
Preprint submitted to Innovations in Systems and Software Engineering

Maximal Software Execution Time: A Regression-based
Approach

Ayoub Nouri · Peter Poplavko · Lefteris Angelis · Alexandros
Zerzelidis · Saddek Bensalem · Panagiotis Katsaros

Abstract This work aims at facilitating the schedu-
lability analysis of non-critical systems, in particular
those that have soft real-time constraints, where Worst-

Case Execution Times (WCETs) can be replaced by less
stringent probabilistic bounds, which we call Maximal
Execution Times (METs). To this end, it is possible
to obtain adequate probabilistic execution time mod-

els by separating the non-random dependency on input
data from a modeling error that is purely random. The
proposed approach first utilizes execution time multi-

variate measurements for building a multiple regres-
sion model and then uses the theory related to con-
fidence bounds of coefficients, in order to estimate the

upper bound of execution time. Although certainly our
method cannot directly achieve extreme probability lev-

The research leading to these results has received funding
from the European Space Agency project MoSaTT-CMP,
Contract No. 4000111814/14/NL/MH

A. Nouri · S. Bensalem
Univ. Grenoble Alpes, CNRS, Grenoble INP?, VERIMAG,
38000 Grenoble, France
700 avenue centrale, Saint Martin d’hères 38401, France
E-mail: ayoub.nouri@univ-grenoble-alpes.fr

P. Poplavko
Mentor® A Siemens Business
F-38334 Inovallee Montbonnot, France (The presented
research was done while working at UGA/VERIMAG)

L. Angelis · A. Zerzelidis · P. Katsaros
Information Technologies Institute, Centre of Research &
Technology - Hellas 6th km Xarilaou - Thermi, 57001,
Thessaloniki, Greece

L. Angelis · P. Katsaros
Department of Informatics, Aristotle University of Thessa-
loniki, Greece

bInstitute of Engineering Univ. Grenoble Alpes

els that are usually expected for WCETs, it is an attrac-
tive alternative for MET analysis, since it can arguably
guarantee safe probabilistic bounds. The method’s ef-

fectiveness is demonstrated on a JPEG decoder running
on an industrial SPARC V8 processor.

Keywords WCET · Linear Regression · Stepwise
Regression · Principle Components Analysis · JPEG

1 Introduction

We propose a new statistical approach, for the timing
analysis of embedded software programs. Such methods
aim at highly-probable execution time overestimations,

as opposed to the 100% certain upper bounds given by
common worst-case execution time (WCET) estimation
techniques.

This option can be justified in many practical sit-
uations. Actually, only a small subset of safety criti-
cal applications (e.g., avionics) require conservatively
that for the system to operate correctly, all its tasks
need to run up to their WCET. In such cases, an over-
provisioned design – entailing costly hardware resources
– is assured. On the other hand, it often happens that

infrequent and non successive deadline misses can be
tolerated, and may be even preferable to excessive hard-
ware costs. This reasoning is applicable for systems
that do not have safety requirements (e.g., car infotain-
ment) that are characterized by weak, soft or firm real-
time constraints. For all these systems, we can rely on
statistical (over-)estimations based on extensive mea-
surements that we call probabilistic maximal execution
times (MET).

The proposed method is measurement-based, i.e., it
relies on executing the program code and collecting

2 Ayoub Nouri et al.

measurements, as opposed to static approaches1. Such

methods are referred to as measurement-based timing

analysis (MBTA). When relying on probabilistic or sta-

tistical analysis techniques, the latter are called proba-

bilistic MBTA.

In the recent research literature, the reliability of

probabilistic MBTA techniques has been improved, even

to the level of considering them eligible —under some

restrictive hardware assumptions (e.g., cache random-

ization) —as WCET estimates for hard real-time sys-

tems. Such estimates provide an upper bound on the

program execution time with a certain probability (α)

that the actual program execution time can exceed it.

Probabilistic WCETs are METs that hold at an ex-

tremely high probability (1 − α) with α = 10−15 per

program execution [4] or 10−9 per hour, which corre-

sponds to the most stringent requirements in safety-

critical standards.

Analyses aiming to ‘true’ WCET (with α = 0) are

costly to adapt to new application domains and pro-

cessor architectures, as they require the construction

of complex exact models that have to be verified. The

techniques based on extreme value theory (EVT) can

ensure the levels of probability that render them suit-

able for WCET. However, these techniques assume that

the execution times are random and identically dis-

tributed, an overly strong assumption that does not

generally hold in practice. Execution times typically

show significant autocorrelations and their probability

distribution varies, due to the input data dependencies.

For non safety-critical systems, one can settle for

METs characterized by an α a few orders of magnitude

larger than that claimed by EVT methods (α = 10−15).

In this case, it is possible to rely on a rich set of mature

statistical model fitting tools, such as linear regression,

which can handle the input data dependencies. In the

current article, we propose a novel probabilistic MET

analysis technique that builds upon linear regression

and the associated statistical analyses.

Linear regression was proposed in [10], as a means

for conservative execution time analysis, but without

having profited from the rich statistics associated with

it. More specifically, that work aimed at 100% con-

servative estimates (without probabilities) and for this

reason it focused on non-statistical linear model fitting

techniques. However, targeting 100% conservative esti-

mates may result in a costly analysis, losing the advan-

tage of regression. Moreover, their technique for calcu-

lating the regression parameters is rather ad hoc and it

is not described in detail. On the other hand, an impor-

1 Classifying the different methods is beyond of the scope
of this paper. A detailed survey of the different approaches
and their classifications can found in [12]

tant connection between linear regression and WCET

analysis methodologies is established, which is based on

implicit path enumeration.

In the same article, some interesting possibilities are

also shown for the explicit modeling of hardware ef-

fects, such as pipelining, which could be used as well in

our work. However, for simplicity, in this article we do

not address the hardware modeling issue directly, but

undoubtedly this is an important future work matter.

Since our analysis is based on measurements on real

hardware and since the variability attributed to hard-

ware is a consequence of the variability of input data,

we believe that hardware effects are covered indirectly

up to a level of accuracy that may be appropriate for

non safety-critical applications.

The present paper is an extended version of the work

published in [11]. The main contributions are the fol-

lowing. In Section 2, we discuss the MBTA method and

we recall some of the basics of Linear Regression. Sec-

tion 3 groups all the theoretical contributions of the

paper. It first introduces a new regression model, called

the Maximal Regression Model (Section 3.1) that yields

probabilistic upper bounds for METs estimation using

confidence intervals. A great challenge in this context is

to find a good hypothesis model, that is to identify the

most relevant variables to accurately explain and pre-

dict the execution time. For this purpose, we propose,

Stepwise Regression, an iterative procedure for build-

ing a compact regression model (Section 3.2.1). In addi-

tion, we propose in this extended version, a new method

for variables identification based on Principal Compo-

nent Analysis (PCA) in Section 3.2.2. We provide, in

Section 3.3, a pragmatic method to compute the MET

estimate. We note that, following this method, the ob-

tained MET estimate is independent from input data.

Finally, since we follow a measurement-based approach,

a statistical technique is also proposed in Section 3.4 for

the assessment of the quality of the input data in order

to obtain pertinent measurements.

In Section 4, we detail the instrumentation and mea-

surement techniques necessary to collect the required

input data for the above analyses techniques. With this

respect, the scalability of the approach in [11] is further

improved with a new preprocessing phase based on I-

point Graphs (IPG). In Section 5, all these techniques

are assembled together in an automated analysis flow

for METs estimation. In Section 6, the overall approach

is demonstrated on a JPEG decoder case study with

a significant input data dependency, which runs on a

state-of the art industrial SPARC V8 architecture with

caches reset at every execution start. Additional exper-

iments and analysis results using Stepwise Regression

and PCA are reported compared to [11]. At the end of

Maximal Software Execution Time: A Regression-based Approach 3

Section 6 we aslo provide a comparative discussion of

Stepwise Regression and PCA. The related work is fur-

ther discussed along with the conclusions, in Section 7.

2 Common Probabilistic Techniques

We first review the probabilistic MBTA setting, and

then we recall the basics of linear regression, while in-

terpreting it in the context of probabilistic MBTA.

2.1 Measurement-based Probabilistic Timing Analysis

MBTA consists of initially performing multiple execu-

tion time measurements of the program’s blocks of code

and/or the program’s execution time, and subsequently

analyzing them to combine the results and thereafter to

calculate the MET bound (see Fig. 1). The probabilis-

tic variant of MBTA utilizes statistical methods for the

analysis phase [4, 2].

Program
Exec. time
measures Analysis

Input
data

samples

WCET/MET

Fig. 1: Overview of MBTA steps

Let us denote Y the execution time, which in gen-

eral depends on a set of variables Xi. A MET bound

with probability (1−α) can be obtained by finding the

minimal y such that Pr{Y < y} ≥ (1− α).

Execution
time

𝑷𝑷𝑷𝑷 {𝒀𝒀 > 𝒚𝒚} 𝑷𝑷𝑷𝑷 {𝒀𝒀 < 𝒚𝒚}

𝜶𝜶

1−𝜶𝜶

Prob.

𝑦𝑦𝛼𝛼>0 𝑦𝑦1

𝑦𝑦𝑖𝑖

𝑦𝑦𝑛𝑛

…

…

𝑦𝑦𝛼𝛼=0

Exec. time
measurements

Fig. 2: Illustration of the probability of MET bound

Such a bound is related with Pr{Y > y}, as it is

shown in Fig. 2 (dashed line). For small values of y the

probability is high and it decreases when y increases.

The curve converges to 0 for very high values of y, which

corresponds to the WCET case with α = 0 (yα=0 is very

unlikely to be observed in the set of measurements).

The Pr{Y < y} can be characterized by the symmet-

rical curve (solid line) and corresponds to 1 − α. We

are interested to find the smallest y – not necessarily

from measurements – that matches a sufficiently small

α (respectively high 1− α).

Suppose that Y is random with a known continuous

distribution f , denoted as Y ∼f . A possible solution is

given through the quantile function of that distribution,

i.e., for y = Qf (1− α) we have, by definition, Pr{Y <

y} = (1 − α). If Y is normally distributed, i.e., Y ∼
N (µY , σY), we have y = µY + σY Φ

−1(1 − α), where

Φ−1 is the quantile function for N (0, 1). In order to

calculate METs by using this formula, the ‘mean’ µY
and the ‘standard deviation’ σY have to be estimated

from measurements with sufficient precision, for which

a large enough number of measured Y samples may be

required. The normal distribution can describe many

random physical variables, like for example noise and

measurement error, and provides access to a rich set of

mature statistical tools for reliably deriving estimates

from measurements.

Unfortunately, neither normal nor any other distri-

bution law can be justified to directly describe execution

times. Therefore, the probabilistic MBTA techniques

do not consider the execution time itself as a random

variable, but only some of its characteristics. For ex-

ample, the normal distribution can be adequate if we

assume that an ‘oracle model’ exists, which for each

program run can predict its execution time Y almost

perfectly, but still makes a small error due to various

independent factors ignored by the ‘oracle’. In this case,

it is reasonable to apply the normal distribution law to

characterize the error of the ‘oracle’. This is, in fact,

the underlying idea of our method, though the normal

distribution is only adequate for the values of α that

are not too small. As a consequence, our approach can

be applied only to soft real-time systems.

For estimates with very small α, MBTA analyses

use EVT [4]. They apply EVT probability distribu-

tion laws, again, not to the execution times directly,

but to their upper bounds. However, an important re-

quirement for justifying the EVT-based techniques is

that the execution times will have to be independent

and identically distributed (iid) random variables. This

requirement is typically violated, due to the depen-

dency on input data via multiple conditional branches

and loops in the program. The input data parameters

are not iid and in a certain sense they are even ‘non-

random’ (no practically adequate distribution law can

characterize them). Therefore, for programs with com-

plex control flow the applicability of EVT-based tech-

niques is difficult to justify. By contrast, using linear

4 Ayoub Nouri et al.

regression as an ‘oracle model’, our method separates

the non-random factors from the modeling error.

2.2 Linear Regression in the Nutshell

Linear regression is mostly used to predict average es-

timates [6, 8]. Though our goal is to produce upper

bounds, the same approach is used as the starting point.

The ultimate aim of linear regression is to model a

variable of interest Y , called dependent variable, with

explanatory variables (or predictors) Xi. In the context

of MBTA, the dependent variable Y is the program ex-

ecution time, and Y (n) is its nth observation in a series

of measurements. The concrete values of Xi represent

the possibility to ‘explain’ (or ‘predict’), with some pre-

cision, the concrete value of Y .

The fundamental assumptions for the validity of a

linear regression are: (i) Xi have approximately linear

contribution to Y and (ii) the approximation error is

normally distributed. The first assumption is realistic,

since it is always possible to decompose execution time

as a linear combination of contributions by the executed

blocks of code (see Example 1 for an illustration). The

second assumption is motivated in the previous subsec-

tion and it is further confirmed by experiments (Sec-

tion 6). To produce an MET estimate, if we can obtain

bounds for the predictors Xi this will allow us to derive

a bound on Y as well.

In linear regression [5], the dependence of Y on Xi

is given by

Y (n) = β0 + β1X1(n) + . . .+ βp−1Xp−1(n) + ε(n) (1)

where coefficients βi are parameters that have to be

fitted to the measurements Y (n) for minimizing the re-

gression error ε(n) as shown in Fig 4. The dependent

variable Y , the error ε, and the parameters βi are all

modeled as real numbers, since they represent (compo-

nents of) the execution time. Their probability distri-

butions are assumed to be continuous, as it is usually

the case for timing metrics in statistical MET meth-

ods [4, 1]. On the other hand, the predictors Xi are

non-negative integers that count the number of times

that some important branch or loop iteration in the

program is taken (or skipped). The corresponding pa-

rameter βi can be either positive, to reflect the proces-

sor time spent per unit of Xi, or negative, to reflect the

economized time.

Example 1 (Linear regression on a small program code)

Let us consider the following artificial program that

computes the product of two input vectors of integers

(v1 and v2). Then, based on the computed value and

Input: v1, v2 (integer vectors), u (integer)

Output: out

out = v1 * v2;

if(out < 0) {

out = -out;

}

while(out > u) {

out = out * 0.9;

}

return out;

Fig. 3: A sample program code

on a third input parameter u, it computes the final re-

sult out. The execution time Y of the program is given

as: (1) the time required to compute the product of the

input vectors (denoted β0), plus (2) the time required

to execute the instruction in the ‘if’ body (denoted β1)

– whether the ‘if’ branch is executed or not, this is cap-

tured by a predictor X1 – plus (3) the time required to

execute the ‘while’ loop. We denote β2 the execution

time for one iteration, with the total time given as a

product with a predictor X2 that captures the number

of performed iterations.

It is worth to note that X1 depends on the product

of the input vectors v1 and v2, i.e., it captures a depen-

dency on the program’s inputs. Similarly, the predictor

of the number of iterations of the ‘while’ loop X2 de-

pends also on the same product, and on the value of u.

Hence, these dependencies are represented by

Y = β0 + β1X1 + β2X2 + ε

where ε is the regression error, which aggregates the

effects of factors that are not measured such as pipelin-

ing, cache hit ratio, etc. �

From a probabilistic MBTA perspective, equation (1)

captures the ‘non-randomness’ of Y by building a model∑
i βiXi(n), which ‘explains’ its dependence on the fac-

tors Xi with weights βi that reflect the complexity

of the program. Ideally, the remaining ‘non-explained’

part is a random variable β0 + ε(n) with β0 represent-

ing the mean value and ε(n) the random deviation,

whereby ε(n) are hopefully independent and normally

distributed by N (0, σε).

The accuracy of the bounds proposed here depends

on the validity of the aforementioned assumption, though

the bounds are generally robust with respect to devi-

ations from the normal distribution. For justifying the

‘randomness’ of ε, we consider that all non-random fac-

tors are captured by Xi. Finally, the normality of ε is

justified using the central limit theorem based on the

intuitive observation that the sources of execution time

Maximal Software Execution Time: A Regression-based Approach 5

variation, e.g., non-linearity of Xi, are additive in na-

ture and independent.

Execution
Time (𝑌𝑌)

𝑌𝑌�

𝑋𝑋

(𝑋𝑋(𝑛𝑛), 𝑌𝑌(𝑛𝑛))

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛)

Fig. 4: Illustration of the Regression function Ŷ

The exact values of parameters βi in equation 1 are

unknown, and can only be estimated based on mea-

surements, e.g., with the least-squares method. Let us

denote bi the estimate of βi and Ŷ the estimate of Y .

When ε is 0, we get an unbiased regression model

Ŷ (n) = b0 + b1X1(n) + . . .+ bp−1Xp−1(n) (2)

and the difference eres(n) = Y (n)− Ŷ (n), called resid-

ual, serves as an estimator of the error ε(n): ε(n) ≈
eres(n) (see Fig. 4).

For more convenience, we use a vector notation. Let

x = [X0 . . . Xp−1] be the vector of predictors, where

X0 = 1 is an artificial constant predictor that corre-

sponds to b0, and b = [b0 . . . bp−1] the vector of param-

eter estimators. We denote x(n) = [X0(n) . . . Xp−1(n)]

the nth observation of predictors Xi. The regression

model in (2) can thus be rewritten as the vector product

Ŷ (n) = b · x(n)

The model parameters b are obtained from a set

of measurements – the so-called training set – through

a process known as model training (or fitting). In our

case, the training set consists of N measurements of

execution time and predictors. In practice, N is recom-

mended to be N � p, i.e., at least N > 5p [10]. We con-

sider a training-set with predictor measurements orga-

nized into a N ×p matrix Xtrain and the corresponding

N -dimensional vector of execution time measurements

ytrain.

Xtrain =


x(1)

x(2)
...

x(N)

 , ytrain =


Y (1)

Y (2)
...

Y (N)



3 Linear Regression for MET

The Maximal Regression Model is introduced, as a means

to compute conservative MET estimations. For iden-

tifying the most relevant predictors, we propose two

techniques, and we then discuss the technique used to

compute the MET estimate. To ensure accuracy, it is

essential to evaluate the representativeness of the input

data, since we rely on measurements. An appropriate

technique to this end is also proposed here.

3.1 The Maximal Regression Model

The least-squares method provides a closed form for-

mula for computing the vector b from Xtrain and ytrain

(see [5] for details). However, each least-square param-

eter bi is itself a random variable, since it is obtained

from a training-set ytrain ‘perturbed’ with a random er-

ror ε. It turns out, from theoretical studies, that each

estimate bi can be seen itself as a sample from a nor-

mal distribution, since different training sets would lead

to distinct samples bi from the distribution shown in

Fig. 5. This distribution has as mean value the unknown

parameter βi and therefore, the samples bi are likely to

be close to βi.

ββββ b
+

b
-̶-

∆∆∆∆b

b

Fig. 5: Parameter Confidence Interval

However, the model parameters b that simply are

‘close’ to β are not appropriate for the estimation of

METs. We opt for a conservative model consisting of

parameters b+ that are likely to overestimate β. Such

parameters can be obtained using the notion of confi-

dence interval, which is an interval ∆b = [b−, b+] that

likely contains β (cf. Fig. 5), such that

Pr{β ∈ ∆b} = (1− α) (3)

where α is a sufficiently small value, usually specified in

percents, e.g., α = 5 %. By symmetry with the distri-

bution of b, if we use b+ as coefficient estimator, then

our aforementioned model is conservative with proba-

bility (1 − α/2). We therefore conclude to a maximal

6 Ayoub Nouri et al.

regression model

Ŷ +(n) = b+0 + b+1 X1(n) + . . .+ b+p−1Xp−1(n) + ε+ (4)

where ε+ is the maximal error, as opposed to the usual

unbiased regression model given by equation (2). The

b+i are trivially obtained from formulas used to com-

pute b and its confidence interval, which are provided

in popular mathematical packages. Heuristically, we opt

for computing b+i with the same probability bound (1−
α/2) for all i, in order to avoid ‘favoring’ any predictor

over the other predictors.

For the calculation of ε+, i.e., the probabilistic up-

per bound of the residual, and in order to avoid ‘favor-

ing’ it over the other bounds, we use the same prob-

ability such that Pr{ε(n) < ε+} ≥ (1 − α/2). Since

ε ∼ N (0, σε), we would ideally calculate ε+ using the

quantile QN (0,σε)(1 − α/2) = σε · Φ−1(1 − α/2). How-

ever, the exact value of σε is not available and there-

fore we use the formula: ε+ = σ̂+
ε ·Φ−1(1− α/2) where

σ̂+
ε is the calculated probabilistic upper bound on σε

based on measurements. This bound is obtained using

a commonly known property (e.g., [5]) of multivariate

linear regression, according to which σ̂2
ε = S2/K where

S =
∑N
i=1(Ŷ (i)− Ŷ +(i))2 is the sum of squares of the

residual over the N samples of the training set, and K

is a real random variable distributed by χ2 distribu-

tion with (N − p) degrees of freedom. This leads to the

following formula:

ε+ =


√√√√√ N∑

n=1
(Y (n)− Ŷ (n))2

Qχ2(N−p)(α/2)

 · Φ−1(1−α/2) (5)

where Qχ2(N−p) is the quantile function of the distri-

bution of K.

By comparison of equations (1) and (4) all the terms

of the first are likely to be inferior to the corresponding

terms of the second, and therefore Ŷ +(n) is a proba-

bilistic bound of Y (n) (an illustration is provided in

Fig. 6).

To estimate the reliability of the maximal regres-

sion model, let us calculate the chances that, contrary

to expectations, Y (n) > Ŷ +(n). To this end, we con-

servatively assume that this will happen when at least

one of the upper bounds used in (4) is violated. There

are p bounds for the regression coefficients b+i and two

bounds used for ε+ in (5). Recall that we have chosen

all bounds to admit the same violation probability α/2.

Therefore, our model ensures maximal execution time

with the following guarantee:

Pr{Y (n) < Ŷ +(n)} ≥
(

1− (p+ 2)α

2

)
(6)

𝑌𝑌�
𝑌𝑌�+

𝑌𝑌�−

Execution
Time (𝑌𝑌)

𝑋𝑋

Fig. 6: Confidence Zone for Regression Function Ŷ

3.2 Identifying the Predictors

The predictors of a regression model for software exe-

cution times count the number of executions, for each

executed block of code [10]. To this end, every program-

ming construct that introduces branching, e.g., loop

and ‘if’ statements, contributes with at least one po-

tential predictor. This results in a relatively large set of

potential predictors that is denoted as Ppp. We are inter-

ested to identify only a sufficiently small set P ⊆ Ppp
for the regression model; for this purpose, the simple

rule of thumb N > 5 · p with p = |P | is used, as in

similar studies.

The identification process is essential to exclude re-

dundant variables, due to interdependent predictors as

is the case for nested loops, where the (total) number of

inner-loop iterations is potentially strongly dependent

on the number of outer-loop iterations. From each pair

of dependent variables it suffices to keep only one, while

attributing the small additional effect of the other vari-

able to random error ε. Such a process aims to avoid a

potential over-fitting, if overly many variables are kept

in the set of predictors, in which case the model fits

perfectly to the training set, but it cannot reliably pre-

dict any other program execution. This happens when

the model fits exactly not only the ‘true’ linear depen-

dence βiXi, but also the particular sample of random

noise ε encountered in the training set, but not in other

samples.

In applied mathematical studies, the identification

of useful predictors in a set of candidates is an im-

portant problem to solve ([see 5, Chap. 15] and [7,

Chap. 3]). In other studies for execution time modeling

this process is either manual or ad hoc. Here, we pro-

pose a practical and mathematically sound algorithm

for identifying the subset P of Ppp.

3.2.1 Method 1: Stepwise Regression

The main criterion of any strategy for identifying the

right set of predictors is the reduction of the model

Maximal Software Execution Time: A Regression-based Approach 7

),(argmax: ppii PXSNRX =

{ }
{ }ipppp

i

XPP
XPP
\:

:
=
∪=

),(argmin: PXSNRX ii =
sw

ppi PXSNR α>),(

{ }
{ }ipppp

i

XPP
XPP
∪=

=
:

\:

sw
i PXSNR α<),({ } sw

pp XPP α0=
Input

{ }10 ,, −= pXXP 

Output

Yes

Yes

No

No

Fig. 7: Illustration of the Stepwise Regression procedure

error, when adding a new predictor to a previously se-

lected set of predictors. It is thus expected that for a

certain number of selected predictors, new variables do

not reduce the error significantly anymore. The iden-

tification process is then stopped by adopting the hy-

pothesis that the remaining error represents a ‘random

noise’. One of the most well-established methods that

we propose for using in the MET analysis is the stepwise

regression ([see 5] for details).

A tentative set P of predictors is maintained along

the procedure. Initially, P contains the constant pre-

dictor X0 = 1 (i.e., p = |P | = 1), which remains in

the set throughout all subsequent steps. The algorithm

proceeds by adding a variable that is worth to be in-

cluded in P , while removing from P a variable that is

not worth to keep; the same step is repeated until no

progress can be made. When a variable is added, it is

temporarily moved from Ppp to P , and when a variable

is removed it is moved backwards. The algorithm ter-

minates, whenever no other variables are worth to be
added or removed. At the end, we still consider that

P ⊆ Ppp, since all the found predictors come from the

set Ppp.

Whether a variable is considered ‘worth’ to be in-

cluded in P or not depends on the variables that are

already in P ; the decision is taken by evaluating the

least-squares regression Ŷ with and without the can-

didate predictor. A variable is ‘worth’ if its ‘signal to

noise ratio’ is significantly large, where the ‘noise’ is

the total model error (evaluated by the residual sum

of squares) and the ‘signal’ is the contribution of the

variable to the variance of Ŷ . Fig. 7 illustrates the de-

scribed procedure. If the change in variance by keeping

the variable is negligible compared to the total error,

then the variable is not ‘worth’. The whole procedure is

controlled by a parameter αsw that sets a threshold for

variable acceptance/rejection, and is based on statisti-

cal hypothesis-testing procedures under the assumption

that the modeling error is normally distributed.

3.2.2 Method 2: Principal Component Analysis

Principal component analysis (PCA) is a well known

technique for dimensiality reduction [9]: given a vector

x = [X0 . . . X|Ppp|−1] ∈ R|Ppp|, the method produces a

new vector z = [Z0 . . . Zp−1] ∈ Rp such that p < |Ppp|.
The new variables - components can be extracted so as

to be uncorrelated with each other. This addresses the

problems of multicollinearity that may exist among the

original variables. We use PCA to identify regression

predictors. Let us consider x = [X0X1] ∈ R2, a two

dimension vector, and assume that X1 partially cap-

tures some information that is already captured by X0.

It is then possible to ‘compress’ the information in x

in a new vector z = [Z0] ∈ R that contains only the

useful information. A graphical interpretation of this

reduction is shown in Fig. 8.

x(𝑛𝑛)
Projection Error

𝑋𝑋1

𝑋𝑋0

𝑍𝑍0 … … … z(𝑛𝑛)

Fig. 8: Principle Component Analysis illustration

Unlike the stepwise regression method, PCA does

not identify predictors by selection from set Ppp. It is

assumed a priori that all predictors in Ppp are equally

‘interesting’, but since they are dependent on each other

all the information conveyed in Ppp can be ‘compressed’

into a smaller set P ′ of variables. The so-called principal

components Zj are linear combinations of predictors

from Ppp (here p = |P ′|):

Zj=1...p−1(n) = γ
(j)
1 X̆1(n) + . . . γ

(j)
|Ppp|−1X̆|Ppp|−1(n) (7)

where X̆(n) = (X(n) − µX)/σX is a ‘normalized’ and

‘scaled’ version of X, with µX being the average and

σX the standard deviation of X in the training set (Xi

are normalized to make their ranges compatible). Fur-

thermore, in contrast to stepwise regression this method

ignores measurements of Y and focuses only on those

of Xi (there are though some method variants [see 9,

Chap. 8], which take into account Y to some extent).

Thus, PCA has the advantage that predictor identifica-

tion can be performed without execution time measure-

8 Ayoub Nouri et al.

ments on any platform, and can be reused on different

platforms.

As in the previous method, the ‘worthiness’ of a

potential predictor is also measured by a variance met-

ric, but this time its own variance instead of its impact

on the variance of Ŷ . The larger variance implies that

more ‘information’ is conveyed. First, the most ‘wor-

thy’ predictor Z1 is identified, which ‘absorbs’ as much

as possible of the variance from variables X̆i. The sec-

ond predictor Z2 then absorbs the remaining variance

to the largest possible extent, and the process contin-

ues until the required percentage of variance, 1 − αpc
(e.g., 99%), has been absorbed by p−1 variables, while

the rest remains ‘almost constant’ without potential to

bring much information (αpc is a user-provided param-

eter). The vectors γ(1), γ(2), . . . are calculated as nor-

malized eigenvectors of the matrix of Pearson correla-

tion coefficients for the variables X [9], sorted by de-

creasing eigenvalues. Intuitively, they represent vectors

(characterizing a lower dimension surface) onto which

to project data, so as to minimize the projection error

(see Fig. 8)2.

The regression of Y is thus done with predictors Zj
(for numerical reasons, we prefer to normalize not only

Xi, but also Y). An advantage of predictors Zj is that

they are not correlated with each other in the training

set; in fact, they are orthogonal, which is favorable for

doing the linear regression on them. We note that these

variables may also take negative values.

3.3 Pragmatic MET.

Our maximal regression model could be used within

the context of the implicit path enumeration technique

(IPET) by following the approach in [10]. In this case,

the MET would be computed by

ε+ + max
X∈X

(
p−1∑
i=0

b+i Xi

)
(8)

with X the set of all vectors X that result from the

feasible program paths. This is achieved by solving the

integer linear programming (ILP) problem with a set

of constraints on the variables Xi. The constraints are

derived from a static program analysis, which requires

sophisticated tools, as well as from user provided hints,

such as loop bounds.

The IPET method has not yet been implemented in

our analysis framework. For each predictor, we assume

that its minimal and maximal bounds X− and X+ are

2 This should not be confused with the error eres(n) in
the case of Linear Regression (compare with Fig. 4 to see the
difference).

available, either from measurements or as user hint, and

we then calculate the pessimistic estimate:

ε+ + b+0 +

p−1∑
i=1

(bX)+i (9)

where (bX)+ is b+X+ if b+ > 0 or b+X− otherwise.

We refer to this estimate as the pragmatic MET.

In the case of PCA, since Zj can be negative, the

pragmatic MET is calculated as follows:

ε+ +
∑
j

max(b+j Z
+
j , b

−
j Z

+
j , b

+
j Z
−
j , b

−
j Z
−
j) (10)

The pragmatic MET, in general, can be too pes-

simistic; for example, in a switch-case branching it may

associate with every case a separate predictor, and can

then assume that they all take the maximal value si-

multaneously. Nevertheless, the pragmatic MET is safe

with the probability bound in (6), if the regression model

itself is safe with this bound.

3.4 Quality of Input Data: Cook’s Distance

The set of measurements must include all important

scenarios that may occur at runtime. To ensure this, the

engineer has to discover the most influential algorithmic

complexity parameters of the program that may vary

at run time. Then, an input data set has to be found,

where every combination of these factors is represented

fairly.

For the linear regression, a useful mathematical met-

ric of input-data quality is the Cook’s distance. Given a

set of measurements, this metric ranks every measure-

ment n by a numeric ‘distance’ value D(n) that indi-

cates the extent to which the measurement influences

the whole regression model. The model should not be

dominated by ‘odd’ measurements; it is generally rec-

ommended to have D(n) < 1 or even D(n) < 4/N .

For convenience, let us refer to the measurements with

D(n) > θ as the bad samples, for some threshold θ.

These samples should be examined, and one should ei-

ther add more similar samples (so that they are not

exceptional anymore) or remove them from the train-

ing set (keep them for testing).

4 Instrumentation and Measurements

We explain now the instrumentation procedure to get

the measurements, for the set of potential predictors

Ppp upon which the previous analysis can be performed.

In some MBTA approaches, it may be necessary to

instrument multiple blocks of program code to mea-

sure their individual contributions to execution time [1].

Maximal Software Execution Time: A Regression-based Approach 9

This instrumentation approach can be intrusive, whereas

it is likely to obtain inaccurate results when adding

the block contributions, due to various hardware ef-

fects (e.g. pipelining). However, in a regression-based

approach with end-to-end measurements taken over the

entire program, the instrumentation is not intrusive.

For the measurements Y (n) the program has to be in-

strumented only at its start and end. As for the mea-

surements needed for the set of potential predictors Ppp
and in order to obtain their values Xi(n), the instru-

mented program can run on any workstation, instead of

the target platform, but it has to run with the same in-

put data, as those used for the Y (n) measurements. We

refer to these measurements as functional simulations.

Instrumentation for end-to-end execution time mea-

surement is straightforward and can be easily performed

in different ways. In the remainder of this section, we

focus on the instrumentation and measurement for the

set of predictors Ppp, i.e., the functional simulation.

4.1 Instrumentation Points and Traces

The instrumentation for functional simulations consists

of inserting instrumentation points (i-points) into the

source code of the program 3 4. The i-points are in-

serted at every point, where the control flow diverges or

converges, e.g., at the start/end of the conditional and

loop blocks, at the branches of the conditional state-

ments etc. An i-point is a subroutine call with a pa-

rameter q that specifies the i-point’s unique identifier.

For instance, Fig. 9a shows the instrumented version of

the program presented in Fig. 3 in Example 1, where we

have points with q = 1, 2, . . . , 6. As shown in the code,

these i-points are inserted, so as to identify the different

paths followed during any simulation. For instance, the

points q = 2 and q = 3 enable the detection of whether

the ‘if’ branch was taken. The sequence of i-points vis-

ited during the nth simulation run is called i-point trace

and is denoted as Tr(n) = (q1, q2, q3, . . .). Examples

of traces for the instrumented program in Fig. 9a are

(1, 2, 4, 6), (1, 2, 3, 4, 5, 6), and (1, 2, 4, 5, 5, 5, 6), but, in

general, the number of possible traces can be exponen-

tial in the size of the program.

3 For a higher precision, it may be possible to instrument
the binary code for the target platform in a separate binary
executable used only for the construction of Ppp, and still use
the non-instrumented version for the end-to-end execution
time measurements on the target platform.
4 Industrial tools, such as the one in [?], can be used to

automate this intrumentation process. We actually used this
tool for the JPEG experiments presented in Section 6.

ipoint(1);

out = v1 * v2;

ipoint(2);

if(out < 0) {

out = -out;

ipoint(3);

}

ipoint(4);

while(out > i) {

out = out * 0.9;

ipoint(5);

}

ipoint(6)

(a) Instrumented Source Code

1

2

4

3

5

6

Source

Sink

(b) I-point graph

X1 = f(2, 3) – ‘if’ body counter
X2 = f(5, 5) – ‘while’ loop counter

(c) Associated Predictors

Fig. 9: Instrumentation and i-point graph

4.2 Potential Predictors

As the program executes, the subroutines of the i-points

insert their q identifiers into the execution trace. When

the program exits, the trace is saved in a trace file. For

the linear regression, a training set of size N consists of

N i-point traces.

The i-point traces are used to: (i) construct the so-

called instrumentation point graph (IPG) that char-

acterizes the program’s control flow [3] (Fig. 9b) and

(ii) define the set of potential predictors Ppp (the nth

trace is used to obtain the nth value of all predictors

x(n) = [X0(n) . . . X|Ppp|−1(n)]).

The set of all i-points that occur in the training set

yields the vertices Q of the IPG graph and the set of

all simple blocks yields the set Ppp of its directed edges

(the edges are denoted as Ppp, because they correspond

one-to-one to the potential predictors). Thus, the IPG

graph is a digraph (Q,Ppp) with exactly one source and

one sink (vertex that has no incoming, respectively no

outgoing edges). Fig. 9b shows the IPG graph for the

program example (with ‘if’ and ‘while’ statements) in

Fig. 9a.

The value of a potential predictor is computed from

a trace as follows. A pair of points (q, r) that may occur

successively in a trace defines a simple block, i.e., the

part of the program that is executed in between. In

Fig. 9a, the simple blocks are (1, 2), (2, 3), (2, 4), (4, 5),

(5, 5), and (4, 6). For instance, (1, 2) corresponds to the

v1 by v2 multiplication operation. We define the flow

counter f(q, r) as the number of times that a simple

block (q, r) occurs in the trace. The nth value, Xi(n)

10 Ayoub Nouri et al.

of a potential predictor Xi that corresponds to an IPG

edge, Xi → (q, r), is given by the value of the flow

counter f(q, r) for the measured trace Tr(n). In the

current example, the predictor X1 is associated to the

body of the ‘if’ statement, which corresponds to the

edge (2, 3) in the IPG (i.e., f(2, 3)). Predictor X2 is

associated to the body of the ‘while’ loop, i.e., the edge

(5, 5) in the IPG (i.e., f(5, 5)) as shown in Fig. 9c.

In general, we could consider complex code blocks, a

subtrace (q1, q2, q3, . . .), and also count their occurrence

in the trace, which would give us knowledge about se-

quences of simple blocks that can be useful to handle

hardware effects. For example, knowing pairs of subse-

quent simple blocks can help to take into account their

temporal overlaps in pipelining [10]. However, for sim-

plicity, in this work we only use simple blocks.

It is worth mentioning that the parameter β0 (of the

artificial predictor X0) is in general associated to the

part of the program executed unconditionally5. In the

previous example, β0 is associated to the cost of code

block (1, 2). Hence, as already stated in Example 1 the

following regression model is obtained for this program

Y (n) = β0 + β1X1 + β2X2 + ε. In the given set Ppp,

only the specified predictors are linearly independent.

The others are removed as explained in Section 5.1.

5 A Work Flow for MET

We build upon the techniques presented in the previous

sections to introduce an automated work flow for MET

estimation6. The proposed work flow consists of three

major phases: (1) input program instrumentation and

measurements, in order to obtain the set of potential

predictors Ppp, (2) identification of the most relevant

predictors P (or P ′ for PCA), and (3) model instanti-

ation and actual estimation of the MET.

As sketched in Fig. 10, after having completed the

code instrumentation and measurements (i.e., i-point

traces and end-to-end execution times), an IPG is built

(cf. Section 4) that represents the set of all potential

predictors Ppp observed in the i-point traces. The IPG

can be used for performance optimization by remov-

ing useless predictors from Ppp, e.g., constants (cf. Sec-

tion 5.1).

The set of potential predictors Ppp is then further

purified during the predictors’ identification phase to-

wards obtaining the final set of predictors P ⊆ Ppp (or

P ′ for PCA), using one of the methods in Section 3.2.

5 In general, this execution time is never 0 due to different
reasons e.g., initialization; β0 captures this cost.
6 Sources are made available at www-verimag.imag.fr/

~nouri/met-estimation

Program
(source code)

Instrumentation

Functional
Simulation

(workstation/ISS)

End-to-end
Measurement

(Target platform)

IPG Construction
and Simplification

code for
simulation

code for
execution

i-point traces

Predictors identification

Step-wise
Regression

Principle
Components

Analysis

MET Estimation
Pragmatic MET

Conservative MET Estimate

identified
Predictiors 𝑷𝑷/𝑷𝑷𝑷

Model Instantiation
Instantiated Maximal

Regression Model

Cook’s Distance

potential
Predictiors 𝑷𝑷𝒑𝒑𝒑𝒑

Input
data

Thresholds
𝜶𝜶,𝜶𝜶𝒔𝒔𝒔𝒔,𝜶𝜶𝒑𝒑𝒑𝒑,𝜽𝜽

Fig. 10: A simplified view of the MET work flow

Later, during the model instantiation, it is primor-

dial to perform a quality control on the considered in-

put data using the Cook’s distance of Section 3.4), in

order to make sure that the obtained parameter esti-

mations are good e.g., they are not influenced by out-

liers. Otherwise, additional observations with respect to

new inputs data need to be considered or outlier obser-

vations should be removed (at least form the training

set). Once, the quality of the input data and thus the

considered observations (measurements) is established,

the maximal regression model is built as described in

Section 3.1. Finally, a MET bound is calculated using

the pragmatic MET technique of Section 3.3.

It is worth mentioning that measurements are sepa-

rated into two sets, a training set (Xtrain,ytrain) and a

test set (Xtest,ytest)7, and that only the former is used

7 A common practice is to consider 70% for the training set
and 30% for the test set.

www-verimag.imag.fr/~nouri/met-estimation
www-verimag.imag.fr/~nouri/met-estimation

Maximal Software Execution Time: A Regression-based Approach 11

1

2

4

3

2

4

3

2

3 2

rm(1=>2)
Join(1,2)

rm(2=>4)
Join(4,2)

rm(3=>4)
Join(3,2)

f(1,2)

f(2,3)

f(3,4)

f(2,4)

f(2,3)

f(3,4)

f(2,4)

f(2,3)

f(3,4)

f(2,3)

Fig. 11: IPG simplification example (cont. Fig 9)

to construct the model, whereas the latter is used to

evaluate its quality.

5.1 IPG Simplification

Before performing the predictors’ identification, the IPG

‘simplification’ procedure reduces the set Ppp of poten-

tial predictors by removing linearly dependent predic-

tors. This could be very useful when the number of ob-

tained predictors is very large. The IPG simplification

relies on the following observation. For a given vertex

r, which is neither a source nor a sink, we can write the

following ‘structural constraint ’:∑
q∈I

f(q, r) =
∑
s∈O

f(r, s) (11)

where I and O are respectively the set of predecessors

and successors of r in the IPG. The structural con-

straints can be used as part of the IPET model to cal-

culate the IPET MET by solving the ILP [10]. In our

work, we use them to perform graph simplifications.

This process can be seen as a graph transforma-

tion, assuming that the IPG graph is a multi-graph,

i.e., it may contain multiple edges between the same

pair of nodes. The transformation can be roughly rep-

resented by the repetitive selection of an edge between

two different nodes r1 and r2; for each one of them, we

can write (11). First, we substitute the expression for

f(r1, r2) from one equation to another. Next, we join

the two nodes into one (because of the preserved equal-

ity), and finally we remove or redirect the underlying

edge. Fig. 11 illustrates this procedure on a fragment

covering the sub-graph starting in vertex 1 and ending

in vertex 4 of the IPG in Fig. 9b.

The IPG simplification procedure also removes from

Ppp all predictors measured as constants, and it adds an

artificial predictor X0 = 1 that is needed for regression.

6 A JPEG Decoder on a SPARC Platform

We use a JPEG decoder program written in C8 to il-

lustrate our method. The JPEG decoder processes the

header and the main body of a JPEG file. Basically, the

main body consists of a sequence of compressed MCUs

(Minimum Coded Units) of 16 × 16 or 8 × 8 pixels.

An MCU contains pixel blocks also referred to as ‘color

components’, as they encode different color ingredients.

In the color format ‘4:1:1’ an MCU contains six blocks.

For monochromatic images, the MCU contains only one

pixel block. The pixel blocks are represented by a ma-

trix of Discrete Cosine Transform (DCT) coefficients,

which are encoded efficiently over few bits, so that a

whole pixel block can fit in only a few bytes.

The execution time measurements took place on an

FPGA board featuring a SPARC V8 processor with a

7-stage pipeline, a double-precision FPU, a 4 KB in-

struction cache, a 4 KB data cache, a 256 KB Level-2

cache, and an SDRAM. The data caches were reset at

every new program run (i.e., after loading a JPEG im-

age), so that they are always empty at the beginning.

6.1 Instrumentation and Measurements

We used 99 different JPEG images of different sizes

and color formats, which yields 99 execution traces and

their execution times Y 9. After the IPG simplification

procedure, 103 potential predictors were detected from

the generated traces. We then randomly split the set of

99 measurements into the training set consisting of N =

70 cases, and the test set with 29 cases. In the training

set, 8 predictors showed up as constants and they were

therefore eliminated, thus ending up with |Ppp| = 95

potential predictors, plus one constant X0 = 1 added

by default. Since we had a training set size N = 70,

by the rule of thumb, we should not exceed N/5 = 14

variables, to avoid over-fitting.

It is worth mentioning that the maximal observed

execution time over the whole set of measurements cor-

responds to an image of a particularly large size, yield-

ing maximal measured time of 23643 Mcycles, while the

mean time was only 1000 MCycles. In the remaining

8 Downloaded from Internet, presumably authored by P.
Guerrier and G. Janssen 1998
9 We could not obtain more measurements because the

FPGA card was available for a limited period of time, and
loading data into it required some manual work.

12 Ayoub Nouri et al.

discussion, all timing values (e.g., errors) are reported

in Megacycle units. We used α = 0.05 for the maximal

regression parameters and MET, but we also present

the obtained estimate for α = 0.00005.

6.2 Predictors Identification and Model Construction

6.2.1 Basic Model

The simplest model to build is when p = 1, i.e., when

the execution time is modeled as a purely random vari-

able without non-random contributors, of the form β0+

ε(n). This corresponds to a näıve measurement-based

method, where the execution time does not account for

the non-random factors. With such a strong input data

dependency as in JPEG decoders, we obviously do not

expect adequate results when using the aforementioned

model. Indeed, we carried out a normality test for Y

using the Kolmogorov-Smirnov procedure that reported

only a mere 2% likelihood (normality was rejected); this

was not surprising as the histogram for Y was consid-

erably skewed and had a few extreme values, due to

images of exceptionally large size. The obtained error

was large compared to the mean ε+ = 6650 and the

pragmatic MET was found to be ≈ 8000, which under-

estimates the maximal measured time. This adversity

is the consequence of the relatively large model error

whose distribution was not normal and which was ac-

tually not random (it could be easily controlled, e.g., by

using additional large JPEG images).

In line with our methodology, these observations

point to a need of adding more predictors into the model

(e.g., those characterizing the image size), in order to

ensure a smaller, random and normally distributed er-

ror, so that the computation of MET is more accurate.

6.2.2 Extended Model using Stepwise Regression

The αsw was first tuned (≈ 20%), in order to obtain

p = 6, i.e., to have 5 predictors. Table 1 shows the

identified variables – in the order of their identification

– and the corresponding MET calculation on the train-

ing set. The first predictor f(271, 244) corresponds to

the byte count in the ‘main body’ of JPEG. The second

counter f(90, 30) gives the pixel block count specifically

for those blocks that had correct prediction of the 0-th

DCT coefficient. Typically, such blocks are not costly in

terms of needed bytes for encoding. At the same time,

the contribution of the costly blocks can be captured

by the first predictor. Hence, using the f(90, 30) as sec-

ond predictor can account for the additional computa-

tions that were not accounted for by the first predictor;

a similar variable in Ppp, the total pixel block count,

f(406, 26), would give less additional information and

hence was not identified by our method.

The remaining predictors have less impact on the

execution time. The third predictor, f(101, 101), corre-

sponds to the number of elements in the color format

minus one, e.g., 5 = 6−1 for the 4:1:1 format and 0 for

monochromatic images. Equivalently, it gives the num-

ber of pixel blocks per MCU block minus one. We note

that this predictor has a negative regression coefficient.

The JPEG decoding is characterized by two related cost

components: a cost per pixel block (reflected by the first

two predictors) and a highly correlated cost per MCU

block. The more pixel blocks fit into one MCU, the

less overhead per pixel block has the MCU processing

and this presumably explains why the found coefficient

is negative. The fourth identified predictor, f(80, 81),

counts the number of ‘padded’ image dimensions, X and

Y, i.e., the dimensions which are not exactly propor-

tional to the MCU size (16 or 8 pixels). When an image

has such dimensions, less processing is required and less

data copying for ‘partial’ MCU blocks, which presum-

ably explains the negative coefficient for this predictor.

Finally, the predictor f(409, 410) is zero for colored im-

ages. This predictor counts the total number of MCUs

in monochromatic images and its impact is presumably

complementary to that of f(101, 101).

The obtained pragmatic MET is 26696, which, as

expected, exceeds the observed maximal time 23643.

For the MET, we used the X+ and X− observed in

the measurements. Compared to p = 1, we see a sig-

nificantly smaller error ε+ = 240. In the test set, we

saw reasonably tight overestimations from Ŷ +(n), how-

ever, two pronounced underestimations were detected

as shown in Fig. 12a. These results were actually ob-

tained without the Cook’s input quality assurance pro-

cedure described in Section 3.4.

By a more careful analysis of the input samples, we

saw that some of them have a Cook’s distance signif-

icantly larger than all other samples. Our quality as-

surance procedure has moved the two samples from the

training set to the test set and we re-constructed the

model for p = 6 (results are reported in Table 1). The

obtained error was then reduced to ε+ = 52 and we

observed a tight overestimation for all samples in the

test set as shown in Fig. 12b. The normality test of the

residual returned 26% likelihood on the training set.

The MET has become less accurate, reaching 28048.

This is presumably explained by the degraded stabil-

ity of regression accuracy for the bad samples (i.e., the

ones with the large Cook’s Distance); the sample that

provided X+ and maximal Y was among such samples.

This sample corresponded to a monochromatic image

of exceptionally large size, whereas a vast majority of

Maximal Software Execution Time: A Regression-based Approach 13

p b− b+ X− X+ (bX)+

× X × X × X × X × X
(Constant) 409.660 143.83 637.29 194.18 1 1 1 1 637 194
f(271, 244) 0.010 0.0011 0.011 0.0011 3688 60480 1818500 1852200 19752 2204
f(90, 30) 0.055 0.0064 0.070 0.0069 28 2581 27215 129330 1917 901
f(101, 101) −49.506 0.0516 −11.530 0.1058 0 6 5 1635 0 173
f(80, 81) −113.010 −14.454 −26.009 −5.958 0 0 2 5 0 0
f(409, 410) 0.013 0.9401 0.022 3.368 0 8 192280 37 4150 124

ε+ − − − − − − − − 240 52
Pragmatic MET − − − − − − − − 26696 28048

Table 1: Stepwise Regression results in the training set for p = 6 and α = 0.05; results are obtained with (X) and

without (×) outliers handling using the Cook’s Distance metric

other samples were color images of much smaller size.

In practice, such a situation should be avoided by well

prepared measurement data. For technical reasons, we

could not repair the situation by adding more measure-

ments, but we decided to keep the bad samples for illus-

trative purposes. An observation that should be made,

though, is that the instability did not result in unsafe

underestimation, but instead in a safe overestimation.

By experimenting with larger values of p, we found

that the model with p = 9 was optimal. The error ε+

was reduced to 35 and stopped improving, thus show-

ing saturation. With more variables, a degradation of

model tightness was observed, probably because the

new parameters b started getting ‘blurred’, showing a

∆b much larger than b. The optimal p = 9 yielded 97%

error normality likelihood, with tight overestimations

for all measured samples except for the bad ones; the

resulting MET was 56538, not particularly tight due

to bad samples, but still safe. From (6), this estimate

corresponded to Pr > 0.725 – for α = 0.05. The MET
estimations using the same model at Pr > 0.999725

amounts to 58859. As it is shown in Fig. 13a, the corre-

sponding maximal regression model showed tight over-

estimations over the measurements not only for α =

0.05 but also for α = 0.00005. In Fig. 13b, the his-

togram of residual error is shown that is close to the

normal distribution. This is in line with the 97% esti-

mate of normality test and it justifies the use of statis-

tical formulas associated with linear regression.

6.2.3 Extended Model using PCA

In this section, we discuss the results of additional anal-

yses performed on the same data (from the JPEG ex-

ecution time measurements) using the PCA approach.

Our goal was to get more insights on the execution time

bounds, and to study the strength and weaknesses of

the two methods. A detailed discussion on this matter

is provided later in Section 6.2.4.

We follow the same analysis steps performed for

stepwise regression. The αpc was first tuned (≈ 15%), in

order to obtain p = 6, i.e., to have 5 predictors. Recall

that for PCA, (1−αpc) expresses the percentage of vari-

ance we want to retain in our model, i.e., in this case,

we retain 85% of the original variance. Table 2 shows

the identified variables and the corresponding error ε+

and MET. It is worth mentioning that in contrast to

stepwise regression, predictors identified by PCA have

no clear meaning with respect to the original ones,

i.e., they correspond to combinations of predictors com-

pressed into one, as explained in Section 3.2.210. The

obtained pragmatic MET is 14828, which underesti-

mates the observed maximal time (23643). As expected,

the observed error was also quite high ε+ = 1155. This

potentially suggests that the number of predictors to

consider for PCA should be higher than stepwise re-

gression to enhance the quality of the obtained MET.

Further explorations showed that a model with p =

18 variables is optimal with respect to the value and

the quality of the obtained error. More precisely, the

obtained error was ε+ = 41 and the normality test on

the residuals was ≈ 96% in this case (see table 3 for

the complete set of predictors). Adding more variables

enhances the quality of the model (reduces the error),

but degrades the normality of the residuals as shown

in Fig. 14. The latter shows the impact of increasing

the number of predictors on the value of the error (ε+)

and on the normality likelihood of the residuals. For

instance with 20 variables we observed an error ε+ =

34, however the normality likelihood of residuals was

only 22%. The figure confirms that p = 18 is a good

compromise regarding the two criteria related to the

error (value and normality). Note that with this choice

we violate the rule of thumb (14 variables). We believe

10 Matching PCA predictors back to the original ones (or
to the ones obtained by using stepwise regression) is feasible,
but requires some additional work. For simplicity, we choose
not to show it here.

14 Ayoub Nouri et al.

p b− b+ Z− Z+ (bZ)±

(Constant) 677 924 1.0 1.0 924
Z1 −35.12 23.98 −3.73 8.82 211
Z2 −9.74 61.07 −5.2 15.66 956
Z3 −65.98 33.93 −6.06 8.86 400
Z4 −107.6 10.9 −6.7 5.9 725
Z5 273.4 460.7 −2.05 5.2 2437

ε+ − − − − 1155
Pragmatic MET − − − − 14828

Table 2: PCA Results in the Training Set for p = 6 and α = 0.05; results are obtained with outliers handling

that this can be tolerated, as far as the difference is not

too important.

It is worth mentioning that since the normality like-

lihood of residuals is not monotonically decreasing, we

cannot be sure that p = 18 maximizes it. We can argue

that this choice is inline with the principle of parsimony,

i.e., it ensures lower predictors. Fig. 14 indeed shows

that: (i) less variables cannot provide better perfor-

mance (error value/normality trade-off), and (ii) even

if with more variables we may obtain a better perfor-

mance (which is very unlikely given the experiment re-

sults), we can settle for the best performance providing

the least predictors, i.e., p = 18. The pragmatic MET

using α = 0.05 was equal to 39153 in this case, and

we obtained tight overestimation as shown in Fig. 15a.

From (6), this estimate corresponded to Pr > 0.5 (for

α = 0.05)11. The MET estimations using the same

model at Pr > 0.9995 (for α = 0.00005) amounts to

46786 and it shows a tight overestimation as illustrated

also in Fig. 15a. Similarly, in line with the obtained nor-

mality likelihood, the histogram of residuals in Fig. 15b

shows a normal-like shape.

6.2.4 Observations and Discussion

Different observations can be made out of the previous

analyses regarding the two proposed methods.

Number of predictors. One can see that compared to

PCA, stepwise regression retains less variables in the

model (e.g., p = 8 out of |Ppp| = 95) with tight over-

estimations and a small and normally distributed error

(ε+ = 35). The reason is that the stepwise regression

algorithm takes into account execution time measure-

ments Y when identifying the most relevant predictors.

Recall that, in this algorithm, the decision to keep a pre-

dictor or to remove it, is performed mainly with respect

to its impact on Y . In contrast, PCA requires more vari-

ables (e.g., p = 18 for the same example) to produce

11 The small probability for the same α in the case of step-
wise regression is due to the fact that (6) takes into account
the number of predictors p, which is greater in this case.

tight overestimations. This number of variables was the

best observed trade-off, albeit it produces a higher er-

ror ε+ = 41 than stepwise regression. This could be

explained by the fact that PCA does not take into ac-

count Y for predictors identification. It performs a di-

mensiality reduction on the predictors independently of

their impact on the execution time Y .

Experiments easiness. The last point can be seen as an

advantage in favor of PCA when computing different

MET estimations for different target platforms. In the

case of PCA, since it is independent from Y , predictors

identification is performed once (on Xtrain, obtained by

functional simulation). However, since in such situation

Y will be measured on different target platforms, step-

wise regression will be repeated for each new measure-

ment. Recall the setting explained in Section 4.

Estimation tightness. Another advantage of PCA is that

it produces tighter MET than stepswise regression. For

instance for α = 0.00005 in the JPEG case study, the

obtained MET using PCA was 46786, whereas it was

much larger (58859) with stepswise regression. As stated

earlier, adding more variables in the case of stepwise re-

gression, impacts the quality of the new parameters b,

i.e., they get ‘blurred’, showing a ∆b much larger than

b. However, since these variables are computed to be al-

ways orthogonal in PCA, the impact on the interval ∆b

is almost neglected and the pragmatic MET estimation

do not overshoot.

Results interpretability. The two methods can be fur-

ther distinguished with respect to the interpretability

of the obtained model. From this perspective, mod-

els produced by stepwise regression are easier to inter-

pret as they contain predictors that represent a subset

of the original set and which can be straightforwardly

matched with their code blocks counter-parts. This is

less evident when using PCA since predictors are ob-

tained, in this case, by combining together original pre-

dictors. Thus, more work is required to match them

back to the underlying blocks of code.

Maximal Software Execution Time: A Regression-based Approach 15

p b− b+ Z− Z+ (bZ)±

(Constant) 1011 1203 1 1 1203
Z1 −1.53 1.21 −3.73 8.84 10
Z2 22.28 25.63 −5.17 15.71 402
Z3 −7.19 −3.12 −6.10 8.52 43
Z4 29.66 34.10 −6.50 6.72 229
Z5 549.09 620.60 −1.56 6.68 4151
Z6 145.27 160.46 −2.73 2.53 406
Z7 −153.04 −122.85 −1.98 4.80 304
Z8 −58.85 −44.10 −1.22 3.56 71
Z9 −85.02 −43.11 −2.41 2.24 205
Z10 39.97 72.23 −1.43 1.50 109
Z11 7.14 26.06 −1.77 0.99 25
Z12 124.59 481.33 −1.57 0.37 179
Z13 −215.17 −83.59 −0.88 0.97 190
Z14 −226.68 −107.66 −0.50 1.22 114
Z15 62.76 409.86 −0.78 0.24 101
Z16 −85.04 184.82 −0.35 0.43 79
Z17 −630.34 −191.97 −0.23 0.14 148

ε+ − − − − 41
Pragmatic MET − − − − 39153

Table 3: PCA Results in the Training Set for p = 18 and α = 0.05; results are obtained with outlier handling

Common shortcoming. Finally, we recall that the prag-

matic MET calculation for the two methods is likely

to incur extra overestimation by including unfeasible

paths. In fact, this is presumably the case for the model

obtained with stepwise regression for p = 6, as the

calculation in Table 1 may combine a relatively large

byte and block count that is typically required for col-

ored images with pessimistic contributions of the pre-

dictors representing monochromatic images. With the

IPET approach this possibility would be excluded and

a more realistic worst-case vector X would have been

obtained. A lower bound on hypothetical IPET results

with that model is 25764, which is calculated as the

observed maximum value of Ŷ +(n).

7 Related Work

Historically, linear regression and other model fitting

techniques have been mostly used to predict average,

not conservative, software performance in terms of ex-

ecution time, e.g., [6], and energy consumption. A

regression for maximal execution time was proposed

in [10], but, unlike our work, their regression model

is not based on statistical techniques. Instead, the au-

thors sketch an ad hoc linear programming based ap-

proach and they admit that additional future work is

still required. In contrast to our work, all potential pre-

dictors are included in the model, instead of a small

subset of the significant ones, and therefore their tech-

niques presumably require many more measurements to

avoid overfitting, and more costly calculations to esti-

mate all parameters. The coverage criteria are based on

existence of an hypothetical exact model with a large

enough number of variables, which should be known,

whereas we tolerate presence of error and estimate the

coverage probabilistically. On the other hand, they have

showed how a maximal regression model, such as ours,

could be combined with existing complementary WCET

techniques for calculating tighter execution time bounds

than our pragmatic MET formula.

In [8], regression analysis is used in the context ex-

ecution time prediction. The proposed method, called

SPORE, considers polynomial regression models, as op-

posed to our work. Although it fundamentally differs

from our work, the SPORE method is faced with similar

challenges, namely, identifying a relevant compact set

of predictors. Two ways are proposed in [8], which are

both variants of the LASSO (least absolute shrinkage

and selection operator) [7] statistical technique. How-

ever, since used for prediction, the selection method

seems to give an important weight to the computation

cost of each predictor. This may result in eliminating

relevant predictors. Furthermore, no clear indication is

given regarding the choice of the input data sample and

its impact on the accuracy of the obtained model.

Among the works on statistical WCET analysis, we

only consider those that take into account non-random

input data parameters. One of the methods proposed

in [4] is to enumerate execution paths of the program

and treat them separately, however this approach is ap-

propriate only for programs with simple control flow

structure. Another approach is proposed in [1]. In that

16 Ayoub Nouri et al.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

test set

E
xe

cu
tio

n
T

im
es

 (
M

cy
cl

es
)

Actual and Predicted Execution Times

Actual
alpha=0.050000

(a) without outlier handling (Cook’s Distance)

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

test set

E
xe

cu
tio

n
T

im
es

 (
M

cy
cl

es
)

Actual and Predicted Execution Times

Actual
alpha=0.050000

(b) with outlier handling (Cook’s Distance)

Fig. 12: Stepwise Regression results for p = 6 and α =

0.05; results are obtained on the test set

work, program paths are modeled using ‘timing schema’,

which split the program into code blocks. The WCET

distributions of each block are measured separately and

then the results for the different blocks are combined.

However, this approach requires executing instrumenta-

tion points together with timing measurements, which

introduces the unwanted probe effect.

8 Conclusions

In this paper, we have presented a new regression-based

technique for the estimation of probabilistic execution

time bounds. Unlike WCET analysis techniques, it can-

not ensure safe estimates at very high probability levels,

but it can be utilized for preliminary WCET estimates

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

test set

E
xe

cu
tio

n
T

im
es

 (
M

cy
cl

es
)

Actual and Predicted Execution Times

Actual
alpha=0.050000
alpha=0.000050

(a) Obtained execution times (on test set)

-30 -20 -10 0 10 20 30 40
0

5

10

15

20
Residual in training set (Mcycles)

(b) residuals (on training set)

Fig. 13: Stepwise Regression results for p = 8; results

obtained with outlier handling

and in the context of non safety-critical systems. We

have described a complete methodology for model con-

struction, which includes two algorithm for identifying

the proper model variables and an algorithm for finding

conservative model parameters. So far, this technique

was tested with only one program, a JPEG decoder,

through a limited set of measurements. Nevertheless, it

has shown promising results, by giving tight overesti-

mations in the tests.

In future work, it would be interesting to combine

the presented regression technique with a complete WCET

analysis flow using implicit path enumeration techniques

and to study how to model hardware effects using spe-

cially defined predictors, similarly to [10]. An investi-

gation of possible connections between regression and

Maximal Software Execution Time: A Regression-based Approach 17

6 8 10 12 14 16 18 20
1e+1

1e+2

1e+3

1e+4

E
rr

or
 (

ep
si

lo
n^

+
)

6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of predictors p

R
es

id
ua

l l
ik

el
ih

oo
d

of
 n

or
m

al
ity

 (
%

)

Fig. 14: Value of the ε+ (Log scale) and residuals nor-

mality likelihood for different numbers of predictors

extreme value theory is also needed, in order to produce

high-probability bounds, as in [4]. Finally, we observed

that by putting too many variables into the multi-variate

regression analysis the estimation of model parameters

is weakened, which manifests in ‘blurred’ parameter

confidence intervals. Therefore, it is interesting to in-

vestigate splitting the program into blocks character-

ized by a smaller set of variables and combining the

results by their joint distributions, as in [1].

References

1. Bernat G, Colin A, Petters SM (2002) WCET anal-

ysis of probabilistic hard real-time system. In: Proc.

RTSS’02, IEEE, pp 279–288

2. Bernat G, Burns A, Newby M (2005) Probabilistic

timing analysis: An approach using copulas. J Em-

bedded Comput 1(2):179–194, URL http://dl.

acm.org/citation.cfm?id=1233760.1233763

3. Betts A, Bernat G (2006) Tree-based WCET anal-

ysis on instrumentation point graphs. In: Proc.

ISORC’06, IEEE, pp 558–565

4. Cucu-Grosjean L, Santinelli L, Houston M, Lo C,

Vardanega T, Kosmidis L, Abella J, Mezzetti E,

Quiñones E, Cazorla FJ (2012) Measurement-based

probabilistic timing analysis for multi-path pro-

grams. In: Proc. ECRTS’12, IEEE, pp 91–101

5. Draper NR, Smith H (1981) Applied regression

analysis (2nd edition). Wiley

6. Eskenazi EM, Fioukov AV, Hammer DK (2004)

Performance prediction for component composi-

tions. In: CBSE’04, Springer, pp 280–293

7. Hastie T, Tibshirani R, Friedman J (2009)

The elements of statistical learning: data min-

ing, inference and prediction (2nd edition).

0 5 10 15 20 25 30
0

1000

2000

3000

4000

test set

E
xe

cu
tio

n
T

im
es

 (
M

cy
cl

es
)

Actual and Predicted Execution Times

Actual
alpha=0.050000
alpha=0.000050

(a) Obtained execution times (on test set)

-60 -40 -20 0 20 40
0

5

10

15

20
Residual (in Mcycles) in training set

(b) residuals (on training set)

Fig. 15: PCA results for p = 18; results obtained with

outlier handling (Cook’s Distance)

Springer, URL http://www-stat.stanford.edu/

~tibs/ElemStatLearn/

8. Huang L, Jia J, Yu B, Chun BG, Maniatis P,

Naik M (2010) Predicting execution time of com-

puter programs using sparse polynomial regression.

In: Proc. NIPS’10, Curran Associates Inc., USA,

pp 883–891, URL http://dl.acm.org/citation.

cfm?id=2997189.2997288

9. Jolliffe I (2002) Principal Component Analysis.

Springer Series in Statistics, Springer, URL https:

//books.google.fr/books?id=_olByCrhjwIC

10. Lisper B, Santos M (2009) Model identification for

WCET analysis. In: Proc. RTAS’09, IEEE, pp 55–

64

http://dl.acm.org/citation.cfm?id=1233760.1233763
http://dl.acm.org/citation.cfm?id=1233760.1233763
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://dl.acm.org/citation.cfm?id=2997189.2997288
http://dl.acm.org/citation.cfm?id=2997189.2997288
https://books.google.fr/books?id=_olByCrhjwIC
https://books.google.fr/books?id=_olByCrhjwIC

18 Ayoub Nouri et al.

11. Poplavko P, Nouri A, Angelis L, Zerzelidis A, Ben-

salem S, Katsaros P (2017) Regression-based sta-

tistical bounds on software execution time. In: Ver-

ification and Evaluation of Computer and Com-

munication Systems - 11th International Confer-

ence, VECoS 2017, Montreal, QC, Canada, Au-

gust 24-25, 2017, Proceedings, pp 48–63, DOI

10.1007/978-3-319-66176-6 4

12. Wilhelm R, Engblom J, Ermedahl A, Holsti N,

Thesing S, Whalley D, Bernat G, Ferdinand C,

Heckmann R, Mitra T, Mueller F, Puaut I,

Puschner P, Staschulat J, Stenström P (2008) The

worst-case execution-time problem – overview of

methods and survey of tools. ACM Trans Embed

Comput Syst 7(3):36:1–36:53

	Introduction
	Common Probabilistic Techniques
	Linear Regression for MET
	Instrumentation and Measurements
	A Work Flow for MET
	A JPEG Decoder on a SPARC Platform
	Related Work
	Conclusions

