sweep | - | | e | e | e
Rato | -——- | = | | e | -
Full 12 41 125 345 864
Secs Sweep 7 21 57 152 359
Ratio 1.71 1.95 2.19 2.27 2.41

= AMD Athlon 1.33GHz, 512 MB RAM

Sweep-line method — pro/contra

¢ We can construct larger state spaces, since we do not
need to have all states in memory at the same time.

¢ In a timed CP-net we can use the global clock as a
progress measure — time does not go backwards.

¢ “Problems”:
m Analysis must be done on the-fly.

m To deal with reactive systems we need to be able to
use non-monotonous progress measures.

m Counter examples are more difficult to construct,
since part of the state space has been deleted from

memory.

Overview of talk

Modelling Analysis

¢ Basic language ¢ State spaces
= syntax a full
= semantics

_ s symmetries
¢ Extensions ,
m equivalence classes

= modules
= time = sweep-line
¢ Tool support ¢ Place invariants
= editing = check of invariants

= Simulation m use of invariants

Place invariants

& The basic idea is similar to the use of invariants in
program verification.

¢ An invariant describes a property which is fulfilled
for all reachable states.

m We first construct a set of place invariants.
= Then we check whether they are fulfilled.

= Finally, we use the place invariants to prove
behavioural properties of the CP-net.

Logo of Petri net community

Distributed data base
Mes(s) @ (sr)

MES
Update Receive
and a
s Send Messages S r Message r
R
e/ Mes(s) \° (s.,r)
b MES)N DBM
Waitin Actlve iiPassivkef: Inactive Received Performing
DBM E . MES A E DBM MES DBM
S Receive all S r Send an r
Acknowledg- Acknowledg-
ments ment
Mes(s) (s,r)
%nowledged

MES

Data base managers

\ DBM = {d(1),d(2),d(3)} \

Mes(s)

1°d(1) + 1°d(2) + 1°d(3)

Receive
a
Message

Update

and
Send Messages
Mes(s)
MES
S
Mes(s)
Recelve all

2 Acknowledg
ments

Send an
Acknowledg- [N
ment

Coloured Petri Nets MES
24/01/20058 1 26

Message buffers

MES = {(s,r)e DBMxDBM | s # r}

1°(d(1),d(2)) +
1°(d(1),d(3)) +
1°(d(2),d(1)) +
1°(d(2),d(3)) +
1°(d(3),d(1)) +
1°(d(3),d(2))

Mes(d(2)) =
1°(d(2),d(1)) + 1°(d(2),d(3))

(s:r)

Receive

a
Message
(s,r)

MES

Update
and
Send Messages

Receive all
Acknowledg-
ments

Send an
Acknowledg-
ment

Acknowledged

MES

Mutual exclusion
E = {e}

Receive
a
Message

\{
DBM

Receive all Send an
Acknowledg- Acknowledg-
ments ment

Acknowledged

Coloured Petri Nets MES
24/01/2005 1 28

Distributed data base

(Mes(s) @
Update

MES
and h
S Send Messages s r

Y/ / (s) \©
Waiting) (Active) Pa@e Inagtive
DBM E TEN (12 / d(1) Lpsm
e | Me) o (3)
S eceive all S r
Acknowledg-
ments
(d(1),d(2)) Mes(s)
@nowledged

MES

(s.r)

Receive
a
Message r

(s.r)

Received
MES

(s.r)

Performing
DBM

Send an r
Acknowledg-
ment

(s,r)

Distributed data base

Mes(s) % (ssr) 1

Update Receive
and /—C a
s Send Messages S r Message r
R
(s.1)
Received Performing
(s.r)
A1
S Receive all S r Send an r
Acknowledg- Acknowledg-
ments ment

Mes(s S,r
()@nowledged (5.0)

MES

Distributed data base

Mes(s) (s.r) 1

Update

Receive
and /—C a
s Send Messages S r Message
gx DBM
Waiting) fPassivéﬁ] Inactive
\ /e
‘ A;f,'x
S Receive all S r Send an
Acknowledg- Acknowledg-
ments

ment

M ,
es(s) A\/cknowled@"ﬂj
MES

Distributed data base
G —5

MES

Update
and
Send Messages s

¢/

;“<"”

Waiting fﬁ:A@ivef
pedB) I\
A

{iﬁiPassivéﬁ] Inactive
A E (@RS pem

]

Receive all S r
Acknowledg- Acknowledg-
ments ment

Distributed data base

Mes(s)

MES

Update
and
Send Messages

DBM

{jPassivéf Inactive
e (d@)2))psm

Receive all S r

2 Acknowledg-
ments

(3.1) 13,2)

(s.r)

Receive
a
Message

(s,r)

Received
MES

(s.r)

Send an
Acknowledg-
ment

(s,r)

Performing
DBM

Distributed data base
(Mes(s) @ (s.r)

MES
Update Receive
and h a
s Send Messages S r Message
’ “‘;‘:lj,“
&/ s(s) \© (s:r)
- __e DBM
o Act|ve Pa®/e Ina e Received
e NeJE 2))pBM MES
— £ / d(1))
e\ | o 3) (s,r)
S Receive all S r Send an
Acknowledg- Acknowledg-
ments ment
Mes(s) (s,r)
%nowledged
MES

r
Performing
DBM
r

Initial marking

Data base managers

M(Waiting) + M (Inactive) + M(Performing) = DBM

Received

Coloured Petri Nets Acknowledged 1 3 5
24/01/20058 P

Message buffers

M(Unused) + M(Sent) + M (Received) + M(Acknowl) = MES

Receive
a
Message

Update
and
Send Messages

Mes(s)
MES
Onused
MES MES

Receive all Send an
Acknowledg- Acknowledg-
ments ment

Acknowledged

MES

Mutual exclusion

M(Active) + M (Passive) = E

Coloured Petri Nets
24/01/2005

Acknowledged

\/
DBM

137

Received messages

:Weight function |

Rec(M(Received)) = M(Performing)

| MES — DBM |

‘ Rec(s,r) =r ‘

Receive
a
Message

Send an
Acknowledgq4¥
ment

Different
colour sets!

Used messages
Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged):

Sent

Mes(s) (sr)
MES
Update Receive
and a
s Send Messages Message

(s.r)

(aiting
DBM MES
(s.r)
Receive all Send an
Acknowledg- Acknowledg-
ments ment

Mes(s) (s,r
Acknowledged

Active and waiting
Ign(M(Waiting)) = M (Active)

‘ Ign(x) = e‘

Performing
ME.

DBM
(s.r)

Coloured Petri Nets Acknowledged
24/01/20058 T

140

Place invariants | Place > M(Place) |

¢ Waiting+ Inactive + Performing = DBM

¢ Unused + Sent +Receive + Acknowledged = MES
(®Active + Passive = E

¢ Rec(Received) = Performing

¢ Mes(Waiting) = Sent + Received + Acknowledge
(®) Ign(Waiting) = Active

More invariants can be obtained by linear combinations:

¢ Ign(Waiting) + Passive = E

Construction of invariants

¢ Construction of invariants can be manual. This is
often straightforward:

m System specification.
s Knowledge of system.

¢ Automatic calculation of all place invariants is
possible, but:

m Rather complex.

m Results are difficult to represent in a form
which is useful for analysis.

& Interactive calculation is much more suitable:

s The user proposes some of the weights.

m The tool calculates the remaining weights
or reports an inconsistency.

How to use Invariants

¢ Ordinary programming languages:

= No one would construct a large program and then
expect afterwards to be able to calculate invariants.

m Instead /invariants are constructed together with the
program.

¢ For CP-nets we should do the same:

» During the system specification and modelling the
designer gets a lot of knowledge about the system.

m Some of this knowledge can easily be formulated as
place invariants.

m The invariants can be checked and in this way
errors can be found.

m The errors can easily be located.

We use invariants to prove
behavioural properties of
the system

¢ As an example, let us prove that the data base
system cannot deadlock.

reachable marking

» We will then prove thatfat least one
transition is enabled.

m Leta

Coloured Petri Nets
24/01/20058 1 44

M(Waiting) + M (Inactive) + M(Performing) = DBM

‘ All data base managers must be: ‘

—\
| Let us assume that at least

Send an
Acknowledg- [N
ment

Receive all
A Acknowledg-
ments

Coloured Petri Nets
24/01/20058 B

145

Rec(M(Received)) = M(Performing)

There is a message buffer
at Received with d(i)
as receiver

Update Recelve
and <
Send Messages Message
(s,r)
DBM

DBM
s,r)
Recelve all r Send an r
Acknowledg Acknowledg-
ments ment

. Mes(s) (s,r)
Coloured Petri Nets Acknowledged
24/01/20058 B

Next let us assume that at least
one manager is Waiting

Update
and
Send Messages

Receive
a
Message

<

Send an
Acknowledg- <.

Receive all
A Acknowledg-
ments
Coloured Petri Nets Acknowledgeq

24/01/20058 P

147

Ilgn(Waiting) + Passive = E

Exactly one token
on Waiting

Update
and
Send Messages

Receive
a
Message

<

Send an
Acknowledg- [N
ment

Receive all
A Acknowledg-
ments
Coloured Petri Nets Acknowledged

24/01/20058 P—

148

Ign(Waiting) = Active

Exactly one token
on Active

Coloured Petri Nets

24/01/20058

Update
and
Send Messages

<

Receive all
A Acknowledg-
ments

a2
3

Acknowledged

.y

Message

cknowledg- N

149

M(Waiting) + M (Inactive) + M(Performing) = DBM

The other data base managers
must be Inactive

Receive
a
Message

\/

Send an
Acknowledg- [N
ment

Receive all
A Acknowledg-
ments

Coloured Petri Nets Acknowledged
24/01/20058 P—

150

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

‘ The message buffers sent by d(i) must be: ‘

-,

Receive
a
Message

Update
and
Send Messages

Rec(M(Received))l
= M(Performing)

Receive all
Acknowledg-

- ¥

M(Waiting) + M (Inactive) + M(Performing) = DBM

All data base managers
must be Inactive

Up .
and <
Send MessadN

(s,r)

Receive

> a
Message
Received
Send an

Mes(s)
Receive all
A Acknowledg- Acknowledg- [N
- mante ment
Coloured Pet Acknowledged

24/01/20058

F'Y g

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

No tokens on Sent, Received,
and Acknowledged

Update
and
Send Messages

Receive
a
Message

Send an
Acknowledg- [N
ment

Receive all
A Acknowledg-
ments

Coloured Petri Nets
24/01/20058

153

M(Unused) + M(Sent) + M (Received) + M(Acknowl) = MES

Coloured Petri Nets
24/01/20058

‘ All message buffers are Unused ‘

Update
and
Send Messages

Receive
a
Message

<O

Send an
Acknowledg- [N
ment

Recelve all
= Acknowledg
ments

154

Ilgn(Waiting) = Active Active + Passive = E

No tokens One e-token on
on Active Passive

Update

and
Send Messag

Receive
a
Message

Recelve aII Send an
= Acknowledg Acknowledg- [N

ments

Coloured Petri Nets
24/01/20058

155

We have now investigated alli
possible reachable markings

¢ For each of them we have used the
Invariants to prove that at least one
transition is enabled.

¢ Hence, we conclude that the data base
system cannot deadlock.

Invariants - pro/contra

¢ Invariants can be used to verify large systems.

s No complexity problems.

m |t is possible to combine invariants from
individual modules.

¢ Invariants can be used to verify a system without
fixing the system parameters such as the number of
sites in the data base system.

¢ The main drawback is that the user needs some
ingenuity to:

m Construct invariants. This can be supported by
computer tools — interactive process.

s Use invariants. This can also be supported by
computer tools — interactive process.

TOOLS

Conclusion + aditing
e Simulation

THEORY * verification
e models

 basic concepts

e analysis methods

PRACTICAL USE

& One of the reasons for the * specification
success of CP-nets is the e validation
fact that we simultaneously e verification

have worked in all three areas. - implementation

Coloured Petri Nets
24/01/20058 1 58

More information on CP-nets

¢ The following web-pages contain a lot of
information about CP-nets and their tools:

http://www.daimi.au.dk/CPnets/

¢ [ntroduction to CP-nets, including a number of
detailed examples.

¢ Manual for CPN Tools.

= The tool is free of charge also for
commercial companies.

¢ A list of more than 50 published papers
describing different industrial applications of
CP-nets and the CPN tools.

¢ Details of a 3-volume CPN text book.

