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Abstract

Given a Discrete Time Markov Chain M and a probabilistic temporal logic
formula ϕ, where M violates ϕ, the problem of Model Repair is to obtain a
new model M ′, such that M ′ satisfies ϕ. Additionally, the changes made to
M in order to obtain M ′ should be minimum with respect to all such M ′.
The state explosion problem makes the repair of large probabilistic systems
almost infeasible. In this paper, we use the abstraction of Discrete Time
Markov Chains in order to speed-up the process of model repair for temporal
logic reachability properties. We present a framework based on abstraction
and refinement, which reduces the state space of the probabilistic system to
repair at the price of obtaining an approximate solution. A metric space is
defined over the set of DTMCs, in order to measure the differences between
the initial and the repaired models. For the repair, we introduce an algorithm
and we discuss its important properties, such as soundness and complexity.
As a proof of concept, we provide experimental results for probabilistic sys-
tems with diverse structures of state spaces, including the well-known Craps
game, the IPv4 Zeroconf protocol, a message authentication protocol and the
gambler’s ruin model.
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1. Introduction

Given a model M and a property ϕ, the problem of model checking is to find
if the property is satisfied by the model [1]. Today, a number of mature model
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checking algorithms exist, for probabilistic and non probabilistic models. If
the property is not satisfied, some algorithms return a cause for the refutation
of the property known as counterexample.

The problem of model repair is an extension of the model checking prob-
lem for the case where the property is refuted. More specifically, the aim
of model repair is to find the minimal changes to the model, such that the
property ϕ, which has been violated in the original model, will be satisfied.
The model repair problem has been examined in the probabilistic setting for
the first time in [2].

The state space explosion problem is inherent in model checking and
makes its application infeasible to large models. This problem is also present
in existing probabilistic model repair techniques, which aim to directly change
the model under repair. For example, in [2] the authors transform the repair
problem to a non-linear optimization problem using parametric model check-
ing, and the time needed for computing a repaired model increases rapidly
with respect to the size of the state space.

The main method for fighting the state space explosion in model check-
ing is the use of abstraction techniques [3, 4, 5]. Such an approach has also
been used in the non-probabilistic setting, for the repair of models with large
state spaces [6, 7]. Inspired from the use of abstraction in model check-
ing and non-probabilistic model repair, we present here a framework based
on abstraction and refinement for the repair of probabilistic models. More
specifically, we focus on Discrete Time Markov Chains (DTMCs) and their
repair with respect to temporal logic reachability properties.

The main contributions of our paper are:

• We introduce a framework for the repair of a DTMC with respect to a
(not-nested) Probabilistic Computation Tree Logic (PCTL) reachabil-
ity formula, using an Abstract Discrete Time Markov Chain (ADTMC)
for the given DTMC and the 3-valued semantics of PCTL over ADTMCs.
Based on a strong preservation theorem, if a PCTL property is refuted
or satisfied in the ADTMC (abstract model), then the same also holds
for the concrete DTMC [8].

• A metric space is defined over the DTMCs with the same state labeling,
in order to measure the distance of repaired DTMCs from the original
DTMC.

• We introduce a Probabilistic Abstract Model Repair (PAMR) algo-
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rithm that transforms the DTMC repair problem to a non-linear mini-
mization problem for the state space of the abstract model, instead of
the concrete one. If a solution is found, the repaired DTMC is returned,
which corresponds to an approximate (not the optimal) solution; oth-
erwise, the algorithm is iteratively applied to refined ADTMCs until a
solution is found. The refinement can be potentially adapted by the
analyst, for implementing alternative repair strategies.

• We analyze the PAMR computational gains and more specifically the
achieved reduction in the expensive non-linear optimization and lin-
ear equation solving problems, which are involved respectively in the
concrete model repair and model checking techniques.

• As a proof of concept, we provide experimental results for the DTMCs
of extended versions of the Craps game, the IPv4 Zeroconf protocol, a
message authentication protocol and the gambler’s ruin model.

The paper is organized as follows. In Section 2, the notion of DTMC is
introduced which is the formalism for the concrete model in our framework.
Section 3 discusses how an ADTMC can serve as an abstraction of a DTMC
and how a reachability PCTL formula can be verified in an ADTMC. In
Section 4, the model repair problem for probabilistic systems is formulated
together with a metric space for DTMCs. We present the abstract model
repair process for probabilistic systems in Section 5 together with the basic
model repair operations. The PAMR algorithm is described in Section 6.
The algorithm’s steps are illustrated using an application in Section 7, where
we also elaborate on the method’s efficiency gains, its cost in terms of the
solution’s optimality and its flexibility perspectives. In Section 8, we present
the experimental results for extended models with progressively larger state
spaces of the Craps game, the IPv4 Zeroconf protocol, a message authentica-
tion protocol and the gambler’s ruin model. The related work is reviewed in
Section 9 and we conclude with Section 10, where we also discuss the future
work.

2. Reachability PCTL properties over DTMCs

Let AP be a set of atomic propositions and the set Lit of literals given as:

Lit = AP ∪ {¬p : p ∈ AP}
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Figure 1: A Discrete Time Markov Chain.

Definition 1. A (labeled) Discrete Time Markov Chain (DTMC) is a 4-
tuple M = (S, sinit, P, L), where:

1. S is a finite set of states;

2. sinit ∈ S is the initial state;

3. P : S×S → [0, 1] is a transition probability function with
∑

s′∈S P (s, s′)
= 1 for all s ∈ S;

4. L : S → 2Lit is a state labeling function such that ∀s ∈ S, ∀p ∈ AP ,
p ∈ L(s)⇔ ¬p /∈ L(s).

A DTMC is a transition system with labeled states and probabilities
assigned to its transitions.

Example. (ROBOT) We use a robot system as a running example. The
DTMC for the robot system is shown in Fig. 1. The robot moves among
states with different color and tries to reach a state, where the color will
be green. The robot is “fair”, in the sense that for each state the transition
probabilities to the directly accessible states are equal

(
1
3

)
. The set of atomic

propositions for the robot DTMC is AP = {q} with q ≡ (color = green). �

Definition 2. A path π in a DTMC M = (S, sinit, P, L) is an (infinite)
sequence π = [s0, s1.s2, ...]; we denote by π[i] the (i+1)-th state of π. A path
fragment ρ = [s0, s1.s2, ..., sn] is a finite prefix of a path.

Definition 3. Let PathMs be the set of all paths starting from state s. Let
Ω be the set PathM =

⋃
s∈S Path

M
s and Cyl(s0, ..., sk) be the (cylinder) set
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of states s0, ..., sk, i.e. the set of all paths in PathM with prefix s0, ..., sk. For
any such Cyl, a probability measure x is defined such that:

x(Cyl(s0, ..., sk)) =
k−1∏
i=0

P (si, si+1)

The cylinder sets include paths in DTMCs, and their probability measure
is used to evaluate the probability of reachability properties, which can be
expressed in Probabilistic Computation Tree Logic (PCTL).

Definition 4. The syntax of the reachability fragment of PCTL over a set
of atomic propositions AP is given by the following grammar:

ϕ ::= P./p[Fψ] |P./p[F≤kψ]

ψ ::= true|q|¬ψ|ψ ∨ ψ|ψ ∧ ψ
where q ∈ AP , p ∈ [0, 1], k ∈ N and, ./∈ {<,≤,≥, >}

Def. 4 is focused on reachability properties of PCTL without nested prob-
abilistic quantifiers. The model checking problem for reachability properties
is reduced to the solution of a system of equations, as it is shown in Def. 5
for unbounded properties and in Def. 6 for bounded properties .

Definition 5. Let M = (S, sinit, P, L) be a DTMC. The probability measure
xs of a state s ∈ S to satisfy the property Fψ is defined as:

xs =


1 if (M, s) |= ψ

0 if there is no path from s to a state satisfying ψ∑
t∈S

P (s, t) · xt otherwise

Definition 6. Let M = (S, sinit, P, L) be a DTMC. The probability measure
xks of a state s ∈ S to satisfy the property F≤kψ with k ∈ N is defined as:

xks =



1 if (M, s) |= ψ

0 if there is no path from s to a state satisfying ψ

or there is a path from s to a state satisfying ψ

and k = 0∑
t∈S

P(s, t) · xk−1
t otherwise
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3. Abstract DTMCs

Definition 7. Given a transition probability function P : S × S → [0, 1]
defined over a finite set of states S, the extended transition probability func-
tion P̂ : S × 2S → [0, 1] is defined, such that ∀s ∈ S, S ′ ⊆ S, P̂ (s, S ′) =∑

s′∈S′ P (s, s′).

Definition 8 ([8]). An Abstract Discrete Time Markov Chain (ADTMC) is
a 5-tuple M̂ = (Ŝ, ŝinit, P

`, P u, L̂), where:

1. Ŝ is a finite set of states ;

2. ŝinit ∈ Ŝ is an initial state;

3. P ` : Ŝ × Ŝ → [0, 1] and P u : Ŝ × Ŝ → [0, 1] are two transition proba-
bility functions, such that for all ŝ ∈ Ŝ: P̂ `(ŝ, Ŝ) ≤ 1 ≤ P̂ u(ŝ, Ŝ) and
P `(ŝ, ŝ′) ≤ P u(ŝ, ŝ′) for all ŝ′ ∈ Ŝ;

4. L̂ : Ŝ → 2Lit is a state-labeling, such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled
by at most one of p and ¬p.

In an ADTMC, the exact transition probability between any two states is
not defined explicitly, but instead an upper and a lower bound for this proba-
bility is given. We therefore call the P ` and P u as lower and upper transition
probability functions. Consequently, the verification of a PCTL formula ϕ
over an ADTMC may yield an indefinite answer (⊥). The semantics of a
reachability PCTL formula ϕ at a state ŝ of an ADTMC M̂ is given in Def. 9
(for a bounded reachability property P./p[F

≤kψ] the semantics differs in that
only the finite paths with length k are taken into account).

Definition 9 ([8]). Let M̂ = (Ŝ, ŝinit, P
`, P u, L̂) be a ADTMC. The seman-

tics of a reachability PCTL formula ϕ = P./p[Fψ] at a state ŝ of M̂ , denoted

as [[(M̂, ŝ) |=3 ϕ]], is defined as follows:

• If ϕ = P≤p[Fψ]

– [[(M̂, ŝ) |=3 ϕ]] = true, if xu({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) ≤ p.

– [[(M̂, ŝ) |=3 ϕ]] = false, if x`({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) > p.

– [[(M̂, ŝ) |=3 ϕ]] = ⊥, otherwise.

• If ϕ = P≥p[Fψ]
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– [[(M̂, ŝ) |=3 ϕ]] = true, if x`({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) ≥ p.

– [[(M̂, ŝ) |=3 ϕ]] = false, if xu({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) < p.

– [[(M̂, ŝ) |=3 ϕ]] = ⊥, otherwise.

where x`, xu are the probability measures for the lower and upper tran-
sition probability functions. �

From the 3-valued PCTL semantics over ADTMCs, it follows that the
truth of P≥p[Fψ] is checked based on the paths with lower bound proba-
bilities, as opposed to P≤p[Fψ], for which the paths with the upper bound
probabilities are used. For checking the refutation of P≥p[Fψ], the upper
bound probabilities are used, whereas for the refutation of P≤p[Fψ] the check
is based on the lower bound probabilities.

In Def. 10, given a DTMC M and a pair of total functions α (abstraction)
and γ (concretization), an ADTMC α(M) is defined with state space the set
Ŝ, derived by abstracting the concrete state space S of M . The ADTMC
α(M) serves as the abstract model and the DTMC M as the concrete model
in our framework.

Definition 10 ([8]). Given a DTMC M = (S, sinit, P, L) and a pair of total
functions (α : S → Ŝ, γ : Ŝ → 2S) such that

∀s ∈ S,∀ŝ ∈ Ŝ : α(s) = ŝ⇔ s ∈ γ(ŝ)

the ADTMC α(M) = (Ŝ, ŝinit, P
`, P u, L̂) is defined as follows:

1. ŝinit = α(sinit);

2. for all ŝ, lit ∈ L̂(ŝ) only if for all s ∈ γ(ŝ), lit ∈ L(s);

3. for all ŝ1, ŝ2, P
`(ŝ1, ŝ2) = infs∈γ(ŝ1) P̂ (s, γ(ŝ2));

4. for all ŝ1, ŝ2, P
u(ŝ1, ŝ2) = min(1, sups∈γ(ŝ1) P̂ (s, γ(ŝ2)).

A state ŝ of α(M) is an abstract state of some s ∈ S, if and only if ŝ = α(s)
(equivalently s ∈ γ(α(s))). The abstract state ŝinit of the concrete state sinit
of the DTMC is initial in α(M). Proposition q ∈ AP is true (resp. false)
in ŝ = α(s), if and only if q is true (resp. false) in all s ∈ γ(ŝ). Otherwise,
q is unknown (⊥) at ŝ. P `(ŝ1, ŝ2) for two abstract ŝ1, ŝ2 is defined as the
infinum of the transition probabilities from each si ∈ γ(ŝ1) to all sj ∈ γ(ŝ2).
On the other hand, P u(ŝ1, ŝ2) for ŝ1, ŝ2 is defined as the minimum of 1
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Figure 2: The abstraction of a Discrete Time Markov Chain.

and the supremum of the transition probabilities from each si ∈ γ(ŝ1) to all
sj ∈ γ(ŝ2).
Example. (ROBOT) In Fig. 2, an abstract DTMC of the robot system is
presented where the green state (labeled with q) and the non-green states
(labeled with ¬q) are abstracted using one abstract state for each case. The
lower bound of the outgoing transition from the non-green abstract state
A0 to A1 is 0, because there are no concrete non-green states with outgoing
transition of probability greater than 0 to the concrete green state. The
upper bound for the same transition is

(
1
3

)
, because the greatest transition

probability from a concrete non-green state to the concrete green state is(
1
3

)
. All other lower and upper bound probabilities in Fig. 2 are calculated

in the same way. �

Theorem 1 ([8]). Let M = (S, sinit, P, L) a DTMC and α(M) = (Ŝ, ŝinit, P
`,

P u, L̂) the ADTMC as in Def. 10. Then for every PCTL formula ϕ and every
s ∈ S, ŝ ∈ Ŝ with ŝ = α(s) we have:

[[(α(M), ŝ) |= ϕ]] 6= ⊥ ⇒ [[(M, s) |= ϕ]] = [[(α(M), ŝ) |= ϕ]]

From Theorem 1, it follows that if a PCTL formula is satisfied (or vio-
lated) in the ADTMC, then it is also satisfied (or violated) in the DTMC. If
the answer of model checking a PCTL formula over the ADTMC is unknown,
then there is no definite conclusion for the same formula over the DTMC. To
be concise, in the rest of the paper we will denote [[(α(M), ŝ) |= ϕ]] = false
by just writing (α(M), ŝ) 6|= ϕ.
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4. The Model Repair problem for probabilistic systems

In this section, we define a metric space for measuring the distance between
DTMCs with the same state labeling, and then the model repair problem for
DTMCs [2].

Definition 11. For any two vectors A = (a1, ..., an) and B = (b1, ..., bn) with
length n, the Manhattan distance dm is defined as follows:

dm(A,B) =
n∑
i=1

|ai − bi|

. �

Definition 12. For any two M = (S, sinit, P, L) and M ′ = (S, sinit, P
′, L) in

the set DM of all DTMCs with the same state space S and the same labeling
function L, the distance function d over DM is defined as follows:

d(M,M ′) = dm(A,B)

with A = (P (s0, s0), P (s0, s1), . . . , P (si, sj) . . . P (sn, sn))
and B = (P ′(s0, s0), P

′(s0, s1), . . . , P
′(si, sj) . . . P

′(sn, sn)) for all si, sj ∈ S.

For any two DTMCs with the same state space S and the same labeling
function L, the function dmeasures the differences between the corresponding
transition probabilities.

Proposition 2. The ordered pair (DM , d) is a metric space.

Proof. This is inferred from the fact that the Manhattan distance between
any two vectors is a distance metric. �

Definition 13. Given a DTMC M and a PCTL formula ϕ where M 6|= ϕ,
the model repair problem is to find a DTMC M ′, such that M ′ |= ϕ and
d(M,M ′) is minimum with respect to all such M ′.

The objective of the model repair problem in the context of probabilistic
systems is to modify the given DTMC, in order to satisfy a PCTL property ϕ,
which is not satisfied. The repair solution should have the smallest possible
distance from the initial model compared to all other models satisfying ϕ. In
the following sections we show how the model repair problem is transformed
into a minimization problem for the changes of the transition probabilities
in the DTMC.
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5. The PAMR framework

The PAMR framework uses 3-valued abstract probabilistic models (ADTMCs)
for the repair of DTMCs with respect to given probabilistic reachability prop-
erties. The goal of our framework is to provide a method that looks for the
repair solution with the smallest possible distance from a given DTMC. This
method should be feasible and efficient for models with large state spaces.

Abstract Model 
(ADTMC) α(Μ)

Abstraction

Repair
Algorithm

Repaired Concrete Model
(DTMC) MRepaired

Failure

Infeasible

Refinement

Initial Conrete Model 
(DTMC) M

Figure 3: Probabilistic Abstract Model Repair Framework.

The process consists of the following steps, which are shown in Fig. 3.

Step 1. For a DTMC M , a state s and a property ϕ = P≤p[Fψ] or ϕ =
P≥p[Fψ] (or their bounded variants), such that (M, s) 6|= ϕ, an ADTMC

M̂ = α(M) is acquired as in Def. 10.

Step 2. The PAMR algorithm is called with inputs M , M̂ , ŝ = α(s) and
the property ϕ.

Case 1. If the result is FAILURE, i.e. a repair solution is not found,
then a refinement step takes place for M̂ , and:
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Case 1.1. If an ADTMC M̂Refined is found, then the control is

transfered to Step 2 with M̂Refined as input.

Case 1.2. If it is not feasible to retrieve a new refined ADTMC,
the repair process terminates with a FAILURE.

Case 2. A repaired DTMC MRepaired is found.

Example. (ROBOT) The initial abstraction for the DTMC of the robot
system is shown in Fig. 2. In this case, a predicate abstraction is used where
the concrete state s12, which is the only one where q is true, is abstracted
to one state, while all the other states which are not labeled with q are
abstracted to a different state. Thus, a two-state ADTMC is constructed
which is the first abstract model arising from the concrete DTMC M . �

5.1. Refinement

The refinement step plays a fundamental role in the PAMR process, since
it is the means to obtain a repair solution, if possible, when the PAMR
algorithm terminates with a FAILURE result in a previous step. Moreover,
even if a repair solution has been already found, it may be possible to apply
a refinement step in order to find a more fine-grained repair solution.

In the related bibliography, there are various proposals for the refinement
of models for probabilistic systems [9, 10, 11, 12, 13, 14]. The ultimate goal
of such a technique is to get an optimally refined model with respect to
some criteria, which differ in each work. We adopt a simple, yet effective
refinement technique, which fulfills the following objective: the refinement
procedure monotonically converges to the concrete DTMC with respect to the
size of the model’s state space. To this end, at each refinement step we split
the abstract states invalidating the atomic propositions of the reachability
property.

Nevertheless, the PAMR process can be adapted through the adoption of
alternative refinement methods according to different criteria (the so-called
repair strategies [2]).

Example. (ROBOT) From the ADTMC in Fig. 2 for the robot system, a
refined model can be derived by splitting the abstract state not satisfying
q in two states, thus getting a three-state ADTMC. The refined ADTMC
and the corresponding partitioning of the DTMC’s state space are shown in
Fig. 4.
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Figure 4: DTMC and ADTMC after the first refinement step.

The ADTMC of Fig. 4 can be further refined by splitting both abstract
states that do not satisfy q in two states. This second refinement and the
corresponding partitioning of the DTMC’s state space are shown in Fig. 5.
The result obtained from the third refinement step is shown in Fig. 6, from
which a subsequent refinement yields the concrete DTMC.
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The impact of the refinement method on the PAMR process is better illus-
trated if we consider the ADTMC obtained from Fig. 2 using an alternative
refinement. The result is shown in Fig. 7, which differs from the ADTMC in
Fig. 4 and will eventually lead to a different repair solution. �
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Figure 6: DTMC and ADTMC after the third refinement step.
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Figure 7: DTMC and ADTMC for a different refinement from Fig. 4.

5.2. Repair operations for ADTMCs

In the PAMR process, the model repair problem is reduced to a problem
addressed through a smaller state space, i.e. that of the abstract ADTMC.
Every change to the transition probabilities of the ADTMC by the PAMR
algorithm is mapped to the concrete DTMC through the pair of functions
(α, γ) in Def. 10.

Repairing the DTMC with respect to the reachability property ϕ =
P≥p[Fψ] means, according to the 3-valued semantics of PCTL in Def. 9,
that specific lower bound transition probabilities of the ADTMC should be
increased (similarly in the case of P≥p[F

≤kψ]). When the DTMC is repaired
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with respect to ϕ = P≤p[Fψ], specific upper bound transition probabilities
should be decreased. We hereby introduce two distinct repair operations
applicable to ADTMCs, the IncreaseLowerBound and DecreaseUpperBound.

Definition 14 (IncreaseLowerBound). Let M = (S, sinit, P, L) a DTMC
and the ADTMC derived from M as in Def. 10 be α(M) = (Ŝ, ŝinit, P

`, P u,
L̂). For a given v0 ∈ R+ and a pair ŝi, ŝj ∈ Ŝ, let probmin = P `(ŝi, ŝj) + v0.
Then, ∀sm ∈ S \ γ(ŝi), sn ∈ S, P ′(sm, sn) = P (sm, sn), whereas for all si ∈
γ(ŝi), sj ∈ γ(ŝj), sk ∈ S \ γ(ŝj):

P ′(si, sj) =

{
P (si, sj) + diff /cardj if diff = probmin − probout > 0

P (si, sj) otherwise

P ′(si, sk) =

{
P (si, sk)− diff /cardk if diff = probmin − probout > 0

P (si, sk) otherwise

with probout =
∑

si∈γ(ŝi),sj∈γ(ŝj) P (si, sj), cardj = |{(si, sj)}| and cardk =

|{(si, sk)}|.

If P ′ fulfills the stochastic conditions, thus P ′(si, sj), P
′(si, sk) ∈ [0, 1] for

all si, sj, sk, then the DTMC M ′ = (S, sinit, P
′, L) = IncreaseLowerBound

(M,α(M), (ŝi, ŝj), v0) is defined.
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Figure 8: Increasing the lower bound of an ADTMC and the resulting concrete DTMC.
(The lower bound probabilities of the ADTMC are only shown.)
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The IncreaseLowerBound operation, which is illustrated in Fig. 8, increases
the lower bound probability of a transition (ŝi, ŝj) of the ADTMC (yellow

to red transition of M̂) by some given value v0 ∈ R+ through modifying the
DTMC M ; this is feasible for the given v0, if and only if:

P̂ (si, Sj) + v0 ≤ 1, for all si ∈ γ(ŝi), with Sj = {sj : sj ∈ γŝj} (1)

P̂ (si, Sk)− v0 ≥ 0, for all si ∈ γ(ŝi), with Sk = {sk : sk ∈ S \ γ(ŝj)} (2)

i.e. there is a concretization strategy for the given v0, such that a DTMC
exists (stochastic constraints are satisfied). Def. 14 proposes a particular
concretization strategy: from all concrete si (yellow states of M) of the
abstract ŝi, their outgoing transition probabilities to sj (red states of M) of
the abstract ŝj are increased uniformly to fulfill Def. 10 for the ADTMC with
the increased lower bound probability. All other probabilities for outgoing
transitions from si to sk (blue state of M) are decreased uniformly, in order
to preserve the stochastic conditions; if this is not feasible for the given v0,
then the IncreaseLowerBound operation fails to return a DTMC M ′.

In fact, the ADTMC entails multiple DTMCs, and thus a repaired ADTMC
allows for a multitude of ways to repair the DTMC. Apart from the con-
cretization strategy of Def. 14, other strategies could be applied either, (i)
interactively by the user, or (ii) automatically, in order to find a DTMC, i.e.
the stochastic conditions to be satisfied.
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Figure 9: Decreasing the upper bound of an ADTMC and the resulting concrete DTMC.
(The upper bound probabilities of the ADTMC are only shown.)
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Definition 15 (DecreaseUpperBound). LetM = (S, sinit, P, L) a DTMC
and the ADTMC derived from M as in Def. 10 be α(M) = (Ŝ, ŝinit, P

`, P u,
L̂). For a given v0 ∈ R+ and a pair ŝi, ŝj ∈ Ŝ, let probmax = P u(ŝi, ŝj)− v0.
Then, ∀sm ∈ S \ γ(ŝi), sn ∈ S, P ′(sm, sn) = P (sm, sn), whereas for all
si ∈ γ(ŝi), sj ∈ γ(ŝj), sk ∈ S \ γ(ŝj):

P ′(si, sj) =

{
P (si, sj)− diff /cardj if diff = probout − probmax > 0

P (si, sj) otherwise

P ′(si, sk) =

{
P (si, sk) + diff /cardk if diff = probout − probmax > 0

P (si, sk) otherwise

with probout =
∑

si∈γ(ŝi),sj∈γ(ŝj) P (si, sj), cardj = |{(si, sj)}| and cardk =

|{(si, sk)}|.

If P ′ fulfills the stochastic conditions, thus P ′(si, sj), P
′(si, sk) ∈ [0, 1] for

all si, sj, sk, then the DTMC M ′ = (S, sinit, P
′, L) = DecreaseUpperBound

(M,α(M), (ŝi, ŝj), v0) is defined.

The DecreaseUpperBound operation, which is illustrated in Fig. 9, decreases
the upper bound probability of a transition (ŝi, ŝj) of the ADTMC (yellow to

red transition of M̂) by some given value v0 ∈ R+ by modifying the DTMC
M ; this is feasible for the given v0 if and only if equations (1) and (2) hold.

6. The PAMR algorithm

The algorithm is executed at Step 2 of the PAMR process. For brevity, we
present the PAMR algorithm for the case of unbounded properties, whereas
for the bounded properties there are minor differences that we discuss at the
end. The algorithm accepts as input the concrete DTMC M , the abstract
ADTMC M̂ = α(M), a state ŝ = α(s) and a reachability property ϕ =
P≥p[Fψ] or ϕ = P≤p[Fψ] such that (M, s) 6|= ϕ. The main body of the
algorithm with two possible execution paths, one for ϕ = P≥p[Fψ] and the
other for ϕ = P≤p[Fψ], is shown in Algorithm 1.

If ϕ = P≥p[Fψ], then AddV0LowerToADTMC is initially called withM , M̂ ,
ŝ and ϕ as arguments and returns a transition probability function P `

v0
. This

function modifies M̂ ’s lower bound transition probabilities according to a
repair strategy defining with a parameter v0 which transition probabilities are
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Algorithm 1 PAMR

Input: M = (S, sinit, P, L), M̂ = α(M) = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a

property ϕ = P≥p[Fψ] or ϕ = P≤p[Fψ] such that (M̂, ŝ) 6|= ϕ.
Output: M ′ = (S, sinit, P

′, L) such that (M ′, s) |= ϕ or FAILURE.
1: if ϕ = P≥p[Fψ] then

2: P `
v0

:= AddV0LowerToADTMC(M, M̂, ŝ, ϕ)

3: eq setv0 := LowerReachabilityEquations(M̂, P `
v0
, ŝ, ϕ)

4: v0 := NLPSolve(min(v0), eq setv0 , x ≥ p, v0 > 0)
5: return ConcretizeLowerRepairedModel(M, M̂, P `

v0
, ŝ, ϕ, v0)

6: else if ϕ = P≤p[Fψ] then

7: P u
v0

:= SubtractV0UpperToADTMC(M̂, ŝ, ϕ)

8: eq setv0 := UpperReachabilityEquations(M̂, P u
v0
, ŝ, ϕ)

9: v0 := NLPSolve(min(v0), eq setv0 , x ≤ p, v0 > 0)
10: return ConcretizeUpperRepairedModel(M, M̂, P u

v0
, ŝ, ϕ, v0)

increased, in order for LowerReachabilityEquations to subsequently generate
the nonlinear equations for the probability measure of ϕ. These equations,
together with the objective function, the inequality constraints for v0 and
the probability measure of ϕ are then passed to NLPSolve. If a solution is
returned for v0, then ConcretizeLowerRepairedModel is called with arguments
M , M̂ , P `

v0
, ŝ, ϕ and v0, and either a repaired model M ′ is found or else

it returns FAILURE. The returned value is eventually reported as the final
result of the main PAMR algorithm.

More specifically, the body of AddV0LowerToADTMC is described in Al-

Algorithm 2 AddV0LowerToADTMC

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a property

ϕ = P≥p[Fψ].
Output: P `

v0

1: for all ŝk such that (M̂, ŝk) |= ψ do
2: for all (ŝi, ŝj) in shortest maximal paths of the form

π = [ŝ, ..., ŝi, ŝj, ..., ŝk] where for all (ŝi, ŝj) of π, P (si, sj) > 0 for some
si, sj ∈ S with ŝi = α(si), ŝj = α(sj) do

3: P `
v0

(ŝi, ŝj) := P `(ŝi, ŝj) + v0 with v0 > 0
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Algorithm 3 LowerReachabilityEquations

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P `

v0
, ŝ ∈ Ŝ and a property ϕ = P≥p[Fψ].

Output: The equations for the probability measure of ϕ = P≥p[Fψ].
1: Generate the equations for ϕ from the probabilities in P `

v0
as in Def. 5.

gorithm 2. The P ` is modified as follows. For the shortest maximal paths
(i.e. paths with transitions that appear at most once) from ŝ to a state ŝk
which satisfies ψ, in all transitions (ŝi, ŝj) for which there is transition be-
tween corresponding concrete states with non-zero probability, the P `(ŝi, ŝj)
is increased by adding the parameter v0.

The function LowerReachabilityEquations is described in Algorithm 3, where
the equations for the probability measure x of ϕ being true in the ADTMC
are generated as in Def. 5. We note here that the number of generated equa-
tions is equal to the number of states of the ADTMC.

Algorithm 4 NLPSolve

Input: An objective function obj(v0), a set of equations eq setv0 , an inequal-
ity constraint for an unknown in eq setv0 and the v0’s range.

Output: The value v0 for which obj is optimized or FAILURE.
1: Use the Sequential Quadratic Programming (SQP) method to solve the

non-linear optimization problem for v0.

The function NLPSolve is described in Algorithm 4. This function is
called in line 4 of Algorithm 1 with min(v0) as the objective function, the
equations eq setv0 generated by LowerReachabilityEquations, the inequality
constraint x ≥ p, where p is the given probability bound, and the inequality
constraint which ensures positive solution for v0.

For NLPSolve, the exact solution of constrained nonlinear optimization
problems has been proved to be NP-Hard in the worst case [15]. We adopt
the Sequential Quadratic Programming (SQP) [16] method, which looks for
a local solution instead of a global one. The complexity of SQP algorithms
is bound to the number of equations, which in NLPSolve is equal to the
number of the abstract states, and can be exponential in the worst case [17].
By applying SQP to the state-space of the ADTMC we achieve significant
efficiency gains compared to applying it to the state-space of the concrete
model M (Table 1).
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Algorithm 5 ConcretizeLowerRepairedModel

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P `

v0
, ŝ ∈ Ŝ, a property

ϕ = P≥p[Fψ] and a c ∈ R+.
Output: MRepaired = (S, sinit, P

′, L) or FAILURE.
1: M ′ := M
2: for all (ŝi, ŝj) ∈ Ŝ × Ŝ with P `

v0
(ŝi, ŝj) = P `(ŝi, ŝj) + v0 do

3: RET := IncreaseLowerBound(M ′, M̂ , (ŝi, ŝj), c)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M ′ := RET
8: M̂ ′ := α(M ′)
9: if AbstractModelCheck(M̂ ′, ϕ) == TRUE then

10: return M ′

11: return FAILURE

The function ConcretizeLowerRepairedModel in Algorithm 5, which finds
the repaired DTMC M ′, is called if NLPSolve computes a solution for v0 that
is passed as argument. The IncreaseLowerBound repair operation is invoked
for all (ŝi, ŝj), for which the transition probability in P `

v0
includes v0. Each

invocation of IncreaseLowerBound produces a modified DTMC or a FAILURE
result, if the computed value for v0 cannot yield a valid DTMC because the
stochastic conditions are not fulfilled. For the M ′ produced by the final call
of IncreaseLowerBound, the algorithm verifies if it really satisfies ϕ. This
check is essential because IncreaseLowerBound operation alters the transition
probabilities of the DTMC in order to preserve the stochastic conditions and
these changes might affect the probability measure for ϕ. As opposed to
other model repair approaches [18], which validate the solution by model
checking the concrete model, we model check ϕ over the abstract ADTMC
M̂ ′. If the model checking result is true, then M ′ is returned by the PAMR
algorithm as the repair solution.

The execution path of PAMR in Algorithm 1 for ϕ = P≤p[Fψ] is im-
plemented in an analogous way, with the only difference that instead of
increasing the lower bounds, the upper bounds are decreased. The main
body of the functions called in this execution path of PAMR are presented
in Algorithms 6, 7 and 8.
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Algorithm 6 SubtractV0UpperToADTMC

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a property ϕ = P≤p[Fψ].

Output: P u
v0

1: for all ŝk such that (M̂, ŝk) |= ψ do
2: for all (ŝi, ŝj) in shortest maximal paths of the form

π = [ŝ, ..., ŝi, ŝj, ..., ŝk] with P u(ŝi, ŝj) > 0 for all (ŝi, ŝj) of π do
3: P u

v0
(ŝi, ŝj) := P u(ŝi, ŝj)− v0 with v0 > 0

Algorithm 7 UpperReachabilityEquations

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P u

v0
, ŝ ∈ Ŝ and a property ϕ = P≤p[Fψ].

Output: The equations for the probability measure of ϕ = P≤p[Fψ].
1: Generate the equations for ϕ from the probabilities in P u

v0
as in Def. 5.

The PAMR algorithm can be easily shown to be sound in the sense that if
a DTMC M ′ is returned for the property ϕ being true at state s, then we have
(M ′, s) |= ϕ. The proof is straightforward as a consequence of Theorem 1
and the fact that a DTMC is returned if and only if the result of model
checking the ADTMC M̂ ′ that is derived from M ′ is true.

For bounded properties of the form P./p[F
≤kψ], the AddV0LowerToADTMC

and SubtractV0UpperToADTMC are modified, such that they work only for
the paths of finite length k, whereas LowerReachabilityEquations is modified
together with UpperReachabilityEquations, in order to produce the equations
of Def. 6 instead of Def. 5.

7. Application and discusssion

We present the results of the repair of the DTMC in Fig. 1 for the robot
system. In the illustrated scenario we are interested in achieving a probability
level of at least 0.325 for the robot to reach the green state. The PCTL
property for the mentioned goal is ϕ = P≥0.325[Fq], where q is the atomic
proposition for color = green. This property is not satisfied in the model M
of Fig. 1.

When the PAMR algorithm is applied to the ADTMC of Fig. 2 (initial
abstract model) the NLPSolve fails to compute a solution for the parameter v0
(Case 1 of Step 2 in the PAMR process of Section 5). The process continues
with a refinement step (Case 1.1 of Step 2 in the PAMR process) and the
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Algorithm 8 ConcretizeUpperRepairedModel

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P u

v0
, ŝ ∈ Ŝ, a property

ϕ = P≤p[Fψ] and a c ∈ R+.
Output: MRepaired = (S, sinit, P

′, L) or FAILURE
1: M ′ := M
2: for all (ŝi, ŝj) ∈ Ŝ × Ŝ with P u

v0
(ŝi, ŝj) = P u(ŝi, ŝj)− v0 do

3: RET := DecreaseUpperBound(M ′, M̂ , (ŝi, ŝj), c)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M ′ := RET
8: M̂ ′ := α(M ′)
9: if AbstractModelCheck(M̂ ′, ϕ) == TRUE then

10: return M ′

11: return FAILURE

refined ADTMC of Fig. 4 is obtained. The PAMR algorithm generates the
following equations for the refined ADTMC and ϕ:

x0 = 0x0 + (0 + v0)x1

x1 =

(
2

3

)
x1 + (0 + v0)x2

x2 = 1

The NLPSolve function is eventually called for the above equations and
the inequality constraint x0 ≥ 0.325. In this case, a solution is returned for
the parameter v0, which is 0.329. The execution of the PAMR algorithm is
completed with the computation of the repaired DTMC shown in Fig. 10.
Thus, a solution is obtained by reducing the repair problem for a model with
16 states to that for an abstract model with only 3 states.

7.1. Discussion

The efficiency advantage of the PAMR algorithm is based on the fact that the
non-linear optimization problem is solved over the state space of the abstract
ADTMC, which may be orders of magnitude smaller than the state space of
the concrete DTMC.
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Figure 10: Repaired DTMC after the first refinement step.

The PAMR process of Section 5 does not deteriorate the possibility of
obtaining a repair solution compared to the concrete model repair case. This
happens due to the fact that the refinement process always converges to the
concrete DTMC, if in the meantime a repair solution is not found.

If a repair solution M ′ is found, the distance of M ′ from the initial DTMC
M (Def. 12) may be greater than the distance of a solution derived by directly
applying the repair to the concrete model. This happens because minimizing
v0 only represents the best we can do regarding the Manhattan distance
minimality at the degree of precision offered by the specific ADTMC. In
essence, this is the price to pay for using abstraction though in practice this
may be the only way to obtain a repair solution for models with large or even
medium size state space. In our application, the differences between the first
PAMR repair solution shown in Fig. 10 and the direct repair solution in
Fig. 11 are noticeable.

Whatever the solution is, it is still possible for the refinement process to
continue, such that the PAMR algorithm can be applied to ADTMCs with
larger state spaces, in which case a more fine grained repair solution could
be obtained. This is illustrated through applying the PAMR algorithm in
the ADTMCs of Fig. 5 and Fig. 6, which depict respectively the ADTMCs
after the second and the third refinement steps in the model for the robot
system. The corresponding repaired DTMCs for these two cases are shown
in Fig. 12 and Fig. 13.

The PAMR process can be effectively controlled through the refinement
method, as well as through specifying how the transition probabilities are
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Figure 11: Repaired DTMC after applying repair directly to the concrete model.
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Figure 12: Repaired DTMC after the second refinement step.

modified. These two provide the means to follow alternative repair strategies.
The refinement method can be replaced by any other method which may be
considered as more adequate for a specific application domain [9, 10, 11, 12,
13, 14]. The solution from applying the PAMR algorithm to the first refined
ADTMC of Fig. 7 is shown in Fig. 14. It is clear that this solution differs
from the one in Fig. 10 that was obtained through the previous refinement
approach.

AddV0ToLowerADTMC and SubtractV0ToUpperADTMC specify which tran-
sition probabilities can be changed and how. The implementation of these
functions in our algorithm aims to find a repair solution that distributes the
changes to many transitions instead of localizing them to just a few, and that
the transition probabilities are evenly changed. This repair strategy, as well
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Figure 13: Repaired DTMC after the third refinement step.

as other strategies can result in sub-optimal solutions, i.e. the minimal repair
according to the distance of Def. 11 may be missed. However, in practice it
is not possible to adopt a single strategy for all domains where the repair
problem can arise. Therefore, the aforementioned functions can be replaced
by analogous user-defined functions, to specify the parameters (v0, v1, ...) for
modifying the transition probabilities, and which transition probabilities can
be modified.
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Figure 14: Repaired DTMC after the alternative first refinement step.

By using the same parameter v0 for all transitions to be modified and
the same implementation of IncreaseLowerBound,DecreaseUpperBound for all
modified transitions, we ensure that the same parameter can affect multiple
transitions in the same way. This is essential if the PAMR framework is to be
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applied to a probabilistic model specified in a high-level guarded command
language like the one used in widely used model checking tools [19, 20].

8. Experimental Results

We have implemented the PAMR algorithm using MAPLE [21]. In particu-
lar, we utilized specific functions for model checking ADTMCs (the solve()

linear equations’ solver) [22] and for the solution of the constrained non-
linear optimization problem (the NLPSolve() function called with the sqp

parameter).
Using these functions we compared the efficiency of the PAMR algorithm

with that of the same algorithm when it is directly applied to the DTMC, i.e.
without abstraction. In particular, we experimented with four systems from
various domains, whose state spaces have significantly different structure.
These systems are the Craps game [23], the IPv4 Zeroconf protocol [2, 24],
a message authentication protocol [25] and the gambler’s ruin model, which
demonstrates the worst-case behavior of the PAMR process in terms of its
efficiency gains. The message authentication protocol is mentioned in [26],
as a model repair scenario, where the primary aim is not finding the optimal
repair solution, but it is sufficient to find some repair solution rapidly (fast
model repair problem). Our PAMR framework fits ideally to this context,
since a repair solution can be obtained even for very large model sizes, which
can be afterwards refined with respect to the needs of the user.

The Craps game model shown in Fig. 15 refers to a dice game, where
the player wins or loses based on the outcome of the roll of two dice. The
outcomes 2, 3, 7, 11, 12 are “craps”, i.e. the player loses. On any other
outcome the dice are rolled again and the outcome of the come-out roll is
remembered (the “point”). The dice are rolled repeatedly until the outcome
is 7, in which case the player loses, or the outcome is the point, in which case
the player wins.

The probability for winning the Craps game, i.e. reaching the Win state
in Fig. 15 is approximately 0.27. In order to increase the probability to at
least 0.3 for the player to win the game, we would like to find how much the
dice should be biased each time they are rolled. Let us consider the atomic
proposition q as Win = true, in which case the PCTL property of interest
is ϕ = P≥0.3[Fq]. The DTMC of Fig. 15 was eventually repaired after three
refinement steps, which resulted in the ADTMC shown in Fig. 16. The repair
solution given by the PAMR algorithm is shown in Fig. 17.
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Figure 15: The DTMC for a version of the Craps game.
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Figure 16: The ADTMC after the third refinement step for the Craps game.

Zeroconf is a protocol for assigning IP addresses in a network of hosts.
When a new host joins the network it asks the other hosts if the newly
selected IP is already in use from any other host. There is a probability that
the new host will not get any answer and in this case the query is repeated.
The host will assume falsely that the chosen address is valid, if after n tries
no answer is received.

The DTMC for an instance of the Zeroconf protocol is shown in Fig. 18a,
where the probability of not getting an answer is 0.99. We try to repair the
DTMC for n = 10 tries, in order to ensure that the probability for reaching
the OK state (which is 0.32) becomes at least 0.99. We consider the atomic
proposition q as OK = true, in which case the reachability PCTL property of
interest is ϕ = P≥0.99[Fq]. The application of our PAMR framework resulted,
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Figure 17: The repaired DTMC for the Craps game.
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Figure 18: The IPv4 Zeroconf protocol

after three refinement steps, to the repair solution presented in Fig. 18b.
The DTMC of the message authentication protocol for n users is depicted

in Fig. 19a. An authentication process takes place for each user, which can
fail with a probability of 0.15. After the successful authentication, each user
can send a message with a failure probability of 0.25. The users log out from
the system after having successfully sent a message. We applied our PAMR
framework for n = 5 users, in order to get the repaired DTMC on which the
probability for the users to log out is at least 0.75. A repaired DTMC is
acquired after four refinement steps and is shown in Fig. 19b.

For the gambler’s ruin model, let us consider a gambler who starts playing
a game with initial wealth N coins and can bet at each time one coin. The
gambler can win the bet with a probability p and can lose the bet with
probability q. The game stops either when the gambler has no more money
to bet or when he has earned a specific amount W . The DTMC for a version
of the game with N = 20, W = N × 10% = 2, p = 0.3 and q = 0.7 is
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Figure 19: A message authentication protocol

presented in Fig. 20a. The gambler’s ruin model belongs to a special category
of Markov Chains, called birth-death, where only a one-step transition to the
nearest neighbors is permitted.

The probability for the gambler to earn the amount W is 0.183. After
applying our PAMR framework with the aim of finding a repaired DTMC
where the probability of the gambler to earn the amount W will be at least
0.25, we acquire the DTMC in Fig 20b.

(a) The initial DTMC. (b) The repaired DTMC

Figure 20: The gambler’s ruin model for initial wealth N = 20.

Our experiments include extended versions for all the four models. For
the Craps game, the model’s state space is expanded by rolling more than
two dice and also adapting the conditions for wining/losing the game. For the
IPv4 Zeroconf protocol, for the message authentication protocol and for the
gambler’s ruin model, the state space is expanded by increasing the number
of tries, the number of users and the initial wealth respectively. As shown
in Table 1, the state space size varies between a few hundreds of states and
transitions up to several tens of thousands states and transitions.

For all the models and for the same reachability properties, we applied
our model repair algorithm directly to the DTMC (concrete model) and we
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Models Concr.
States

Concr.
Trans.

Concrete
Repair

PAMR Ref.
Steps

Abstr.
States

dconcr dPAMR

Craps (Ext.1) 123 483 0.8s 0.1s 3 6 7.4 10.4
Craps (Ext.2) 243 963 5.1s 0.1s 3 6 14.6 20.5
Craps (Ext.3) 483 1923 38.3s 0.1s 3 6 29 40.6
Craps (Ext.4) 963 3843 5m13s 0.1s 3 6 57.8 80.9
Craps (Ext.5) 1923 7683 49m43s 0.1s 3 6 115.4 161.6
Craps (Ext.6) 3843 15363 8h30m23s 0.1s 3 6 230.6 322.9
Craps (Ext.7) 7683 30723 time-out 0.1s 3 6 − 645.42
Craps (Ext.7) 7683 30723 time-out 1.2s 8 123 − 608.5
Craps (Ext.7) 7683 30723 time-out 19.1s 10 483 − 562.4
Craps (Ext.7) 7683 30723 time-out 2h4m34s 13 3843 − 488.7
Craps (Ext.7) 7683 30723 time-out time-out 14 7683 − −
Zconf (n=100) 103 204 0.5s 0.2s 3 5 10.1 82.8
Zconf (n=200) 203 404 2.7s 0.2s 3 5 17.7 164.8
Zconf (n=400) 403 804 18.1s 0.2s 3 5 28.9 328.8
Zconf (n=800) 803 1604 2m38s 0.2s 3 5 43.3 656.8
Zconf (n=1600) 1603 3204 15m29s 0.2s 3 5 51.2 1312.8
Zconf (n=3200) 3203 6404 2h36m12s 0.2s 3 5 57.6 2624.8
Zconf (n=6400) 6403 12804 time-out 0.2s 3 5 − 5248.2
Zconf (n=6400) 6403 12804 time-out 2.1s 10 104 − 4224.6
Zconf (n=6400) 6403 12804 time-out 14.9s 12 404 − 2048.3
Zconf (n=6400) 6403 12804 time-out 1h36m43s 15 3204 − 512.1
Zconf (n=6400) 6403 12804 time-out time-out 16 6403 − −
Auth.Prot.(n=30) 154 213 1.2s 0.2s 4 7 8.4 8.4
Auth.Prot.(n=60) 304 423 7.8s 0.2s 4 7 16.8 16.8
Auth.Prot.(n=120) 604 843 57.5s 0.2s 4 7 33.6 33.6
Auth.Prot.(n=240) 1204 1683 9m43s 0.2s 4 7 67.2 67.2
Auth.Prot.(n=480) 2404 3363 1h12m11s 0.2s 4 7 134.4 134.4
Auth.Prot.(n=960) 4804 6723 12h19m52s 0.2s 4 7 268.8 268.8
Auth.Prot.(n=1920) 9604 13443 time-out 0.2s 4 7 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 2.2s 9 131 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 20s 11 515 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 1h54m32s 14 4099 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out time-out 15 9604 − −
Gambler(N=100) 111 220 0.8s 0.2s 4 58 0.38 2.93
Gambler(N=200) 221 440 4.6s 0.9s 5 113 0.84 5.94
Gambler(N=400) 441 880 33.3s 4.8s 6 223 2.48 12.28
Gambler(N=800) 881 1760 4m59s 32.7s 7 443 5.92 25.04
Gambler(N=1600) 1761 3520 45m12s 4m48s. 8 883 13.44 50.88
Gambler(N=3200) 3521 7040 8h2m41s 45m17s 9 1763 30.72 103.36
Gambler(n=7400) 7041 14080 time-out 6h58m36s 10 3523 − 207.36

Table 1: Experimental results of PAMR compared to concrete repair (in fourth column
the accumulated times are shown, for all iterated refinement steps)

compared its execution time and the repair solution’s distance with that of
the PAMR algorithm for the ADTMC. For the Craps game and the IPv4 Ze-
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roconf protocol, we get a repair solution after three refinement steps, whereas
for the message authentication protocol a solution is obtained after four re-
finement steps. For the gambler’s ruin model the number of needed refine-
ment steps varies from 4 to 10 according to the size of the model. The results
in Table 1 suggest that as the model’s state space grows up, the needed time
for the concrete model repair is increased dramatically or even a solution
cannot be obtained within a time-out period of 14 hours, while the PAMR
algorithm returns a repair solution efficiently. It is worth mentioning that
the time for the PAMR algorithm remains constant for the Craps game, the
IPv4 Zeroconf protocol and the message authentication protocol, because in
all extended versions the repair solution was obtained from ADTMCs with
the same size of state space after three or four refinement steps respectively.
This is not true for the gambler’s ruin model, where the repair solution is al-
ways acquired in the final refinement step, before converging to the concrete
DTMC. These results confirm the fact that the efficiency gains of abstraction
in model repair depends - as in model checking - on the model’s state space
structure and the property.

For all models except for the gambler’s ruin model, we continued the
application of our PAMR framework, after having found the first repair solu-
tion, until the PAMR converged to be applied to the initial concrete model,
in which case the ADTMC would be the same with the DTMC. From the
results presented in Table 1, we deduce that for all the examined models, our
method gives a repair solution and it is significantly more efficient than the
direct repair even for the ADTMC produced in the penultimate refinement
step.

9. Related Work

The model repair problem for probabilistic systems has been first introduced
in [2]. The authors use parametric model checking and transform the model
repair problem to a non-linear optimization problem. The experimental re-
sults of their work indicate that their approach suffers from the state space
explosion problem even for models with relatively small number of states. In
comparison with [2], beyond the efficiency advantage of the PAMR frame-
work, it is true that we do not aim at a direct repair solution, if any, but to
gradually approach a suitable solution through a number of consecutive re-
finements that depends on the available computational resources. In such an
iterative process, the designer can interactively develop his repair strategy,
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as described in Section 7.1, whereas in [2] the repair strategy is specified at
once through the definition of a so-called controllable DTMC over a set of
parameters that has to fulfill the stochasticity condition. However, such a
parameterization approach is not easily applied in all state space topologies.

An effort for presenting a scalable method for the repair of DTMCs is also
presented in [18]. In that work, the authors present a greedy approach where,
starting from an initial parameter assignment, they apply local repair steps
by iteratively changing the parameter values. The execution time for the local
repairs is reduced with respect to the methods using non-linear optimization,
but the fact that this approach includes a model-checking phase eventually
increases the total execution time.

Regarding the model repair of Markov Decision Processes (MDPs), there
are approximate solution techniques, which have been introduced in [26].

Some related work exists regarding the parametric analysis of Markov
models. More specifically, an interesting and related to model repair prob-
lem is that of parameter synthesis, where the aim is to find ranges of param-
eter values such that a satisfaction probability of a formula meets a given
threshold, is maximized, or minimized. In [27], the authors address the sys-
tem design problem for Continuous Time Markov Chains (CTMCs), where
their aim is to optimize some parameters of a stochastic model to maximize
robustness of some given specifications. The state space explosion problem
is also inherent in [28], where a tool is introduced using GPU-accelerated
parameter synthesis to make the approach scalable. This work addresses
the parallel implementation of the parameter space decomposition technique
of [29]. A recent work [30] deals with the synthesis problem for CTMCs
within the scope of optimizing specific quality criteria. Moreover, a tool
called PROPhESY has been presented in [31], for scalable, incremental, and
automatic parameter synthesis. Another tool called SEA-PARAM has been
presented in [32], where the authors propose a parameter synthesis method
for Parametric Markov Decision Processes (PMDPs).

Moreover, the authors in [29] have proposed a method for parameter
interval decomposition for CSL formulas in CTMCs. This method is a means
to reduce the inaccuracy created from a min-max approximation. If this idea
could be lifted to DTMCs, it is a promising tool that could be adopted in
our abstraction-refinement framework.

The model repair problem has attracted the interest of applied research
initiatives in various problems, such as the formal verification and fault recov-
ery of aerospace systems [33]. From this perspective, interesting applications
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in the context of temporal logics for non-probabilistic systems have been in-
vestigated in [34] and [35]. In [36], the authors attempt three different model
repair techniques to efficiently compute the probability distribution for the
minimum recovery time of an input randomized distributed self-stabilizing
protocol. The first approach is based on solving symbolic linear algebraic
equations, in order to identify the fastest state reachability in parametric
discrete-time Markov chains. Their second approach applies parameter syn-
thesis techniques to compute the rational function describing the average
recovery time, like in [2]. In their third approach, they focus on finding
sub-optimal solutions by computing over- and under-approximations of the
result for a given parameter region and iteratively refining the regions with
minimal recovery time up to the desired precision. Yet, all of the proposed
techniques still suffer from the state space explosion problem.

For the abstraction of probabilistic models, some more techniques have
been proposed apart from the adopted abstraction method with 3-valued
semantics. In [11], the authors present an abstraction method for Markov
Decision processes based on games. In [37], the authors propose a model ag-
gregation technique to construct effectively the lumping quotient of a Markov
chain. In [38], the authors examine the minimal distance problem of Markov
chains using bisimulation metrics, i.e., given a finite DTMC and a positive
integer k, they try to find the k-state DTMC with the minimal distance to
the original. We note that in our abstraction framework based on [8], the ab-
stract model is connected to the concrete model with a simulation – not with
a (more restrictive) bisimulation – relation. A thorough presentation of the
abstraction methods used for probabilistic systems is given in [39]. We are
not aware of any other model repair approach, which exploits an abstraction
technique for probabilistic systems.

However, abstraction has been used in model repair for systems with large
state spaces, in the non-probabilistic setting [6]. In this work, the authors
present an abstraction-refinement framework based on Kripke Structures as
the concrete models, Kripke Modal Transition Systems as the abstract mod-
els, CTL as the specification language and 3-valued model checking. Their
aim is that of reducing the upper bound complexity class of the repair pro-
cess, such that it depends on the size of a much smaller abstract model. A
more complete journal version of this work is presented in [7].
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10. Conclusions

We presented an abstraction-refinement framework and algorithms for the
repair of DTMCs with respect to reachability PCTL properties. The so-
called PAMR framework and its algorithm aim to confront the state space
explosion problem and to provide a solution that is applicable even in model
repair problems with very large state spaces. After having described the
PAMR framework, we illustrated the efficiency gains of our approach com-
pared to the direct repair of the concrete model, including the discussion
of custom repair strategies depending on the particular application domain.
The practical utility of the PAMR framework was demonstrated in the repair
of four DTMC models with diverse structures of their state space.

As a future research prospect, a PAMR tool would allow applying the
method in more complex real-world applications. This will also open chances
for investigating how PAMR can be used in various domains, such as in the
design of fault-tolerant systems. Additional work is needed towards exam-
ining the way that the refinement process can be utilized for interactively
driving the repair strategy. An interesting line of research for future work is
the extension of our PAMR algorithm to support nested properties by using
recursion and the notion of constraints, as they have been used in the ab-
stract model repair for non probabilistic systems [7]. Finally, we also plan
to work on the model repair for other types of systems, such as hybrid or
real-time systems, for which the use of abstraction to cope with the state
space explosion is also an attractive prospect.
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