
Queuing network simulation output analysis 
and parallel execution mechanisms

Panajotis Katsaros
TRACS Visitor

katsaros@csd.auth.gr
Dept. of Informatics

Aristotle University of Thessaloniki
G R E E C E



Simulation output = statistical samples

FACT: The results of simulation studies are quite 
often presented without regard to their 
random nature.

POINT: Statistical inference is an absolute 
necessity in any situation when the same 
program produces different output data 
from each run.
… otherwise, “instead of an expensive 
simulation model, a toss of the coin had 
better be used” (Kleijnen, 1979).



Simulation output ➔➔➔➔ sensitivity analysis

FACT: Stochastic simulation is also used for 
sensitivity analysis of performance 
measures and optimization.

PROBLEMS:
! Quality of the simulation output
! Sensitivity analysis is usually done in an ad 

hoc way
Kleijnen, J. and Sargent, R., 2000. “A methodology for fitting 
and validating metamodels in simulation”, European Journal of 
Operational Research 120 14-29



Parallel execution mechanisms

FACT: Much work has been done in developing 
efficient execution mechanisms for 
complex and large discrete event models
- Chandy, K.M. and Misra, J., 1981. “Asynchronous 
Distributed Simulation via a Sequence of Parallel 
Computations”, Communications of the ACM 24 198-206

- Jefferson, D.A. 1985. “Virtual Time”, ACM Transactions on 
Programming Languages and Systems 7 404-425

…little has been done in elaborating parallel 
computing power in simulation output analysis



Professor Constantine Lazos
Dept. of Informatics

Aristotle University of Thessaloniki

Dr. Eleftherios Angelis
Dept. of Informatics

Aristotle University of Thessaloniki



Queuing network simulations I

USE: Performance analysis
Computer (HW/SW) systems closed networks

mixed networks
Communication systems open networks

OBJECTIVE: usually, estimation of the mean
of a performance measure

throughput, i.e. jobs served in the unit of time
response time
utilization, i.e. fraction of busy time

…… and the  accuracy of the estimator



Queuing network simulations II

���������

���������

���������

���������

. 

. 

. 

���������

���������

�������
�������

�������
�������

CPU 

DISK 1

DISK 2
10 jobs 

10 TERMINALS

PS

3.0 sec 
0.050 sec 

0.060 sec 

0.060 sec 

FCFS

FCFS

PS

��������������������������

��������������������������

��������������������������

��������������������������

Memory partitions 

4 

0.5 

0.5 

0.9 

0.1 
ALLOCATE

3

12

from the sequence of collected observations x1,x2,…,xn an estimator 
of the mean μx can be

and the accuracy of the estimate is assessed by the probability

which means that if the experiment were repeated a number of times, 
the interval would not contain the μx only in 100α%
of cases

∑
=

=
n

i

i

n
xnX

1
)(

αµ −=∆−≤≤∆− 1))()(( xxx nXnXP

))(,)(( xx nXnX ∆+∆−



Queuing network simulation problems I

WHEN TO STOP?
! Transient study: the analyst is interested in performance 

measures over some relatively short period of time. In such 
cases, the results may depend quite strongly on the initial 
conditions of the simulation.

! Steady-state study: the simulation must typically be run 
long enough so that the effects of the initial state on the 
performance measures of interest are negligible.

STEADY-STATE➔ PROBLEM: HOW LONG?
… in order to answer, we have to be able to estimate the 
effects of the bias introduced by the selection of the initial 
state of the system 



Queuing network simulation problems II

IS THE ESTIMATION GOOD?
! The bias measures the systematic deviation of the 

estimator from the true value of the estimated parameter. 
Thus, in the case of       ,

! The variance, which measures the mean deviation of the 
estimator from its mean value,

! The mean square error (MSE) of the estimator, defined as

)(nX
])([)]([ xnXEnXBias µ−=

])]}([)([{)]([ 22 nXEnXEn −=Χσ

}])({[)]([ 2
xnXEnXMSE µ−=



Methods for simulation output analysis I

! The method of independent replications
! The method of batch means
! The method of overlapping batch means
! The regenerative method
! The method based on spectral analysis
! The method based on autoregressive 

representation
! The method based on standardized time series



Methods for simulation output analysis II

PROBLEMS WITH MOST METHODS:
! The initial transient period has to be estimated and 

observations collected in this period to be discarded. 
Ignoring the existence of this period can lead to a 
significant bias of the final results.

! The observations collected are statistically dependent 
(correlated). Most methods result in a quite complex 
algorithm in order either to weaken autocorrelations
among observations or to exploit the correlated nature
of observations in the analysis of variance needed for 
determining confidence intervals.



The regenerative method I

! The system is initialized in an appropriate recurrent state, 
which can be considered that occurs in the steady-state.

! Data collection is performed at the entry times into this state 
(regenerative state). We say that a regenerative cycle is 
completed. Estimates of variance are then easily computed 
since the generated observations are independent and 
identically distributed.

Introduced by Cox & Smith [1961] and independently developed 
by Fishman [1974] and Crane & Iglehart [1974].



The regenerative method II

APPLICABILITY: In most queuing network models
Shedler, G., “Regenerative stochastic simulation”, California, 
Academic Press, 1983
Every discrete event simulation is a Generalized semi-Markov 
process (GSMP). If there is at least one service center that 
sees only one job class or it is such that jobs of the lowest 
priority are subject to pre-emption, then there is a set of states 
which possess the regenerative property.
Even if the above are not satisfied, if the underlying GSMP is a
Harris recurrent process then the regenerative method is also 
applicable.
In the worst case, 
Gunther, F.L. & Wolff, R.W. ”The almost regenerative method” In 
Operations Research Vol. 28, No. 2, 1980



Regenerative estimation

If our aim is to estimate k(f) = E[f(X)]
and we call 
then it can be proved

(A), where the average cycle length
and a 100α% confidence interval for k(f) is given by

(B)

where 

with

∫
−

⋅=
k

k

T

T

k duuXffZ
1

))(()(

)(
)()(

N
NZNk

τ
= )(Nτ



















⋅






 +⋅

+
⋅






 +⋅

−

−−

)(
2

1)(
)(,

)(
2

1)(
)(

11

NN

aFNs
Nk

NN

aFNs
Nk

ττ

)())(()()(2)()( 2
22

22
12

2
11

2 NsNkNsNkNsNs +−=

, 

s N
N

Z f Z Nk

k

N

11
2 2

1

1
1

( ) ( ( ) ( ))=
−

−
=

∑

s N
N

Nk
k

N

22
2 2

1

1
1

( ) ( ( ))=
−

−
=

∑ τ τs N
N

Z f Z N Nk

k

N

12
2

1

1
1

( ) ( ( ) ( ))( ( ))=
−

− −
=

∑ τ τκ



Regenerative estimation: Problem

! It can be shown that although the estimator given in (A) is 
consistent, i.e.

it is a biased estimator of μx.
Thus, although the initialization bias has been eliminated, a new 
source of systematic errors has been introduced by the special 
form of the regenerative estimator.

1))(( = → ∞→ xNNkP µ

! Other estimators used with the regenerative method:
the Fieller estimator, the Beale estimator, the Jackknife estimator
and the Tin estimator

! Comparative studies shown that the Jackknife and the Tin 
estimators give much less biased results



Sequential control procedure

HOW MANY REGENERATIVE CYCLES NEED TO BE 
COMPLETED?
It depends on the required confidence interval width.
Generally, if a confidence interval of no more than 100δ% of k(f) 
half width is to be achieved, we need at least 

regenerative cycles.
However, even if the previous relation is satisfied a normality test
has also to be applied, in order the estimated results to be valid.

2

2
1

)()(
)(2

1







⋅

⋅






















 +

≥

−

llk
ls

aF
N

τδ



Sample I: long simulation run

�������������

�������������

�������������

������������

������������

������������

������������

������������

SOURCE SINKQUEUE 1 QUEUE 2 
FCFS FCFS

7.0 ms 1.0/0.15 ms 10 ms

RESOURCE     UTILIZATION  THROUGHPUT  TOTAL LENGTH  RESPONSE TIME

NAME: QUEUE 1

ReqCIL             2 %         2 %          2 %          2 %

ActCIL      +/- 1.9 %  +/- 0.55 %   +/- 2 %   +/- 2 %

CYCLES              61          15       101268        99784

LBOUND          0.9329     0.14293       20.472       142.45

MEAN         0.95108     0.14372       20.889       145.35

UBOUND         0.96926      0.1445       21.307       148.26

NUMBER OF EVENTS: 40415233

SIMULATED TIME 9.41485e+007

REQUIRED CYCLES  101268

NUMBER OF CYCLES: 101268

AVERAGE NUMBER OF EVENTS: 399

AVERAGE LENGTH: 929.696 C.I.:(915.951,943.442)

RESOURCE     UTILIZATION  THROUGHPUT  TOTAL LENGTH  RESPONSE TIME

NAME: QUEUE 2

ReqCIL             2 %         2 %          2 %          2 %

ActCIL      +/- 2 %  +/- 0.55 %   +/- 2 %   +/- 2 %

CYCLES              66          15         1097          927

LBOUND         0.69578     0.14293       2.8189        19.71

MEAN         0.70992     0.14372       2.8762        20.11

UBOUND         0.72406      0.1445       2.9336        20.51

NUMBER OF CYCLES: 101268

AVERAGE NO OF EVENTS: 399

CPU TIME USE: 413.7 sec



Sample II: long regenerative cycles

NUMBER OF EVENTS: 1795297 NUMBER OF CYCLES: 260

SIMULATED TIME 54349.3 AVERAGE LENGTH: 209.036 C.I.:(181.383,236.689)

REQUIRED CYCLES  258.578

HALF CONFIDENCE INTERVAL LENGTH: 1% CYCLES: 260

AVERAGE NUMBER OF EVENTS: 6904

CPU TIME USE: 24.28 sec

����������

����������

����������

����������

. 

. 

. 

�������
�������

��������
��������

��������
��������

CPU 

DISK 1

DISK 2
10 jobs 

10 TERMINALS

PS

3.0 sec 
0.050 sec 

0.060 sec 

0.060 sec 

FCFS

FCFS

PS

��������������������������

��������������������������

��������������������������

��������������������������

Memory partitions 

4 

0.5 

0.5 

0.9 

0.1 
ALLOCATE

3

12



Simulation output sensitivity analysis

! Metamodeling and response surface analysis 
Kleijnen, J. and Sargent, R., 2000. “A methodology for fitting 
and validating metamodels in simulation”, European Journal of 
Operational Research 120 14-29

! Infinitesimal and finite perturbation analysis 
Ho, Y.C., Cao, X. and Cassandras, C., 1983. “Infitesimal and 
finite perturbation analysis for queueing networks”, Automatica 
19(4) 439-445

! Method based on the use of likelihood ratios
Reiman, M. & Weiss, A.,”Sensitivity Analysis via Likelihood 
Ratios”, Proceedings of the Winter Simulation Conference, 
1992



Metamodeling & response surface analysis

! Response surface methodology is a collection of mathematical and 
statistical techniques that are useful for the modeling and analysis of 
problems in which a response of interest is influenced by several 
variables and the objective is to optimize the response. 
If for example the response y of a system is a function of the variables 
(factors) x1,…,xk, say

y=f(x1,…,xk)+e, where e denotes the error
then the function f(x1,…xk) is called a response surface. 

! Since the relation between the dependent variable and the independent 
ones is unknown, we find an adequate approximation of the function 
f(x1,…xk) by a known method such as least squares regression.

! The response surface analysis is then based on the study of the fitted 
function. For example, we may use partial derivative methods in order to 
find local minimum or maximum values or saddle points. 



Response surface example

����������

����������

����������

����������

. 

. 

. 

�������
�������

��������
��������

��������
��������

CPU 

DISK 1

DISK 2
10 jobs 

10 TERMINALS

PS

3.0 sec 
0.050 sec 

0.060 sec 

0.060 sec 

FCFS

FCFS

PS

��������������������������

��������������������������

��������������������������

��������������������������

Memory partitions 

4 

0.5 

0.5 

0.9 

0.1 
ALLOCATE

Response time
Throughput

Experimental design:a balanced 35-1 factorial design with 81 experimental units
The factors and the levels of the experiment were:
A: Number of terminals in 3 levels: 10, 25, 40
B: Memory partition in three levels: 2, 4, 6
C: CPU speed in three levels: 0.009, 0.012, 0.015
D: Disk speed in three levels: 0.023, 0.028, 0.033
E: Number of disks in three levels: 1, 2, 3

243 cases



Response surface example (cont.)

3 5 7 9
THRPUT

0

2

4

6

8

10

RE
SP

O
NS

E

10

25

40

10
25

40

10 25

40

10

25

40

10

25

40

10

25

40

10

25

40

10

25

40

10

25

40

10

25

40

10
25

40

10

25

40

10

25

40

10

25

40

10

25

40

10

25

40

10

25

40

10 25

40

10

25

40

10

25

40

10

25

40
10

25

40

10
25

40

10

25

40

10

25

40

10

25

40

10

25

40



Response surface example (cont.)

We used an advanced backward and stepwise regression 
procedure to find the metamodels that best fit to our data
Dependent Variable: LN(RESPONSE)

r-square=0.985

Coefficients
(Constant) -2.031
A 0.146
B -0.125
D 46.544
E -0.800
A^2 -1.019E-03
B^2 2.727E-02
E^2 0.156
A*B -3.306E-03
A*E -5.128E-03
B*E -6.563E-02
C*E 18.713
A^2 -1.019E-03
B^2 2.727E-02
E^2 0.156

Dependent Variable: LN(THRPUT)

r-square=0.981

Coefficients
(Constant) 0.518
A 7.458E-02
D -14.065
E 0.193
A^2 -1.023E-03
B^2 -8.498E-03
E^2 -8.235E-02
A*B 2.543E-03
A*C -0.511
A*D -0.706
A*E 6.156E-03
B*E 2.692E-02
C*D 499.882
C*E -7.296
D*E 4.148



Response surface example (cont.)

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

THRP UT

R
E

S
P

O
N

S
E

Predictions for different workloads:
10, 15, 20, 25, 30, 35, 40 terminals



Response surface example (cont.)

1 0

2 0

3 0

4 0

2

3

4

5

6
2

2 .5

3

3 .5

4

4 .5

AB

TH
R

P
U

T

Response surface for THROUGHPUT when
cpu speed: 0.012 disk speed: 0.028 n of disks: 1



Metamodeling & response surface analysis

OPEN RESEARCH ISSUES FOR QUEUING NETWORKS

! Multi-variate regression analysis and multi-variate design of 
experiments

! Multi-response surface optimization
! Application of more advanced statistical methods in cases 

with many qualitative factors (e.g. priority disciplines).
Currently, if a qualitative factor has more than two levels or 
‘values’, then several binary variables should be used for 
coding this factor. This may result in a not very well fitted 
metamodel.



Infinitesimal and finite perturbation analysis

! Perturbation analysis is an analytical technique that calculates the 
sensitivity of a performance measure of interest with respect to
system parameters, by analyzing its sample path (only one 
simulation run).
Thus, PA is simply an analytical means to process information 
inherent in the sample path of an experiment.

! IPA, is based on the assumption that if an extremely small change 
had been made in a parameter value before a simulation run, only
the timing and not the relative ordering of the events would have 
changed.
IPA routines can be incorporated into a simulation to track these 
relative timing changes as the simulation progresses and then 
produce a sensitivity estimate at the end of the simulation run.



Method based on the use of likelihood ratios

! In this technique the occurrence of certain 
events are counted during the simulation. 
Then, the natural variation in the random 
process underlying the parameter is utilized, in 
order to produce the sensitivity estimate 
(derivative of expectations).

! ONLY APPLICABLE IN THE REGENERATIVE 
SIMULATION



Optimization

In the cases of the second and the third 
sensitivity analysis approach, the results are 
just noisy estimates of the real gradient values.

So, if our aim is system optimization an 
appropriate stochastic optimization algorithm 
(e.g. the Robbins-Monro algorithm) has to be 
applied.



Parallel/distributed discrete event 
simulation

! Parallel/distributed discrete event simulation 
has been successfully used to overcome the 
problem of simulating complex and large 
models, but

! it has not been used yet in simulation output 
analysis

– known exceptions: Raatikainen, K. ”Run Length Control using Parallel 
Spectral Methods” In Proceedings of the Winter Simulation 
Conference (December 1992)

– Pawlikowski, K., Yau, V., McNickle,D., “Distributed and stochastic 
discrete-event simulation in parellel time streams” In Proc. of the 
Winter Simulation Conference (1994)



Parallel discrete event simulation

In the parallel discrete event simulation, the model is 
partitioned into a number of submodels which are called 
logical processes (LPs).
Thus, each LP is defined as a set of one or more queues 
and a Future Event List.

submodel

Future Event List

event execution
new event
scheduling

state

updates

input event
from LPn-2

input event
from LPn-1

input event to
LPn+1

LPn



Parallel discrete event simulation: 
Chandy-Misra approach

In the Chandy-Misra execution mechanism, event 
processing adheres to the local causality constraint, 
which prescribes that events are processed in non 
decreasing timestamp order.

This execution mechanism has the potential for deadlock. 
For this reason it is usually applied together with an 
appropriate deadlock resolution scheme.



Parallel discrete event simulation: 
Time Warp approach

The Time Warp approach allows the occurrence of causality 
errors, but provides a mechanism to recover from them.

This assumes to keep open the possibility to roll back the LP to
the most recently saved state and for this reason, each LP has to 
keep past state buffers, past input buffers, antimessage buffers 
etc. 

A memory management algorithm is usually applied in order to 
guarantee availability of a “sufficient” amount of memory.



Parallel regenerative queuing 
network simulation

Katsaros,P. and Lazos, C.,”Regenerative queuing network 
distributed simulation”, In. Proc. of the European Simulation 
Multiconference (2000)

! each LP contains the entire model
! there is no need for synchronization between the LPs: 

simulation time is not important, from the point of view 
that the experiment depends only on the return of the 
model to the same state, irrespective of the time instant 
that this will happen

! need for a termination algorithm that controls the 
execution of the different LPs



Parallel regenerative queuing 
network simulation depiction

MODEL SPECIFICATION

START SIMULATION
RANDOM NUMBER GENERATION

LP1 LP3LP2 LP4

STATISTICS GATHERING

TOTAL NUMBER OF CYCLES

(B)
satisfied

NO

YES
SIMULATION OUTPUT



Implementation considerations

! Shared memory parallelization by the use of 
OpenMP and C++


