
A simulation test-bed for the design of dependable e-services

PANAJOTIS KATSAROS CONSTANTINE LAZOS
Department of Informatics

Aristotle University of Thessaloniki
54006 Thessaloniki

GREECE
{katsaros, clazos}@csd.auth.gr

Abstract: - In this paper, we present the design and development of a simulation test-bed, for the performance
analysis of dependable and mission critical e-services. Key characteristics of such systems, like for example,
the object state transfer and recovery policies to be applied together with the chosen load distribution strategy,
play the determinant role in the service’s performance and customer response perception. Analytic models
usually fail to realistically capture the effects of the available design alternatives. On the other hand, the
published simulation studies are usually bound to algorithms, which are not covered by the recently published
standards, for the development of object based services. Our work aims to provide a comparison framework
that adheres to the published standards, allows the compositional development of the service configurations of
interest and the estimation of meaningful performance measures, in an efficient way.

Key-Words: - simulation, quality of service, fault tolerance, load distribution, state transfer and recovery

schemes, performance evaluation, distributed object systems, e-services

1 Introduction
The proliferation of matured standardized object
middleware and the ever-decreasing Internet access
costs lead to the development of innovative e-
services, in commerce, education, finance, banking,
medicine etc. Recently, the emerging need for the
design and development of dependable and mission
critical e-services resulted in the set up of additional
standardization activities, for provision of the
required quality of service and fault tolerance
attributes ([1], [11] and [8]).
However, the usual build-and-test approach, adopted
in most projects, implies high development costs
and little chances for scalable and reusable designs.
On the other hand, analytic models are bound to
assumptions, which diverge from reality and do not
make feasible the comparative evaluation of
composite policy configurations.
Simulation is the only alternative that allows the
representation of the resulted software and hardware
resource contention, in an arbitrary level of detail,
thus capturing the essence of the quality of service
differences, in the studied policy configurations.
Our work aims in providing a simulation test-bed
that allows to:
• mix and match different policies from those

described in the already published standards,
• evaluate and compare their effectiveness based

on meaningful, appropriately chosen estimates
• in an efficient way.
We assume that the observed failures conform to the
fail-stop model ([13]), which means that objects fail

by crashing, without emission of spurious messages.
We do not make any assumptions about the network
topology or the protocols making up the interprocess
communication service, except that communication
is accomplished through lossless FIFO channels.
In such an asynchronous heterogeneous object
application, we are interested for modeling object
failures that do not recur after recovery. Some of
them may be hardware dependent (e.g. insufficient
memory) and others may be attributed to sources of
non-deterministic behavior, like:
• when a certain sequence of invocation requests

results in an invalid object state,
• the use of local timers,
• the use of input-output to local devices,
• the use of multithreading, etc.
This paper describes the software’s functional
characteristics and the performance measures of
interest, for selecting the most appropriate
• object state transfer (checkpointing) policies and

intervals,
• failure monitoring schemes and intervals,
• failure recovery strategies and
• service load distribution policy,
for the development of either dependable or mission
critical e-services. Dependable e-services are
required to succeed the specified levels of
availability, in normal or degraded mode of
operation. On the other hand, mission critical e-
services are required not to fail for the specified
period of time. Steady-state simulation is employed
for the first type of study, as opposed to the second

one, where we use transient simulation, with
different performance measures of interest.
Currently, object or service failures may occur only
by taking advance of the software’s primitive failure
forcing facilities. Thus, we do not proceed to the
description of advanced failure biasing and
importance sampling techniques, which are under
development and will result in accurate and efficient
estimation of the measures of interest.
Related work has been reported in [12] and [4]. The
first paper describes UltraSAN, a Stochastic Activity
Net based modeling tool, with analytic and
simulative solution facilities. The second one
describes DEPEND, a simulation - based
environment, with advanced fault injection features.
Our test-bed differs, compared to them, in the
following:
• it is designed exclusively for simulating the

policies specified in related object middleware
standards ([11] and [8]),

• it is not restricted to the estimation of
dependability measures, like reliability and
availability, but it also produces estimates for
mean response times and utilizations, which
guide the process of state transfer placement and
load distribution,

• the systems’ and components’ failure behavior
will be simulated by advanced failure forcing
and biasing schemes, accompanied by
appropriate well-founded importance sampling
techniques (as in UltraSAN and [10], [9]), for
efficient estimation (in contrast to DEPEND’s
efficiency improvements, which lie on the notion
of variable aggregation and decomposability
[2]),

• estimates will be produced by advanced output
analysis methods ([10] and [3]), for increased
credibility and finally,

• our software is open to the implementation and
study of new workload dependent failure
models.

2 Replication management and
failure monitoring and recovery
features

Replication may be used as a means, either to
succeed the required fault tolerance attributes or for
load balancing purposes. In this paper, our
description is restricted to the features used, in
providing fault tolerance.
According to [11] and [8], replication management
may be based on the notion of the object group and
includes creation, deletion and replication of existed

application or infrastructure objects. In our test-bed,
we have implemented the following styles of
replication:
• Active replication

Each object replica processes all the invoked
object methods. The failure of a single replica is
masked by the presence of the other replicas that
also perform the same invocation requests and
generate the desired results. Duplicate invocation
requests as result of redundant processing are
detected and suppressed. When in a degraded
mode of operation, the number of live replicas
falls bellow the specified minimum number of
replicas, each failed replica is being recovered.
This involves the completion of an object state
transfer from a live object replica (if there is
any). If, in the course of this state transfer, the
interacting replicas receive additional
invocations and responses, they are all enqueued
locally and subsequently being applied to them.

• Warm passive replication
Only one of the object group replicas processes
the received invocations. This is the so-called
primary replica. The remaining passive replicas,
known as backups, have been activated and their
state is continuously synchronized with the
primary replica’s state, according to the specified
state transfer policy.

• Cold passive replication
The backup replicas have not been activated, but
the primary’s state is periodically captured and
stored into a log. If the current primary fails, a
new one is elected and then activated. The log is
then used to initialize the new primary’s state.

State transfer durations depend on the object state
size (granularity), the bandwidth and the processing
speed of the slowest backup replica (for warm
passive replication). A state transfer may be initiated
only when it is not violating the object group’s
replica consistency. Thus, it is postponed, when the
primary is in the middle of an invocation service or
it happens to be blocked, waiting for a response. In
the course of the state transfer, new invocations may
be received, but they cannot be processed, before the
end of it.
The object state transfer policies that are currently
implemented include:
• the use of a fixed time interval between state

transfers and
• the use of a fixed number of completed object

invocations between state transfers (load-
dependent policy)

Failure recovery depends on the chosen replication
style and the applied policies and takes place right

after the failure detection. In active replication, it
includes just the time taken to transfer the current
state of another live replica. On the other side, the
contemporary function of multiple identical object
replicas gives rise to heavy hardware resource
contention, with possibly undesirable implications to
the offered quality of service.
Object failure recovery, in warm passive replication,
includes the election of a new primary (if there is
any) and the replaying of the invocations logged,
since the last object state transfer. A failed replica
remains in the recovering state up to the first
subsequent state transfer, from the new primary.
Cold passive replication also requires the activation
and the logged state transfer to the new primary.
Failure detection takes place as a result of periodic
“i am alive” messages that have to be sent by each
object or replica (for active replication) and to be
received by a transparent monitoring service (we do
not consider hardware resource contention for the
failure monitoring function). When a failure is
detected, the recovery process is then initiated,
according to the specified policy.

3 Performance and dependability
measures of interest

Our simulation test-bed provides a means for
realistically modeling the individual objects
interaction effects, as regarding:
• the simultaneous resource possession caused by

the synchronous, often nested object invocations,
which block the callers, until they get the replies
and

• the hardware resource contention, as a result of
the chosen replica placement to the available
processing nodes.

The service dependability measures of interest,
which may be the subject of a quality of service
contract, are:
• the steady-state service availability, given as the

fraction of time the service is operational (this
happens if specified combinations of interacting
objects are operational),

• the service response time in the worst case and
its mean,

• the overall service throughput and
• the mean time to an unrecovered service failure

(MTTF), for mission critical e-services (transient
measure).

Different estimation methodologies have to be used
in each case, depending on whether the target
measure is a transient or a steady-state measure, on

whether the service exhibits a regenerative
simulation sample path or not, etc.
Other useful measures are:
• the ratio of mean requested service time to the

estimated mean response time, for assessing the
hardware resource contention caused by the
chosen replica allocation, the selected state
transfer intervals and the used load distribution
policy and

• the individual mean object response times and
utilizations, for determining undermost state
transfer intervals.

We suggest undermost state transfer intervals to be
detected based on a trade-off analysis, under the
same failure model. Thus, the benefits derived from
the state transfers are traded against the overhead
they impose. An appropriate composite measure is
the following ratio,

 transfersstate less with transfersstate more with

 transfersstate more with transfersstate less with

oo

ff

RR

RR

−

−

where Ro is the mean response time for serviced
invocations not experiencing failure and Rf is the
mean response time for invocations experiencing
failures. Negative ratio values indicate that the
chosen state transfer interval causes additional
overhead that does not result in improvements to the
service times of invocations experiencing one or
more failures.
The state transfer intervals to be used will be longer
than those given by the described trade-off analysis
and their values will be influenced by the required
quality of service attributes and the hardware
resource contention imposed by the chosen replica
allocation and the used load distribution policy.
Advanced failure biasing and importance sampling
techniques will be used, for accurate estimation of
the mean service response time and service
throughput and availability. The overall estimation
will be based on the regenerative method for
producing confidence intervals ([5], [6] and [7]). A
viable alternative for non-regenerative service
configurations is a method based on splitting and
batch means ([3]).

4 A case study
In this section, we proceed to the description of a
sample service configuration and the results given
by the current version of our simulation test-bed.
The system under study disposes two service-
providing objects (object 0 and object 5), which
accept the invoked service requests, in a round-robin

fashion (load distribution strategy). The service
objects interactions are summarized in Figure 1.

object 0

object 5

object 1

object 2 object 4

object 3
service-providing objects

class 1 service requests
(poisson with mean

interarrival time 3.0 sec)

synch 1.a

synch 1.b synch 1.c

synch 2.a

synch 1.d

synch 2.b

class 2 service requests
(poisson with mean

interarrival time 3.0 sec)

Figure 1 Object interactions for the sample service
configuration

Each object group makes use of warm passive
replication, with a minimum number of two replicas,
allocated in processing nodes of different speeds.
We did not consider replicas collocated in the same
node.
A load-dependent state transfer strategy was chosen
for all object groups. More precisely, a new state
transfer was initiated after the completion of a fixed
number of serviced object invocations. The state
transfer speed was influenced by the allocated object
state size (object granularity), the participating
replica processing speeds and their inter-node
allocated bandwidth. Finally, failure monitoring was
simulated by periodic “i am alive” messages, sent by
the corresponding object groups, in the specified
frequency.

Table 1 Sample simulation results

Figure 2 Response times and service availability for
the simulated numbers of invocations between

object state transfers

0

20

40

60

80

100

165 55 25

No of invocations between state transfers

worst response with no object
failures

worst reponse with one object
failure

class 1 class 2
165

class 1 class 2
55

class 1 class 2
25

Number of invocations between state tansfers

Figure 3 Worst response time improvements for the
simulated numbers of invocations between object

state transfers

The sample results given in Figures 2 and 3 indicate:
• when the selected number of invocations,

between state transfers, is 165, this results in
higher service availability and probably
unacceptably high response times, for the service
requests affected by an object 2 failure

• if end-user response is guaranteed to be varied
up to 50 sec, then an appropriate number of
invocations between state transfers is 55

• further decrease of the above number results in
negligible improvements to the response times
affected by an object 2 failure (rare event), at the
cost of a significant deterioration to the overall
mean response times.

5 Future work - Conclusion
In this paper, we described the functional
characteristics of a new simulation test-bed, for the
performance analysis of dependable and mission
critical e-services. We were restricted to the
currently implemented policies for providing fault
tolerance and we discussed the use of valuable
performance measures, for the development of either
dependable or mission critical e-services.
The test-bed is to be equipped with advanced failure
forcing and biasing techniques, accompanied by
appropriate importance sampling and simulation
output analysis methods, for accurate estimation of
the performance measures of interest. Similar
techniques have been also implemented in
UltraSAN ([12]), but our environment is specifically
designed for simulating the policies suggested in the
recently published standards, without having to
specify them in a specialized formalism, like the one
used in UltraSAN.
Such a tool will provide a basis for studying new,
load dependent failure models and customized load
distribution strategies and for deriving realistic
quality of service requirements.

invocations
between state

transfers

mean
response
class 1 no

failure

worst
response
class 1 no

failure

mean
response
class 2 no

failure

worst
response
class 2 no

failure

service
availability
no failure

6,52808 38,62900 5,88361 40,9284 99,501%
8,09187 90,08840 7,64729 88,1666 99,071%
6,85649 39,68420 6,17036 39,7672 98,645%
7,60756 44,09350 7,12024 46,77360 98,434%
7,02426 46,35750 6,47951 43,9989 97,244%
7,45605 42,23310 6,88256 41,87440 97,018%

165

55

25

simulated time: 18000 sec
number of invocations
between state transfers:

55

object 2 failure exponentially
scheduled with parameter:

2341

mean respnse
time (sec)

worst response
time (sec)

class 1 service requests 7,60756 44,0935
class 2 service requests 7,12024 46,7736

availability utilization
object 0 99,6101% 82,1848%
object 1 99,5263% 17,5811%
object 2 98,9955% 42,4268%
object 3 99,4354% 56,5779%
object 4 99,7719% 11,0633%
object 5 99,4938% 82,4637%

system availability: 98,4348%

References:

[1] C. Becker and J. Zincky, Quality of Service in

Distributed Object Systems, In J. Malenfant, S.
Moisan, A. Moreira (Eds.): ECOOP 2000
Workshops, LNCS 1964, Springer-Verlag, 2000,
pp. 178-190

[2] P. J. Courtois, Decomposability – queueing and
computer system applications, Academic Press,
1977

[3] P. W. Glynn, P. Heidelberger, V. F. Nicola and
P. Shahabuddin, Efficient estimation of the mean
time between failures in non-regenerative
dependability models, In Proceedings of the
1993 Winter Simulation Conference, 1993, pp.
311-316

[4] K. K. Goswami, R. K. Iyer and L. Young,
DEPEND: A simulation-based environment for
system level dependability analysis, 46, 1, 1997,
pp. 60-74

[5] P. Katsaros and C. Lazos, A technique for
determining queuing network simulation length
based on desired accuracy, International Journal
of Computer Systems Science and Engineering,
CRL Publishing, 15, 6, 2000, pp. 399-404

[6] P. Katsaros and C. Lazos, Regenerative
estimation variants of response times in closed
networks of queues, In Proceedings of the 2nd
WSEAS International Conference on Simulation,
Modeling and Optimization (ICOSMO), 2002

[7] P. Katsaros and C. Lazos, Return state selection
for improved effectiveness in sequentially
controlled regenerative simulation, (submitted),
2003

[8] P. Narasimhan, L. E. Moser and P. M. Melliar-
Smith, Strong replica consistency for fault-
tolerant CORBA applications, Journal of
Computer Systems Science and Engineering,
2002

[9] V. F. Nicola, M. K. Nakayama, P. Heidelberger
and A. Goyal, Fast simulation of highly
dependable systems with general failure and
repair processes, IEEE Transactions on
Computers, 42, 12, 1993, pp. 1440-1452

[10] V. F. Nicola, P. Shahabuddin and M.
Nakayama, Techniques for the fast simulation of
models of highly dependable systems, IEEE
Transactions on Reliability, 50, 3, 2001, pp. 246-
264

[11] Object Management Group, Fault tolerant
CORBA, OMG Technical Committee
Document, 2001-09-29, September 2001

[12] W. H. Sanders, W. D. Obal II, M. A. Qureshi
and F. K. Widjanarko, The UltraSAN Modeling

Environment, Performance Evaluation, 24, 1,
1995, pp. 89-115

[13] R. D. Schlichting and F. B. Schneider, Fail-
Stop processors: An approach to designing fault-
tolerant computing systems, ACM Transactions
on Computer Systems, 1, 3, 1983

