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Abstract
Anti-SPIT policies counter the SPam over Internet Telephony (SPIT) by distinguishing bots launching
unsolicited bulks of VoIP calls from human beings. We propose an Anti-SPIT Policy Management
mechanism (aSPM) that detects spam calls and prevents VoIP session establishment by the Session
Initiation Protocol (SIP). The SPIN model checker is used to formally model and analyze the robust-
ness of the aSPM mechanism in execution scenarios with parallel SIP sessions. In case of a possible
design flaw, the model checker provides a trace of the caught unexpected behavior (counterexample),
which can be used for the revision of the mechanism’s design. Our SPIN model is parameterized,
based on measurements from experiments with VoIP users. Non-determinism plays a key role in re-
presenting all possible anti-SPIT policy decisions, in terms of the SIP messages that may be exchang-
ed. The model checking results provide evidence for the timeliness of the parallel SIP sessions, the
absence of deadlocks or livelocks, and the fairness for the VoIP service users. These findings ensure
robust anti-SPIT protection, meaning that the aSPM mechanism operates as expected, despite the oc-
currence of random SPIT calls and communication error messages. To the best of our knowledge, this
is the first analysis for exhaustively searching security policy flaws, due to complex interactions bet-
ween anti-SPIT measures and the SIP protocol services.
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1 Introduction

Spam over Internet Telephony (SPIT) [1-3] refers to all unsolicited and massive scale attempts to estab-
lish voice communication with oblivious users of Voice over Internet Protocol (VoIP) services. SPIT is a
spreading service abuse phenomenon that comes in three different forms: (a) call SPIT, (b) instant messa-
ge SPIT, and (c) presence SPIT. The underlying technology that drives the SPIT threat is the Session Ini-
tiation Protocol (SIP) [7]. SIP’s widespread use shows signs of becoming a de facto industry standard for
several forms of interactive communication (voice, video, etc.), despite the findings [8-10], which demon-
strate that it is vulnerable to the SPIT threat.

Major IT players and VoIP service providers have already recognized the key value of timely deliver-
ing mechanisms that counter SPIT [4-5] effectively. They adopt basic principles and design considerati-
ons from policy-based protection measures introduced by the IT security industry.



2

Policy-based mechanisms work on the basis of predetermined conditions [6], which control the
execution of appropriate actions for service protection. Such a structured set of rules defines a security
policy. By separating the policy from the VoIP infrastructure we introduce the possibility of potential
policy modifications, in order to dynamically change the strategy for managing the system and, hence, to
modify the system behavior without changing its underlying implementation. Moreover, such a policy is
easily integrated into a VoIP infrastructure and can run along with other security mechanisms of a
network domain.

A robust anti-SPIT mechanism should avoid side-effects to the capability of the protected VoIP servi-
ce to operate as expected. Model checking is an attractive choice, because it offers the advantages of an
exhaustive verification technique, where the analyst can use non-determinism to model all possible sys-
tem behaviors that arise from the interaction of anti-SPIT measures with the VoIP services.

We present the design of an Anti-SPIT Policy Management (aSPM) mechanism and an abstracted fi-
nite model of its behavior in the SPIN model checker. The mechanism has emerged from an extensive
study of the SIP protocol for SPIT-related vulnerabilities/threats and accommodates policies that handle,
counter and mitigate potential SPIT attacks. The three aforementioned aims of aSPM [11] are addressed
by intervening to the normal SIP message exchanges, in order to check their content and detect potentially
spam calls. This unavoidably introduces delays in the processing of SIP protocol messages.

The SPIN model is parameterized with respect to these delays based on results from experiments with
VoIP users. It is then used for studying the robustness of our anti-SPIT mechanism by model checking
parallel SIP sessions under the presence of random SPIT calls and SIP protocol error messages.

In [30], we have presented initial steps for verifying basic correctness properties of our aSPM mecha-
nism. Herein, we introduce a comprehensive analysis of aSPM robustness, which can be used in formally
verifying the functionality of any policy-based anti-spam countermeasure. Our SPIN model now covers
the SIP message exchanges in detail, while the system is still studied when serving parallel SIP sessions.
This is achieved due to an improved model representation, which avoids the state space explosion, and at
the same time allows verifying properties that span to a wider range of robustness characteristics. We pro-
vide results for upper bounds in the duration of call session establishment under the aSPM mechanism,
which effectively ground the timeliness of SIP sessions.

We also verify the absence of deadlocks and livelocks, as well as the fairness for the service users
[31]. Absence of deadlock means that there is no reachable state in which the SIP message exchange
terminates with the protocol participants waiting for some message from the other participants. A livelock
involves a set of states in which protocol execution may be trapped with no chance to show progress.
Expected properties are expressed either as assertions over the reachable states or temporal logic formulae
that are algorithmically validated across all possible execution paths. Analysis of additional robustness
concerns is also possible, if all related countermeasure behavior has been modeled.

The remainder of this paper is organized as follows. Related work is presented in Section 2, regarding
anti-SPIT security policy studies and model checking. In Section 3, we describe the methodology follow-
ed for formally analyzing robustness of anti-SPIT measures in the Session Initiation Protocol (SIP). Secti-
on 4 presents the aSPM anti-SPIT policy and offers results obtained from a real-time SIP session experi-
ment, in order to formulate valid modeling assumptions and property specifications. Section 5 introduces
the SIP-aSPM model developed in the SPIN model checking tool [6]. In Section 6 we provide the verifi-
cation results for the mentioned properties. Finally, the paper concludes with a review of the outcomes
and a discussion on future work insights.
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2 Related work

Robustness of real-time communication systems refers to the error tolerance of the protocol that provides
the communication session establishment. If we take into account security mechanisms like anti-SPIT
countermeasures and policies that are expected to intervene in the protocol’s services, certain safety and
performance guarantees [3, 6] should be preserved. To this end, formal verification techniques such as
model checking offer an attractive approach for providing results, which characterize the behavior of
these multiple-parameter based communication systems.

2.1 Security policy background in VoIP

Confronting SPIT requires procedures for both detecting and handling SPIT attacks. Due to the real-time
nature of VoIP communications, the identification and handling procedures are applied during the initiati-
on handshake of VoIP calls. Thus, anti-spamming techniques like the content analysis with Bayesian fil-
ters and other approaches based on voice-communication pattern recognition [13] are excluded. Our pro-
posal, in order to effectively detect and handle SPIT, is an adaptive policy-based SPIT management
framework.

In the design process of the aSPM mechanism, we reviewed a series of policy-based systems from di-
verse domains, such as storage area networks [14], networked systems [15], database management [16]
etc. The policies used in these systems can be categorized into two broad categories [17], namely:
1. Authorization policies defining  access  rights  for  some  subject,  which  may  be  a  role,  a  domain,  or  a

management agent. Such access control rules may be applied to various context domains and mecha-
nisms, like database access controls and packet filters.

2. Obligation policies defining permit (positive) or forbid (negative) actions on a target object. More spe-
cifically, obligation policies specify the actions that must be performed within the system, when cer-
tain events occur. They also indicate who must execute those actions, i.e., what kind of activities a
subject (human or automated manager components) can perform on objects in the target domain. In
the network security context, obligation policies are used to specify the functionality of protection
mechanisms, such as intrusion detection systems (IDS) [18].
The anti-SPIT policies enforced by the aSPM mechanism are obligation policies that trigger approp-

riate countermeasures whenever a SPIT call/message is detected. Policy rules define which behavior will
not be accepted in a VoIP system, without specifying the actions and the event sequences that actually
“produce” the undesired behavior. This declarative approach opens a possibility for relatively easy integ-
ration of the aSPM mechanism with existing drastic anti-SPIT countermeasures. At the same time, the da-
ta collected from the interconnected anti-SPIT mechanisms can be used for generating appropriate policy
rules. The aSPM mechanism also supports the integration of reputation listing measures.

2.2 Model checking background

Model checking has been effective in discovering design flaws in systems and protocols, while it has been
particularly successful in the formal analysis of security and communication protocols [21, 23, 35]. The
advent of mature model checking tools like SPIN [19-20, 22] brings this “push-button” verification pers-
pective closer to the current system design practice, without underestimating the still outstanding problem
of state space explosion. Model checking is defined as follows: given a model M and a temporal logic for-
mula φ determine if M |= φ, i.e. does M satisfy φ? Model checking communication protocols like the SIP
is  based  on  a  finite  state  model  that  represents  at  a  suitable  abstraction  level  the  behavior  of  a  system,
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where the protocol runs in one or more concurrent sessions. Operational errors or security flaws are detec-
ted in the form of safety or liveness property violations that reflect unexpected behavior. If a property φ is
violated, the model checking result is false and the state exploration algorithm returns a counterexample
in the form of an execution path in M leading to the violation of φ. One can then use the counterexample
to debug the system model and ultimately find a repair for the detected protocol flaw.

In the bibliography there are a few model checking studies of VoIP communication and multimedia
protocols like the SIP [7] and H.323 [24]. In [25], Zave presents three different SPIN models for the SIP
that revealed five cases of incomplete specification in the protocol standard. She proposed solutions for
the detected problems, but her work is not directly related to the aSPM mechanism, since it basically con-
cerns SIP messages that are not involved in SPIT (e.g. the update message for re-negotiation session
establishment). In [26], Liu introduces a Colored Petri Net model for SIP-INVITE transactions over an
unreliable  medium.  The  performed  state  space  analysis  revealed  that  SIP-INVITE  transactions  are  not
free of livelocks and dead codes, as they are when assuming a reliable communication medium. As the
messages involved in that study are not adequate for generating SPIT, they are not the ones handled by
the aSPM policies; therefore, the results reported are not applicable to our problem.

From the related bibliography on policy verification, we note the Schaeffer-Filho et al. [27], which
focuses on the verification of policy interactions for a system of Self-Managed Cells (SMCs). Their mo-
del allowed checking the correctness of the anticipated SMC interactions, in the presence of policies, but
before deploying them in physical devices (e.g. PDA, mobile phones, sensors, etc.).

3 Anti-SPIT robustness analysis

The IEEE Standard Glossary [38] defines robustness as “the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environment conditions”. A system should
be robust enough to handle invalid inputs and all possible abnormal situations that can occur in its operat-
ing environment.

SIP specifications include optional requirements, as well as partial or ambiguous definitions for how
to handle communication errors. In the context of anti-SPIT protection, a robust mechanism should avoid
side-effects to the capability of the SIP protocol to operate as expected, even in the presence of random
SPIT calls and messages generated from communication errors. Recent proposals on robustness testing
[39-42] can be effective into finding bugs in system implementations, but they cannot easily uncover de-
sign flaws attributed to complex interactions like the ones of anti-SPIT measures with the SIP protocol
services.

We adopt model checking as a mean to formally analyze the robustness of our anti-SPIT protection
mechanism, called aSPM. Fig. 1 provides an outline of the aSPM design methodology that develops a-
long the shown sequence of steps, from the leftmost to the rightmost one:
1. In step 1, we have a detailed design of the processes that comprise an anti-SPIT policy, i.e. the SPIT

detection and reaction processes. This was accomplished by identifying the SIP-related SPIT vulnera-
bilities with a thorough analysis of the SIP RFC [9].

2. In step 2, we propose the development of attack scenarios that exploit the previously identified vulner-
abilities.

3. The scenarios are then used to define the policy rules and more precisely the conditions upon which
the policy actions depend.
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4. An XML schema is created in step 4, to link the policy conditions with the employed countermeasures
(actions). The resulting policy definition is then integrated into our anti-SPIT Policy management Fra-
mework (ASPF), which provides the underlying SIP-based VoIP execution environment.

Figure 1: Design of robust anti-SPIT protection over SIP

5. In step 5, a series of experiments with VoIP users takes place, where the ASPF under the control of
one or more XML policy schemas generates necessary data for the parameterization of a finite aSPM
model in the SPIN model checker.

6. A model of the aSPM mechanism is then developed in SPIN. The model reflects the SIP message ex-
changes for call session establishment, the behavior of ASPF entities that enforce the anti-SPIT policy
and the message overload, due to the policy reaction process. Model parameters for the cost in time of
the exchanged messages come from the call session establishment experiments of the previous step.

7. In step 7, we model check the properties need to ascertain aSPM robustness. First, the used anti-SPIT
policy should not create ‘invalid’ states - like deadlocks - and livelocks in the SIP communication pro-
cess, even upon possible communication errors. Second, we verify that aSPM does not violate timeli-
ness of session establishment, as well as fairness properties with respect to the VoIP service users.

8. The verification results either validate the robustness of aSPM or else yield a counterexample for a ro-
bustness property that is not satisfied. In the latter case, the designer studies the counterexample that
manifests the result of some design flaw, possibly a policy definition error or an error due to the inter-
actions of the anti-SPIT measures with the SIP protocol services.

4 Security Policy

In this section, we describe two different policy examples, which cover specific SPIT scenarios. The
examples illustrate the way that the policy rules have been created and settled to the final rule set. The
first example indicates the exploitation of a vulnerability that considers the restrictions that SIP poses in
registering an address. The second example illustrates the case of a deficient definition for how a header
field can be used and the way that  the definition can be exploited in a  SPIT attack.  The creation of  the
main policy elements and its representation in a formal XML schema is presented. Finally, the way the
policy is enforced in a SIP infrastructure is illustrated.
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4.1 Registration of multiple addresses

In the SPIT attack of Fig. 2, a malicious user exploits a vulnerability attributed to an unconstrained chan-
ge of the registrar server records, which is possible in SIP. Suppose the SIP address anne@one.com that
a malicious user has got from a legitimate one and that he can register with her address. Such a malicious
user can:
· Obtain multiple SIP addresses by sending plain requests to the registration or location servers.
· Change the obtained address to a new one, say alice@one.com,  which depicts to a recorded SPIT

message. In this way, whenever a caller tries to communicate with Anne, his call is redirected and a
SPIT attack is thus realized. Such an attack continues until all the friend-SIP-users of Anne have been
informed that the Alice address that they use is not valid.

Figure 2: Alteration of a Registrar server’s legitimate record

This vulnerability cannot be exploited if the policy clearly states how the domain proxy should treat re-
current requests that aim to new registrations or alteration of existing addresses. This is reflected in rules
that define the behavior of the registrar, when it receives registration requests. Such rules define actions
like rejecting or accepting to serve the request and answering with an authentication challenge.

4.2 Contact field in message 300

In the second scenario (Fig. 3), the SPIT attack is established using the Contact field. When a request is
related to many possible SIP addresses, a SIP message with the code 300 (Multiple Choices) is returned
as answer by the domain server. This message contains a Contact field with all the alternative destination
addresses. The SIP protocol states that the Caller should use one of the addresses included in the Con-
tact field, in order to try a new call.

Thereafter, a spitter is able to automatically redirect the call to a different address from the one cho-
sen by the Caller during the call negotiation phase. This intervention could take place in any state of
the negotiation and the spitter has just to reply to the original INVITE message with a 300 message. A
method to prevent SPIT attacks via the 300 message is a policy rule, which states clearly the way such
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messages should be handled. The advantage of this approach is that the policy covers all the negotiation
process, since the rule is not triggered to a specific point of the communication but is only triggered
whenever a new 300 SIP message arrives.

Figure 3: Exploitation scenario of the 300 message Contact field

4.3 Policy approach

We present now how the processed attack scenarios are transformed into SPIT-oriented attack patterns
and how this leads to the development of appropriate policy rules.

4.3.1 Policy rules

The policy rule is the key element of a policy. It consists of a Condition, which is a pattern of an identifi-
ed SPIT scenario extracted from an attack graph, and an Action, which is the reaction of the Callee’s
domain to the SPIT attack.

The condition is expressed by identifying specific attributes and characteristics of an attack scenario.
In order for a condition to be met, we should create precise sub-conditions for each attribute.

Let us focus on the scenario of section 4.2. The attributes that can be handled are: (a) the message co-
de 300; (b) the multiple contact fields. Each attribute produces a sub-condition and the logical aggrega-
tion of these sub-conditions results in the following policy condition:

Condition = [Code = 300 Å Contact  Multiple]

More generally, a condition is defined as:

Condition = f(c1, c2, … ,ck) = c1•c2•…•ck

where ci is a sub-condition and • denotes the logical operator that can be either Å (AND) or Ä (OR).
The operators used in sub-conditions are: (1) = equal, (2)  times of header appearance (Multiple, One,
None), (3) » approximately equal1, (4) > greater, and (5) < less.

1 The approximately equal operator means that if a header field A has multiple values, then it is approximately equal to header
field B, when one of its values is equal to the value of the other field.
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The other half of a policy rule is the policy action. The absence of context in which an attack scenario
may take place is critical for deciding the reaction of an entity that averts the attack. Different contexts
mean different security needs and different security needs translate to different countermeasures. Having
them in mind, it is a fact that the countermeasures/actions that can deal with the conditions cannot be
strict, as this could be considered as an ASPF limitation. Τhis is why the actions are divided into two cate-
gories and a set of suggested actions has been created for each condition that can occur. Moreover, the
ASPF can adapt to any future recommended actions and integrate them in the proposed set of counter-
measures. The two policy action categories are:

a. Block. This countermeasure results in rejecting the SIP message upon which is triggered. The message
sent to the Caller is “403-Forbidden”. Moreover, the action can possibly contain a more informative
description for the cause of rejection, in order to help the requestor entity into altering the message
such that it meets the necessary requirements of the Callee or her/his domain. A typical SIP messa-
ge could be “488-Not Acceptable Here” with the description “Inappropriate word in Subject”.

b. Notify. This countermeasure is applied, when we are not confident whether the message upon which is
triggered is or is not a SPIT. In this case, the message is not rejected, but it is forwarded to where the
administrator/user specifies. The requestor entity receives the SIP 183 “Session in Progress” message
and is thus notified that his/her message has been redirected to a decision-support application. It is
possible that the message is forwarded to the Callee, after having been altered such that it complies
with the policy rules. In the latter case the administrator receives the notification in a log file.

An example of a set of actions for the discussed condition

 Condition = [Code = 300 Å Contact  Multiple]

appears below:
1. The User Agent Client (UAC) uses the previous address of the From field to compose upcoming mes-

sages.

2. The UAC’s address book is updated with the new addresses.

3. The UAC informs the user for the new SIP addresses.

4. The UAC rejects the call and returns a Message 403 “Forbidden”.

5. The UAC rejects the call and returns a 488 “Not Acceptable Here” message with description “Multiple
Contact fields”.

6. The UAC forwards the SIP message to another entity and returns a message 183 “Session in Progress”.

Most of the actions are SIP messages [33-34], because the policy should: (a) be transparent to the admini-
strators and users and (b) keep to a minimum the intervention of other applications during message handl-
ing. The final decision for the action to be applied is left to the administrator or to anyone who is respon-
sible for the production of a policy instance, in order to secure a particular VoIP communication.

4.3.2 XML schema - Policy integration

Based on the identified conditions, an XML schema was created. That schema assisted the integration of
aSPM into VoIP environments. The reader may obtain the developed aSPM schema in [31]. The XML
schema representation includes the identification characteristics of the attack attributes, together with
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their relation. Moreover, the XML schema is easily extendable and therefore the domain administrators
could add new rules effortlessly.

The main element of the XML policy structure is the RuleItem. A RuleItem consists of two elements,
the Subject, on which the condition is applied (Caller, Callee, Caller’s domain) and the Rule,
which records a certain condition and introduces the proper action, when this condition is met. The full
version of the XML schema can be retrieved from [31]. After the XML schema creation, the next step is
to integrate the XML policy into a SIP infrastructure.

The implementation approach is depicted in Fig. 4 and includes two additional modules:
1. The XML parser which reads the XML policy instance into the memory and provides easy access

to tag values of the document.
2. The policy enforcement module, which has as input the parsed XML document, together with the

message attributes. This module checks all the policy conditions, so as to find out which are ful-
filled (first a SIP message is received and parsed, and then the message attributes are checked a-
gainst the policy element) and if one or more conditions are met, then the associated action (des-
cribed in the fulfilled policy element) takes place.

Figure 4: The aSPM integration

4.3.3 Experiments

A requirement that should be validated is the timely session establishment. In order to evaluate this, the
impact of policy enforcement in terms of time cost should be evaluated. Therefore, we created a laborato-
ry SIP infrastructure, as shown in Figure 5 which was consisted of: a) two SIP servers implemented by
the well-known SER server [28], b) the aSPM policy module, which includes the XML policy document
of the protected SIP domain, and c) a client, which was implemented by SIPp [29] and was able to initiate
and receive calls.

In order to record the real overload of aSPM, we should first record the SIP infrastructure performan-
ce without ASPF and then record the time period for session establishment with the use of aSPM (our
policy module accepts all the incoming and outgoing SIP traffic).
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Figure 5: Laboratory Environment

The total number of initiated calls was 10.000. The time needed for the message exchanges between
the participating entities is illustrated in Table1. The participating entities are the two domains (D), the
User Agent Client (UAC),  and  the  policy  module  (aSPM).  The  first  two  columns  show  the  time  costs
when the aSPM is disabled, while the last two, when the aSPM is enabled. The third column shows the
time needed for the Caller’s UAC to send the final ACK message, where the policy does not interfere.

The main assumption is that the time needed to send a message between two communication entities
does not depend on the role of the involved entities in the communication, i.e. whether they are the send-
ing or the receiving entity. For example the same time is needed to send a message from Domain1 to Do-
main2 with the time needed to send a message from Domain 2 to Domain 1.

The times shown in Table 1 have been used as parameters in the formal model, described in the next
session, in order to assess how the message exchange affects the requirement of timely session establish-
ment. The reported times may be altered depending on the hardware features that are assumed in the desc-
ribed experiment. However, the proposed verification approach is still effective for other configuration
parameter sets.

Table 1: Time needed for exchanging messages

Channel

Time (msec)
UAC – D D –D UAC –UAC UAC – aSPM D- aSPM

Minimum 97 153 97 286 321

Average 102 154 98 387 428

Maximum 106 162 98 432 642

5 Model checking the SIP based anti-SPIT protection mechanism

Here we describe the steps followed for implementing in SPIN [22] the interactions between the SIP and
the aSPM mechanism using the tool’s model specification language called PROMELA. The reader may
obtain the SIP-aSPM model from [32]. This model serves as a formal specification for investigating all
possible user-agent behaviors in scenarios of parallel SIP sessions, with respect to a number of correct-
ness properties that guarantee robust anti-SPIT protection.

Fig. 6 provides a schematic representation of our robustness analysis approach. The involved SIP en-
tities, i.e. the Initiator (Caller) and the Responder(s) (Callee), interact with each other for establish-
ing one or more VoIP communications within a finite time period. The whole analysis encompasses the
following steps:



11

Figure 6: Schematic representation of the SIP-aSPM robustness analysis steps

1. A SPIN model for a single SIP protocol session has been developed, according to the message ex-
changes prescribed by the SIP specification [7]. While the SIP entities may select among a range of
appropriate messages for each protocol step, our model provides an abstract representation of the pro-
tocol’s operation. This was implemented by having omitted all message manipulation functions with
heavy impact in the model’s state space that clearly do not influence the intended aSPM analysis.

2. Data for the message latencies and message processing times has been collected, from the measu-
rements of the experiment of section 4. These values are used in place of parameters of executable
actions that reflect the entities behavior in a protocol session.

3. A second Callee protocol entity has been created that participates in a parallel SIP session with the
Caller.

4. The aSPM policy has been then integrated into the model, with a focus on the times that the policy
needs to process calls. The policy effects on the flow of SIP message exchanges are represented by
non-deterministic selection between the messages that the policy can generate in each protocol step.

5. SPIN’s state exploration functions have been employed to model check reachability of deadlock, sta-
tes that violate SIP’s functional properties (therefore called invalid states), as well as a Linear Tempo-
ral Logic (LTL) [21] formula encoding a requirement for timely session establishment. Robustness a-
nalysis also includes fairness guarantees for the service users.

5.1 SIP-aSPM messages

State space explosion was avoided by having omitted the SIP messages that do not affect the SIP executi-
on outcome or the aSPM policy conditions [24]. This modeling approach played a key role in formally
validating the robustness of our anti-SPIT mechanism in a scenario with parallel protocol sessions.

More specifically, we ignored the 5xx messages that concern with server failures and the 1xx mes-
sages, which are used for provisional response(s). The 5xx messages indicate permanent failures, where
the Caller should not try to resend the initial request and it is therefore reasonable to consider that they
do not affect the policy’s implications on the SIP message exchange for session establishment. The 1xx
messages are used exclusively for reporting that a SIP server performs some additional actions, without
having concluded to a definite response for a previous message.
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In Table 2, we present the communicating entities involved into the modeled SIP-aSPM execution
scenarios. For easy reference to the roles of the involved entities, we consider that the Caller belongs to
Domain1, while the two Callees named UAC_1 and UAC_2 belong to Domain2.

	

Table 2: Communication entities that initiate and handle SIP messages

Communication entity
SIP Messages

Initiate Handle

Caller (UAC)
INVITE_1, INVITE_2,
REGISTER,OPTION, ACK

2xx, 3xx, 4xx, 6xx

Callee (UAC_1) 2xx (m200_OK) INVITE_1, INVITE_2, ACK

Callee (UAC_2) 2xx (m200_OK) INVITE_1, INVITE_2, ACK

Domain1 (Caller’s) ------- REGISTER

Domain2 (Callees’) 3xx, 4xx, 6xx INVITE_1, INVITE_2

aSPM 4xx, 6xx
INVITE_1, INVITE_2, 2xx,

3xx, 4xx, 6xx

In more detail, the messages that the protocol entities initiate or handle (i.e. answer or reject) in the
SIP protocol steps are:

1. REGISTER messages created by the Caller
2. OPTION messages created by the Caller
3. INVITE messages that are created by the Caller
4. 2xx successful response message created by the Callee	
5. 3xx redirection response messages created by the Domain2 server
6. 4xx request failures messages created by the Domain2 server
7. 6xx global failures messages created by the Domain2 server
8. ACK messages created by the Caller

5.2 Model structure and implementation

The SIP-aSPM model in SPIN comprises six interacting processes, specified as PROMELA
proctypes: (i) proctype UAC initiates one or two protocol sessions, (ii) proctypes UAC_1 and
UAC_2 that communicate with UAC represent the two Callees, (iii) proctype Domain1 represents
the server of the Caller, (iv) proctype Domain2 represents the server of the two Callees and (v)
proctype Timer is a stopwatch timer for measuring call establishment time with or without the
aSPM policy. Our model also includes rendezvous communication channels, for synchronous message
passing between the mentioned processes. The measured message latencies that are shown in Table 1 are
encoded as discrete time values attached to message delivery actions. Every message exchange causes a
global timer update that is implemented in the Timer proctype.

Time increments occurring along the execution paths that are explored take place according to the
measured latencies shown in section 4. For example, a message exchange between UAC and UAC_1 or
UAC_2 brings on a time_3 = 98 msec increase in the timer. By tagging the modeled message exchan-
ges with the measured time values, we can estimate the cost in time for call establishment along all pos-
sible execution paths that in essence enact the aSPM policy effects. It is thus possible to model check an
anticipated upper time bound for call establishment, in model configurations with or without parallel SIP
sessions.
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Figure 7: The Caller proctype of the SIP-aSPM model

The Caller proctype can be used for  analyzing all  SIP-aSPM execution scenarios that  involve
one or at most two parallel sessions. In a two-session execution scenario, the UAC non-deterministically
selects the first Callee (either UAC_1 or UAC_2) and dispatches an INVITE message (named
INVITE1 if the recipient is UAC_1 or INVITE2 if the recipient is UAC_2). The Domain1 proctype
then forwards the INVITE message to Domain2. Upon receipt of the message by Domain2, there are
three possible responses, namely: (i) redirection of the Caller entity (message 3xx), (ii) request failure
(message 4xx) or (iii) global failure (message 6xx). Redirection involves reform of the received
INVITE message, in order to incorporate the new Callee’s address. The Caller responds only to the
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possible failure messages (4xx and 6xx) by sending a new INVITE message, if and only if he has not
previously received three error messages. In the latter case, Caller drops  the  call  and  session  esta-
blishment fails.

The behavior of the Caller proctype is shown in the finite state automaton of Figure 7. Accord-
ing to this automaton, if there is one opened session, then at any time of the shown procedure it is
possible to open a second session with the other Callee. If less than 3 error messages have been receiv-
ed (guards shown in S14 and S9) the 2 sessions with the Callees are successfully completed (guard
shown in node S51). Otherwise (node S65), the session for which the number of received error messages
exceeds the threshold is eventually terminated.

If there is no error, Domain2 forwards each INVITE message to the Callee’s address and waits
for his approval. The Callee proctype generates  a 2xx response message and sends it to the
Caller via the Domain2 server (message shown as m200_OK in the S24 and S34 nodes of Fig. 7).
When the Caller receives an expected 2xx message, he responds with an ACK that is sent directly to
the Callee, thus establishing a media session (nodes S31 and S41 in Fig. 7, and node S25 in  the
Callee automaton of Fig. 8).

Figure 8: The Callee proctype of the SIP-aSPM model

In the automaton of Fig. 8 for the Callee proctype, the node sequence S22-S9-S3-S6-S5
shows how a Callee handles an INVITE message from his domain. There is only one possibility, i.e. to
respond with a 2xx message, while potential errors may be introduced only by the Domain2
proctype, whose behavior is not shown for the sake of brevity. Dashed lines represent the final transi-
tions in cycles that eventually terminate.

The automaton of Fig. 9 introduces the behavior of the Timer proctype and shows the timer up-
dates for all processed messages. Under the given assumption that all SIP messages are delivered to the
intended recipient, every message increases the total SIP session time according to the corresponding
mean value of the measurements shown in Table 1.
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Figure 9: The Timer proctype of the SIP-aSPM model

6 Verification results

Robustness analysis of the SIP-aSPM mechanism is based on the model’s state space, which includes the
error paths that may occur in a real SIP communication. All aSPM policy effects have been taken into ac-
count through the non-deterministic selection between all messages that the policy can generate in each
protocol step and by having included in the model, the cost in time for message processing. Error-free
paths should not end in deadlock states, meaning that the SIP-aSPM interactions do not cause invalid end
(termination) states. When the number of occurred errors can be tolerated (less than two), reachability of
end-states within some expected time bound grounds our confidence that the SIP-aSPM mechanism does
not involve non-progress cycles (livelocks) or message overload that violates call establishment
timeliness. Finally, fairness for the service users ensures that if an UAC initiates a SIP session before
some other UAC and no errors occur, then the first UAC establishes a call before the second one.

For model checking the discussed properties:
· we defined assertions that were checked in all reachable states, and
· we developed appropriate formulations in the Linear Temporal Logic (LTL), which is supported

by the SPIN model checker.
Assertion monitors that are defined as PROMELA proctypes check all  reachable states  for  possible
violations of the monitored properties. If an assertion is violated, then the generated counterexample al-
lows the analyst to discover possible aSPM design flaws. Let us consider the condition that at most 2 er-
ror messages have been emitted in all sessions. Such an assertion is expressed as follows:

active proctype Monitor()
 {
 do
 :: assert(((errors_1<= 2) || (errors_2 <= 2))

&& (sum_time <= TIME_Constraint))
 od
 }

where errors_1 and errors_2 are the sums of error messages 3xx, 4xx or 6xx for the respective SIP
sessions and TIME_Constraint is the time period (msec) in which the initiated SIP session(s) are ex-
pected to establish the call(s). In Table 3, the results for the property P4 reports reachability of some state,
where state exploration stops, due to a detected assertion violation. This result shows the existence of
execution paths with more than two error messages for some protocol session, which – as expected – end
in abnormal protocol termination.

Timely completion of call session establishment was checked by the LTL formula
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Q1: [](q à p)

where à represents the left associative implication, [] is the temporal operator always, and p and q are
propositions defined by the following assignments:

#define p time < TIME_Constraint
#define q (sessions==0)

Variable sessions is  initialized  with  the  value  2  and  tracks  the  number  of  sessions  that  have  been
completed by the Caller. If sessions==0 then 2 SIP sessions have been successfully completed.
Formula Q1 is therefore interpreted as:

 “If in a reachable state both sessions have successfully finished, this happens in less than
Time_Constraint msec”.

Table 3 shows the results obtained by model checking Q1 for two different time constraints. More
specifically, property P1 shows that when the aSPM is enabled, 1 SIP session is successfully completed in
less than 6500 msec. P2 refers to the time needed for completing 2 parallel sessions and shows that this is
done in less than 10000 msec.

Regarding the fairness characterization of actions, we distinguish between weak fairness and strong
fairness. An action is weakly fair, when if it is enabled for infinitely long time, it will be eventually exe-
cuted. On the other hand, an action is strongly fair, when if it is enabled infinitely often, it is eventually
executed. In the SIP-aSPM model, session initiation for a Callee is a weakly fair action. Let us consider
the variables q_init and p_init with

#define q_init init_UAC_1=TRUE & errors_1=0
#define p_init init_UAC_2=TRUE & errors_2=0

encoding the two states in which the SIP Callees can start interacting with the Caller (accept  an
INVITE message) and no errors have been occurred. The property

Q2: [] (((q_init) -> (q && (!p)))  ||  ((p_init) -> (p && (!q))))

encodes the weak fairness of session initiation for the Callee proctype, where the variables

#define q status_UAC_1=TRUE & errors_1=0
#define p status_UAC_2=TRUE & errors_2=0

represent a successful SIP session for the respective Callee, with no errors encountered. Fairness
properties like the one given by Q2 for the SIP protocol show that the process to be executed is fairly cho-
sen between the ones that are simultaneously enabled [36-37]. In the context of the SIP-aSPM model this
is interpreted as the fact that the Caller selects a Callee with equal probability among the ones lis-
tening in Domain2. Q2 may be also interpreted as follows: if no errors occur for the Callee who first
interacts with the Caller,  then the same Callee will  be the first  who will  complete  the SIP session
successfully. Property P7 of Table 3 provides the verification results for query Q2, with the SPIN repor-
ting success in a state space of 2.9e+06 states and 7.022e+06 transitions.
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Fairness is a prerequisite for model checking liveness properties, which aim to show that a desirable
possibility will eventually happen. In our SIP-aSPM mechanism we verified the liveness property Q3 for
the Caller, in the parallel sessions setting,

Q3: []((u -> q_init)->(<>(q && (!p)))||(u -> p_init)->(<>(p && (!q))))
with

#define u status_UAC=TRUE & sessions > 1

representing the Caller’s state, in which the first INVITE message has been just sent (therefore
sessions is >1) and no errors have occurred. With p, q, p_init and q_init defined as in Q2, this
liveness property is interpreted as follows:

“If the Caller has initiated a SIP session with one of the listening Callees and no errors occur, then call
establishment with the selected Callee will eventually succeed”.

Table 3 summarizes the SPIN results for the mentioned properties (P1, P2, P4 and P7), as well as for
the property P8, which shows the truth of Q3. In order to compare how the aSPM mechanism affects SIP
timeliness with the case of no anti-SPIT protection, we note the experiments where the aSPM was
enabled.

Table 3: Verification results for the robustness analysis of SIP-aSPM

# Property description States Transitions Memory
(MB)

Property
definition

Verification
result

P1
Full state space search: one completed
SIP session within 6500 msec (aSPM
enabled)

3.8e +06 7.1811e+06 600.712 Q1 TRUE

P2
Full state space search: two completed
SIP sessions within 10000 msec (aSPM
enabled)

3.8e+06 7.246e+06 616.11 Q1 TRUE

P3
Full state space search with no errors
(absence of deadlock with aSPM enabled
or disabled)

3.8e +06 7.1811e+06 570.906
Invalid end-

states
TRUE

P4

Partial state space search: assertion that
no more than two error messages
(3xx,4xx, 6xx) are observed in one of the
parallel sessions within 6000 msec
(aSPM enabled)

13172 13172 0.924 Assertion FALSE

P5
Full state space search: one completed
SIP session within 3000 msec (aSPM
disabled)

3.8e+06 9.238e+06 600.712 Q1 TRUE

P6
Full state space search: two completed
SIP sessions within 6000 msec (aSPM
disabled)

3.8e+06 7.246e+06 616.114 Q1 TRUE

P7

If no errors occur for the Callee who first
interacts with the Caller, then the same
Callee will be the first who will complete
the SIP session successfully
(aSPM enabled or disabled)

3.8e+06 7.022e+06 560.203 Q2 TRUE

P8

If the Caller has initiated a SIP session
with one of the listening Callees and no
errors will occur, then call establishment
with the selected Callee will eventually
succeed (aSPM enabled or disabled)

3.8e+06 7.181e+06 585.309 Q3 TRUE
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Absence of deadlocks was confirmed by the non-reachability of invalid end states (P3). All model
checking results were obtained on a workstation with 3072 MB RAM. Executions of query Q1 were com-
pleted in less than 18 sec, occupying an average of 600 MB of memory. Assertion checks for invalid sta-
tes were completed in less than 6 sec. We believe that such assertion checks are effective for detecting
possible 3xx, 4xx or 6xx errors that interfere with the SIP sessions in an unexpected manner.

7 Conclusions and future work

We introduced a policy-based anti-SPIT protection mechanism for VoIP services and its robustness ana-
lysis through formal modeling and verification with the SPIN model checker. The so-called aSPM mecha-
nism interacts with the Session Initiation Protocol (SIP) for applying appropriate anti-SPIT measures
upon detection of suspicious SPIT message exchanges. In our SPIN model, the policy effects on the flow
of SIP message exchanges are represented by non-deterministic selection between the messages that the
policy can generate in each protocol step. Model parameters for the time to process the aSPM-generated
messages were assigned values from measurements made in an experiment with real VoIP users.

By model checking, we verified the absence of deadlocks in error-free parallel SIP sessions and we
confirmed the reachability of failure states, when more than two error messages are emitted in a protocol
session. We also showed that the aSPM mechanism preserves weak fairness for the service users and gua-
rantees that error-free SIP sessions eventually complete with success. Finally, aSPM causes negligible
overhead, thus preserving robustness with respect to timely call establishment, even in a parallel SIP ses-
sions scenario.

The described analysis can either validate anti-SPIT policy robustness or detect possible property vio-
lations. In the latter case SPIN generates a counterexample that can reveal the policy action, which causes
the detected problem. We therefore argue that our robustness analysis is a valuable tool in the design of
anti-SPIT policies or more generally in the design of security policies that interact with some protocol’s
services. A hindering factor against the effectiveness of the proposed analysis is the still outstanding prob-
lem of state space explosion. We opted to integrate the policy effects in the SPIN model directly, through
the use of non-determinism. This may be a limitation, with respect to the applicability of our analysis in
policy conditions with complex dependencies.

As a future research prospect we plan to seek for appropriate model abstractions that will enable ro-
bustness analysis of complex policies. Finally, it is also desirable to model check the properties related to
timely call establishment in scenarios with more than two parallel sessions. This may happen through an
improved model representation that opens the possibility to exploit symmetries and other techniques for
state space reduction.
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