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Abstract: - In this paper, we present the design and development of a simulation test-bed, for the performance 
analysis of dependable and mission critical e-services. Key characteristics of such systems, like for example, 
the object state transfer and recovery policies to be applied together with the chosen load distribution strategy, 
play the determinant role in the service’s performance and customer response perception. Analytic models 
usually fail to realistically capture the effects of the available design alternatives. On the other hand, the 
published simulation studies are usually bound to algorithms, which are not covered by the recently published 
standards, for the development of object based services. Our work aims to provide a comparison framework 
that adheres to the published standards, allows the compositional development of the service configurations of 
interest and the estimation of meaningful performance measures, in an efficient way.  
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1   Introduction 
The proliferation of matured standardized object 
middleware and the ever-decreasing Internet access 
costs lead to the development of innovative e-
services, in commerce, education, finance, banking, 
medicine etc. Recently, the emerging need for the 
design and development of dependable and mission 
critical e-services resulted in the set up of additional 
standardization activities, for provision of the 
required quality of service and fault tolerance 
attributes ([1], [11] and [8]). 
However, the usual build-and-test approach, adopted 
in most projects, implies high development costs 
and little chances for scalable and reusable designs. 
On the other hand, analytic models are bound to 
assumptions, which diverge from reality and do not 
make feasible the comparative evaluation of 
composite policy configurations.  
Simulation is the only alternative that allows the 
representation of the resulted software and hardware 
resource contention, in an arbitrary level of detail, 
thus capturing the essence of the quality of service 
differences, in the studied policy configurations. 
Our work aims in providing a simulation test-bed 
that allows to: 
• mix and match different policies from those 

described in the already published standards, 
• evaluate and compare their effectiveness based 

on meaningful, appropriately chosen estimates 
• in an efficient way. 
We assume that the observed failures conform to the 
fail-stop model ([13]), which means that objects fail 

by crashing, without emission of spurious messages. 
We do not make any assumptions about the network 
topology or the protocols making up the interprocess 
communication service, except that communication 
is accomplished through lossless FIFO channels. 
In such an asynchronous heterogeneous object 
application, we are interested for modeling object 
failures that do not recur after recovery. Some of 
them may be hardware dependent (e.g. insufficient 
memory) and others may be attributed to sources of 
non-deterministic behavior, like: 
• when a certain sequence of invocation requests 

results in an invalid object state, 
• the use of local timers, 
• the use of input-output to local devices, 
• the use of multithreading, etc.      
This paper describes the software’s functional 
characteristics and the performance measures of 
interest, for selecting the most appropriate 
• object state transfer (checkpointing) policies and 

intervals, 
• failure monitoring schemes and intervals, 
• failure recovery strategies and 
• service load distribution policy,  
for the development of either dependable or mission 
critical e-services. Dependable e-services are 
required to succeed the specified levels of 
availability, in normal or degraded mode of 
operation. On the other hand, mission critical e-
services are required not to fail for the specified 
period of time. Steady-state simulation is employed 
for the first type of study, as opposed to the second 



one, where we use transient simulation, with 
different performance measures of interest.  
Currently, object or service failures may occur only 
by taking advance of the software’s primitive failure 
forcing facilities. Thus, we do not proceed to the 
description of advanced failure biasing and 
importance sampling techniques, which are under 
development and will result in accurate and efficient 
estimation of the measures of interest. 
Related work has been reported in [12] and [4]. The 
first paper describes UltraSAN, a Stochastic Activity 
Net based modeling tool, with analytic and 
simulative solution facilities. The second one 
describes DEPEND, a simulation - based 
environment, with advanced fault injection features. 
Our test-bed differs, compared to them, in the 
following: 
• it is designed exclusively for simulating the 

policies specified in related object middleware 
standards ([11] and [8]), 

• it is not restricted to the estimation of 
dependability measures, like reliability and 
availability, but it also produces estimates for 
mean response times and utilizations, which 
guide the process of state transfer placement and 
load distribution, 

• the systems’ and components’ failure behavior 
will be simulated by advanced failure forcing 
and biasing schemes, accompanied by 
appropriate well-founded importance sampling 
techniques (as in UltraSAN and [10], [9]), for 
efficient estimation (in contrast to DEPEND’s 
efficiency improvements, which lie on the notion 
of variable aggregation and decomposability 
[2]), 

• estimates will be produced by advanced output 
analysis methods ([10] and [3]), for increased 
credibility and finally, 

• our software is open to the implementation and 
study of new workload dependent failure 
models. 

 
 

2 Replication management and 
failure monitoring and recovery 
features 

Replication may be used as a means, either to 
succeed the required fault tolerance attributes or for 
load balancing purposes. In this paper, our 
description is restricted to the features used, in 
providing fault tolerance. 
According to [11] and [8], replication management 
may be based on the notion of the object group and 
includes creation, deletion and replication of existed 

application or infrastructure objects. In our test-bed, 
we have implemented the following styles of 
replication: 
• Active replication 

Each object replica processes all the invoked 
object methods. The failure of a single replica is 
masked by the presence of the other replicas that 
also perform the same invocation requests and 
generate the desired results. Duplicate invocation 
requests as result of redundant processing are 
detected and suppressed. When in a degraded 
mode of operation, the number of live replicas 
falls bellow the specified minimum number of 
replicas, each failed replica is being recovered. 
This involves the completion of an object state 
transfer from a live object replica (if there is 
any). If, in the course of this state transfer, the 
interacting replicas receive additional 
invocations and responses, they are all enqueued 
locally and subsequently being applied to them.  

• Warm passive replication 
Only one of the object group replicas processes 
the received invocations. This is the so-called 
primary replica. The remaining passive replicas, 
known as backups, have been activated and their 
state is continuously synchronized with the 
primary replica’s state, according to the specified 
state transfer policy. 

• Cold passive replication 
The backup replicas have not been activated, but 
the primary’s state is periodically captured and 
stored into a log. If the current primary fails, a 
new one is elected and then activated. The log is 
then used to initialize the new primary’s state. 

State transfer durations depend on the object state 
size (granularity), the bandwidth and the processing 
speed of the slowest backup replica (for warm 
passive replication). A state transfer may be initiated 
only when it is not violating the object group’s 
replica consistency. Thus, it is postponed, when the 
primary is in the middle of an invocation service or 
it happens to be blocked, waiting for a response. In 
the course of the state transfer, new invocations may 
be received, but they cannot be processed, before the 
end of it. 
The object state transfer policies that are currently 
implemented include: 
• the use of a fixed time interval between state 

transfers and 
• the use of a fixed number of completed object 

invocations between state transfers (load-
dependent policy) 

Failure recovery depends on the chosen replication 
style and the applied policies and takes place right 



after the failure detection. In active replication, it 
includes just the time taken to transfer the current 
state of another live replica. On the other side, the 
contemporary function of multiple identical object 
replicas gives rise to heavy hardware resource 
contention, with possibly undesirable implications to 
the offered quality of service. 
Object failure recovery, in warm passive replication, 
includes the election of a new primary (if there is 
any) and the replaying of the invocations logged, 
since the last object state transfer. A failed replica 
remains in the recovering state up to the first 
subsequent state transfer, from the new primary. 
Cold passive replication also requires the activation 
and the logged state transfer to the new primary. 
Failure detection takes place as a result of periodic 
“i am alive” messages that have to be sent by each 
object or replica (for active replication) and to be 
received by a transparent monitoring service (we do 
not consider hardware resource contention for the 
failure monitoring function). When a failure is 
detected, the recovery process is then initiated, 
according to the specified policy. 
 
 

3 Performance and dependability 
measures of interest 

Our simulation test-bed provides a means for 
realistically modeling the individual objects 
interaction effects, as regarding: 
• the simultaneous resource possession caused by 

the synchronous, often nested object invocations, 
which block the callers, until they get the replies 
and  

• the hardware resource contention, as a result of 
the chosen replica placement to the available 
processing nodes. 

The service dependability measures of interest, 
which may be the subject of a quality of service 
contract, are: 
• the steady-state service availability, given as the 

fraction of time the service is operational (this 
happens if specified combinations of interacting 
objects are operational), 

• the service response time in the worst case and 
its mean, 

• the overall service throughput and 
• the mean time to an unrecovered service failure 

(MTTF), for mission critical e-services (transient 
measure). 

Different estimation methodologies have to be used 
in each case, depending on whether the target 
measure is a transient or a steady-state measure, on 

whether the service exhibits a regenerative 
simulation sample path or not, etc. 
Other useful measures are: 
• the ratio of mean requested service time to the 

estimated mean response time, for assessing the 
hardware resource contention caused by the 
chosen replica allocation, the selected state 
transfer intervals and the used load distribution 
policy and 

• the individual mean object response times and 
utilizations, for determining undermost state 
transfer intervals. 

We suggest undermost state transfer intervals to be 
detected based on a trade-off analysis, under the 
same failure model. Thus, the benefits derived from 
the state transfers are traded against the overhead 
they impose. An appropriate composite measure is 
the following ratio, 
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where Ro is the mean response time for serviced 
invocations not experiencing failure and Rf is the 
mean response time for invocations experiencing 
failures. Negative ratio values indicate that the 
chosen state transfer interval causes additional 
overhead that does not result in improvements to the 
service times of invocations experiencing one or 
more failures. 
The state transfer intervals to be used will be longer 
than those given by the described trade-off analysis 
and their values will be influenced by the required 
quality of service attributes and the hardware 
resource contention imposed by the chosen replica 
allocation and the used load distribution policy. 
Advanced failure biasing and importance sampling 
techniques will be used, for accurate estimation of 
the mean service response time and service 
throughput and availability. The overall estimation 
will be based on the regenerative method for 
producing confidence intervals ([5], [6] and [7]). A 
viable alternative for non-regenerative service 
configurations is a method based on splitting and 
batch means ([3]).  
  
 

4 A case study 
In this section, we proceed to the description of a 
sample service configuration and the results given 
by the current version of our simulation test-bed. 
The system under study disposes two service-
providing objects (object 0 and object 5), which 
accept the invoked service requests, in a round-robin 



fashion (load distribution strategy). The service 
objects interactions are summarized in Figure 1. 

object 0

object 5

object 1

object 2 object 4

object 3
service-providing objects

class 1 service requests
(poisson with mean

interarrival time 3.0 sec)

synch 1.a

synch 1.b synch 1.c

synch 2.a

synch 1.d

synch 2.b

class 2 service requests
(poisson with mean

interarrival time 3.0 sec)

 

Figure 1 Object interactions for the sample service 
configuration 

Each object group makes use of warm passive 
replication, with a minimum number of two replicas, 
allocated in processing nodes of different speeds. 
We did not consider replicas collocated in the same 
node. 
A load-dependent state transfer strategy was chosen 
for all object groups. More precisely, a new state 
transfer was initiated after the completion of a fixed 
number of serviced object invocations. The state 
transfer speed was influenced by the allocated object 
state size (object granularity), the participating 
replica processing speeds and their inter-node 
allocated bandwidth. Finally, failure monitoring was 
simulated by periodic “i am alive” messages, sent by 
the corresponding object groups, in the specified 
frequency. 

 

Table 1 Sample simulation results 

 

Figure 2 Response times and service availability for 
the simulated numbers of invocations between 

object state transfers 
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Figure 3 Worst response time improvements for the 
simulated numbers of invocations between object 

state transfers 

The sample results given in Figures 2 and 3 indicate: 
• when the selected number of invocations, 

between state transfers, is 165, this results in 
higher service availability and probably 
unacceptably high response times, for the service 
requests affected by an object 2 failure 

• if end-user response is guaranteed to be varied 
up to 50 sec, then an appropriate number of 
invocations between state transfers is 55 

• further decrease of the above number results in 
negligible improvements to the response times 
affected by an object 2 failure (rare event), at the 
cost of a significant deterioration to the overall 
mean response times. 

 
 

5   Future work - Conclusion 
In this paper, we described the functional 
characteristics of a new simulation test-bed, for the 
performance analysis of dependable and mission 
critical e-services. We were restricted to the 
currently implemented policies for providing fault 
tolerance and we discussed the use of valuable 
performance measures, for the development of either 
dependable or mission critical e-services. 
The test-bed is to be equipped with advanced failure 
forcing and biasing techniques, accompanied by 
appropriate importance sampling and simulation 
output analysis methods, for accurate estimation of 
the performance measures of interest. Similar 
techniques have been also implemented in 
UltraSAN ([12]), but our environment is specifically 
designed for simulating the policies suggested in the 
recently published standards, without having to 
specify them in a specialized formalism, like the one 
used in UltraSAN. 
Such a tool will provide a basis for studying new, 
load dependent failure models and customized load 
distribution strategies and for deriving realistic 
quality of service requirements. 
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response 
class 2 no 

failure

worst 
response 
class 2 no 

failure

service 
availability 
no failure

6,52808 38,62900 5,88361 40,9284 99,501%
8,09187 90,08840 7,64729 88,1666 99,071%
6,85649 39,68420 6,17036 39,7672 98,645%
7,60756 44,09350 7,12024 46,77360 98,434%
7,02426 46,35750 6,47951 43,9989 97,244%
7,45605 42,23310 6,88256 41,87440 97,018%

165

55

25

simulated time: 18000 sec
number of invocations 
between state transfers:

55

object 2 failure exponentially 
scheduled with parameter:

2341

mean respnse 
time (sec)

worst response 
time (sec)

class 1 service requests 7,60756 44,0935
class 2 service requests 7,12024 46,7736

availability utilization
object 0 99,6101% 82,1848%
object 1 99,5263% 17,5811%
object 2 98,9955% 42,4268%
object 3 99,4354% 56,5779%
object 4 99,7719% 11,0633%
object 5 99,4938% 82,4637%

system availability: 98,4348%
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