

Abstract--This paper addresses statistical issues that arise in
stochastic simulations of the steady-state behavior of queuing
processes, when being executed in parallel time streams. This
is often a desirable choice since otherwise, computer running
times for such simulations tend to be large. A proper statistical
methodology, which will enable the simulator to achieve the
required statistical precision as quickly as possible, has to be
used. A random number generator with a large cycle length
has to be chosen, since any correlation across the parallel
streams can affect the randomness of the results. Another
critical issue is that, no procedure in which the run length is
fixed, before the simulation begins, can guarantee accurate
results. Instead of this, sequential procedures, which
determine the length of the simulation during the course of the
run, are preferred. The parallel processing speedup to be
achieved, is always dependent on the simulated model’s
structure. However, the number of processors to be used, has
to be decided on the basis of the chosen accuracy requirements
since experimental evidence shows that the quality of the
results deteriorates as the number of processors used,
increases.
Index Terms—Queuing networks, Parallel simulation

I. INTRODUCTION

Stochastic queuing network simulation is one of the most
commonly used approaches in performance modeling and
evaluation of various systems. This popularity is due to the
continuing development of more powerful and less
expensive computers, as well as significant achievements in
software engineering.
In this paper, we are particularly interested for steady-state
simulations, which aim to give insights, into the behavior of
queuing processes after a long period of time. The
methodology for this kind of simulation study is
complicated.
Since observations gathered during the initial transient
period of a model’s execution path do not characterize the
steady-state, it is expected to discard all such observations
before further analysis of them. Ignoring the existence of
this period, can lead to significant deviations from the true
values of the estimated parameters (bias).
Moreover, every stochastic simulation is basically a random
experiment and the results produced are nothing more than
statistical samples. Thus, statistical analysis is an absolute

 P. Katsaros and C. Lazos are with the Department of
Informatics, Aristotle University of Thessaloniki, 54006
Thessaloniki, Greece.
E-mail: {katsaros, clazos}@csd.auth.gr

necessity. However, the main problem encountered in the
analysis of simulation results is that they are usually highly
correlated and thus do not satisfy the requirement of
statistical independence if any of the classical statistical
analysis procedures is to be used.
The most common objective of simulation studies is the
estimation of the mean and an .% confidence interval of
the analyzed process, from a sequence of collected
observations. Several methods of data collection and
analysis have been proposed to overcome the theoretical
problems that arise from the correlated nature of
observations collected during steady-state simulation,
namely:

• The method of independent replications
• The method of batch means
• The method of overlapping batch means
• The regenerative method
• The spectral method
• The method based on autoregressive representation
• The method based on standardized time series

However, steady-state simulations of even moderately
complex systems, are often computationally intensive and
can require very long runs in order to obtain reliable final
results. Fortunately, modern multiprocessor and distributed
computer systems offer high-potential processing power
that can be employed in parallel simulation. There are two
different cases of applying parallelism in stochastic
simulation: (i) the case where many processors cooperate
for a single realization of the simulated system and (ii) the
case where each processor runs its own independent
replication of the simulated system, but cooperates with a
central analyzer of the simulation output data according to
one of the aforementioned methods.
Most research efforts have been focused, on the
specification of the appropriate synchronization, deadlock
handling and/or memory management algorithms for
performing parallel stochastic simulations as described in
the first case. However, from the point of view of statistical
methodology, the second case is a more attractive
alternative. This is mainly because the statistical analysis of
simulation output data, in some methods, may require the
data to be ordered according to one reference time of the
simulated model. However, this is not practical when data
are collected from subprocesses executing asynchronously
in parallel, especially when advanced control procedures
are to be applied.
This work concerns with the problems arising, when
applying parallel stochastic simulation as in the second

Steady-state Simulation of Queuing Processes in
Parallel Time Streams: Problems and

Potentialities
Panajotis Katsaros, Constantine Lazos

case. Suggestions of how to overcome them are stated and
some thoughts on the perspective of this approach are
discussed. Finally, a brief description of the results obtained
in the few related works has been attempted.

II. PARALLEL REPLICATIONS

One of the most fundamental problems that have to be
overcome in any implementation of stochastic discrete
event simulation in parallel time streams is the problem of
the pseudo random number generator to be used. This is
because the technique that is usually used to get parallel
random number streams (varying the initial seed parameter)
can potentially cause long-range inter-processor and/or
intra-processor correlations. Other techniques, like for
example, the leap frog and the cycle splitting method,
require a way of advancing the random number generator a
fixed number of steps in each iteration.
Generally, a good random number generator for use in
discrete event simulations in parallel time streams, should
combine the following properties:

• Randomness: If the random number sequence
consists of integers in [1, d], then the probability of
getting any particular integer should be 1/d.
However, it is usually desirable to ensure uniformity
in higher dimensions and this is defined as follows:
Suppose we define n-tuples,

),...,(1 nii
n
i uuU ++=

 and divide the n-dimensional unit hypercube into
many equal subvolumes. A sequence is uniform if in
the limit of an infinite sequence, all the subvolumes
have an equal number of occurrences of random n-
tuples. To conclude, any correlation between
successive n-tuples of random numbers can give
incorrect results and for this reason, in most cases,
uniformity in dimensions higher than 4 is required.

• Speed: It is always desirable to generate the random
numbers fast, even in cases where their generation is
only a small fraction of the time required for the
calculation (this depends on the nature of the
simulated model). This means that computationally
expensive operations, like for example, modulo
operation, which is often used in linear
multiplicative congruential generators, should be
avoided.

• Large cycle length: A pseudo random number
generator is a finite state machine with at most 2p
different states, where p is the number of bits that
represent the state. It is obvious that the sequence
must repeat after at most 2p different numbers have
been generated. The smallest number of steps after
which the generator starts repeating itself, is called,
period or cycle length, L. Assuming all cycles have
the same length, the number of disjoint cycles (i.e.
cycles having no states in common) is 2p/L. Parallel
random number streams are usually produced by
varying the initial seed parameter across the streams.
It turns out that if the generator’s cycle length is not

large enough, any long-range correlations may cause
high correlations between the parallel streams.

Recent advances in Twisted Generalized Feedback Shift
Register (TGFSR) generators (see [15] and [16]), make
them an appealing choice for performing discrete event
simulations in parallel time streams. The reasons are: (i) the
fact that generation is very fast, since only a small number
of memory references and just one exclusive OR operation
are needed and (ii) the fact that the sequence has an
arbitrarily long cycle, independent of the word size of the
machine.
The most notable case is the so-called Mersenne Twister
algorithm (see [17]), which is 623-dimensionally
equidistributed uniform random number generator with the
super astronomical period of 219937-1. This algorithm has
been used in [10] with great success.
There is more than one alternative for a successful
deployment of a queuing network simulation in parallel
time streams. Back to the past, the development of any
parallel software like this required a deep understanding of
parallel/distributed systems as well as of parallel
programming and debugging techniques. This situation has
been radically changed over the last years, with the advent
of highly sophisticated compilers, which offer automatic
parallelization facilities. Thus, the simulation analyst does
not have any more, to invest a considerable amount of time
for converting the existed serial code into a parallel one.
A typical example of such an alternative is the use of an
OpenMP compiler. OpenMP is the proposed industry
standard Application Program Interface (API) for shared
memory programming. It is based on a combination of
compiler directives, library routines and environment
variables that can be used to specify shared memory
parallelism in C++ or Fortran. An OpenMP compiler has
been successfully used in [10] for parallelizing the
preexisted simulation software that was implemented in
C++.
On the other hand, if a more sophisticated solution is to be
deployed, a ready-made simulation package with the
appropriate characteristics has to be used. The only one
known to us is AKAROA (see [28]). It consists of an
object-oriented simulation model construction toolkit, a set
of control objects and a set of distributed processes for
creating and managing an environment for steady-state
simulations. With AKAROA, a heterogeneous network of
workstations and/or multiprocessors functions as one
(loosely-coupled) virtual computer, thus exploiting the sum
processing power of its member machines.

III. STATISTICAL ISSUES

A. Estimation procedures

As it has been already stated, in most cases the objective of
a steady-state queuing network simulation is the estimation
of the mean and an .% confidence interval of the
performance measures of interest, from a sequence of
collected observations x1, x2, . . ., xn. The mean, can be
easily estimated by the average,

∑
=

=
Q

L

L

Q

[

Q;

�

�� (1)

and if the observations can be considered as independent
and normally distributed, the .% is given by,

������� ,QQ; +ΧΙ− , where �@�>
��

Q], Χ⋅= − σα
�

 (2)

and ∑
= −

−
=Χ

Q

L

L

QQ

Q;[

Q

�

�

�

���

����
�@�>σ� (3)

The �@�>� QΧσ� given in (3), is an unbiased estimator of the

variance of ��Q; and �� α−] is the upper (1-./2) critical

point obtained from the standard normal distribution.
The described estimation procedure forms the basis of the
independent replications method. This method assumes that
the simulation is repeated a number of times, each time
using a different, independent sequence of random
numbers. The mean value of observations collected during
each run is computed and used in a second level analysis
stage, as independent and identically distributed output
data. However, the method of independent replications is
tied to the problem of the initial transient. If our aim is to
discard all the observations, which do not characterize the
steady-state execution path, then appropriate algorithms
that estimate the extent of the transient period have to be
implemented. Moreover, an appropriate stopping scheme
has to be developed. Thus, the proper application of the
method of independent replications is not as simple as it
initially seems to be.
The alternative is the use of any of the methods based on a
single simulation run. However, when applying one of these
methods, in most cases, the observations x1, x2, . . ., xn
cannot be considered as independent and identically
distributed random variables. Thus, other estimators are
usually used and this raises the problem of measuring the
quality of them. There are three common measures of
estimator effectiveness (see [19]):

• The bias, which measures the systematic deviation
of the estimator from the true value of the estimated
parameter,

 @��>�@�>
[

Q;(Q;%LDV µ−= (4)

• The variance, which measures the mean (squared)
deviation of the estimator from its mean value; that
is,

 @�@`�>��>^�@�> ��
Q;(Q;(Q −=Χσ (5)

• The mean square error (MSE) of the estimator,
defined as

 `@��^>�@�> �

[
Q;(Q;06(µ−= (6)

From (4) and (5), it is easy to derive the following,

�@�>�@`�>^�@�> ��
QQ;%LDVQ;06(Χ+= σ

It is also obvious, that the bias and the mean square error
FDQ EH HVWLPDWHG RQO\ LQ FDVHV ZKHUH WKH PHDQ �x is known,
i.e. only in analytically solvable queuing models.
As regarding the quality of the independent replications
method, this has been mainly studied in terms of the
measured MSE and the bias caused when not having
discarded the observations collected in the initial transient

period. Of course, there are different opinions, but it seems
that if our aim is to achieve specific estimator accuracy,
there is a trade-off between the number of replications and
their length. In [5], it is suggested to use at least 100
observations in each replication, to secure normality of the
replication means. Furthermore, the results published in
[11] show, that it is preferable to keep replications longer,
than to make more replications. In what is concerned with
the independent replications method when being executed
in parallel time streams, Heidelberger [6] shows, that the
method’s statistical efficiency is dependent on the strength
of the initial transient and the asymptotic variance, as well
as on the parallel processing speedup and the number of
processors used.
All the other methods being used in steady-state simulation
output analysis are based on a set of observations collected
in the course of a single simulation run. A detailed survey
of these methods can be found in [19].
Evaluations of parallel implementations have been reported
only for the batch means and the overlapping batch means
(see [21] and [20]), as well as for the regenerative (see [10])
and the spectral analysis methods (see [21], [20] and [22]).
The approach followed in these cases, is actually a parallel
independent replications execution scheme, where the
analysis is done according to the chosen method.
In the method of batch means, the set of observations x1, x2,
. . ., xn is divided into a series of non overlapping batches of
size m. The batch means ������������

��
P;P;P;

N
, where

k is the number of obtained batches, is then used in a
second stage statistical analysis of the simulation results.

The mean �x is given by ����� PN;Q; = and the

confidence interval is given as in (2) and (3), with n now
being the number k of batches and with xi being the batch
mean

L
; . This approach is based on the assumption that

observations more separated in time are less correlated.
Thus, for sufficiently long batches of observations, batch
means should be almost uncorrelated. The method of batch
means is not free of the problem of the initial transient. So,

if our aim is to reduce the bias of the estimator ��� PN; ,

then the length of the initial transient period should be
determined and the observations collected in this period
should be deleted.
In the parallel setting, the same estimation procedure is
applied in each one of the experiment replications. The
overall statistics are accumulated in a central analyzer
process/thread, which after the completion of the required
number of batches, that is k, produces the final results.
Of course, the main problem associated with this method is
the selection of a batch size that ensures uncorrelated batch
means. Generally, in [25] it is shown that usually the
number of batches used in the analysis of confidence
intervals should be not less than 10 and not greater than 30,
if the simulation run is long enough to secure an adequate
degree of normality and independency of batch means.
The method of overlapping batch means is nothing more
than a modification of the method of batch means, in an
effort to reduce the variance of the estimator used for the

variance �@�>� Q;σ . Thus, the variance of ��Q; is

estimated (see [18]) as

∑
+−

=

−

+−
−

⋅−=
�

�

�

��

�

�`���^
����@�>

PQ

M

M

PQ

Q;P;

P

Q
Q;σ� ,

where

∑
−

=
+=

�

�

�
��

P

L

LMM
[

P
P;

is the batch mean computed after the observation xj, and
��Q; is the overall mean, averaged over all observations.

It has been shown that overlapping batches by even only by

half of their size gives an asymptotic variance of �@�>� Q;σ

equal to 75% of the variance of the estimator calculated
from non overlapping batches with the same batch size (see
[27]). Furthermore, because of the estimation procedure
used, it is possible to increase the size of batches within a
given length of simulation run without decreasing the
number of batches. Thus, the method of overlapping batch
means constitutes an attractive alternative, although it is
computationally more complex.
The spectral analysis method, introduced by Fishman and
Kiviat (see [4]), retains the structure of the overlapping
batch means method, but the variance of the mean of the
performance measure of interest, is calculated in a different
way. More precisely, the correlated nature of the collected
observations is exploited. If we consider the autocorrelation
function R(k), where

�@��>���
[OL[L

;;(N5 µµ −−= − , �� −≤≤ QO

is the autocovariance of order l, the spectral method shifts
the analysis into the frequency domain by applying a
Fourier transformation to this function, yielding the spectral
density function

∑
∞

=

+=
�

��FRV���������

M

[
IMM55IS π , for +∞≤≤−∞ I

Then, for sufficiently large n,

Q

S
Q

[
���

�@�>� ≅Χσ

More than one techniques have been proposed for the
estimation of the spectral density function px(f). Perhaps the
most widely used version of the spectral analysis method is
the one suggested by Heidelberger and Welch (see [8]).
According to this, the estimated variance is obtained
through the periodogram of ������������

��
P;P;P;

N
. A

polynomial of order d is fitted to the first S ordinates
(�N6 ≤) of the bias corrected logarithms of the smoothed

periodogram. Periodogram ordinates are evaluated using
Fast Fourier Transforms and smoothing is done, by
averaging two adjacent ordinates. Although this method
involves a considerable number of approximations, various
evaluation studies have shown that it produces quite
accurate results.
The regenerative method makes also use of a single
simulation run and is based on batching observations in a
different way. It is the only method, which is not tied to the
problem of the initial transient period and produces

observations, which are independent to each other.
However, it is not yet in widespread use, mainly because of
its sophisticated theoretical background, which is based on
the presence of the regenerative property.
A regenerative process {X(t): t ≥ 0} with state space Rk, is
(see [9]) a stochastic process which starts from scratch at an
increasing sequence of regeneration times {�i: i ≥ 1}. That
is, between any two consecutive regeneration times �i and
�i+1, say, the portion {X(t): �i ≤ t<�i+1} of the regenerative
process is an independent, identically distributed replicate
of the portion between any other two consecutive
regeneration times. The typical situation in which the
regenerative assumption is satisfied is when �i represents
the time of the ith entrance to a fixed state s, say, and upon
hitting this state the simulation proceeds without any
knowledge of its past history. Thus, the problem takes the
form of detecting such a recurrent state, which can be
considered to represent the system in a particular time
instant within its steady-state phase.
Shedler ([26]) provides valuable results for identifying
appropriate regenerative states in queuing network
simulations. More precisely, let us assume that at any time
instant, each job is of exactly one class and one type. Jobs
may change class as they traverse the network, but they
cannot change type. The type of a job may influence its
routing path through the network as well as its service
requirements at each service center. Service priorities can
also be associated with job types. Any state s, where all
jobs, are placed at a service center, which sees only one
class, or is such that, jobs of the lowest priority are subject
to pre-emption, has been proved to be a regenerative state.
Let us assume, our aim is to estimate the mean value of a
queuing network characteristic (e.g. throughput), which is
given, as a real-valued function f over the regenerative
stochastic process X = {X(t) ; t ≥ 0}

k(f) = E[f(X)]

Let us also call

∫
−

⋅=
N

N

7

7

N GXX;II=

�

������

the observation produced by the kth regenerative cycle. A
100 . % confidence interval for k(f), after the completion of
N regenerative cycles, is given (see [9]) by

�()
()

()
, �()

()

()
k N

s N F
a

N N
k N

s N F
a

N N
−

⋅
+





⋅
+

⋅
+





⋅



















− −1 11

2

1

2

τ τ
 (7)

where

 ��1τ is the average cycle length
and

�()
()

()
k N

Z N

N
=

τ

(8)

s N s N k N s N k N s N2
11
2

12
2 2

22
22() () �() () (�()) ()= − +

with

∑
=

−
−

=
1

N

1=I=
1

1V N

�

��

��
������

�

�
�� ,

∑
=

−
−

=
1

N

1
1

1V
N

�

��

��
����

�

�
�� ττ

∑
=

−−
−

=
1

N

11=I=
1

1V N

�

�

��
����������

�

�
�� ττκ

However, although the estimator given in (8) is a consis
estimator, which means that it tends to the mean value w
probability 1, as ∞→1 , it is not unbiased. O
estimators that have been suggested, in an attempt to red
the bias introduced by the special form of
aforementioned (classical) estimator are (see [9]):

• the Fieller estimator,

��

�

��

�@�>

����
��

VT1

VT11=
1N

⋅−
⋅−⋅

=
τ

τ�

,

 where 1]T
�

���
�� α−=

• the Beale estimator,

�

��

��

������

������

��

��
��

11V

11=1V

1

1=
1N

τ
τ

τ ⋅+
⋅⋅+

⋅=
�

• the jackknife estimator,

∑
=

⋅=
1

L

L
1

1N

�

�
�� θ

�

, where

 ������������ ∑ ∑≠ ≠
−−⋅=

LM LM
MML =111=1 ττθ

• the Tin point estimator












⋅










−

⋅
+⋅= −�

�

����

��������
�

��

��
�� 1

1

V

11=

V

1

1=
1N

τττ
�

Respectively, different estimation procedures are be
applied in deriving confidence intervals in the Fieller
the jackknife cases. Results reported in various stud
indicate that asymptotically for long runs,
Fieller/Fieller, jackknife/ jackknife, Tin/classical
classical/classical confidence intervals, give accu
coverage of the parameter of interest. However, for s
runs, in [9] the jackknife/jackknife approach did b
followed by the Tin/classical and classical/class
approaches, which performed about the same.
Only one evaluation study for parallel regenera
implementation has been reported [10] and this conce
with the parallelization of the classical regenera
estimation.

B. Sequential control procedures

Another critical issue in producing confidence interv
that cover the true steady-state mean with the des
probability level, is the way the simulation run lengt

determined. The reason is that different systems behave in
radically different ways and thus require radically different
(9)
tent
ith

ther
uce
the

ing
and
ies,
the
and
rate
hort
est,
ical

tive
rns

tive

als,
ired
h is

run lengths to generate adequate confidence intervals. Thus,
no procedure in which the run length is fixed, before the
simulation begins, can guarantee accurate results. Instead of
this, sequential procedures, which determine the length of
the simulation during the course of the run, are preferred.
One criterion that is usually used for stopping the
simulation is the relative confidence interval precision
criterion (see [19]). Let us denote by

()[[Q;Q; ∆+∆− ����� , the generated confidence interval,

which contains the true parameter [µ at a given confidence

level (1-.�� ��.��� ,I

��Q;

[
∆

=δ

is the relative half width of the confidence interval, then the
simulation experiment is stopped at the first checkpoint for
which

PD[
δδ ≤ , where

PD[
δ is the required limit relative

precision, at the)%α������ confidence level.

The sequential control procedures that have been suggested
for use are usually tied to particular estimation procedures.
They sometimes incorporate a technique for detecting the
length of the initial transient period, in the batch based
estimation procedures they incorporate a technique for
determining an appropriate batch size (see [12]) and in
many cases they incorporate techniques for testing the
normality (see [2]) and/or the independency (see [3]) of the
produced observations. However, in all cases they cause the
simulation to be stopped at the first checkpoint where the
required relative half width accuracy has been achieved. It
has been found (see for example [10] and [14]), that the
relative half width criterion can be often temporarily
satisfied after a very short simulation run and the results of
such short runs can be very inaccurate. For this reason, a
minimum number of observations are usually required to be
produced, before activating the chosen sequential control
procedure.
Another important consideration in choosing the sequential
control procedure to be used is the structure of the
simulation experiment of interest. In most practical
simulation problems, we are interested in analyzing
multivariate (simultaneous study of more than one
performance measures) and not univariate sequence of
observations. The approach usually followed in these cases
is the construction of individual confidence intervals on the
means of the performance measures of interest, at the same
nominal level of confidence. However, this is not an
adequate solution to the multiple comparisons problem,
which refers to the fact that the overall level of confidence
one may have in all of the intervals’ containing their
respective true means is lower than the nominal level stated
for each interval. A number of sequential procedures for the
analysis of multivariate simulation output (see for example
[1] and [23]) have been suggested. However, none of them
is in widespread use today. Also, none of them has been
used in the reported parallelized implementations.

Interesting surveys of sequential control procedures being
used in steady-state simulations can be found in [13] and
[19].

IV. EXPERIMENTAL EVALUATIONS

Unfortunately, we have not yet seen a thorough comparison
of the existed parallel implementations of the methods used
in simulation output analysis. However, it is clear that a
study like this should take into account not only the
achieved speedups, but also the methods’ statistical
effectiveness. It is also clear, that a large set of carefully
selected queuing models with appropriately varied
workloads (from a low to a heavily loaded case) should be
used.
In [6], a criterion based on the mean squared error ratio,
which is defined as

�@�>

�@�>

�

�

Q;06(

Q;06(

U

PHWKRG

PHWKRG

−

−=

has been introduced. The author then derives formulae that
relate the achieved processing speedups to the obtained
statistical efficiency, for the parallel independent
replications approach. Thus, a theoretical framework for the
comparison of different implementations is provided.
All the other reported experimental evaluations are based
on the simultaneous study of the achieved speedup and the
resulted confidence interval coverage, when a parallel
implementation is being used in casually selected models.
Coverage is defined (see [20]) as the relative frequency
with which the confidence interval contains the true
parameter. A .% confidence interval for the point estimate
of coverage is given by










 −+−− −−
FF
Q

FF

]F

Q

FF

]F

���
�

���
������ αα

where c is the coverage,
��� α−] is the 1-./2 quantile of the

standard normal distribution and nc is the number of
replicated experiments in the coverage analysis. In most
published experimental studies (see for example [12], [13],
[22], [10], [24]) the number nc varies from 50 to 200
replications. An estimation procedure can be considered to
be valid for a particular model (see [24]), if the upper
endpoint of the .% confidence interval on the true coverage
is at least as large as the desired coverage.
However, in [20] the authors formulate basic rules for the
proper experimental analysis of the coverage of steady-state
interval estimators:

• Coverage should be analyzed sequentially, i.e.
analysis of coverage should be stopped when the
relative half width precision of the estimated
coverage satisfies a specified level.

• An estimate of coverage has to be calculated from a
representative sample of data, so the coverage
analysis can start only after a minimum number of
‘bad’ confidence intervals have been recorded.

• Results from simulation runs that are clearly too
short should not be taken into account.

It is clear, that such an approach requires an automated
analysis framework, which is provided only by AKAROA
(see [28]).
In any case, all the experimental evaluations agree in the
following:

• The resulted speedup gain is dependent on the
chosen batch size or the size of the model’s
regenerative cycle, if the regenerative method is to
be used.

• The parallel experiments exhibit a more important
coverage improvement as the relative half interval
width decreases, compared to the serially executed
experiments. However, it is obvious that their
coverage deteriorates as the number of processors
used, increases. This means that when using a large
number of processors, it is also necessary to use
more strict half width accuracy levels.

V. CONCLUSIONS

This work addresses the statistical problems that arise in
stochastic simulations of the steady-state behavior of
queuing processes, when being executed in parallel time
streams.
An appropriate pseudo random number generator with large
cycle length has to be chosen, in order to minimize the
possibilities for obtaining overlapping random number
sequences. Moreover, it is always desirable to select the
seeds to be used in an appropriate way, in order to
completely exclude this possibility.
A valid estimation procedure has to be chosen. Evaluations
of estimation procedures in the parallel setting have been
published only for the batch means and the overlapping
batch means methods, as well as for the spectral analysis
and the regenerative method.
A tested sequential control procedure has to be applied in
order:

• To determine the length of the initial transient period
and to discard the observations collected in this
period if possible.

• To determine the appropriate batch size if there is a
need to do it.

• To judge for the observations’ independency and/or
normality if there is a need to do it.

• To determine when the experiment should be
stopped.

Experimental results show that the quality of simulation
output deteriorates as the number of processors used,
increases. For this reason, it is necessary to use more strict
precision requirements, when using a large number of
processors.
Lastly, it is important to point out, that proper multivariate
sequential analysis procedures have not been yet applied
and evaluated in the parallel setting.

REFERENCES

[1] Charnes, J. M. and Kelton, W. D. 1988. A comparison of

confidence region estimators for multivariate simulation output. In
Proceedings of the 1988 Winter Simulation Conference, Society for
Computer Simulation, 458-465

[2] Fishman, G. S. 1977. Achieving specific accuracy in simulation
output analysis. Communications of the ACM, Vol. 20, 310-315

[3] Fishman, G. S. 1978. Grouping observations in digital simulation.
Management Science, Vol. 24, 510-521

[4] Fishman, G. S. and Kiviat, P. J. 1967. The analysis of simulation-
generated time series. Management Science, Vo. 13, 525-557

[5] Fishman, G. S., 1978. Principles of Discrete Event Simulation.
John Wiley, New York

[6] Heidelberger, P. 1986. Statistical analysis of parallel simulation.
In proceedings of the 1986 Winter Simulation Conference (WSC’
86), IEEE Press, Piscataway, NJ, 290-295

[7] Heidelberger, P. 1988. Discrete event simulations and parallel
processing: Statistical properties. SIAM Journal on Scientific and
Statistical Computing, Vol. 9, 6, 1114-1132

[8] Heidelberger, P. and Welch, P. D. 1981. A spectral method for
confidence interval generation and run length control in simulations.
Communications of the ACM, Vol. 24, No. 4, 233-245

[9] Iglehart, D. L. 1978. The regenerative method for simulation
analysis. In Current Trends in Programming Methodology. Vol. III,
Software Modeling, K. M. Chandy and P. T. Yeh, Eds., Prentice
Hall, Englewwod Cliffs, N. J., 52-71

[10] Katsaros, P. and Lazos, C. 2001. Shared memory parallel
regenerative queuing network simulation. In Proceedings of the 15th
European Simulation Multiconference, Society for Computer
Simulation, Prague, 736-740

[11] Kelton, W. D. and Law, A.M. 1984. An analytical evaluation of
alternative strategies in steady-state simulation, Operations Research,
Vol. 32, 169-184

[12] Law, A. M. and Carson, J. C. 1979. A sequential procedure for
determining the length of a steady state simulation. Operations
Research, Vol. 27, 1011-1025

[13] Law, A. M. and Kelton, W. D. 1982. Confidence intervals for
steady-state simulations, II: A survey of sequential procedures.
Management Science, Vol. 28, No. 5, 550-562

[14] Lee, J. R., McNickle, D. and Pawlikowski, K. 1999. Quality of
sequential regenerative simulation. In Proceedings of the 13th
European Simulation Multiconference, Society for Computer
Simulation, Warsaw, 161-167

[15] Matsumoto, M. and Kurita, Y. 1992. Twisted GFSR Generators.
ACM Transactions on Modeling and Computer Simulation, Vol. 2,
No. 3, 179-194

[16] Matsumoto, M. and Kurita, Y. 1994. Twisted GFSR Generators
II. ACM Transactions on Modeling and Computer Simulation, Vol.
4, No. 3, 254-266

[17] Matsumoto, M. and Nishimura, T. 1998. Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator. ACM Transactions on Modeling and Computer
Simulation, Vol. 8, 3-30

[18] Meketon, M. S. and Schmeiser, B. 1984. Overlapping batch
means: Something for nothing? In Proceedings of the 1984 Winter
Simulation Conference, Society for Computer Simulation , Dallas,
Texas, 227-230

[19] Pawlikowski, K., 1990. Steady-State Simulation of Queuing
Processes: A Survey of Problems and Solutions, ACM Computing
Surveys, Vol. 22, No. 2, 123-170

[20] Pawlikowski, K., McNickle, D. C. and Ewing, G. 1998.
Coverage of confidence intervals in sequential steady-state
simulation. Simulation Practice and Theory, Vol. 6, 255-267

[21] Pawlikowski, K., Yau, V. W. C. and McNickle, D. 1994.
Distributed stochastic discrete-event simulation in parallel time
streams. In Proceedings of the 1994 Winter Simulation Conference,
Society for Computer Simulation, 723-730

[22] Raatikainen, K. 1992. Run Length Control using Parallel
Spectral Methods, In Proceedings of the 1992 Winter Simulation
Conference, Society for Computer Simulation , Arlington

[23] Raatikainen, K. E. 1993. A sequential procedure for
simultaneous estimation of several means. ACM Transactions on
Modeling and Computer Simulation, Vol. 3, No. 2, 108-133

[24] Sauer, C. H. and Lavenberg, S. S. 1979. Confidence intervals for
queuing simulations of computer systems. ACM Performance
Evaluation Review, Vol. 8, 46-55

[25] Schmeiser, B. 1982. Batch size effects in the analysis of
simulation output. Operations Research, Vol. 30, 556-568

[26] Shedler, G. S. 1993. Regenerative Stochastic Simulation. Boston,
Academic Press

[27] Welch, P. D. 1987. On the relationship between batch means,
overlapping batch means and spectral estimation. In Proceedings of
the 1987 Winter Simulation Conference, Society for Computer
Simulation, Atlanta, 320-323

[28] Yau, V. 1999. Automating parallel simulation using parallel time
streams. ACM Transactions on Modeling and Computer Simulation,
Vol. 9, No. 2, 171-201

	Introduction
	Parallel Replications
	Statistical Issues
	Estimation procedures
	Sequential control procedures

	Experimental Evaluations
	Conclusions

