

APPROXIMATE AND SIMULATION BASED ANALYSIS FOR
DISTRIBUTED OBJECT SOFTWARE PERFORMANCE MODELS

Panajotis Katsaros and Constantine Lazos

Department of Informatics
Aristotle University of Thessaloniki

54006 Thessaloniki
Greece

E-mail: {katsaros,clazos}@csd.auth.gr

KEYWORDS
synchronous object invocation, nested object invocations,
simultaneous resource possession, approximate MVA,
flow-equivalent approximation, regenerative method

ABSTRACT

In complex software systems, the effectiveness of model
based performance predictions is limited by the availability
of appropriate solution techniques. These techniques
should allow to take into account the software components
interaction effects. In distributed object systems, the main
problem is the simultaneous resource possession caused by
the synchronous, often nested object invocations, which
block the callers, until they get the replies. This paper
provides a review of the analysis techniques, which address
that fact, while preserving the abstract system view, offered
by a queuing network representation. Two of these
techniques, were proposed for solving a general class of
models, with one or more layers of software servers and a
third technique was designed specifically for distributed
object software performance models. The advent of an
extended flow-equivalent approximation, which is also
described, opens new prospects for the development of
efficient solution algorithms. Finally, simulation based
estimation is discussed, in respect with the applicability of
the well-founded and accurate, single-run regenerative
method.

1. INTRODUCTION

Classical queuing network solution techniques, assume that
a job can only use a single resource at a time and
simultaneous resource possession is not possible.
Moreover, most of them may be only used for analyzing
typical “flat” system representations and do not directly
support the solution of excessively complex queuing
networks, like the ones obtained in realistic performance
models of distributed software systems.
Early contributions to the problem of analyzing
simultaneous resource possession, were based either on

• iterative estimation techniques with unknown
calculation time and not guaranteed convergence
for the performance measures of interest or

• low-level Markov based approximations that are
neither practical nor scalable enough for software
engineering purposes.

Recent advances, like the advent of an extended flow-
equivalent approximation (Kurasugi and Kino 1999),
constitute a new theoretical basis for the development of
efficient solution algorithms.
In this paper, we review those techniques that we believe,
they may have an impact in the practice of distributed
object systems performance modeling and we comment on
the new prospects opened by the last developments.
Accurate simulation based analysis of such complex
models is an absolute necessity, since it is basically the
only alternative for checking the validity of the
approximations to be used. Thus, we also review
theoretical results on the applicability of the single-run
regenerative approach, in hierarchical queuing network
models.

2. ITERATIVE PERFORMANCE EVALUATION

ALGORITHMS

The Stochastic Rendezvous Networks

The Stochastic Rendezvous Networks (SRVNs) were first
introduced in (Woodside 1989) and constitute a practical
and scalable technique for the analysis of systems, with
software components interactions. The rendezvous
mechanism can be used to model different interaction types
present in software, including all the types of object
invocations (Woodside et al. 1995) taking place in
distributed object systems. The solution for a SRVN can be
found with an iterative algorithm that computes a series of
intermediate solutions, using an MVA approximation and
continues until the estimated throughputs converge.
The primitive structural entity of a SRVN model is the
task. Each task may represent a single software or
hardware component that communicates with other tasks,
by messages of a request-wait-reply style. The task, which
sends the message (client task), requests the rendezvous
and blocks until it gets the reply. The receiving task
(server) accepts the request and executes two (or more)
service phases. The client task is blocked only for the time
period of the first phase. Thus, a synchronous object
invocation may be modeled by a rendezvous request with
zero service requirements, for its second phase. On the
contrary, asynchronous (one-way) object invocations are
modeled as rendezvous requests with zero service
requirements, for their first phase.
A SRVN differs from a typical queuing network, in that a
server may also act as a client requesting service from one

or more lower layer tasks, in any phase of a rendezvous
service execution. Each server may provide more than one
service, modeled as separate task entries, with their own
parameters. However, each task owns a single message
queue with a specific service discipline. Entries correspond
to distinguished object method invocations, since messages
are directly addressed to the entries and not to the tasks.
There are three types of tasks, namely:

• the pure clients, labeled as 1, 2, . . . , R, which may
only initiate requests,

• the active servers, labeled from R+1 to K, which
may accept requests and initiate new ones and

• the pure servers, labeled from K+1 to N, which
may only provide service to accepted requests.

Processors are pure server pseudo-tasks that provide
hardware resource service to one or more active server
tasks. The entries of the tasks, assigned to them, request
service one slice at a time and each request and service are
modeled in the SRVN as a rendezvous between the
requesting task and the processor pseudo-task.
The SRVN solution algorithm, proposed in (Woodside et
al. 1995), is summarized in the following steps:

1. Carry out the software model transformation to
create tasks that represent processors, for co-
allocated tasks. This involves:
a. define a new pseudo-task entry ε for each entry e

of all the tasks co-allocated at the same
processor and an arc from e to ε for its
processing requests

b.label the arc with the mean number of processing
slices, in phase p, calculated as

∑
∈

+=

*
εd

edppe yy 1
ε

where yedp are the parameters denoting the mean
number of entry e requests to d, during phase p

c. if sep is the input denoting the mean service time
provided by entry e, during phase p, set

∑
∈

+

=

*
εd

edp

ep

y

s
s

1
1ε

and sep=0, since the processor pseudo-task is a
pure server and each entry ε of it owns only
phase 1

2. Construct the so-called task request graph, with a
node for each task and a directed arc from i to j, if
the entry e in task i sends requests to any entry d in
task j. This graph is used to determine the order of
computation in the next steps. If there is a cycle in
the task request graph, it is not possible to determine
such an ordering.

3. Let us denote:
λe, the unknown throughput of entry e in

messages/sec
λ0e, the parameter specifying the arrival rate, if
 there is an external stream of requests to entry e

 ∑=
p

depde yY , the mean number of entry d requests

 to entry e, during all phases p

Then, ∑
∈

⋅+=

*
εd

ddeee Y λλλ 0
, for all e from R+1 to Ν

and this constitutes a set of N - R equations, with N
unknowns. This may be also written as

 ∑∑
+==

⋅+⋅=

N

Rd

ded

R

r

rere

1

0

1

λβλαλ (1)

for all e from R+1 to Ν, where the coefficients α and
β are determined by applying Gaussian elimination
to the original set of equations. Set wkl = 0, with wkl
denoting the mean waiting time seen by entry k
requests, when sending messages to entry l, for all k,
l with Ykl>0.

4. Calculate mean service times (including the queuing
delays) and throughputs, in the order found at step 2:
For each task i, the mean service time is given as

)(eded

d

edpepep tysx δ+⋅+= ∑
∈

*
ε

with ted the mean delay for entry e, when sending a
message to entry d and δed is the specified mean
round-trip communication delay from entry e to d.
For FIFO tasks, ted = wed + xb1, since entry’s e task
remains blocked only for the duration of the first
phase of the rendezvous request. Throughputs are
given as

∑
=

p

rp
r

x

1
λ

for all entries r from 1 to R and from (1), for all
entries from R+1 to N.

5. Estimate the mean waiting times for all entry
requests directed to other entries, based on the MVA
expression provided in (Woodside et al. 1995) and
the alternative approximations proposed, in order to
determine the task queue properties, at the instant of
the rendezvous request arrival.

6. If throughputs are all sufficiently close to the
previous iteration, then stop. Otherwise go to step 4.

The results obtained include throughputs, mean waiting
times, entry service times and entry and task utilizations.
The described solution technique is closely related to the
Bard-Schweitzer approximate MVA (Schweitzer 1979)
and the heuristics provided in (Woodside et al. 1995)
support either FIFO or Preemptive Priority scheduling and
stochastic or deterministic phase types, with possibly
varied coefficients of variation, in the second case.
The SRVN based solution variants cannot be applied to
models with multi-threading tasks.

The Method of Layers

In the method of layers (Rolia and Sevcik 1995), the
system performance model is viewed as a sequence of
layers, where processes request service only from one level
lower, in the hierarchy. Processes with statistically
identical behavior form a group or a class of processes. To
identify the level of each group, in the hierarchy, a
topological sort of the process groups may be first
developed. Thus, each group is placed at exactly one level
and the resulted graph is assumed not to contain any

cycles. If requests for service span more than one level,
virtual flow-equivalent groups modeling the requests and
their service rates have to be introduced, in all intermediate
layers (this is not required for the SRVNs based solution
techniques).
Each pair of successive levels, in the hierarchy, defines a
submodel. The response time of a process that is
considered as a client in one submodel defines its service
time, when it is considered as a server in its alternate
submodel. The performance estimates for the submodels
are found using a modified version of the Linearizer
algorithm (Chandy and Neuse 1982). The solution of all of
the submodels represents an iteration of the algorithm. The
algorithm is applied iteratively, until the changes in
estimated mean response times, between successive
iterations, is below a specified tolerance.
When solving the hierarchy of models only software
contention is taken into account. After the algorithm
terminates, a second model, in which software contention
is ignored, is created. Each process is included in a single
hardware resource contention queuing network and the
amount of time that a process does not spend competing
for devices is used as a think time in the model.
With new estimates of device responsiveness, another
solution for the software contention model is found. The
method of layers alternates between software and hardware
contention models, until the estimates for mean response
times of non-serving processes differ by less than some
tolerance. This approach is similar to the method of
complementary delays (Heidelberger and Trivedi 1983)
that proceeds by using closed queuing networks,
augmented by a virtual delay service center.
The method of layers supports the use of multiple entry
FIFO rendezvous servers, as in the case of the SRVNs
based solution techniques. Additionally, the use of the so
called multi-servers permit the representation of multiple
thread servers (as opposed to the SRVNs based solution
techniques).
The combination of the use of the Linearizer, which often
provides superior accuracy, when compared to the Bard-
Schweitzer algorithm and the simultaneous solution of all
servers in a layer yields, in some cases, more accurate
results, compared to the ones obtained by the SRVN based
solution variants. In the sequel, the basic method of layers
estimation is outlined:

1. Initialize the response time estimates for process
groups, with the mean service times, assuming no
hardware or software contention. The initial
response times are computed level by level in a
bottom-up manner.

2. WHILE group response times have not reached a
fixed point DO

 WHILE group response times have not reached
 a fixed point DO
 FOR each software submodel selected in a top-
 down manner DO
 solve the submodel using Linearizer with the
 following residence time expressions (Rolia and
 Sevcik 1995): FIFO, rendezvous, multiple entry,
 multi-server and delay
 END FOR

 END WHILE
 solve the hardware resource contention submodels
 using Linearizer with the following residence time
 expressions (Rolia and Sevcik 1995): PS, FIFO,
 LIFO, priority preemptive resume, and delay
 Update the group response time estimates
 END WHILE

The Method of Decomposition

The method of decomposition, introduced in (Kahkipuro
2000), was designed specifically for distributed object
software performance models. It includes approximations,
which overcome the limitation of not being applicable (as
in the case of the methods already described) in models
with cyclic graph dependencies. Cycles may be introduced,
when two objects are allowed to make synchronous
invocations to each other, as for example in the case of the
callback interaction pattern. This type of interaction is
sometimes used as a means to avoid extensive blocking
times that may be caused by the use of a single
synchronous object invocation. Recursive invocations to
the same object are allowed, since this is also possible in
real world applications.
In the sequel, we provide a description of the core solution
technique. The overall approach lies on the well-known
method of surrogate delays (Jacobson and Lazowska
1982), in order to decompose the model into multiple
queuing networks, so that the primary and the secondary
(software or hardware) resources of a blocking access are
always in different networks. As a result, we obtain a set of
multi-chain product form queuing networks.
For each case of simultaneous resource possession, the
primary network is created by removing all secondary
resources and all accesses to them and then by including a
surrogate delay resource. The following transformations
are carried out:

• for each access to the primary resource, its service
demand is increased by the sum of the response
times obtained for all blocking invocations to the
secondary resources

• for each chain (class), the service demand of the
surrogate delay server is defined to be the sum of
the response times for all non blocked accesses of
the secondary resources used by the chain

For each primary network, a set of secondary networks is
created. These networks contain the secondary resource
itself and an auxiliary delay server, for modeling the time
the jobs spend elsewhere in the system. Each chain in the
original queuing network generates at most two secondary
chains:

• a closed one, if there are blocking accesses, with
its population defined as the maximum number of
accesses that can reach the secondary resource in
parallel (multithreading server) and

• a secondary chain that corresponds to a chain with
non blocking accesses to the resource, with the
same parameters (equal arrival rates in case of
open chains and equal populations in case of
closed ones)

The service demands for all non blocking and blocking
secondary resource accesses remain the same, unless there
are nested blocking accesses to other resources. In this
case, the service demand is increased by the sum of the
response times obtained for the nested accesses. For closed
secondary chains the service demand imposed to the
auxiliary delay server is calculated through the Little’ s
rule, by using the throughput of the calling resource, in the
corresponding primary network. For open secondary
chains there is no need to specify a service demand for the
auxiliary delay server.
The resulted networks are to be solved by an approximate
Bard-Schweitzer MVA algorithm, modified appropriately
(by the load concealment transformation, as described in
Agrawal 1985) for the simultaneous solution of the open
and the closed chains. Input parameters for some networks
require the existence of a solution for some other networks
and it is even possible to obtain cyclic dependencies. Thus,
the solution is carried out iteratively and in each repetition
the input parameters of the networks are adjusted to the
outcome of the previous repetition, until the throughputs of
the secondary resources are sufficiently close to the
throughputs of the corresponding primary ones.
To conclude, the method of decomposition does not
support priority scheduling, as opposed to the SRVNs
based solution, proposed in (Woodside et al. 1995) and the
method of layers.

3. AN EXTENDED FLOW-EQUIVALENT

APPROXIMATION

The standard decomposition or flow-equivalent method
(Courtois 1977 and Chandy et al. 1975) is a well known
approximation, based on the replacement of a subset of the
model’s queuing centers, with a single, flow-equivalent
center, characterized by a calculated state-dependent
service rate.
Flow-equivalent based performance estimation techniques
have been used in various simultaneous resource
possession models (Sauer 1981). However, these methods
could not be applied to models, where jobs that possess
different types of passive resources (i.e. different sets of
blocked object servers, as in the case of synchronous
nested object invocations) compete with other jobs for the
same active resources.
Recently, in (Kurasugi and Kino 1999), the authors
introduced an extended flow-equivalent approximation, for
overcoming this particular restriction. The proposed
approximation is described in the frame of a general two-
layer queuing network, where the upper layer represents
software resource contention and the lower layer, the
caused hardware resource contention (Figure 1).
The existence of a single upper layer does not provide
adequate support for the representation of nested object
invocations, where multiple object servers may be blocked
at the same time. However, the advent of such an extended
flow-equivalent approximation opens new prospects for the
development of efficient non-iterative estimation
techniques and for this reason, we proceed to the
description of it.

Let us consider a queuing model, where the upper layer
consists of R FIFO software servers labeled as 1, 2, . . . , R
and the lower layer consists of N queues representing
hardware resources that are labeled as 1, 2, . . . , N. Each
software server owns ki (≥1) threads, i ∈ 1, . . ., R and one
queue.

n2 jobs

server 1
k1 threads

server 2
k2 threads

n1 jobs
type 2

(closed)

queue 2
h2 servers

queue 3
h3 servers

queue 1
h1 servers

software layer
hardware layer

server 1 jobs
number: y1=min(n1,k1)

server 2 jobs
number: y2=min(n2,k2)

Figure 1: A two-layer queuing network with
simultaneous resource possession

A job (object invocation) that arrives at server i will
immediately be routed to the lower layer upon its arrival, if
there is an available thread at the server. The time period
in which a job passes to and returns from the lower layer is
referred to as the server’s service time. Each queue j ∈ 1, .
. ., N in the lower layer owns hj (≥1) servers and one queue.
Each job routed to the lower layer from software server i
will travel through the queues at that layer, according to a
specified Markovian routing chain, associated with the
software server i. Subsequent routing of a job (object
invocation) through the various software servers, in the
upper layer, can be conducted according to a number of
possible (open or closed) routing chains, that represent the
desired software functionality. In this article, our
description, for the upper layer, is restricted to the simple
case of a single closed routing chain, with vi denoting the
relative frequency for a job to visit the software server i.
Let xj(i) be the total number of jobs of software server i,
placed at the lower layer queue, j. The number of jobs of
software server i, in the lower layer is given as,

∑
=

=

N

j

iji xy
1

)(

and the aggregate queue occupancy vector is defined as

y = (y1, y2, …, yR)

If ni is the total number of jobs (object invocations) at the
software server i, then yi=min(ki,ni).
For any job arriving at the queue j, the required service
time will depend on the particular software server the job
comes from and is subject to an exponential distribution
with parameter µj(i). The service discipline at each lower
layer queue can either be FIFO, PS (Processor Sharing) or
LIFOPR (LIFO Preemptive Resume). If the discipline is

FIFO, the parameters µj(i) are the same for any i, i.e. µj(i) =
µj(h), for any h ≠ i.
The extended flow-equivalent method, proposed in
(Kurasugi and Kino 1999), is summarized in the following
steps:

1. Calculate the numbers of jobs
)),min(),...,,(min(11 RR knkn=y in the lower layer, for

all possible software server vectors, n = (n1, n2, …,
nR).

2. Each y-job based model is created from the original
two-layer model, by disregarding the behavior of
jobs in the upper layer and setting a short circuit at
each software server, so that each job arriving at the
server from the lower layer returns immediately to it.
Thus, each short-circuited server can be effectively
replaced by a state-dependent virtual service center,
whose service rate is calculated in the following
manner:

a. Solve the shaped y-job based models, for all
y, by using the convolution algorithm, in
order to obtain the normalization constants
G(y).

b. Approximate the service rate)(* n
ι
µ at the

software server i as

)(

)(
)(*

y
ey

n
G

G
v i

i
−

⋅=
ι
µ

where ei = (0, . . ., 0, 1, 0, . . ., 0), with the
unit placed in the i-th position.

In (Kurasugi and Kino 1999), the authors also propose a
Markov based approximation and an alternative closed
form approximation, for the upper layer, which we think
are inappropriate for the performance evaluation of nested
object invocations. Thus, we omit their description.
The extended flow-equivalent approximation of (Kurasugi
and Kino 1999) may be used as is, in the hybrid simulation
setting, in the way described in the next section. On the
other side, we continue working to take advance of it, in
order to provide a novel estimation technique that will
successfully address the needs for efficient performance
prediction, under the existence of synchronous, nested
object invocations, in the software layer. The software
servers’ workload derivation procedure, to be used, will be
based on the one introduced in (Vetland et al. 1993).

4. SINGLE-RUN SIMULATION BASED

PERFORMANCE EVALUATION

Recently, (Nikolaidou and Anagnostopoulos 2003)
introduced a network/application oriented modeling
approach, for distributed system simulation. In (Katsaros
and Lazos 2002) we focued on the development of
(hybrid) simulation queuing models, for object based
distributed software. Alternatively, (Brosso et al. 2002)
introduces the use of XML Petri Nets (PNML), as a means
for structured Petri-net model development. Also, recent
advances (Anagnostopoulos and Nikolaidou 2003) in
Faster-than-Real-Time simulation opened new prospects in
model to system validation. In this section, we are
restricted to the single-run output analysis of complex
hierarchical model configurations, like the ones described.

We propose the use of the so-called regenerative method
for sequentially controlled estimation of steady-state
performance measures, for the following reasons:

• it is based on a sound theoretical foundation,
• it is not bound to the problem of the “system

initialization bias”,
• it is characterized by appealing asymptotic

properties,
• its accuracy has been tested both in “flat”

(Katsaros and Lazos 2003a), as well as, in
hierarchical queuing network models (Blum et al.
1985) and

• it is also applicable in the hybrid simulation
setting, with state-dependent service rates
(Schedler 1993).

Although this method is not in widespread use, due to an
inherent difficulty in identifying regeneration system states,
there is significant theoretical progress towards this
direction, in the last few years. The most notable advances
rely on a generalized semi-Markov (GSMP) system
representation and conclude to general results that may be
utilized, for the regeneration state selection, at the more
abstract level of a queuing network model (Schedler 1993).
In (Katsaros and Lazos 2003a), we have experimentally
evaluated the effectiveness of alternative selection
strategies, in the sequentially controlled setting, in terms of
both the obtained accuracy and the observed efficiency
behavior.

5. CONCLUSIONS AND FURTHER RESEARCH

WORK

This work is focused on the available approximate solution
methods that we believe they may have an impact in the
practice of distributed object systems performance
modeling. They are all based on iterative estimations that
scale well in large software performance models, but are
also characterized by unknown calculation time and not
guaranteed convergence, for the measures of interest.
The SRVNs based solution techniques lack support for
cyclic object invocation dependencies, recursion and
multithreading servers, since they were initially designed
for the performance analysis of general software systems.
The method of layers allows the use of multithreading
servers, but requires that processes request service only
from one level lower, in the hierarchy. Both approaches
offer support for synchronous, as well as asynchronous
object method invocations, by the use of the two-phase
rendezvous type interaction mechanism and multiple
entries software servers.
Priority scheduling is mainly required for the modeling of
real-time distributed object systems (Katsaros and Lazos
2003b) and is also included as an open possibility for the
two aforementioned methods. On the other side, it is not
supported by the method of decomposition, which, as
opposed to the two other alternatives, allows cyclic object
invocation dependencies (callbacks) and recursion.
Although there are still great challenges for improvements
in the existing core estimation techniques and the
specialized approximation heuristics used by them, the
advent of the extended flow-equivalent approximation,

described in section 3, opens new prospects for the
development of new, efficient solution approaches.
Significant progress has been also carried out in the field
of model parameter capture (Chatzigeorgiou 2003 and
Vetland et al. 1993).
Simulation based analysis for hierarchical model structures
like the ones used in the described analysis methods is an
absolute necessity, since it is basically the only alternative
for checking the validity of the used approximations. The
proposed single-run output analysis method is based on a
sound theoretical foundation, it is not bound to the problem
of the “system initialization bias” and it is also
characterized by appealing asymptotic properties.
Furthermore, its accuracy has been tested in “flat”
(Katsaros and Lazos 2003a), as well as, in hierarchical
queuing network models (Blum et al. 1985) and we have
also theoretically checked its applicability in the hybrid
simulation setting, with state-dependent service rates.

REFERENCES

Agrawal, S. C. 1985. Metamodeling: A study of approximations
in queuing models. MIT Press, Cambridge, MA, USA.

Anagnostopoulos, D. and M. Nikolaidou. 2003. “Timing Issues
and Experiment Scheduling in Faster-than-Real-Time
Simulation”. (To appear in) Transactions of the Society for
Modeling and Simulation. SCS.

Brosso, I.; G. Bressan and W. V. Ruggiero. 2002. “Simulation e-
business applications using PNML”. In Proceedings of the
2nd WSEAS International Conference on Simulation,
Modeling and Optimization (ICOSMO) (Skiathos, Greece,
Sep. 25-28). WSEAS.

Blum, A.; L. Donatiello; P. Heidelberger; S. Lavenberg and E. A.
MacNair. 1985. “Experiments with decomposition of
extended queuing network models”. In Modeling Techniques
and Tools for Performance Analysis, D. Potier (Ed.).
Elsevier Science, 623-640.

Chandy, K. M. and D. Neuse. 1982. “Linearizer: A heuristic
algorithm for queuing network models of computing
systems”. Communications of the ACM 25, No. 2, 126-134.

Chandy, K. M.; U. Herzog and L. Woo. 1975. “Approximate
analysis of general queuing networks”. IBM Journal of
Research and Development 19, 43-49.

Chatzigeorgiou, A. 2003. “Performance and power evaluation of
C++ object-oriented programming in embedded processors”.
Information and Software Technology 45, 195-201.

Courtois, P. J. 1977. Decomposability: Queuing and computer
system applications, Academic Press.

Heidelberger, P. and K. S. Trivedi. 1983. “Analytical queuing
models for programs with internal concurrency”. IEEE
Transactions on Computers 32, No. 1, 73-82.

Jacobson, P. A. and E. D. Lazowska. 1982. “Analyzing queuing
networks with simultaneous resource possession”.
Communications of the ACM 25, No. 2, 142-151.

Kahkipuro, P. 2000. Performance modeling framework for
CORBA based distributed systems. PhD thesis, Department
of Computer Science, University of Helsinki, Finland.

Katsaros, P. and C. Lazos. 2002. “Structured performance
modeling and analysis for object based distributed software
systems”. In Proceedings of the 15th ISCA International
Conference on Parallel and Distributed Computing Systems
(Louisville, Kentucky, USA, Sep. 19-21). ISCA, 96-102.

Katsaros, P. and C. Lazos. 2003. “Return state selection for
improved effectiveness in sequentially controlled
regenerative simulation”, (submitted)

Katsaros, P. and C. Lazos. 2003. “A simulation test-bed for the
design of dependable e-services”, (To appear in the) 3rd
WSEAS International Conference on Simulation, Modeling
and Optimization (Rethymno, Greece, Oct. 12-15). WSEAS

Kurasugi, T. and I. Kino. 1999. “Approximation methods for
two-layer queuing models”. Performance Evaluation 36-37,
55-70.

Nikolaidou, M. and D. Anagnostopoulos. 2003. “A distributed
system simulation modeling approach”. Elsevier Simulation
Modelling – Practice and Theory 11, No. 3-4, 251-267.

Rolia, J. A. and K. C. Sevcik. 1995. “The Method of Layers”,
IEEE Transactions on Software Engineering 21, No. 8, 689-
700.

Sauer, C. H. 1981. “Approximate solution of queuing networks
with simultaneous resource possession”. IBM Journal of
Research and Development 25, No. 6, 894-903.

Schweitzer, P. 1979. “Approximate analysis of multiclass closed
networks of queues”. In Proceedings of the International
Conference on Stochastic Control and Optimization
(Amsterdam, The Netherlands).

Shedler, G. H. 1993. Regenerative Stochastic Simulation.
Boston, Academic Press.

Vetland, V.; P. Hughes and A. Solvberg. 1993. “Improved
parameter capture for simulation based on composite work
models of software”. In Proceedings of the 1993 Summer
Computer Simulation Conference (Boston, Massachusetts,
USA), 110-115.

Woodside, C. M. 1989. “Throughput calculation for basic
Stochastic Rendezvous Networks”, Performance Evaluation
9.

Woodside, C. M.; J. E. Neilson; D. C. Petriu and S. Majumdar.
1995. “The Stochastic Rendezvous Network Model for
performnce of synchronous client-server-like distributed
software”. IEEE Transactions of Computers 44, No. 1, 20-
34.

PANAJOTIS KATSAROS holds a BSc degree in
Mathematics from the Aristotle University of Thessaloniki
- Greece, an MSc degree in Software Engineering from the
University of Aston, in Birmingham – UK and a PhD in
Computer Science, from the Aristotle University of
Thessaloniki. He is a lecturer of Computer Science at the
Aristotle University of Thessaloniki – Greece. His research
interests are focused on queuing network-based
performance analysis of alternate load distribution and
fault tolerance strategies, in distributed object systems. He
has also published research articles on simulation
methodology issues and one book on Programming
Language Compilers. e-mail: katsaros@csd.auth.gr
url: http://delab.csd.auth.gr/~katsaros/index.html

CONSTANTINE LAZOS holds a BSc degree in
Mathematics from the University of Athens - Greece, an
MSc degree in Computer Science from the University of
Birmingham - UK and a PhD in Computer Science from
the University of Southampton - UK. He was a lecturer for
two academic years, at the University of Birmingham and
he is a Professor of Computer Science at the Aristotle
University of Thessaloniki, since 1980. His published work
and research interests are focused on computer systems
performance analysis and simulation techniques and he is
the author of numerous educational books on Databases,
Compilers and Programming Languages (C++, FORTRAN
etc). e-mail: clazos@csd.auth.gr

