
Compositional execution semantics for business process verification

Emmanouela Stachtiari, Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Abstract

Service compositions are programmed as executable business processes in languages like WS-BPEL (or BPEL in
short). In such programs, activities are nested within concurrency, isolation, compensation and event handling con-
structs that cause an overwhelming number of execution paths. Program correctness has to be verified based on a
formal definition of the language semantics. For BPEL, previous works have proposed execution semantics in formal
languages amenable to model checking. Most of the times the service composition structure is not preserved in the
formal model, which impedes tracing the verification findings in the original program. Here, we propose a compo-
sitional semantics and a structure-preserving translator of BPEL programs onto the BIP component framework. In
addition, we verify essential correctness properties that affect process responsiveness, and the compliance with partner
services. The scalability of the proposed translation and analysis is demonstrated on BPEL programs of various sizes.
Our compositional translation approach can be also applied to other executable languages with nesting syntax.

Keywords: formal verification, programming language semantics, WS-BPEL, BIP

1. Introduction

Businesses rely more and more on distributed, value-adding software applications in order to offer enterprise function-
ality to customers. Business Process Modeling (BPM) is a promising paradigm for integrating software components
into a single executable unit, termed as process. The Service-Oriented Architecture (SOA) suits to the BPM paradigm,
with respect to the composition of services into processes, which can be also deployed as services. Among existing
languages for the specification of such processes, BPEL stands out by providing high-level primitives, and constructs
for the definition of complex synchronous and asynchronous web service interactions. The used web services are
autonomous and loosely-coupled components that possibly span different organizations. For the wide adoption of
business process programming, it is essential to ensure reliability in order to avoid errors that may cause critical losses
to the involved organizations. Additionally, the program has to fulfil correctness goals such as process responsiveness
and compliance with partner services.

One approach towards ensuring reliability is by testing the process with emulating its interactions [1]. In this case,
an adequate coverage of the program’s control flow has to be achieved by selecting the appropriate test inputs. On the
other hand, formal verification guarantees full coverage of execution paths for all possible inputs. Such an analysis
has to be based on a formal specification of the language execution semantics, which involves nesting of service
interactions using concurrency, isolation, compensation and event handling constructs.

Many works attempt to verify correctness by model checking a formal model, which is an abstract representation
of the service composition program [2]. However, the original structure of the source program is not reflected in
the formal model, thus rendering impossible to exactly locate the verification findings in the program’s code. This
is an inherent problem of most formalisms, which lack sufficiently expressive composition primitives for a model
representation that preserves the service composition structure. The BIP (Behavior, Interaction, Priority) component
framework [3] provides a minimal set of primitives adequate for preserving the service composition structure. It
consists of an executable modeling language for layered transition systems, which has formally defined operational

Email addresses: emmastac@csd.auth.gr (Emmanouela Stachtiari), katsaros@csd.auth.gr (Panagiotis Katsaros)

Preprint submitted to Elsevier November 6, 2017

semantics and mathematically proven expressiveness [4]. The BIP models can be formally verified with the BIP
tools [5].

We use BIP to introduce a compositional semantics for BPEL, i.e. a semantics in which the processing for each
BPEL construct is placed locally to a corresponding BIP component. Such a definition tackles the combinatorial
problem of defining semantics for each possible combination of nested BPEL constructs. Compositional semantics
can be defined for executable languages with nesting syntax if the execution semantics of enclosing and nested con-
structs can be defined independently from each other. To achieve such a definition in our approach, the semantics
of nesting constructs are defined based on abstractions built-in by construction for the nested ones, while the latter
are combined using coordination primitives that do not alter their semantics (just restrict their execution traces). A
structure-preserving translator into the BIP language has been implemented that covers all activities of the BPEL stan-
dard. The translator transforms the BPEL programs into BIP models that contain the code needed for the verification
of essential correctness properties. The check of whether the properties are met takes place by exploration of the
reachable state space. If a property is violated, we are able to obtain a counterexample execution trace that contains
the processing steps of BPEL activities, which lead to the error location.

In [6], we presented a first version of our translator for a limited set of BPEL constructs with more emphasis
on the translation algorithm. The verification of a functional property for a showcase application scenario was also
demonstrated along with evidence for its violation in the form of a counterexample. Here, we expose:
• the complete execution semantics of BPEL through a new methodology for compositional definition;
• the verification of a wide range of important correctness properties;
• the testing of our translator in mid-scale programs and their verification.

We note that the translation times were found to have a statistically significant linear relation to the number of states
of the generated BIP model. The translator, the verification utilities for the properties of interest, as well as the BPEL
programs of our experiments are available online in [7]. Verification is only one of the possible uses of our BPEL
process models, which can be also used e.g. for test case generation based on the produced execution paths [8].
Moreover, in an independent research work [9], our approach was extended towards enabling the configuration of
information flow policies for BPEL processes.

In Section 2, we discuss the design problems and the correctness of BPEL processes through a motivating example.
Section 3 introduces the structure of our BIP model and the principles of the compositional approach for the definition
of the BPEL execution semantics. These principles determine the interface and the behavior of BIP components,
which allow implementing the semantics of the various BPEL activities. Section 4 encodes the BPEL execution
semantics into safety properties that are enforced in our model by construction. Our modeling approach covers all
activities of the BPEL standard, but the presentation is restricted to the most important activities and details for more
activities are exposed in Appendix B. In Section 5, we present the verification of essential correctness properties
that have been previously introduced in Section 2 and the formalization of additional useful correctness properties.
Section 6 discusses the principles of the translation of BPEL programs in BIP. Section 7 shows results from the
translation and analysis of mid-scale BPEL applications and the paper concludes with a critical review of the related
work in Section 8 and our remarks for the exposed contributions in Section 9.

2. Correctness of BPEL processes: a motivating example

BPEL process implementations are based on web services (partner links) whose interfaces expose service operations
written in the WSDL 1.1 language. Synchronous operations accept an input and block the invoker for the output, or
a fault, to be returned. On the contrary, in asynchronous operations the invoker dispatches the input and forgets it.
Thus, through the use of two asynchronous operations it is possible to apply a request-response interaction pattern
that does not block the invoker. In this approach, a service is invoked with the first operation and the response is
returned with a second operation, referred to as callback, exposed by the invoker. The use of asynchronous operations
generally allows for complex service interaction patterns, such as parallel operation invocations, but it raises the need
to effectively manage communication sessions, i.e. the stateful chains of dual service interactions. The assignment of
messages to the correct session takes place by message correlation.

Atomic behavior in processes is realized with basic activities, such as the invoke, receive, and reply, which
are used respectively to (i) invoke, (ii) receive input, and (iii) send output (or fault), with respect to specific service

2

(a) Synchronous invocation (b) Asynchronous invocation

Figure 1: Client and server side activities for synchronous and asynchronous invocations between processes.

Figure 2: The TravelBooking process interacts with the BookAirline and BookHotel web services and on behalf of a client.

operations. Figures 1a and 1b show the client-side and server-side activities used for a synchronous (resp. an asyn-
chronous) invocation of an operation x. A client-side synchronous invocation is implemented by a request-response
invoke, while the asynchronous interaction relies on an one-way invoke of x and a receive of the callback oper-
ation y. Generally, the assign activity is used before sending and after receiving a message, in order to copy data
between the message and the process’s variables. BPEL’s structured activities define workflows of activities, such as
sequence, parallel flow, and other conditional and repeatable structures. The scope activity defines a local context
for its enclosed activities, with its own data and error handling through compensation, termination and fault handlers.
A scope also defines event handlers for incoming messages and timeouts.

Example 1. A BPEL process for travel booking is presented in Figure 2 with its activities shown in rectangular boxes.
The activities for service interactions are labelled with the invoked operations. The bold, the thin and the dotted edges
represent respectively relationships for the order of execution, the containment of handlers and the synchronization
between activities.

The process provides to its clients the synchronous operation get itinerary that responds with an output or a fault
message. When a client wants to book a travel itinerary, a get itinerary request is received along with the preferred
hotel, room type and flight details. Two scopes are then executed in parallel that communicate respectively with the
HotelBookWS and AirlineBookWS web services:

• The Hotel-booking scope invokes the asynchronous bookHotel operation of HotelBookWS to reserve the chosen
hotel room. For this purpose, it uses an one-way invoke and continues its processing, while the response is
pending. A receive waits for the confirmation in the hotelBooked callback operation. When the confirmation
is received, the synchronous payHotel operation of the HotelBookWS is invoked for the payment. The progress
of the whole process is then blocked on the synchronous invoke, until the receipt of the expected response. In

3

parallel to the normal flow, the scope also has an event handler that listens to requests for the noAvail operation.
This is a callback operation that is invoked by the HotelBookWS service, if there is no availability for the chosen
hotel room. Upon receipt of such a message, the event handler throws a bookFailed fault.

• The Airline-booking scope invokes the asynchronous bookFlight operation of the AirlineBookWS to book the
flight and upon the confirmation receipt the synchronous payFlight operation is invoked for the payment. The
booking cancellation of AirlineBookWS is invoked, when the scope is abruptly terminated or when it is com-
pensated after having been completed.

Two synchronization links (dotted arrows) are used between the two scopes, in order to exclude the invocation of
payment in each scope, before the confirmation is received in the other scope. The process responds to the client with
a confirmation, after having completed the payment in both scopes.

Faults in any of the two scopes are propagated to the process level, where they are handled by the process’s fault
handler. In this case, the enclosed scopes are terminated, if they are still running, or compensated, if they have finished.
Afterwards, the process replies to the client with a fault message. 4

The main principles for the design of BPEL processes are summarized along the following three axes.
All available input from partner services must be received and handled. Input from partner services is received

though incoming invocations. A dedicated receive activity should be therefore reachable at each point of the control
flow, where such an input is expected. In Example 1, the hotelBooked callback is invoked, when the HotelBookingWS
responds with the result of the asynchronous hotelBook, and the noAvail callback is invoked upon a booking failure.
If the input to noAvail was neglected, the process would be blocked forever in the receive of the hotelBooked
callback, unless there would be a timeout handler to limit the waiting time. Moreover, with respect to the process’s
requirements, the input to noAvail is essential to throw a fault at the process root level in order to terminate the whole
booking attempt.

All the expected input to partner services must be provided. For each partner service, the syntax of its expected input
is defined in WSDL, but there is no standard way for specifying the input’s semantics and its relation to other events.
In Example 1, the cancelBook request to the AirlineBookWS is sent, to cancel a booking request. The termination and
the compensation handlers of the scope must send this cancellation request, otherwise the process will have sent and
saved booking results that are not reflected in its state. If the cancellation request is omitted, the PayFlight request will
still be expected from the partner service, though it will not be sent. However, the relationship between an operation
and its callbacks is not explicitly defined and the process’s runtime environment cannot detect and handle the missing
inbound or outbound responses of the asynchronous requests. Due to this weakness, the responsibility for handling
the issue is delegated to the process designer.

The process must hold a global view of the behavior that is composed. When implementing a scope, it is important
to consider the environment in which it is executed. In Example 1, if the Airline-booking scope was the only scope
running within the process, there would not be need for implementing a termination handler, because there would be
no other scope to throw a fault while this scope is executed. The termination handling is necessary, due to the parallel
execution of the scope with a scope which might fail. If a termination handler can never be triggered, we have a case
of dead code in the process.

The BPEL processes need to fulfil several correctness properties that are application-agnostic, in order to ensure
safety of the control flow and the sessions. Some of these properties are BPEL constraints that are identified by
standard types of faults (e.g. the conflicting receive fault). Essential properties that are not BPEL constraints, though
they have to be ensured for any BPEL process, are the following:

1. No blocking: The process will not be blocked indefinitely for receiving an incoming message.
2. No dead code: The process does not include code that cannot be executed.
3. Process termination: The process can always terminate.
4. No incomplete asynchronous request-response patterns: The process cannot terminate with asynchronous (out-

going or incoming) requests-response patterns that have not been responded.
The absence of dead code is important, in order to save memory space for the process execution and for the caching

of operations by the CPU. A code segment may be unreachable, because of a logical error, such as conditions that are
always false, or due to obsolete event handlers for messages that are not sent any more by the partner service. The
process termination is essential for most processes that shouldn’t run forever. A process may not be able to terminate,

4

due to a possible livelock, i.e. an execution path of tasks that are executed infinitely often. The last property concerns
the behavioral compliance between the process and the partner services with respect to asynchronous invocations.
That is, if an invocation has been received (or sent) by the process, and this invocation is part of a request-response
pattern, then a response will always have to be sent (resp. receive).

The main approach to address the aforementioned correctness and other application-specific issues is through test-
ing [1] and interactive simulation. In an effective testing approach the developer has to create test cases that cover the
program’s control flow up to an acceptable level, as well as to instrument the program with assertions to be checked.
The test case generation includes the definition of input/output data for the emulation of process interactions. When
an assertion violation is encountered the developer has still to explore the execution path the leads to the violated
assertion. This is possible through interactively simulating the BPEL process for the specific test case. Testing is an
iterative procedure, since every time that the process is changed towards correcting an error, all test cases have to run
again to ensure that no other assertion is violated. Moreover, due to the complex synchronous and asynchronous web
service interactions, the cost for effectively testing a BPEL process may be much higher than that for testing other
types of applications.

In this paper, we introduce a modelling approach based on the BIP component framework along with the verification
of the essential properties that is discussed in Section 5.1. Moreover, our approach can address additional verification
needs that are detailed in Section 5.2. Within the development cycle of BPEL processes, correctness verification has to
take place after process specification. As opposed to testing, verification is the only way to check functional properties
against a process model with full coverage. If a property is violated, the needed corrections for the BPEL program
are identified based on the automatically generated counterexample execution trace [6]. If all essential correctness
properties have been verified, then non-functional aspects can be addressed, such as the verification of security, e.g.
through an extension of our approach in [9], or timing properties, e.g. through statistical model checking [10]. The
verification procedure is iterated until all properties are met.

3. BIP model for BPEL processes

3.1. The BIP component framework

BIP (Behavior-Interaction-Priority) [3] is a formal framework for building complex systems by coordinating the be-
havior of a set of atomic components. Behavior is defined as a transition system, extended with data and functions
in C/C++. The description of coordination between components is layered. The first layer describes the interactions
between components. The second layer describes dynamic priorities between interactions. BIP has a clean opera-
tional semantics, summarized in [11], that describes the behavior of a composite component as the composition of the
behaviors of its atomic ones. A direct relation is thus established between the underlying semantic model (transition
systems) and its implementation.

In BIP, atomic components are finite-state automata extended with variables and ports. Variables are used to store
local data. Ports are action names, and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for interaction. A transition is a step,
labelled by a port, from a control location to another. It might be associated with a guard and an action, that are
respectively a boolean condition and a computation defined on local variables.

Connectors relate ports from different subcomponents by assigning to them a synchronization attribute, which may
be either trigger (H) or synchron (•). The connectors represent sets of interactions that are non-empty sets of ports
which have to be jointly executed. If all connected ports are synchrons, one interaction is executed and that is only
if all connected components allow the transitions of those ports (rendezvous). If a connector has one trigger, the
possible interactions consist of all the subsets of the connected ports which include the trigger port (broadcast). For
every interaction, the connector might provide a guard and a data transfer that are, respectively, an enabling condition
and an exchange of data across the ports involved in the interaction. Additionally, connectors can export ports for
building hierarchies of connectors.

An architecture can be viewed as a BIP model, where some of the atomic components are considered as coordina-
tors, while the rest are parameters. When an architecture is applied to a set of components, these components are used
as operands to replace the parameters of the architecture. Figure 3 shows a simple BIP model for mutual exclusion

5

between two tasks. It has two components B1, B2 modelling the tasks and one coordinator component C12. Initial
states of the components are noted with an arc. The four binary connectors synchronise each of the actions b1, b2
(resp. f1, f2) of the tasks with the action b12 (resp. f12) of the coordinator.

takenwork work

sleep free sleep

f1 b12 f12 b2 f2b1

B1 C12 B2

f1 b12 f12 f2b1 b2

Figure 3: Mutual exclusion model in BIP

taken

free

f1 b12 f12 b2 f2b1

C12

b12 f12

f1 b12 f12 b2 f2b1

C12

b12 f12

Figure 4: Mutual exclusion architecture

Figure 4 shows an architecture that enforces the mutual exclusion property on any two components with interfaces
{b1, f1} and {b2, f2}, satisfying the assumption of entering the critical section (e.g. in state work) when their bi port is
invoked.

Composition of architectures is based on an associative, commutative and idempotent architecture composition
operator ‘⊕’ [12]. If two architectures A1 and A2 enforce respectively safety properties Φ1 and Φ2, the composed
architectureA1 ⊕A2 enforces the property Φ1 ∧ Φ2, i.e. both properties are preserved by architecture composition.

Although the architecture in Fig. 4 can only be applied to a set of precisely two components, it is clear that an ar-
chitecture of the same style - with n parameter components and 2n connectors - could be applied to any set of operand
components satisfying the aforementioned assumption. We use architecture diagrams [13] to specify such archi-
tecture styles. An architecture diagram consists of a set of component types, with associated cardinality constraints
representing the expected number of instances of each component type and a set of connector motifs. Connector
motifs define sets of BIP connectors, are non-empty sets of port types, each labelled as either a trigger or a synchron.
Each port type has a cardinality constraint representing the expected number of port instances per component instance
and two additional constraints: multiplicity and degree, represented as a pair m : d. Multiplicity constrains the number
of instances of the port type that must participate in a connector defined by the motif; degree constrains the number of
connectors attached to any instance of the port type.

Cardinalities, multiplicities and degrees are either natural numbers or intervals. The interval attributes, ‘mc’ (mul-
tiple choice) or ‘sc’ (single choice), specify whether these constraints are uniformly applied or not. Let us consider,
a port type p with associated intervals defining its multiplicity and degree. We write ‘sc[x, y]’ to mean that the same
multiplicity or degree is applied to each port instance of p. We write ‘mc[x, y]’ to mean that different multiplicities or
degrees can be applied to different port instances of p, provided they lie in the interval.

3.2. BIP components and model structure for the BPEL activities

Every BPEL process is defined by a single topmost scope that encloses variable declarations and stateful web service
interactions through exchanged messages. Such a process is translated into BIP by preserving the structure of the used
activities. Each activity is represented by a BIP component, called activity component, which explicitly defines the
processing of that activity by the BPEL engine. Basic activities, like service invocations, are represented by the atomic
BIP components of Table 1, apart from the assign activity, which is represented by one or more copy components.
Structured activities are modelled as BIP compounds that enclose lower level activity components, as well as addi-
tional atomic components from those listed in Table 2. For every structured activity a set of connectors is generated,
which is referred to as the glue, and may be accompanied by coordinating components that are attached to the glue.
These coordinating components are introduced in Section 4 and they are not shown in the overall model structure.
PROC is the topmost component of the BIP model for a BPEL process. Its enclosed components specify the process’s

normal behavior (norm) and its associated fault-handlers (faulthlrs), that are executed as a response to a thrown
fault. One more component is used to store the shared data, such as the process variables. Other shared data are
the partner links and correlation sets, which identify services and communicating sessions respectively. The norm

6

BIP comp. Behavior description
receive handles a message receipt
reply handles reply to a message
invoke invokes a service operation
compensate activates compensation of one or more scopes
valid validates a variable’s value w.r.t. its definition
empty null behavior
exit activates abrupt interruption of the process
throw generates a fault
rethrow re-throws a caught fault
copy sets value to a variable, partner link or property

Table 1: Atomic components for basic activities of BPEL.

BIP comp. Behavior description
data manages access to the scope’s data
timer fires timer events
listn handles multiple message receipts
links manages access to synchronization links
rdlnk reads a set of synchronization links
wrlnk sets a synchronization link
loopctrl controls loop execution
condctrl controls conditional execution

Table 2: Atomic components for the BPEL semantics.

component encloses a primary activity (act) and event-handlers (evhlrs), that are scopes activated by timers or
message receipts.

The overall model structure is further exemplified using phrase structure rules, where each rule refers to a compound
(enclosing component shown in “<” and “>”) in the left part and its constituents (enclosed components) in the right
part. The high level structure discussed so far is reflected by the following two rules:

〈PROC〉 ::= 〈norm〉 〈faulthlrs〉 data
〈norm〉 ::= 〈act〉 〈evhlrs〉

The components shown in the right-hand side of the PROC rule are also used in scope components, along with two
more handlers: the compensation-handler (comphlr) that specifies behavior for the reversal of the scope’s effects, and
the termination-handler (termhlr) that controls the forced termination of the scope.

〈scope〉 ::= 〈norm〉 〈faulthlrs〉 〈termhlr〉 〈comphlr〉 data

The lower-level structure of the mentioned handlers is given by the following rules:

〈evhlrs〉 ::= ((listn | timer) 〈evscope〉)+ | empty
〈faulthlrs〉 ::= (catch 〈act〉)+
〈comphlr〉 ::= 〈act〉
〈termhlr〉 ::= 〈act〉

with the “|” representing the allowed alternatives and the “+” showing the occurrence of one or more components of
the preceding type. The evscope activity component has the same structure with the scope, though it has a different
glue. This allows to address the prescription of the BPEL standard, which foresees a special scope for event handlers
that treats the handler’s starting activity (modelled by a listn or timer) as if it were part of its main activity.

The execution of parallel activities can be synchronized through synchronization links: an activity can defer other
activities through outgoing (source) links and can be deferred through incoming (target) links. The components
source and target handle the associated links using one wrlnk and one or more rdlnk.

〈source〉 ::= rdlnk+ wrlnk
〈target〉 ::= wrlnk rdlnk+

The rules and the details for modelling each activity are as follows:

〈act〉 ::= 〈source〉? 〈target〉? (receive | reply | invoke | compensate | valid | empty | exit | throw | rethrow
| 〈assign〉 | 〈seq〉 | 〈flow〉 | 〈loop〉 | 〈pick〉 | 〈if 〉 | 〈scope〉)

〈assign〉 ::= copy+

〈seq〉 ::= 〈act〉+
〈flow〉 ::= links 〈act〉+
〈loop〉 ::= loopctrl 〈act〉+
〈pick〉 ::= ((timer | receive) 〈act〉)+

7

〈if 〉 ::= condctrl 〈act〉+

where “?” specifies optional occurrence of the preceding component type. Structured activities enclose one or more
activity components and control their execution either sequentially (seq, if, loop), in parallel (flow), or by deferred
activation (pick).

3.3. Interface and behavior of activity components
The observable behavior of activity components [14] fulfills certain assumptions (model abstractions). This enables
the compound components to be defined based on the assumed observable behavior of the combined components
i.e. the glue is not tied to the combined behaviors. For each activity component, its assumed observable behavior is
ensured by construction, throughout the incremental building of the BIP model.

The fact that the glue is not tied to the combined behaviors allows the processing of each activity, i.e. the handling
of control and dataflow events, to be placed locally to the corresponding activity component. The dataflow events
comprise ports for reading/writing data to components that manage shared data (Sections 3.3.1, 3.3.2). The control
events include: (i) commands, that tell an activity what to do (e.g. start or terminate), and (ii) notifications, that are
generated by the activity (e.g. upon finishing or throwing a fault). The basic interface of activity components consists
of ports for the propagation of distinct commands and notifications.

Command ports of activity components are fired by their outer components, with the aim to:
• start them (start);
• disable them (dsbl), for some execution scenario;
• terminate them (term), due to a fault in a parent scope;
• compensate them (rvs), during the compensation of a whole scope.

On the other hand, notification ports are fired by activity components, when they:
• throw a fault (f ault), which can be any BPEL- or WSDL-defined fault;
• have finished (f in), either successfully (not disabled/terminated or having thrown a fault) or unsuccessfully;
• complete their compensation (rvsd).

The observable behavior of an activity component with respect to some goal, is formed by hiding the actions that
are of no interest for this goal. Thus, the component might have different observable behaviours for different goals.
Let us consider the behavior of the empty activity component in Figure 5 and that of the activity component in
Figure 6, whose τ and f ault actions are hidden. We define the bisimulation relation R = {(e0, s0), (e1, s1), (e1, s3),
(e1, s4), (e2, s2)} between the states of the two behaviors, i.e. one relation such that the related states imitate each
other’s observable actions leading to states that again are related. We say that any two behaviors are observationally
equivalent, if and only if there is a bisimulation relation R with (e0, s0) ∈ R, where e0 and s0 are their respective
initial states. It can be easily shown that the two behaviors in Figures 5 and 6 are branching bisimilar [15], which is
an observational equivalence notion that preserves the branching structure of behaviors. This means that R preserves
the computations together with the potentials in all intermediate states that are passed through, even if hidden actions
are involved.

Figure 5: empty activity behavior. Figure 6: Example of activity behavior.

One general assumption for defining the glue is that the behavior of all activity components is branching bisimilar
with the behavior of the empty component. This assumption is ensured by construction for all activity components;
in atomic components, this is easily implemented in their behavior, which consists of limited control locations, while
in compounds, the glue and possibly additional coordinating components enforce the externally observable behavior.

8

3.3.1. The state of service interactions
Since the lifetime of service interactions may span the execution of multiple activity components, the data compo-
nents have to accommodate variables for sharing the service interactions’ state. These variables store: (i) the (url)
location of partner link services, that may change dynamically, (ii) sets of correlation properties that are instantiated
and accessed by activity components for service interactions (receive, reply, invoke, listen), (iii) the enabled
Inbound Message Activities (IMAs) for routing messages to the listening receive components, and (iv) the open
IMAs, that identify incomplete inbound synchronous requests. More details for the representation of the service
interactions’ state and the detection of associated faults are given in Appendix A.

3.3.2. BPEL variables
The variables of a BPEL process store the messages’ content or other business specific information that has to be
shared among the activities (of a scope or globally), which may influence the control flow. Their data types are either
XML types or WSDL message types with partitions, called parts. In our model, XML typed variables and variable
parts are represented as local variables in the data components, which are accessed by activity components with
dataflow processing, such as the copy and receive components. The read and write ports of activity components
are used to read and assign variables of data, respectively.

For the values of BIP variables , we have adopted a data abstraction approach (details are given in Appendix A),
which allows to identify (i) variables that have not been initialized, (ii) pairs of variables that hold the same value, and
(iii) variables that are not assigned within a loop body.

3.4. Atomic BIP components

We adopt the common implementation approach of BPEL engines, which serialize the execution of basic activities.
For this purpose, we enforce a mutual exclusion management in which the components for basic activities perform
their execution (i.e. critical section) one by one; they remain blocked until they get the lock through their allow port,
and invoke their done port to release the lock.

s0 s1 s2 s3

s10s11

s15

s4

s5

s6

s13

s12

s9 s8

s14

s7

start

dsbl
term

rvs
rvsd

fin

allow

term

read

term

done

enabl ima

term
fault
[cs viol]

fault
[cf rcv]

doneterm

rcv msgamb rcv

term

allow

fault

[inval var]

open ima

[cf req]

write

fault

disab ima

done

receive

Figure 7: receive component for synchronous operation.

As an example, we show in Figure 7 the receive component for a synchronous operation and we discuss its dif-
ferences from a receive component for an asynchronous operation. The receive is completed in two consecutive
processing phases, one for the establishment of message listening, and one for the processing of the received mes-
sage. The actions in these phases are included in two critical sections and the component remains idle in-between.
Specifically, the component includes ports in order to:
• read the expected partner link and correlation sets (read),

9

• establish message listening (enabl ima),
• stop message listening (disab ima),
• detect an ambiguous receipt (amb rcv),
• receive the message (rcv msg),
• enlist the request identifier (open ima),
• store the message and the correlation sets (write).

Component actions are guarded by the boolean variables shown in brackets, which represent detected faults. Possible
faults are the correlation violation (cs viol), conflicting receive (cf rcv) and conflicting request (cf req). Moreover,
the ambiguous receive fault is detected when the amb rcv port interacts with another listening component and the
invalid variable (inval var) is thrown if the message does not match the expected structure.

The receive component for asynchronous operations does not have the open req port, since there is no need to
enlist the requests of asynchronous operations; thus, no conflicting request faults are thrown in this case. In Appendix
C, we expose the details of the other atomic components.

4. Compositional semantics definition

The execution semantics is enforced onto the composed behaviors of BIP compounds through coordination defined by
the glue and additional components. A compositional definition is enabled by the principle that the coordination is not
tied to the combined behaviors (shown in Section 3.3) and preserves the execution semantics of combined behaviors
(no additional behavior is introduced, as explained below).

The acceptable behavior for the BIP compounds representing structured activities is captured in the form of safety
properties defined over ports. To ease readability, all properties are defined using natural language statements. A set
of general safety properties for any compound C with n enclosed components A1. . .An is the following:

- if C is disabled (dsbl port), so do all Ai.
- if C is terminated (term port), so do all the Ai that can be terminated.
- C is finished (fin port) only if all Ai are finished.
- C’s compensation is completed (rvsd port) only if all Ai have been compensated.

Moreover, the order of compensation (rvs port) for all Ai is the reverse order of their start port activation, if there is an
imposed order (e.g. for sequence). Otherwise, the compensation of all Ai is started simultaneously.

The aforementioned safety properties, as well as the invariants for basic activities and additional safety properties
specific to each structured activity aim to formally capture the informally defined BPEL semantics from [16]. The
invariants for the basic BPEL activities are enforced within atomic BIP components by design, such as in Figure 7 and
in the components of Appendix C. For the structured BPEL activities, we introduce architecture styles that enforce
safety properties - like those mentioned - associated with their semantics. This means that each property is built-in
by construction within the used architecture style, i.e. it is implied by the behavior of the coordinating component(s)
plus the used glue.

In the BIP compound for a structured activity, the architecture styles are instantiated into concrete architectures by
defining a mapping from the styles’ parameters to the compound’s enclosed components (operands). This involves
also a mapping of the parameters’ ports to operands’ ports. According to the results presented in [12], the safety
properties of combined architectures are preserved in the compound; this result is also valid when the architectures
are composed hierarchically. Moreover, all compounds only interfere with the lower level components by applying
synchronization on their ports and synchronization always preserves the component invariants. In this way, we follow
the principle of compositional semantics definition mentioned in the first paragraph of this section.

The following properties and the used architecture styles are specific to the most important structured activities.
Details for the other activities are exposed in Appendix B.

4.1. BIP compound for the flow

Definition 4.1. A flow compound encloses one links component and n components act1. . .actn that contain k
rdlnk and m wrlnk components in total. The following properties have to be satisfied:

- if flow is started, so do all acti.

10

- some rdlnki can read a link (from links), only if some wrlnk j has set the link (to links).

For the properties of the flow compound, two architecture styles were combined, namely the Parallel style in
Figure 8 and the Synch. links mngmt style shown in Figure 9. The Parallel style enforces the first property of Def. 4.1
and the general safety properties that hold for any compound. The Synch. links mngmt enforces the second property
of Def. 4.1.

All architecture styles are applicable to operands that: (i) have at least the ports assumed for the replaced parameter,
and (ii) are branching bisimilar with the behavior assumed for the replaced parameter. For example, for the parameters
Ai of the Parallel style (Figure 8) we assume the ports of the basic interface and the behavior of the empty component.
The style is applicable to act1. . .actn that fulfill these assumptions for Ai. The style’s coordinator P mediates the
interactions of the basic interface of all Ai with the environment, so that the coordination fulfills the general assumption
of Section 3.3: the observable behavior of the compound is branching bisimilar with the empty component. If the
compound is started (P.start), all Ai are started due to a rendezvous connector (n : 1 means that the connector connects
all Ai). Therefore, the first property of Def. 4.1 is enforced, when the style is used in the flow compound. Furthermore,
the connectors in Figure 8 that connect the dsbl, term and f in ports enforce the general safety properties.

The Synch. links mngmt style manages the access of m parameters WRlnk and n RDlnk to the synchronization links
of the Lnk parameter. Each WRlnk sets a link through the set port, whereas each RDlnk reads a set of links through the
get port. Ports set and get are connected to Lnk through the WRVAR (resp. RDVAR) connectors that enable exchange
of data. A RDlnk can read a set of links (RDlnk.get), only if some WRlnks have set these links (WRlnk.set), since each
Lnk.get port is assumed to be guarded with this condition. Therefore, the second property of Def. 4.1 is enforced,
when the style is used in the flow compound. Since for the RDlnk and WRlnk parameters we assume a trivial behavior
with a single state, the style is applicable to the rdlnk and wrlnk components of act (set and get ports are exported
by act).

Figure 8: Parallel style Figure 9: Synch. links mngmt style

4.2. BIP compound for the scope and PROC

Definition 4.2. A scope compound encloses the components (i) norm, (ii) faulthlrs, (iii) termhlr, (iv) comphlr
and (v) data. Let us also consider that the enclosed components (i) to (iv) contain k rddat and m wrdat components
in total, which read (resp. assign) variables stored in data. The following properties have to be to satisfied:

1. if scope is started, then norm is started.
2. if norm throws a fault and norm is terminated while termhlr, comphlr are disabled, then faulthlrs is started

only if norm has been terminated.
3. if scope is terminated while norm is executed, norm is terminated and also faulthlrs, comphlr are disabled,

then termhlr is started only if norm has been terminated.
4. scope is finished successfully, only if norm has finished, without being disabled, terminated or having thrown

a fault.
5. scope is finished unsuccessfully, only if faulthlrs or termhlr have been executed and finished.
6. if faulthlrs throws a fault, the fault is thrown by scope, then faulthlrs is terminated only if scope is

terminated (i.e., by the enclosing scope that will handle the fault).

11

7. comphlr is started, only if a successfully finished scope is compensated.
8. scope is finished only if norm, faulthlrs and termhlr are finished and while comphlr is not being executed.
9. the values of variables in data are modified only if they are assigned by some wrdat.

Figure 10: Coordinator of the Scope style

For the properties of Def. 4.2 two architecture styles were combined, namely the Scope and one Data mngmt.
The Scope style is used only in scope, in order to fulfill properties (1) to (8). The style has a coordinator that is
shown in Figure 10 and takes as parameters the norm (NR), faulthlrs (FH), termhlr (TH) and comphlr (CH).
The coordinator’s role is to export the scope’s basic interface and to coordinate the parameters with respect to their
basic interface. This happens under the assumption that faulthlrs, termhlr and comphlr are branching bisimilar
with the empty. The coordinator enforces property (1) by starting norm (startNR port) after the scope is started (start
port). For property (2), a fault thrown by norm (f aultNR port) is followed by the preparation needed for starting fault
handling (preFH port), that involves terminating norm and disabling faulthlrs and comphlr. Afterwards, norm
must first finish (f inNR port) before faulthlrs is started. Property (3) is treated accordingly. For property (4), the
coordinator enables the succ port after norm has finished without being terminated or thrown a fault. Similarly, for
property (5), the coordinator enables the f ail port after either faulthlrs (f inFH) or termhlr (f inT H) is finished.
For property (6), the coordinator enables f ault after faulthlrs has thrown a fault (f aultFH). Then, it waits for the
scope’s termination (by the enclosing scope that will handle the fault) before invoking the termination of faulthlrs
(termFH). Property (7) holds because the coordinator disables comphlr whenever the scope is not going to finish
successfully, during the preparation for termination (preTH port) and fault handling (preFH port). Finally, property (8)
is enforced by starting comphlr (startCH) after scope’s compensation is invoked, provided that scope has finished
successfully.

Figure 11: The Data mngmt style

The Data mngmt style in Figure 11 is used to fulfill property (9). The style has one parameter D that stores some
variables, m parameters W, and n parameters R. The W have ϕ ports for assigning variables, whereas the R have χ ports
for reading variables. The style is applied to each scope by mapping the wrdat and rddat components to the W and
R parameters, while the data component is mapped to D. Property (9) is fulfilled by connecting data exclusively with
the wrdat components that are enclosed by the scope.

The PROC compound uses the Proc style, whose coordinator is different from the coordinator of the Scope style
with respect to the following four aspects: (i) it does not have the branches starting with term and disbl, since PROC is
a root component and cannot receive events that come from enclosing components, (ii) the f aultFH is not followed
by the faulthrs termination, but immediate interruption of the process occurs instead, (iii) if an exit component

12

is executed within norm or faulthlrs (i.e. invoking coordinator’s exit port), then the interruption of the process
occurs, and (iv) it does not need to enable the ports succ, f ail, rvs and rvsd.

5. Verification of correctness properties

In the verification procedure of Figure 12, we attach a fault injection component, as well as observer automata (mon-
itors) [17] for observing the state of the BPEL process model, whereas the state space exploration takes place with
one of the BIP tools [5]. The building of monitors, that is discussed later, requires information given by the user in
a configuration file. The procedure steps are shown with rectangles and the input and output data for each step with
dotted lines. More specifically, the individual steps are as follows:

Input: (i) the BPEL program and its WSDL definition files , (ii) the configuration file
Output: the verification verdict
Step 1 BPEL-to-BIP translation. The BIP model is built together with the monitors and the fault injection component

through the translation of the BPEL program and its WSDL definition.
Step 2 Verification. The verification output is produced by executing the BIP state space exploration tool. The output

contains diagnostic messages appended by the monitors, the activity components and the BIP exploration tool.
Step 3 Analysis of verification. The verification verdict for each property is produced. For some properties, it suffices

to inspect the diagnostics in the verification output, while for others a post-processing program is used1. If
a property is found to be violated, a counterexample execution trace is generated through post-processing the
verification output with a dedicated program.

Figure 12: The BPEL process verification procedure.

In the following subsection, we discuss specifically the verification of the essential correctness properties from
Section 2. Moreover, the verification of other important properties (standard BPEL faults, properties specific to the
application functionality and compliance with a session specifications) is discussed in Section 5.2.

5.1. Essential properties

No blocking
To detect blocking by receive activities, we compose the process model with a fault injection component that consists
of two non-deterministically selected states: the state representing availability of partner links for communication
(AVAIL state) and the state in which partner links cannot send messages (NAVAIL state). This component also exports

1The post-processing program and the configuration file template are available online in [7].

13

a send port, enabled at the AVAIL state, which is synchronized using a rendezvous connector with the rcv msg ports
exported by the receive components. If the process model can be blocked by an incomplete receive, then the state-
space exploration will detect deadlocks in the execution paths, in which the NAVAIL state was reached. Indeed, the
rcv msg ports will not be triggered if the NAVAIL state is reached and a deadlock will be met unless each receive is
stopped by a timer component. The attachment of the fault injection component only affects the model by restricting
the execution traces to those observed when a failure in the process environment exists. Thus, the execution semantics
of the process is not changed.

Process termination
We detect livelocks caused by eternal loops that prevent process termination. In particular, we detect execution paths
in which the variables used in the loop exit conditions are not updated during the loop’s execution. For each evaluation
of an exit condition, the values of variables are compared with the values they had in previous evaluation. This check is
integrated within the loopctrl components, which print a diagnostic message during state exploration when reaching
states where the aforementioned condition is detected.

No dead code
Dead code consists of basic activities, which are not started in at least one execution path. Such activities are detected
using a script that processes the output of state-space exploration. During the exploration, each basic activity compo-
nent prints its id twice: in one message at the initial state and in a second message once it is started. The output is
post-processed by a script that adds the ids of the messages printed at the initial state in a hash set and removes the ids
of the messages at starting. The ids that remain in the hash set after the output is processed indicate the components
that are dead code. Note that the post-processing algorithm scales linearly with the number of printed messages, since
the cost for adding and retrieving each id in the hash set is O(1) in the average case.

No incomplete asynchronous request-response
In order to verify that every asynchronous request-response pattern is responded in all execution traces, we intro-
duced two monitoring components for observing the incoming (resp. outgoing) patterns. The monitor of outgoing
patterns observes the dispatch of the first message (request) to partner services and the receipt of the second message
(response). Upon process termination, if the dispatched requests are more than the received responses, the monitor
outputs the property’s violation. Similarly, the monitor of incoming patterns prints a message, if more receipts of
requests are observed than the dispatched responses. The attachment of monitors does not affect the execution traces,
because they are connected with the activity components using broadcast connectors, through which only the activity
components can trigger the monitors and not the other way around. Thus, the execution semantics of the process is
not changed.

For this check, it is necessary to define which request and response messages are associated, since this cannot be
derived from the WSDL description. This mapping is given by the user in a configuration file.

5.2. Additional correctness poperties

Our BPEL process models can be used for verifying properties that are defined in the context of the application’s
functionality. For example, in [6], we verified a purchase order BPEL process with respect to the property: “If an
invoice has been issued, the process must not complete before sending the invoice to the client”. Such properties are
verified through the use of application-specific observer automata.

The properties related to standard BPEL faults, such as those checked in [18] (message delivery atomicity, no
session ambiguity, possible inputs) and [19] (the so-called conflicting receive in BPEL) are checked by the activity
components, which throw these faults. Thus, we represent the handling of every such fault by the responsible scope.

Besides that, our model can be checked for compliance with the acceptable message sequences within a session,
as it is demonstrated in [20]. This entails the attachment of an automaton representing the language of acceptable
message sequences, while observing the exchanged messages identified by the session. The process’s compliance
is then verified, if the observer automaton is in an accepting state, when the process is terminated. Properties like
those in (4) of Section 2 are examples of compliance with a language of sequences with two exchanged messages
(asynchronous request and response). An example language for a complete session between the process of Section 2

14

and the Airline Booking service is shown in the observer automaton of Figure13. Transitions are labelled with send
and receive message actions of the BPEL process that are allowed at each state. Valid message sequences lead to the
states 4 and 5 which enable the port valid. If a message is exchanged that is not allowed, a non-accepting state is
reached that is not shown and the message sequence is rejected. Thus, the process is not compliant with the session
language specification, if there is an execution path in which it sends, for example, cancelBook twice.

Figure 13: Observer automaton for a language of acceptable messages.

6. BPEL to BIP translation

A code generation embedding [21] was developed, such that BPEL is translated into BIP by parsing BPEL programs
and their referenced WSDL descriptions.

Our algorithm implements a single pass syntax-directed translation [22] through a recursive decent parsing of the
BPEL XML tree and a postorder call of the BIP code generation function for the tree nodes. The code generation
function is invoked only for the XML elements corresponding to BPEL activities. A code fragment, that is generated
upon each function call, is part of an incrementally built BIP model. The symbol table structure stores information
derived from the parsing of the BPEL XML tree (e.g. visible BPEL variables) and the referenced WSDL descriptions,
as well as from the code generation results. The latter is necessary for building a hierarchical model, in which each
BIP compound refers to the enclosed BIP components and their exported ports.

The code generation function uses templates of code for BIP components with placeholders. The tokens of XML
elements (tree nodes), such as the element tag and attribute values, determine the template to be used. The placeholders
are replaced by BIP code that is generated based on: (i) information retrieved from the symbol table, and (ii) the
attribute values of the XML element.

1 atomic type copy <i>()
2 /* ... sample of data ... */

3 data int err
4 data int <var[k]> /* for k = 1 .. K */

5 /* ... sample of states ... */

6 place s0, s1, s2, s3
7 /* ... sample of transitions ... */

8 initial to s0
9 on read <i>from s1 to s2 do {

10 if <var[k]>==-1 then err=10 fi /* for k = 1 .. K */

11 }

12 on fault from s2 to s3 provided (err>0)
13 on write from s2 to s3 provided (err==0)
14 end

Figure 14: Template of BIP code for the copy activity

s0

..
.

s1 s2

s3

read <i>
if (<var[k]>==-1) { err=10; } /* for each k */

write
[err==0]

fault
[err>0]

Figure 15: Behavior of the copy template

Figure 14 shows the template of a BIP code fragment that models the copy activity. The template starts with
the declaration of the copy atomic component, which includes data (lines 3-4), a set of states (line 6) and transitions
(lines 8-13). The template accepts two input parameters: (i) an auto-incremented component identifier i, (ii) a list

15

var[k] of size K with component variables for storing the message parts. The placeholder for i is noted with <i>.
The lines ending with /* for k=1..K */ comments (i.e. lines 4 and 10) are repeated for each element in var[k]. The
behavior corresponding to the transitions of this template is shown in Figure 15. Specifically, the copy starts from
state s0. Let us consider that it reaches s1, where it reads the message parts that should be copied (port read <i>).
After checking whether there are uninitialized message parts, either the message parts are copied to the new variables
(port write <i>) or a fault is thrown (port f ault).

1 compound type assign <i>()
2 /* ... enclosed components ... */

3 component <cp[k]> C<k> /* for k = 1 .. K */

4 /* ... sample of connectors ... */

5 connector <wrConn> write <i>1(
6 C<k>.write , /* for k = 1 ..K */

7)
8 /* ... sample of exported ports ... */

9 export port write <i>1.xpr as write <i>
10 export port C<k>.read <cp[k]> as read <cp[k]> /* for k=1..K */

11 export port
12 C<k>.fault, /* for k=1..K */

13 as fault
14 end

Figure 16: Template of BIP code for the assign activity

write

faultread <cp[1]>

write

fault read <cp[N]>

write <i>

faultread <cp[1]> read <cp[N]>

assign <i>

<cp[1]> . . . <cp[N]>

Figure 17: Behavior of the assign template

The template of BIP code for the assign activity component is shown in Figure 16 and the component’s structure
is illustrated in Figure 17. The template starts with the declaration of the compound (line 1) and the enclosed copy

components (line 3). Lines 5-7 show the declaration of a connector that synchronizes all the copy.write ports. This
connector exports a write port at the assign’s interface (line 9). A number of read ports are also exported, one for
each included copy.read port (line 10). On the other hand, a single f ault port is exported for all included copy. f ault
ports (lines 11-13). The template accepts three input parameters: (i) an auto-incremented component identifier i,
(ii) a list cp[k] of size K with the enclosed copy components (iii) the connector wrConn used for the assignment of
message parts.

7. Experiments on the verification of BPEL programs

The scalability of our analysis in real-size BPEL programs and the effectiveness of the verification approach were
tested using a number of BPEL programs of various sizes from [23] and [24]. The programs mentioned in the rows of
Table 3 were first translated and then analyzed with respect to the essential properties of Section 5.1.

For each program, Table 3 summarizes in the corresponding row the statistics for the size of the BIP model, the
translation/verification time and the obtained results. The shown times in ms were measured on a 64-bit machine with
an Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz and 16 GB RAM running Ubuntu 14.04. The first five columns
show the number of components, connectors and reachable states (RSS), as well as the CPU time for translating
and verifying the program. The worst time taken for the program translation was 16 sec, whereas for the program
verification was almost 44 sec. The translation times were found to have a statistically significant linear relation to
the number of states of the generated BIP model (Appendix D).

The last four columns show the verification results, for each one of the properties of Section 5.1. We note with
dash the cases in which a property does not raise some correctness issue or a property’s definition is not applicable.
For example, we don’t need to verify “no blocking” in programs, which do not wait for incoming messages other than
the first messages that create new process instances. Also, “process termination” is not relevant to programs that do
not have loop activities. The verification result for the two aforementioned properties is noted with either “pass” or
“fail”. For the two other properties, Table 3 shows the number of violation cases out of the total number of checked
cases. For example, for the property “no dead code”, it is shown the number of non-reachable basic activities together

16

Table 3: Statistics and verification results for analyzed BPEL processes.

Process ID # comp. # conn. # RSS transl.
time

verif.
time

no
block.

process
termin.

no
dead

no
incompl.

AmericanAirlines 12 42 216 12533 6471 21112 - - 0 of 13 1 of 2
AmericanAirline 59 22 127 69 3632 8 - - 0 of 4 1 of 1
BookRating 50 20 129 69 4496 18 - - 0 of 4 0 of 0
BookStore1 52 40 243 1791 5118 1204 - - 1 of 8 0 of 3
BookStore2 49 42 247 1791 4834 1211 - - 1 of 8 0 of 3
BuyBook 48 85 454 2437 6441 567 fail - 2 of 13 0 of 1
BuyBook 51 89 1359 49295 15967 43737 fail - 29 of 54 0 of 3
BuyBook 53 50 836 13607 9933 3242 fail - 2 of 25 0 of 5
BuyBook 54 27 326 983 6167 245 fail - 0 of 15 0 of 5
BuyBook 55 34 341 1707 9796 349 fail - 0 of 19 0 of 5
DeltaAirline 56 13 90 69 3736 15 - - 0 of 4 0 of 1
Employee 57 12 89 69 3712 18 - - 0 of 4 0 of 0
Travel 58 25 243 907 5721 209 fail - 0 of 13 0 of 3
TravelApproval 41 168 811 32907 11089 24364 - pass 0 of 27 0 of 0

with the total number of basic activities. The last column shows the number of incomplete asynchronous requests and
the total number of asynchronous requests.

The “no blocking” property is violated in all programs in which it was checked. By inspection of the execu-
tion traces it was found that only the programs BuyBook 48 and BuyBook 51 could avoid the eternal waiting for
messages using timers, but not in all cases. The “process termination” property was relevant only for the TravelAp-
proval 41 program, where it was found to be satisfied. The property “no dead code” was violated in five programs.
More specifically, we detected fault handlers that cannot be started. Some of these handlers were included, in order
to be invoked, if a partner service is not available. However, such a fault can be thrown only from BPEL engines,
which support this non-standard fault. On the other hand, we do not provide built-in support for non-standard faults
and for this reason the corresponding fault handlers cannot be started. Finally, two programs were found, in which the
property “no incomplete requests” was violated. By inspection, we confirmed afterwards that these programs do not
respond in all cases to services that invoke the process.

8. Related Work

In order to place our approach in the broad range of formal methods for the analysis of service compositions, we
start with the comparison framework in [2]. In that article, the authors review the pros and cons of 35 related works
classified in three categories of semantic models, namely automata or labelled transition systems, Petri-nets and
process algebras. The authors conclude that few of the considered formal methods address in a satisfactory way the
correctness properties for continuity of service delivery, and they specifically emphasize that only a limited number
of proposals support exception handling and compensations, as is the case in our approach.

The works of [25] and [19] are the only BPEL formalization approaches accompanied by available translators
(the BPEL2oWFN and the BPEL2PNML tools respectively). A comparison between the two frameworks is presented
in [26]. The resulting models of both approaches can be checked by tools that verify temporal properties on Petri-nets.
The models in [19] do not represent data dependencies but they can be checked efficiently by tools that analyze the
structure of WF-nets. Such examples are the WofBPEL tool in [19], which can check application-agnostic properties
and the tool in [27] that checks the conformance of a BPEL process model with respect to message logs. On the
other hand, models in [25] are built with an abstraction level that suits the intended analysis goal, with the possibility
to represent data dependencies. These models can be checked for general and application-specific properties only
by reachability analysis, since they do not comply to the structural requirements of WF-nets. Compared to the two
aforementioned translation approaches, our work exposes the way that the translation rules ensure the BPEL semantics

17

and provides more expressive means (i.e. the observer automata vs temporal logics) for the definition of application-
specific properties.

The distinct feature of our approach is a compositional definition of execution semantics for BPEL, such that
there is no need to model all possible combinations of nested BPEL constructs. Similar approaches are those in [28],
for the BPEL, and in [29], for an artificial variant of OWL-S. The latter, does not feature complex event handling
structures like the ones offered by BPEL. Moreover, the main goal of semantics definition was the implementation
of an orchestration execution engine, as opposed to ours, which is the verification of correctness properties. In [28],
the authors describe a stepwise refinement approach for a structure-preserving modeling of BPEL in Event-B. This
work, like ours, is supported by a translation tool and considers both generic and custom correctness properties for
verification. We instead follow a constructive approach in building the model by gradually imposing constraints while
preserving invariants. In another work [30], a BPEL translation to FIACRE [31] is presented. FIACRE is a formal
language for modeling both the behavioral and timing aspects of systems. This work is focused on the translation
approach, rather than a compositional semantics definition. No details are provided for the verification of BPEL
programs and for the scalability of their translation to programs of various sizes.

For considering the effectiveness of BIP in comparison with the process algebraic approaches we recall [32], where
the authors realized a semantic gap between BPEL and the π–calculus. They recognize that the notion of global state
over BPEL computations, the message passing and the combination of sequencing with concurrency create interleav-
ing and name binding behavior that cannot be faithfully represented in π–calculus. As a consequence of these findings,
in order to provide formal semantics for the BPEL activities, they extend π–calculus with a transactional construct.
In [33], a two–way mapping is introduced between BPEL 4WS and the LOTOS process algebra. The authors claim
that LOTOS has the expressive power to structurally represent BPEL processes, due to its compositionality semantics.
However, LOTOS lacks expressive primitives like for example the broadcast connector in BIP.

The difference between the process algebra setting and that of BIP is thoroughly studied in [4]. The components in
BIP are characterized by their behavior (labeled transitions) and their composition takes place by means of interaction
models and priority models, which essentially perform memoryless coordination of behavior. On the other hand, in
process algebras processes evolve with the use of operators for composition. With respect to a notion of expressiveness
that characterizes the ability of some framework to coordinate components, process algebras have been shown to
be less expressive than BIP. Regarding the compositional semantics definition, the coordination means of process
algebras do not preserve the invariants of composed behaviors, since the behaviors evolve.

Moreover, it is worth comparing BIP with high-level modeling languages for component-based systems. One
language that has been used for modeling compositional construction of web services is Reo [34]. However, Reo’s se-
mantic model, which is the constrained automata, cannot preserve the BPEL process structure due to lack of powerful
coordination operators, such as those in BIP. The lack of structure preservation, along with the fact that connectors in
Reo are stateful, would complicate the definition of a compositional semantics definition for BPEL in Reo.

Finally, in an independent research work [9], our structural BPEL process representation from [6] was extended
towards the verification of service non-interference, which is an interesting application of our compositional seman-
tics framework. To do so, the process designer must provide a configuration file (.xml) with authorization rights, that
is, a list of owners and authorized readers - partner link services - for critical data. Then, the configuration synthesis
algorithm takes as input the BIP model of the BPEL program and the configuration file and builds information flow
dependency graphs by considering all implicit and explicit data dependencies in the system. In case a total configura-
tion file can be generated by the tool, the system information flow is then considered non-interferent with respect to
the initially defined configuration. Otherwise, the system is interferent and the system designer has to re-define the
initial configuration by utilizing the obtained counterexample. The calculated configuration is optimal, i.e. only data
that need to be protected is configured as critical. The ultimate aim is to reduce the security processing overhead like
cryptography encryption and decryption, signature calculation, certificate verification, etc.

9. Conclusion

The main contribution of the paper is the compositional semantics definition for business processes. Such a definition
tackles the combinatorial problem of defining semantics for each possible combination of nested statements. In
particular, we focused on the BPEL language for business processes, which features a multitude of activities nested

18

using concurrency, isolation, compensation and event handling constructs. Our approach relies on the BIP component
framework. More precisely, a hierarchical BIP model is built by applying sets of BIP connectors to certain observable
events of the lower-level components. The connectors determine the execution semantics of the BPEL process and its
activities; they are based on assumptions for the observable behavior of the combined components that are ensured
by construction. The semantics is defined by introducing safety properties for the BIP compounds that represent the
BPEL activities. These properties are then enforced using architecture styles, as in [12].

We also presented the design of a code generation embedding based on our semantics definition that translates
BPEL programs into BIP models. In a number of experiments with real-size programs, we noticed that the translation
times have a statistically significant linear relation to the number of states of the generated BIP model. The trans-
lator serves the purpose of verifying business processes written in BPEL. We presented the verification of essential
correctness properties, as well as other properties that are defined in the context of the application’s functionality.
However, verification is only one of the possible uses of our semantics framework. As a proof of concept, the reader
is referred to [9], where our model was extended towards enabling the configuration of information flow policies for
BPEL processes.

As future work, we consider the use of a more fine grain data abstraction that will represent data as a set of
constraints on their data range. This would result in a tighter overapproximation of the process’s behavior. Another
perspective is to deliver a new implementation of our translator using: (i) XPath (XML Path) expressions [35] for
parsing BPEL activities, and (ii) XSLT (XML style transformation) expressions [36] for transforming their content
into BIP code. Such an implementation will provide enhanced readability and extensibility of the parsing and code
generation rules, which will not be embedded in the translation program. Moreover, it is also possible to combine our
translator with BIP embeddings for other composition languages. By using BIP as a multilanguage host framework
we can analyze the behavioral correctness of service choreographies. However, this involves the formal treatment of
problems related to the compositionality of language semantics. Finally, our compositional semantics approach can
also be used in studying BPEL processes, which use dynamic partner links [37], i.e. endpoint references that are
passed to the BPEL process at runtime. For this purpose, we plan to use Dy-BIP [38], which is a dynamic extension
of the BIP component framework.

References

[1] C. A. Sun, Y. Zhao, L. Pan, H. Liu, T. Chen, Automated testing of WS-BPEL service compositions: A scenario-oriented approach, IEEE
Transactions on Services Computing PP (2015) 1–1.

[2] M. H. Beek, A. Bucchiarone, S. Gnesi, Formal methods for service composition, Annals of Mathematics, Computing and Teleinformatics 1
(2007) 1–14.

[3] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. H. Nguyen, J. Sifakis, Rigorous component-based system design using the bip
framework, IEEE Software 28 (2011) 41–48.

[4] S. Bliudze, J. Sifakis, A notion of glue expressiveness for component-based systems, in: Proceedings of the 19th International Conference
on Concurrency Theory, CONCUR ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 508–522.

[5] BIP tools, BIP tools, http://www-verimag.imag.fr/BIP-Tools,93.html, 2017.
[6] E. Stachtiari, A. Mentis, P. Katsaros, Rigorous analysis of service composability by embedding WS-BPEL into the bip component framework,

in: proc. of the IEEE 19th International Conference on Web Services (ICWS), 2012, pp. 319–326.
[7] BPEL2BIP, BPEL process modelling tools, http://depend.csd.auth.gr/research/BpelProcessModelling, 2017.
[8] S. Jehan, I. Pill, F. Wotawa, Bpel integration testing, in: International Conference on Fundamental Approaches to Software Engineering,

Springer, 2015, pp. 69–83.
[9] N. Ben Said, T. Abdellatif, S. Bensalem, M. Bozga, A robust framework for securing composed web services, in: Revised Selected Papers of

the 12th International Conference on Formal Aspects of Component Software - Volume 9539, FACS 2015, Springer-Verlag New York, Inc.,
New York, NY, USA, 2016, pp. 105–122.

[10] S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, A. Legay, A. Nouri, Statistical model checking qos properties of systems with sbip, in:
Proceedings of the 5th International Conference on Leveraging Applications of Formal Methods, Verification and Validation: Technologies
for Mastering Change - Volume Part I, ISoLA’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 327–341.

[11] A. Basu, S. Bensalem, M. Bozga, P. Bourgos, M. Maheshwari, J. Sifakis, Component assemblies in the context of manycore, in: Formal
Methods for Components and Objects, 10th International Symposium, FMCO 2011, Turin, Italy, October 3-5, 2011, Revised Selected Papers,
2011, pp. 314–333.

[12] P. Attie et al, A general framework for architecture composability, Formal Aspects of Computing 18 (2016) 207–231.
[13] A. Mavridou, E. Baranov, S. Bliudze, J. Sifakis, Architecture diagrams: A graphical language for architecture style specification, in:

Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9 June 2016., 2016, pp. 83–97.
[14] K. C. Wong, W. M. Wonham, Hierarchical control of discrete-event systems, Discrete Event Dynamic Systems 6 (1996) 241–273.
[15] R. J. van Glabbeek, W. P. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 43 (1996) 555–600.

19

[16] OASIS, Web services business process execution language version 2.0, 2007. URL: http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[17] N. Halbwachs, F. Lagnier, P. Raymond, Synchronous observers and the verification of reactive systems, in: Proceedings of the Third Inter-
national Conference on Methodology and Software Technology: Algebraic Methodology and Software Technology, AMAST ’93, Springer-
Verlag, London, UK, UK, 1994, pp. 83–96.

[18] F. Montesi, M. Carbone, Programming services with correlation sets, in: Proceedings of the 9th International Conference on Service-Oriented
Computing, ICSOC’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 125–141.

[19] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas, A. H. ter Hofstede, Formal semantics and analysis of control flow in
WS-BPEL, Science of Computer Programming 67 (2007) 162 – 198.

[20] P. Parizek, J. Adamek, Checking session-oriented interactions between web services, in: Proceedings of the 2008 34th Euromicro Conference
Software Engineering and Advanced Applications, SEAA ’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 3–10.

[21] P. Hudak, Modular domain specific languages and tools, in: Proceedings. Fifth International Conference on Software Reuse, 1998, pp.
134–142.

[22] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[23] M. B. Juric, A Hands-on Introduction to BPEL, http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html,
2017.

[24] M. B. Juric, A Hands-on Introduction to BPEL, Part 2: Advanced BPEL, http://www.oracle.com/technetwork/articles/

matjaz-bpel2-082861.html, 2017.
[25] N. Lohmann, A feature-complete petri net semantics for WS-BPEL 2.0, in: Web Services and Formal Methods, 4th International Workshop,

WS-FM 2007, Brisbane, Australia, September 28-29, 2007. Proceedings, 2007, pp. 77–91.
[26] N. Lohmann, E. Verbeek, C. Ouyang, C. Stahl, Comparing and evaluating petri net semantics for bpel, International Journal of Business

Process Integration and Management 4 (2009) 60–73.
[27] W. M. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, E. Verbeek, Conformance checking of service behavior, ACM Transactions on

Internet Technology (TOIT) 8 (2008) 13.
[28] I. Aı̈t-Sadoune, Y. A. Ameur, Stepwise development of formal models for web services compositions: Modelling and property verification,

Trans. Large-Scale Data- and Knowledge-Centered Systems 10 (2013) 1–33.
[29] B. Norton, S. Foster, A. Hughes, A compositional operational semantics for owl-s, in: Proceedings of the 2005 International Conference on

European Performance Engineering, and Web Services and Formal Methods, International Conference on Formal Techniques for Computer
Systems and Business Processes, EPEW’05/WS-FM’05, Springer, 2005, pp. 303–317.

[30] E. Fares, J. Bodeveix, M. Filali, Design of a BPEL verification tool, in: Web Services and Formal Methods - 8th International Workshop,
WS-FM 2011, Clermont-Ferrand, France, September 1-2, 2011, Revised Selected Papers, 2011, pp. 95–110.

[31] B. Berthomieu, J.-P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad, J. Stoecker, F. Vernadat, P. Gaufillet, et al., The syntax and
semantics of fiacre, Repport LAAS (2007).

[32] R. Lucchi, M. Mazzara, A pi-calculus based semantics for WS-BPEL, Journal of Logic and Algebraic Programming 70 (2007) 96–118.
[33] A. Ferrara, Web services: A process algebra approach, in: Proceedings of the 2nd International Conference on Service Oriented Computing,

ICSOC ’04, ACM, New York, NY, USA, 2004, pp. 242–251.
[34] S. Tasharofi, M. Vakilian, R. Z. Moghaddam, M. Sirjani, Modeling web service interactions using the coordination language reo, in:

Proceedings of the 4th International Conference on Web Services and Formal Methods, WS-FM’07, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 108–123.

[35] S. DeRose, J. Clark, XML Path Language (XPath) Version 1.0, W3C Recommendation, W3C, 1999. Http://www.w3.org/TR/1999/REC-
xpath-19991116.

[36] J. Clark, XSL Transformations (XSLT) Version 1.0, W3C Recommendation, W3C, 1999. Http://www.w3.org/TR/1999/REC-xslt-19991116.
[37] S. Carey, SOA Best Practices: The BPEL Cookbook - Making BPEL Processes Dynamic, http://www.oracle.com/technetwork/

articles/carey-090553.html, 2017.
[38] M. Bozga, M. Jaber, N. Maris, J. Sifakis, Modeling dynamic architectures using dy-bip, in: Proceedings of the 11th International Conference

on Software Composition, SC’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 1–16.

20

Appendix A. Variables for process state

A.1. The state of service interactions

The lifetime of service interactions spans across the execution of multiple activity components. Therefore, we use
variables in the data components of scopes that allow sharing information about the state of service interactions.
These variables store:

• the (url) location of remote services of partner links that influences the routing of incoming messages. Partner
links may or may not be initialized (by the scope or copy components) when they are accessed, in which case
a fault is thrown.

• the correlation sets; these are sets of correlation properties, i.e. variables that are instantiated and accessed by
activity components for service interactions (receive, reply, invoke, listen). A fault (correlation violation)
is thrown upon attempts to (i) initialize already initialized sets, (ii) access uninitialized sets, (iii) send a message
not matching the initialized sets.

• the information for routing messages to each listening receive component2; this information consists of a
partner link, a service operation, as well as a list of correlation set values and their mappings to message parts.

A fault is thrown if the routing information of receive components are conflicting (i.e., they match the same
messages) or ambiguous (i.e., they can both match a message).

• a request identifier for each incomplete incoming synchronous request3; this identifier is set by the receive

component and encodes its associated partner link, service operation and possibly some internal transaction
identifier4; each reply component attempts to erase the request identifier to which it replies. A fault is thrown
if: (i) a receive component attempts to set a duplicate request identifier (conflicting request), (ii) a reply does
not find its associated request identifier (missing request), or (iii) a scope about to end detects an incomplete
synchronous request (missing reply).

A.2. BPEL variables

The variables for a BPEL process may have been defined globally or within scopes. They store the content of messages
or any other information that is shared among the activities of a scope, and are often used in conditions that influence
the control flow. Their data types are either XML types or WSDL message types with partitions, called parts. In the
BIP model, these variables are stored within the data components using separate BIP variables for each of their parts;
they are read and assigned by activity components such as copy, receive, listn, invoke, reply and loopctrl

using their read and write ports.
For the values of BPEL variables, we have adopted a data abstraction approach using symbols. This allows

identifying variables that have not been initialized, and assignments with the same expression which is needed to
detect every time that the variables change value. The same default symbol is assigned to all variables that have not
been initialized. Each activity component with assignment semantics (e.g. copy, receive) evaluates the symbol to
be assigned - let us call it right-value - to some BPEL variable, referred to as left-value. First, the symbols used in the
right-value are being read:
• if they correspond to BPEL variables, then they are retrieved from data components;
• if they are BPEL message inputs or external data, then their values are represented by distinct symbols.

To the left-value is then assigned the hash code for the string given by concatenating the retrieved symbols with the
static parts of the right-value.

2this refers to enabled IMA according to the BPEL terminology
3this refers to open IMA according to the BPEL terminology
4this refers to the BPEL messageExchange attribute

21

Appendix B. Compositional semantics for BIP compounds

B.1. BIP compound for sequence
Definition B.1. A sequence composite encloses n components act1. . .actn. The following safety properties have
to be satisfied:

- if sequence is started, so does act1.
- acti is started only if acti−1 is finished.

The safety properties of Def. B.1 and the general properties are fulfilled by the Sequential style of Figure 18. The
style has a coordinator P which enforces a sequential order of execution between two parameters A1 and A2. Thus for
the coordination of n > 2 parameters, Sequential style must be applied hierarchically n-1 times. The first and second
property of Def. 4.1 are implemented by two rendezvous between the P.start and A1.start ports (resp. of A1. f in and
A2.start ports). Note that fin ports are linked by connectors twice in A1: first, in order to synchronize the fin and
start of successive components, and second, to synchronize the fin of both components at the end of their processing.
The rendezvous between the A1.rvs and A2.rvsd ports enforce the order of compensation, which is the reverse of the
order of execution. In case A1 abort ports, it can cause A2 to be disabled by triggering one of the abort ports. This
coordination, though it is not applied to sequence, it is needed for using the style to other components with similar
semantics (e.g. the act composite).

Figure 18: Sequential style

The connectors in Figure 18 that connect the dsbl, term and f in ports are used to enforce the general safety prop-
erties in Section 4. These connectors exist also in the Prioritized Alternative, Non-Prioritized Alternative, Repetitive
and Parallel Repetitive styles, though they are omitted from the diagrams. The connectors of rvs and rvsd ports for
these styles are placed as shown in Figure 8. In all these style there is one coordinating component which is branching
bisimilar to the P component shown in Figure 8. This ensures branching bisimilarity between the observable behavior
of the styles and the empty component.

B.2. BIP compound for if
Definition B.2. An if composite encloses one condctrl component and n components act1. . .actn. Let us consider
the condctrl ports acc1 . . . accn and re j1 . . . re jn, for accepting an activity component (resp. rejecting it). The
following safety properties have to be satisfied:

- acti is started only if it is accepted by the condctrl.
- if condctrl rejects an acti, then acti is disabled.

The Conditional alternative style of Figure 19 is used to enforce the safety properties of Def. B.2. The style
has one CN and n A parameters. The coordinator P plays the same role as in the previously described styles. The
connectors that enforce the general safety properties are omitted from Figure 19. Parameters A are assumed to be
branching bisimilar with empty, whereas CN is assumed to be branching bisimilar to the behavior with which it is
depicted in Figure 19. The first property of Def. B.2 is fulfilled by n broadcast connectors between each CN.selcti

22

and Ai.start for i = 1 . . . n. The second property is satisfied by a single broadcast connector between CN.re j and all
Ai.disable. Broadcast connectors were chosen, so that CN is not blocked after the termination of the if composite,
upon which all Ai are terminated while CN doesn’t enable termination. As a result, CN must be able to perform, for
example, selcti even if Ai cannot start. Finally, it is worth to mention that the effects of disabling some Ai do not depend
on race conditions, thus the same results are produced whether Ai is disabled before, during, or after the execution of
some A j.

Figure 19: Conditional alternative style

B.3. BIP compound for pick
Definition B.3. A pick composite encloses n components act1. . .actn and n components λ1. . .λn (each being either
listn or timer). λ components export the ports ev and o f f , for receiving an event (i.e. message or timing event)
and, respectively, stop waiting. The following safety properties need to be satisfied:

- if pick is started, so do all Li.
- acti is started only if the event of Li arrives.
- At most one acti is started.

Figure 20: Alternative style

The Alternative style (Figure 20) is used to enforce the safety properties of Def. B.3. The style has n M parameters,
n A parameters and a coordinator P. The behavior of L and A is assumed to be branching bisimilar to empty. The first
property of B.3 is fulfilled by a single rendezvous that connects the P.start and the Li.start ports, while the second
is realized by the rendezvous between the Li.ev and Ai ports.start. The third property is satisfied by the coordinator
P and its rendezvous connection with the Li.ev port, which allows only one such port to be executed. Subsequently,
P disables the A components and closes the L components through a broadcast connector triggered by the tO f f port.
Note that the A that started will not be disabled, since it is not in the initial state. The broadcast connector allows the
interaction to be executed, even if this A is not able to participate.

23

B.4. BIP compound for loop

Definition B.4. A loop composite encloses one loopctrl component and n components, act1. . .actn, standing
for n repetitions of the loop body activity. Let us consider the loopctrl’s ports beg1 . . . begn, end and break, for
beginning a loop’s execution, receiving its end and breaking from loop, respectively. The following safety properties
have to be satisfied:

- acti is started only if loopctrl begins the i−th loop execution.
- if break occurs, the acti of all remaining loop executions are disabled.

Figure 21: Repetitive style

Note that we use a different activity component to maintain each repetition’s state, since the loop’s activity com-
pensation will have to run for each repetition separately.

The Repetitive style (Figure 21) is used to enforce the safety properties of Def. B.4. The style contains one
parameter LP, n parameters A and a coordinator P. The first property is satisfied by the broadcast from LP.begi to the
Ai.start port, whereas the second property is realized by the broadcast from LP.break to all Ai.dsbl ports.

Definition B.5. A parallel loop composite encloses one loopctrl component and n components scope1. . .scopen,
standing for n parallel repetitions of the loop body scope. Let us consider the loopctrl’s ports beg1 . . . begn, for
beginning i parallel loop executions, and break for breaking from loop, respectively. Also, the ports f ail and succ
used by loopctrl to receive the successful (resp. unsuccesssful) completion of every scope. The following safety
properties have to be satisfied:

- if loopctrl begins i loop executions, scope1. . .scopei are started.
- if loopctrl breaks from loop, all terminatable scopei are terminated.
- if scopei completes, loopctrl is notified whether completion was successful or not.

Figure 22: Parallel Repetitive style

The Parallel repetitive style (Figure 22) is used to enforce the safety properties of Def. B.5. The style contains
one parameter LP, n parameters S and a coordinator P. The first property is satisfied by the broadcast from LP.begi to
the start ports of S1. . .Si. Number i is evaluated by loopctrl. The second property is fulfilled by the broadcast from
LP.break, which is executed by loopctrl in 3 cases: (a) if i = 0 in state 1 (b) if the number of completed S in state
2 is the minimum needed for the loop and (c) if all S in state 2 are completed. It depends on the loopctrl whether it

24

counts all completed S to to the minimum needed, or only those that finished successfully. Finally, the third property
is fulfilled by the rendezvous connectors between each Si.succ and LP.succ (resp. f ail)

B.5. BIP compound for act
Definition B.6. An act composite is used to enclose a specific activity component, say acti, one target and/or one
source component. Let us consider the target’s port abort, for preventing the execution of actc due to target links,
and the source’s ports: read1 . . . readm, for reading values used in the evaluation of m source links (also evaluating
the links), and set1 . . . setm, for setting the evaluation’ results to the m links. The following safety properties have to
be satisfied:

- actc is started only if (target has finished) and (target has not prevented acti).
- source is started only if acti has finished.
- source evaluates a link only if (acti has not been disabled or terminated) and (neither acti or source has

thrown a fault).

Figure 23: Status mngmt style

Figure 24: Reading of links in act component Figure 25: Writing of links in act component

For the properties of Def. B.6 two architecture styles were combined, namely the Sequential and the Status mngmt
styles. The Sequential style is used for the first two properties of Def. B.6, that are ensured through the sequential
execution of target, acti and source and the ability of target to abort the sequence. Status mngmt (Figure 23)
is used to enforce the third property of Def. B.6. The style has m parameters B, and k parameters A, which get and
set the status, respectively. A coordinator Status is used to maintain n status values using a different state for each

25

status value. There are no assumptions for A, while B are assumed to be branching bisimilar to the behavior shown in
Figure 23. According to the third property of Def. B.6 there will be two statuses: the norm, which is set by default,
and the stop which is set when acti is disabled, or terminated, or if some component (acti or source) has thrown a
fault. For applying the style, source will be used as operand for B, whereas both source and acti will be operands
for A. Figure 24 shows the result of applying the two sequential architectures, whereas Figure 25 shows the result of
applying the Status mngmt in act composite.

B.6. Architectures of the components in PROC and scope

The scope encloses composite components with applied architectures that coordinate their constituent components.
We describe the architectures used in each of the norm, evhlrs, faulthlrs and comphlr, though we omit the
expected safety properties and implementation details.

The norm composite encloses a main activity (act) and a component that contains event handlers (evhlrs). Two
coordinating components are attached, namely the scinit and the scfin, that perform initialization and finalization
actions at the beginning (resp. at the end). of norm. For example, scfin checks whether open IMAs are left after
act and evhlrs have finished. The Sequential style is applied, so that scinit and act are executed sequentially,
whereas the Parallel style is applied to the Sequential’s result and the evhlrs. Finally, the Sequential style is applied
again on the the Parallel’s result and scfin. The scinit and scfin are weakly bisimilar to empty, thus they are
valid operands for these styles. One extra connector is used, that turns off event handlers (evhlrs.turnO f f port), so
that no new events are handled after act has finished (act. f in). Note that if norm is inside PROC it will contain the
process’ starting activity, which in this case must first finish before evhlrs is started. This enables evhlrs to use
input received by the starting activity (e.g. for the definition of expected events).

The evhlrs composite encloses a single empty component handles in the trivial case where there are no expected
events to handle. In all other cases, it encloses n event receiving components (i.e. a timer or listn) and m =

2 × n evscope components that handle the incoming events. Each event receiving component is associated with
two evscope components that will handle one event occurrence each. For our verification purposes, it is sufficient to
consider just two occurrences of each event, thus we use only two evscopes per event. Two evscopes can materialize
all the interleavings that are necessary to capture concurrency issues due to parallel handling of the same event. All
event receivers are started when evhlrs is started (i.e. Parallel style) and they start one of their associated evscopes
upon receiving an event. Event receivers can receive subsequent events, until evhlrs is turned off (i.e. all the non-
started evscopes are then disabled). Afterwards, evhlrs is considered finished when all evscopes are finished. The
evscopes can be concurrently compensated. The behavior of evscope is quite similar to scope, since they share the
same structure and connectors. Their difference lies in that evscope treats the event receiver as if it were an enclosed
component even though it is not. According to that, evscope will handle any fault thrown by the event receiver and
allows the event receiver to write to variables and access the correlation sets of the evscope.

The faulthlrs composite encloses n catch and their associated n act components. Also, a scfin component is
attached, as the one used in norm. The Alternative style is applied so that only one catch can trigger its associated act
when faulthlrs is started. Specifically, upon faulthrs.startFH a rendezvous of all catch.start ports is invoked in
which each catch exports a string that characterizes the faults that it can handle. The rendezvous connector performs a
computation which decides on a catch that triggers its act (i.e. all other catch and act are then disabled). The fault
occurrence is stored as a local variable in catch, so that it can be thrown again by faulthlrs if a rethrow component
is executed within act. The Sequential style is applied so that scfin is started after the result of Alternative style is
finished.

The comphlr composite encloses an act and a scfin coordinated by the Sequential style. The termhlr com-
posite encloses a single act, thus it has no coordination needs.

26

Appendix C. Models for basic activities and other atomic components

The models for basic activities and the other atomic components of Table 2 are presented here. Note that in the
components’ figures we omit to include all the term ports, in order to keep them uncluttered.

invoke

The invoke component performs a service invocation and it has two variants based on whether it invokes a one-
way or a request-response operation. Figure 26 shows the ports included in both variants with solid line and the ports
that are specific to each variant with dashed and dotted lines, respectively. The intern port is used for the component’s
internal transitions. The used ports are:
• read, to read the partner link and the variables (and correlation sets), for preparing the message.
• snd msg, to send the invocation message;
• rcv msg, when the invocation’s response is received
• write, to store the message and the retrieved correlation sets.

The component throws possible correlation violation (cs viol), uninitialized partner role (unin role), uninitialized
variable (unin var) and selection failure (slct fail) faults during the preparation of the request message. From these
faults, the first three can be detected, while the last one is non-deterministically thrown. For the response message,
the component throws also the mismatched assignment (mis assg) fault non-deterministically. Also, if the received
response corresponds to a fault message (flt msg) then this fault is thrown by the invoke.

s0 s1 s2 s3

s6

s5 s4

s7s8

start

dsbl
term

rvs
rvsd

fin

allow

term

read
fault

[unin role ∨ unin var
∨ cs viol ∨ slct fail]

sndMsg

rcvMsg

intern
write

fault
[cs viol
∨ flt msg
∨ slct fail
∨ mis assg]

done

variants: oneway
¬ oneway

INVOKE

Figure 26: The invoke component with two variants.

reply

The reply component (Figure 27) handles the response of a synchronous operation.
The used ports are:
• chk ima, to check that such a request is waiting for response.
• read, to read variables and correlation sets for preparing the message
• close ima, to remove request from the waiting list.
• snd msg, to send the response message;

The component detects and throws possible correlation violation (cs viol) and uninitialized variable (unin var)
faults. Also, it throws non-deterministically the mismatched assignment (mis assg), selection failure (slct fail), and
missing request (miss req) faults.

27

s1 s2 s3 s4

s5

s6s7s8s9

start

dsbl
term

rvs
rvsd

fin

allow

term

chk ima

read

close ima

snd msg

fault
[miss req] fault

[unin var
∨ cs viol
∨ mis assg
∨ slct fail]

done

REPLY

Figure 27: The reply component.

listn

The listn component is ommited, since it is similar to the receive. Namely, listn is different in that: (i) it
can receive multiple messages with one open listening endpoint, and (ii) it can be turned off, when it shouldn’t receive
any more messages.

copy

The copy component (Figure 28) handles the assignment to a BPEL variable (or a partner link). The component
reads the source variable stored in some data component (read port) and evaluates its value. If no fault occurs, it
assigns the value to the target variable, found in some data component (write port). Note that if the copy assigns
from a literal value, the read port has no effect.

The component detects and throws possible uninitialized variables (unin var), and uninitialized partner role
(unin role) faults. Also, it throws the mismatched assignment (mis assg), selection failure (slct fail), and invalid
selection (inval slct) faults non-deterministically. These faults may or may not be thrown based on the source and
target variables’ variant, which can be a variable, a partner link, a literal value or an expression.

s1 s2 s3 s4

s5s6s7

start

dsbl
term

rvs
rvsd

fin

allow

term

read

write fault
[unin var ∨ unin role ∨
slct fail ∨ inval xpr ∨
mis assg]

done

COPY

Figure 28: The copy component with two variants.

compensate

The compensate component (Figure 29) controls the compensation of one or many scopes. Such a component
reside only within the act of the components faulthlrs, comphlr and termhlr. The used ports are:
• compensate, to start the compensation of some scope(s).
• infault, to receive a fault from the compensated scopes.
• endrvrs, to be notified about the end of compensation.
• termcomp, to abruptly terminate the compensation.

The component rethrows, through the fault port, any fault of the compensated scope. Thus, these faults can be handled
by the compensate’s enclosing scope.

28

s1 s2 s3 s4

s5s6s7s8

start

dsbl
term

rvs
rvsd

fin

compensate

term

infault

endcomp
termcomp

endcompfault

COMPENSATE

Figure 29: The compensate component.

throw , rethrow

The throw component (Figure 30) is used to throw an explicit internal fault, through the fault port. On the other
hand, the rethrow component (Figure 31) has a slightly different role; It is placed within faulthlrs in order to to
rethrow the fault that was originally caught. For this reason, the rethrow component uses the rethrow port that has
different semantics from the throw port and it is handled differently by the scope’s glue: initially the transferred fault
is unknown and it is assigned at the scope level, after it is retrieved by the scope’s controller which stores the caught
faults.

s1 s2 s3

s4s5s6

start

dsbl
term

rvs
rvsd

fin

allow

term fault

done

THROW

Figure 30: The throw component.

s1 s2 s3

s4s5s6

start

dsbl
term

rvs
rvsd

fin

allow

term rethrow

done

RETHROW

Figure 31: The rethrow component.

exit

The exit component (Figure 32) fires the exit port, that causes the whole process’s interruption.

s1 s2 s3

s4s5s6

start

dsbl
term

rvs
rvsd

fin

allow

term exit

done

EXIT

Figure 32: The exit component.

valid

The valid component (Figure 33) validates a variable against its data type (XML schema). Since our modelling
assumes only symbolic values for variables, the component cannot detect the invalid variables (inval var) fault, thus
the fault is thrown non-deterministically.

29

s1 s2 s3 s4

s5s6s7

start

dsbl
term

rvs
rvsd

fin

allow

term

read

fault
[inval var] intern

done

VALID

Figure 33: The valid component.

timer

The timer component (Figure 34) is used to model the BPEL activities onAlarm and wait that handle the firing
of a time-out. The time-out is specified using either a duration (relative timestamp) or a date (absolute timestamp).
Also, the time-out for onAlarm may be periodic, if a time period is given. All the timer components of the model
are synchronized (tick port) so that they update their remaining time accordingly: upon each tick, one timer expires
(whichever is closer to expire), while this timer’s remaining time is reduced by the other timers remaining times.
The used ports are:
• read, to read the variables for evaluating the timer’s expressions.
• tick, to synchronize with other timers.
• trigger, when there is a time-out.
• tOff, when it is turned off.

The component can detect a possible uninitialized variable (unin var) fault, while it throws the invalid expression
value (inval xpr) fault non-deterministically.

s1 s2 s3

s4s5s6

start

dsbl
term

rvs
rvsd

fin tOff

read
t:=expr;

tOff

term

tick
t:=t-adv;

trigger
[t==0]

intern
[repeat>-1]
t:=repeat;

intern

tOff

fault
[unin var ∨
inval xpr]

TIMER

Figure 34: The timer component.

loopctrl

The loopctrl component for the while and repeatUntil activities are shown in Figure 35 and Figure 36 respec-
tively. Both components have the same interface, though their behaviors differ, based on whether the first execution
depends on a decision or not. The used ports are:
• read, to read the variables for evaluating the conditions.
• trigger, to start the loop body activity;
• done in, when the loop body activity is finished.
• tOff, to exit the loop.

The component can detect a possible uninitialized variable (unin var) fault, while it throws the invalid expression
value (inval xpr) fault non-deterministically.

30

s1 s2 s3 s4

s6s7

start

dsbl
term

rvs
rvsd

fin

read

term

trigger
tOff

[¬expr]

fault
[unin var ∨
inval xpr]

done in
WHILE LOOPCTRL

Figure 35: The loopctrl component for the while activity.

s1 s2 s3

s4

s6 s5s7

start

dsbl
term

rvs
rvsd

fin

trigger

term

done in

fault
[unin var ∨
inval xpr]

read

trigger

tOff
[¬expr]

UNTIL LOOPCTRL

Figure 36: The loopctrl component for the repeatUntil activity.

The loopctrl for the f orEach and the parallel f orEach activities are shown in Figure 37 and Figure 38 respec-
tively. The components have the same interface, though their behaviors differ slightly. The used ports are:
• read, to read the variables for evaluating the expressions.
• trigger, to start the loop body scope;
• succ, when the loop body scope is successfully finished.
• fail, when the loop body scope is finished but not successfully.
• tOff, to exit the loop.

The component can detect a possible uninitialized variable (unin var) fault, while it throws the invalid expression
value (inval xpr) fault non-deterministically.

s1 s2 s3 s4

s6s7 s5s8

start

dsbl
term

rvs
rvsd

fin

read

term

trigger

tOff
[i≥N]

fault
[unin var ∨
inval xpr]

trigger

fault
[unin var ∨
inval xpr]

succ
i:=i+1;

fail
if(¬succOnly)

i:=i+1;

read

tOff
[i≥min(C,N)]

FOREACH LOOPCTRL

Figure 37: The loopctrl component for the forEach activity.

s1 s2 s3 s4

s6s7 s5s8

start

dsbl
term

rvs
rvsd

fin

read

term

trigger

tOff
[i≥N]

fault
[unin var ∨
inval xpr]

intern

fault
[unin var ∨
inval xpr]

succ
i:=i+1;

fail
if(¬succOnly)

i:=i+1;

read

tOff
[i≥C]

PARFOREACH LOOPCTRL

Figure 38: The loopctrl component for the parallel forEach activity.

31

condctrl

The condctrl component (Figure 39) handles a decision for the execution of one out of N components. The used
ports are:
• readi, to read the variables for evaluating expression i.
• triggeri, to start component i;
• tOffi, to disable component i.

The component can detect a possible uninitialized variable (unin var) fault, while it throws the invalid expression
value (inval xpr) fault non-deterministically.

s1 s2 s3 s4

...

...

...

s6

s5

s7

start

dsbl
term

rvs
rvsd

fin

read1

term

tOff1

[expr1]
trigger1

read2
tOff2

[expr2]
trigger2

fault

triggerN

tOffN

fault

CONDCTRL

Figure 39: The condctrl component.

32

Appendix D. Translation times for test programs

Figure 40: Regression analysis of translation times for test programs
(x axis is the number of states, y axis in ms)

33

