
   

Abstract--This paper addresses statistical issues that arise in 
stochastic simulations of the steady-state behavior of queuing 
processes, when being executed in parallel time streams. This 
is often a desirable choice since otherwise, computer running 
times for such simulations tend to be large. A proper statistical 
methodology, which will enable the simulator to achieve the 
required statistical precision as quickly as possible, has to be 
used. A random number generator with a large cycle length 
has to be chosen, since any correlation across the parallel 
streams can affect the randomness of the results. Another 
critical issue is that, no procedure in which the run length is 
fixed, before the simulation begins, can guarantee accurate 
results. Instead of this, sequential procedures, which 
determine the length of the simulation during the course of the 
run, are preferred. The parallel processing speedup to be 
achieved, is always dependent on the simulated model’s 
structure. However, the number of processors to be used, has 
to be decided on the basis of the chosen accuracy requirements 
since experimental evidence shows that the quality of the 
results deteriorates as the number of processors used, 
increases.  
Index Terms—Queuing networks, Parallel simulation 

I. INTRODUCTION 

Stochastic queuing network simulation is one of the most 
commonly used approaches in performance modeling and 
evaluation of various systems. This popularity is due to the 
continuing development of more powerful and less 
expensive computers, as well as significant achievements in 
software engineering. 
In this paper, we are particularly interested for steady-state 
simulations, which aim to give insights, into the behavior of 
queuing processes after a long period of time. The 
methodology for this kind of simulation study is 
complicated.  
Since observations gathered during the initial transient 
period of a model’s execution path do not characterize the 
steady-state, it is expected to discard all such observations 
before further analysis of them. Ignoring the existence of 
this period, can lead to significant deviations from the true 
values of the estimated parameters (bias). 
Moreover, every stochastic simulation is basically a random 
experiment and the results produced are nothing more than 
statistical samples. Thus, statistical analysis is an absolute 
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necessity. However, the main problem encountered in the 
analysis of simulation results is that they are usually highly 
correlated and thus do not satisfy the requirement of 
statistical independence if any of the classical statistical 
analysis procedures is to be used. 
The most common objective of simulation studies is the 
estimation of the mean and an .% confidence interval of 
the analyzed process, from a sequence of collected 
observations. Several methods of data collection and 
analysis have been proposed to overcome the theoretical 
problems that arise from the correlated nature of 
observations collected during steady-state simulation, 
namely: 

• The method of independent replications 
• The method of batch means 
• The method of overlapping batch means 
• The regenerative method 
• The spectral method 
• The method based on autoregressive representation 
• The method based on standardized time series 

However, steady-state simulations of even moderately 
complex systems, are often computationally intensive and 
can require very long runs in order to obtain reliable final 
results. Fortunately, modern multiprocessor and distributed 
computer systems offer high-potential processing power 
that can be employed in parallel simulation. There are two 
different cases of applying parallelism in stochastic 
simulation: (i) the case where many processors cooperate 
for a single realization of the simulated system and (ii) the 
case where each processor runs its own independent 
replication of the simulated system, but cooperates with a 
central analyzer of the simulation output data according to 
one of the aforementioned methods. 
Most research efforts have been focused, on the 
specification of the appropriate synchronization, deadlock 
handling and/or memory management algorithms for 
performing parallel stochastic simulations as described in 
the first case. However, from the point of view of statistical 
methodology, the second case is a more attractive 
alternative. This is mainly because the statistical analysis of 
simulation output data, in some methods, may require the 
data to be ordered according to one reference time of the 
simulated model. However, this is not practical when data 
are collected from subprocesses executing asynchronously 
in parallel, especially when advanced control procedures 
are to be applied. 
This work concerns with the problems arising, when 
applying parallel stochastic simulation as in the second 

Steady-state Simulation of Queuing Processes in 
Parallel Time Streams: Problems and 

Potentialities 
Panajotis Katsaros, Constantine Lazos 



case. Suggestions of how to overcome them are stated and 
some thoughts on the perspective of this approach are 
discussed. Finally, a brief description of the results obtained 
in the few related works has been attempted. 
 

II. PARALLEL REPLICATIONS 

One of the most fundamental problems that have to be 
overcome in any implementation of stochastic discrete 
event simulation in parallel time streams is the problem of 
the pseudo random number generator to be used. This is 
because the technique that is usually used to get parallel 
random number streams (varying the initial seed parameter) 
can potentially cause long-range inter-processor and/or 
intra-processor correlations. Other techniques, like for 
example, the leap frog and the cycle splitting method, 
require a way of advancing the random number generator a 
fixed number of steps in each iteration.  
Generally, a good random number generator for use in 
discrete event simulations in parallel time streams, should 
combine the following properties: 

• Randomness: If the random number sequence 
consists of integers in [1, d], then the probability of 
getting any particular integer should be 1/d. 
However, it is usually desirable to ensure uniformity 
in higher dimensions and this is defined as follows: 
Suppose we define n-tuples,  
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 and divide the n-dimensional unit hypercube into 
many equal subvolumes. A sequence is uniform if in 
the limit of an infinite sequence, all the subvolumes 
have an equal number of occurrences of random n-
tuples. To conclude, any correlation between 
successive n-tuples of random numbers can give 
incorrect results and for this reason, in most cases, 
uniformity in dimensions higher than 4 is required. 

• Speed: It is always desirable to generate the random 
numbers fast, even in cases where their generation is 
only a small fraction of the time required for the 
calculation (this depends on the nature of the 
simulated model). This means that computationally 
expensive operations, like for example, modulo 
operation, which is often used in linear 
multiplicative congruential generators, should be 
avoided. 

• Large cycle length: A pseudo random number 
generator is a finite state machine with at most 2p 
different states, where p is the number of bits that 
represent the state. It is obvious that the sequence 
must repeat after at most 2p different numbers have 
been generated. The smallest number of steps after 
which the generator starts repeating itself, is called, 
period or cycle length, L. Assuming all cycles have 
the same length, the number of disjoint cycles (i.e. 
cycles having no states in common) is 2p/L. Parallel 
random number streams are usually produced by 
varying the initial seed parameter across the streams. 
It turns out that if the generator’s cycle length is not 

large enough, any long-range correlations may cause 
high correlations between the parallel streams. 

Recent advances in Twisted Generalized Feedback Shift 
Register (TGFSR) generators (see [15] and [16]), make 
them an appealing choice for performing discrete event 
simulations in parallel time streams. The reasons are: (i) the 
fact that generation is very fast, since only a small number 
of memory references and just one exclusive OR operation 
are needed and (ii) the fact that the sequence has an 
arbitrarily long cycle, independent of the word size of the 
machine. 
The most notable case is the so-called Mersenne Twister 
algorithm (see [17]), which is 623-dimensionally 
equidistributed uniform random number generator with the 
super astronomical period of 219937-1. This algorithm has 
been used in [10] with great success. 
There is more than one alternative for a successful 
deployment of a queuing network simulation in parallel 
time streams. Back to the past, the development of any 
parallel software like this required a deep understanding of 
parallel/distributed systems as well as of parallel 
programming and debugging techniques. This situation has 
been radically changed over the last years, with the advent 
of highly sophisticated compilers, which offer automatic 
parallelization facilities. Thus, the simulation analyst does 
not have any more, to invest a considerable amount of time 
for converting the existed serial code into a parallel one. 
A typical example of such an alternative is the use of an 
OpenMP compiler. OpenMP is the proposed industry 
standard Application Program Interface (API) for shared 
memory programming. It is based on a combination of 
compiler directives, library routines and environment 
variables that can be used to specify shared memory 
parallelism in C++ or Fortran. An OpenMP compiler has 
been successfully used in [10] for parallelizing the 
preexisted simulation software that was implemented in 
C++. 
On the other hand, if a more sophisticated solution is to be 
deployed, a ready-made simulation package with the 
appropriate characteristics has to be used. The only one 
known to us is AKAROA (see [28]). It consists of an 
object-oriented simulation model construction toolkit, a set 
of control objects and a set of distributed processes for 
creating and managing an environment for steady-state 
simulations. With AKAROA, a heterogeneous network of 
workstations and/or multiprocessors functions as one 
(loosely-coupled) virtual computer, thus exploiting the sum 
processing power of its member machines. 
 

III. STATISTICAL ISSUES 

A. Estimation procedures  

As it has been already stated, in most cases the objective of 
a steady-state queuing network simulation is the estimation 
of the mean and an .% confidence interval of the 
performance measures of interest, from a sequence of 
collected observations x1, x2, . . ., xn. The mean, can be 
easily estimated by the average, 
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and if the observations can be considered as independent 
and normally distributed, the .% is given by, 
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The �@�>� QΧσ�  given in (3), is an unbiased estimator of the 

variance of ��Q;  and �� α−]  is the upper (1-./2) critical 

point obtained from the standard normal distribution. 
The described estimation procedure forms the basis of the 
independent replications method. This method assumes that 
the simulation is repeated a number of times, each time 
using a different, independent sequence of random 
numbers. The mean value of observations collected during 
each run is computed and used in a second level analysis 
stage, as independent and identically distributed output 
data. However, the method of independent replications is 
tied to the problem of the initial transient. If our aim is to 
discard all the observations, which do not characterize the 
steady-state execution path, then appropriate algorithms 
that estimate the extent of the transient period have to be 
implemented. Moreover, an appropriate stopping scheme 
has to be developed. Thus, the proper application of the 
method of independent replications is not as simple as it 
initially seems to be.     
The alternative is the use of any of the methods based on a 
single simulation run. However, when applying one of these 
methods, in most cases, the observations x1, x2, . . ., xn 
cannot be considered as independent and identically 
distributed random variables. Thus, other estimators are 
usually used and this raises the problem of measuring the 
quality of them. There are three common measures of 
estimator effectiveness (see [19]): 

• The bias, which measures the systematic deviation 
of the estimator from the true value of the estimated 
parameter, 
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• The variance, which measures the mean (squared) 
deviation of the estimator from its mean value; that 
is, 
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• The mean square error (MSE) of the estimator, 
defined as 
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From (4) and (5), it is easy to derive the following, 
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It is also obvious, that the bias and the mean square error 
FDQ EH HVWLPDWHG RQO\ LQ FDVHV ZKHUH WKH PHDQ �x is known, 
i.e. only in analytically solvable queuing models. 
As regarding the quality of the independent replications 
method, this has been mainly studied in terms of the 
measured MSE and the bias caused when not having 
discarded the observations collected in the initial transient 

period. Of course, there are different opinions, but it seems 
that if our aim is to achieve specific estimator accuracy, 
there is a trade-off between the number of replications and 
their length. In [5], it is suggested to use at least 100 
observations in each replication, to secure normality of the 
replication means. Furthermore, the results published in 
[11] show, that it is preferable to keep replications longer, 
than to make more replications. In what is concerned with 
the independent replications method when being executed 
in parallel time streams, Heidelberger [6] shows, that the 
method’s statistical efficiency is dependent on the strength 
of the initial transient and the asymptotic variance, as well 
as on the parallel processing speedup and the number of 
processors used. 
All the other methods being used in steady-state simulation 
output analysis are based on a set of observations collected 
in the course of a single simulation run. A detailed survey 
of these methods can be found in [19]. 
Evaluations of parallel implementations have been reported 
only for the batch means and the overlapping batch means 
(see [21] and [20]), as well as for the regenerative (see [10]) 
and the spectral analysis methods (see [21], [20] and [22]). 
The approach followed in these cases, is actually a parallel 
independent replications execution scheme, where the 
analysis is done according to the chosen method. 
In the method of batch means, the set of observations x1, x2, 
. . ., xn is divided into a series of non overlapping batches of 
size m. The batch means ������������
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N
, where 

k is the number of obtained batches, is then used in a 
second stage statistical analysis of the simulation results. 

The mean �x is given by ����� PN;Q; =  and the 

confidence interval is given as in (2) and (3), with n now 
being the number k of batches and with xi being the batch 
mean 

L
; . This approach is based on the assumption that 

observations more separated in time are less correlated. 
Thus, for sufficiently long batches of observations, batch 
means should be almost uncorrelated. The method of batch 
means is not free of the problem of the initial transient. So, 

if our aim is to reduce the bias of the estimator ��� PN; , 

then the length of the initial transient period should be 
determined and the observations collected in this period 
should be deleted.   
In the parallel setting, the same estimation procedure is 
applied in each one of the experiment replications. The 
overall statistics are accumulated in a central analyzer 
process/thread, which after the completion of the required 
number of batches, that is k, produces the final results. 
Of course, the main problem associated with this method is 
the selection of a batch size that ensures uncorrelated batch 
means. Generally, in [25] it is shown that usually the 
number of batches used in the analysis of confidence 
intervals should be not less than 10 and not greater than 30, 
if the simulation run is long enough to secure an adequate 
degree of normality and independency of batch means. 
The method of overlapping batch means is nothing more 
than a modification of the method of batch means, in an 
effort to reduce the variance of the estimator used for the 
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is the batch mean computed after the observation xj, and 
��Q;  is the overall mean, averaged over all observations.  

It has been shown that overlapping batches by even only by 

half of their size gives an asymptotic variance of �@�>� Q;σ  

equal to 75% of the variance of the estimator calculated 
from non overlapping batches with the same batch size (see 
[27]). Furthermore, because of the estimation procedure 
used, it is possible to increase the size of batches within a 
given length of simulation run without decreasing the 
number of batches. Thus, the method of overlapping batch 
means constitutes an attractive alternative, although it is 
computationally more complex. 
The spectral analysis method, introduced by Fishman and 
Kiviat (see [4]), retains the structure of the overlapping 
batch means method, but the variance of the mean of the 
performance measure of interest, is calculated in a different 
way. More precisely, the correlated nature of the collected 
observations is exploited. If we consider the autocorrelation 
function R(k), where 
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is the autocovariance of order l, the spectral method shifts 
the analysis into the frequency domain by applying a 
Fourier transformation to this function, yielding the spectral 
density function 
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More than one techniques have been proposed for the 
estimation of the spectral density function px(f). Perhaps the 
most widely used version of the spectral analysis method is 
the one suggested by Heidelberger and Welch (see [8]). 
According to this, the estimated variance is obtained 
through the periodogram of ������������

��
P;P;P;

N
. A 

polynomial of order d is fitted to the first S ordinates 
( �N6 ≤ ) of the bias corrected logarithms of the smoothed 

periodogram. Periodogram ordinates are evaluated using 
Fast Fourier Transforms and smoothing is done, by 
averaging two adjacent ordinates. Although this method 
involves a considerable number of approximations, various 
evaluation studies have shown that it produces quite 
accurate results. 
The regenerative method makes also use of a single 
simulation run and is based on batching observations in a 
different way. It is the only method, which is not tied to the 
problem of the initial transient period and produces 

observations, which are independent to each other. 
However, it is not yet in widespread use, mainly because of 
its sophisticated theoretical background, which is based on 
the presence of the regenerative property. 
A regenerative process {X(t): t ≥ 0} with state space Rk, is 
(see [9]) a stochastic process which starts from scratch at an 
increasing sequence of regeneration times {�i: i ≥ 1}. That 
is, between any two consecutive regeneration times �i and 
�i+1, say, the portion {X(t): �i ≤ t<�i+1} of the regenerative 
process is an independent, identically distributed replicate 
of the portion between any other two consecutive 
regeneration times. The typical situation in which the 
regenerative assumption is satisfied is when �i represents 
the time of the ith entrance to a fixed state s, say, and upon 
hitting this state the simulation proceeds without any 
knowledge of its past history. Thus, the problem takes the 
form of detecting such a recurrent state, which can be 
considered to represent the system in a particular time 
instant within its steady-state phase. 
Shedler ([26]) provides valuable results for identifying 
appropriate regenerative states in queuing network 
simulations. More precisely, let us assume that at any time 
instant, each job is of exactly one class and one type. Jobs 
may change class as they traverse the network, but they 
cannot change type. The type of a job may influence its 
routing path through the network as well as its service 
requirements at each service center. Service priorities can 
also be associated with job types. Any state s, where all 
jobs, are placed at a service center, which sees only one 
class, or is such that, jobs of the lowest priority are subject 
to pre-emption, has been proved to be a regenerative state. 
Let us assume, our aim is to estimate the mean value of a 
queuing network characteristic (e.g. throughput), which is 
given, as a real-valued function f over the regenerative 
stochastic process X = {X(t) ; t ≥ 0} 

k(f) = E[f(X)] 

Let us also call 
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the observation produced by the kth regenerative cycle. A 
100 . % confidence interval for k(f), after the completion of 
N regenerative cycles, is given (see [9]) by 
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where  
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However, although the estimator given in (8) is a consis
estimator, which means that it tends to the mean value w
probability 1, as ∞→1 , it is not unbiased. O
estimators that have been suggested, in an attempt to red
the bias introduced by the special form of 
aforementioned (classical) estimator are (see [9]):  

• the Fieller estimator, 

��

�

��

�@�>

����
��

VT1

VT11=
1N

⋅−
⋅−⋅

=
τ

τ�

,
 

 where 1]T
�

���
�� α−=  

• the Beale estimator, 
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• the jackknife estimator, 
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• the Tin point estimator  
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Respectively, different estimation procedures are be
applied in deriving confidence intervals in the Fieller 
the jackknife cases. Results reported in various stud
indicate that asymptotically for long runs, 
Fieller/Fieller, jackknife/ jackknife, Tin/classical 
classical/classical confidence intervals, give accu
coverage of the parameter of interest. However, for s
runs, in [9] the jackknife/jackknife approach did b
followed by the Tin/classical and classical/class
approaches, which performed about the same. 
Only one evaluation study for parallel regenera
implementation has been reported [10] and this conce
with the parallelization of the classical regenera
estimation. 

B. Sequential control procedures    

Another critical issue in producing confidence interv
that cover the true steady-state mean with the des
probability level, is the way the simulation run lengt

determined. The reason is that different systems behave in 
radically different ways and thus require radically different 
(9)
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run lengths to generate adequate confidence intervals. Thus, 
no procedure in which the run length is fixed, before the 
simulation begins, can guarantee accurate results. Instead of 
this, sequential procedures, which determine the length of 
the simulation during the course of the run, are preferred. 
One criterion that is usually used for stopping the 
simulation is the relative confidence interval precision 
criterion (see [19]). Let us denote by 

( )[[ Q;Q; ∆+∆− ����� , the generated confidence interval, 

which contains the true parameter [µ  at a given confidence 

level (1-.�� ��.��� ,I 
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is the relative half width of the confidence interval, then the 
simulation experiment is stopped at the first checkpoint for 
which 

PD[
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PD[
δ  is the required limit relative 

precision, at the )%α������  confidence level. 

The sequential control procedures that have been suggested 
for use are usually tied to particular estimation procedures. 
They sometimes incorporate a technique for detecting the 
length of the initial transient period, in the batch based 
estimation procedures they incorporate a technique for 
determining an appropriate batch size (see [12]) and in 
many cases they incorporate techniques for testing the 
normality (see [2]) and/or the independency (see [3]) of the 
produced observations. However, in all cases they cause the 
simulation to be stopped at the first checkpoint where the 
required relative half width accuracy has been achieved. It 
has been found (see for example [10] and [14]), that the 
relative half width criterion can be often temporarily 
satisfied after a very short simulation run and the results of 
such short runs can be very inaccurate. For this reason, a 
minimum number of observations are usually required to be 
produced, before activating the chosen sequential control 
procedure. 
Another important consideration in choosing the sequential 
control procedure to be used is the structure of the 
simulation experiment of interest. In most practical 
simulation problems, we are interested in analyzing 
multivariate (simultaneous study of more than one 
performance measures) and not univariate sequence of 
observations. The approach usually followed in these cases 
is the construction of individual confidence intervals on the 
means of the performance measures of interest, at the same 
nominal level of confidence. However, this is not an 
adequate solution to the multiple comparisons problem, 
which refers to the fact that the overall level of confidence 
one may have in all of the intervals’ containing their 
respective true means is lower than the nominal level stated 
for each interval. A number of sequential procedures for the 
analysis of multivariate simulation output (see for example 
[1] and [23]) have been suggested. However, none of them 
is in widespread use today. Also, none of them has been 
used in the reported parallelized implementations. 



Interesting surveys of sequential control procedures being 
used in steady-state simulations can be found in [13] and 
[19]. 
 

IV. EXPERIMENTAL EVALUATIONS 

Unfortunately, we have not yet seen a thorough comparison 
of the existed parallel implementations of the methods used 
in simulation output analysis. However, it is clear that a 
study like this should take into account not only the 
achieved speedups, but also the methods’ statistical 
effectiveness. It is also clear, that a large set of carefully 
selected queuing models with appropriately varied 
workloads (from a low to a heavily loaded case) should be 
used. 
In [6], a criterion based on the mean squared error ratio, 
which is defined as  
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has been introduced. The author then derives formulae that 
relate the achieved processing speedups to the obtained 
statistical efficiency, for the parallel independent 
replications approach. Thus, a theoretical framework for the 
comparison of different implementations is provided. 
All the other reported experimental evaluations are based 
on the simultaneous study of the achieved speedup and the 
resulted confidence interval coverage, when a parallel 
implementation is being used in casually selected models. 
Coverage is defined (see [20]) as the relative frequency 
with which the confidence interval contains the true 
parameter. A .% confidence interval for the point estimate 
of coverage is given by 
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where c is the coverage, 
��� α−]  is the 1-./2 quantile of the 

standard normal distribution and nc is the number of 
replicated experiments in the coverage analysis. In most 
published experimental studies (see for example [12], [13], 
[22], [10], [24]) the number nc varies from 50 to 200 
replications. An estimation procedure can be considered to 
be valid for a particular model (see [24]), if the upper 
endpoint of the .% confidence interval on the true coverage 
is at least as large as the desired coverage. 
However, in [20] the authors formulate basic rules for the 
proper experimental analysis of the coverage of steady-state 
interval estimators: 

• Coverage should be analyzed sequentially, i.e. 
analysis of coverage should be stopped when the 
relative half width precision of the estimated 
coverage satisfies a specified level. 

• An estimate of coverage has to be calculated from a 
representative sample of data, so the coverage 
analysis can start only after a minimum number of 
‘bad’ confidence intervals have been recorded. 

• Results from simulation runs that are clearly too 
short should not be taken into account. 

It is clear, that such an approach requires an automated 
analysis framework, which is provided only by AKAROA 
(see [28]). 
In any case, all the experimental evaluations agree in the 
following: 

• The resulted speedup gain is dependent on the 
chosen batch size or the size of the model’s 
regenerative cycle, if the regenerative method is to 
be used. 

• The parallel experiments exhibit a more important 
coverage improvement as the relative half interval 
width decreases, compared to the serially executed 
experiments. However, it is obvious that their 
coverage deteriorates as the number of processors 
used, increases. This means that when using a large 
number of processors, it is also necessary to use 
more strict half width accuracy levels. 

 

V. CONCLUSIONS 

This work addresses the statistical problems that arise in 
stochastic simulations of the steady-state behavior of 
queuing processes, when being executed in parallel time 
streams. 
An appropriate pseudo random number generator with large 
cycle length has to be chosen, in order to minimize the 
possibilities for obtaining overlapping random number 
sequences. Moreover, it is always desirable to select the 
seeds to be used in an appropriate way, in order to 
completely exclude this possibility. 
A valid estimation procedure has to be chosen. Evaluations 
of estimation procedures in the parallel setting have been 
published only for the batch means and the overlapping 
batch means methods, as well as for the spectral analysis 
and the regenerative method. 
A tested sequential control procedure has to be applied in 
order:   

• To determine the length of the initial transient period 
and to discard the observations collected in this 
period if possible. 

• To determine the appropriate batch size if there is a 
need to do it. 

• To judge for the observations’ independency and/or 
normality if there is a need to do it. 

• To determine when the experiment should be 
stopped. 

Experimental results show that the quality of simulation 
output deteriorates as the number of processors used, 
increases. For this reason, it is necessary to use more strict 
precision requirements, when using a large number of 
processors. 
Lastly, it is important to point out, that proper multivariate 
sequential analysis procedures have not been yet applied 
and evaluated in the parallel setting.  
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