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ABSTRACT 
 
In complex software systems, the effectiveness of model 
based performance predictions is limited by the availability 
of appropriate solution techniques. These techniques 
should allow to take into account the software components 
interaction effects. In distributed object systems, the main 
problem is the simultaneous resource possession caused by 
the synchronous, often nested object invocations, which 
block the callers, until they get the replies. This paper 
provides a review of the analysis techniques, which address 
that fact, while preserving the abstract system view, offered 
by a queuing network representation. Two of these 
techniques, were proposed for solving a general class of 
models, with one or more layers of software servers and a 
third technique was designed specifically for distributed 
object software performance models. The advent of an 
extended flow-equivalent approximation, which is also 
described, opens new prospects for the development of 
efficient solution algorithms. Finally, simulation based 
estimation is discussed, in respect with the applicability of 
the well-founded and accurate, single-run regenerative 
method. 
 
1. INTRODUCTION 
 
Classical queuing network solution techniques, assume that 
a job can only use a single resource at a time and 
simultaneous resource possession is not possible. 
Moreover, most of them may be only used for analyzing 
typical “flat” system representations and do not directly 
support the solution of excessively complex queuing 
networks, like the ones obtained in realistic performance 
models of distributed software systems. 
Early contributions to the problem of analyzing 
simultaneous resource possession, were based either on 

• iterative estimation techniques with unknown 
calculation time and not guaranteed convergence 
for the performance measures of interest or 

• low-level Markov based approximations that are 
neither practical nor scalable enough for software 
engineering purposes. 

Recent advances, like the advent of an extended flow-
equivalent approximation (Kurasugi and Kino 1999), 
constitute a new theoretical basis for the development of 
efficient solution algorithms. 
In this paper, we review those techniques that we believe, 
they may have an impact in the practice of distributed 
object systems performance modeling and we comment on 
the new prospects opened by the last developments. 
Accurate simulation based analysis of such complex 
models is an absolute necessity, since it is basically the 
only alternative for checking the validity of the 
approximations to be used. Thus, we also review 
theoretical results on the applicability of the single-run 
regenerative approach, in hierarchical queuing network 
models. 
 
2. ITERATIVE PERFORMANCE EVALUATION 

ALGORITHMS 
 
The Stochastic Rendezvous Networks 
 
The Stochastic Rendezvous Networks (SRVNs) were first 
introduced in (Woodside 1989) and constitute a practical 
and scalable technique for the analysis of systems, with 
software components interactions. The rendezvous 
mechanism can be used to model different interaction types 
present in software, including all the types of object 
invocations (Woodside et al. 1995) taking place in 
distributed object systems. The solution for a SRVN can be 
found with an iterative algorithm that computes a series of 
intermediate solutions, using an MVA approximation and 
continues until the estimated throughputs converge. 
The primitive structural entity of a SRVN model is the 
task. Each task may represent a single software or 
hardware component that communicates with other tasks, 
by messages of a request-wait-reply style. The task, which 
sends the message (client task), requests the rendezvous 
and blocks until it gets the reply. The receiving task 
(server) accepts the request and executes two (or more) 
service phases. The client task is blocked only for the time 
period of the first phase. Thus, a synchronous object 
invocation may be modeled by a rendezvous request with 
zero service requirements, for its second phase. On the 
contrary, asynchronous (one-way) object invocations are 
modeled as rendezvous requests with zero service 
requirements, for their first phase. 
A SRVN differs from a typical queuing network, in that a 
server may also act as a client requesting service from one 



 

or more lower layer tasks, in any phase of a rendezvous 
service execution. Each server may provide more than one 
service, modeled as separate task entries, with their own  
parameters. However, each task owns a single message 
queue with a specific service discipline. Entries correspond 
to distinguished object method invocations, since messages 
are directly addressed to the entries and not to the tasks. 
There are three types of tasks, namely: 

• the pure clients, labeled as 1, 2, . . . , R, which may 
only initiate requests, 

• the active servers, labeled from R+1 to K, which 
may accept requests and initiate new ones and 

• the pure servers, labeled from K+1 to N, which 
may only provide service to accepted requests. 

Processors are pure server pseudo-tasks that provide 
hardware resource service to one or more active server 
tasks. The entries of the tasks, assigned to them, request 
service one slice at a time and each request and service are 
modeled in the SRVN as a rendezvous between the 
requesting task and the processor pseudo-task.   
The SRVN solution algorithm, proposed in (Woodside et 
al. 1995), is summarized in the following steps: 

1. Carry out the software model transformation to 
create tasks that represent processors, for co-
allocated tasks. This involves: 
a. define a new pseudo-task entry ε for each entry e 

of all the tasks co-allocated at the same 
processor and an arc from e to ε for its 
processing requests  

b.label the arc with the mean number of processing 
slices, in phase p, calculated as 
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where yedp are the parameters denoting the mean 
number of entry e requests to d, during phase p 

c. if sep is the input denoting the mean service time 
provided by entry e, during phase p, set 
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and sep=0, since the processor pseudo-task is a 
pure server and each entry ε of it owns only 
phase 1 

2. Construct the so-called task request graph, with a 
node for each task and a directed arc from i to j, if 
the entry e in task i sends requests to any entry d in 
task j. This graph is used to determine the order of 
computation in the next steps. If there is a cycle in 
the task request graph, it is not possible to determine 
such an ordering. 

3. Let us denote: 
λe, the unknown throughput of entry e in 

messages/sec 
λ0e,  the parameter specifying the arrival rate, if        
  there is an external stream of requests to entry e 

        ∑=
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   to entry e, during all phases p 

Then, ∑
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and this constitutes a set of N - R equations, with N 
unknowns. This may be also written as 
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for all e from R+1 to Ν, where the coefficients α and 
β are determined by applying Gaussian elimination 
to the original set of equations. Set wkl = 0, with wkl 
denoting the mean waiting time seen by entry k 
requests, when sending messages to entry l, for all k, 
l with Ykl>0. 

4. Calculate mean service times (including the queuing 
delays) and throughputs, in the order found at step 2: 
For each task i, the mean service time is given as 
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with ted the mean delay for entry e, when sending a 
message to entry d and δed is the specified mean 
round-trip communication delay from entry e to d.  
For FIFO tasks, ted = wed + xb1, since entry’s e task 
remains blocked only for the duration of the first 
phase of the rendezvous request. Throughputs are 
given as 
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for all entries r from 1 to R and from (1), for all 
entries from R+1 to N. 

5. Estimate the mean waiting times for all entry 
requests directed to other entries, based on the MVA 
expression provided in (Woodside et al. 1995) and 
the alternative approximations proposed, in order to 
determine the task queue properties, at the instant of 
the rendezvous request arrival. 

6. If throughputs are all sufficiently close to the 
previous iteration, then stop. Otherwise go to step 4. 

The results obtained include throughputs, mean waiting 
times, entry service times and entry and task utilizations. 
The described solution technique is closely related to the 
Bard-Schweitzer approximate MVA (Schweitzer 1979) 
and the heuristics provided in (Woodside et al. 1995) 
support either FIFO or Preemptive Priority scheduling and 
stochastic or deterministic phase types, with possibly 
varied coefficients of variation, in the second case. 
The SRVN based solution variants cannot be applied to 
models with multi-threading tasks. 
 
The Method of Layers 
 
In the method of layers (Rolia and Sevcik 1995), the 
system performance model is viewed as a sequence of 
layers, where processes request service only from one level 
lower, in the hierarchy. Processes with statistically 
identical behavior form a group or a class of processes. To 
identify the level of each group, in the hierarchy, a 
topological sort of the process groups may be first 
developed. Thus, each group is placed at exactly one level 
and the resulted graph is assumed not to contain any 



 

cycles. If requests for service span more than one level, 
virtual flow-equivalent groups modeling the requests and 
their service rates have to be introduced, in all intermediate 
layers (this is not required for the SRVNs based solution 
techniques).  
Each pair of successive levels, in the hierarchy, defines a 
submodel. The response time of a process that is 
considered as a client in one submodel defines its service 
time, when it is considered as a server in its alternate 
submodel. The performance estimates for the submodels 
are found using a modified version of the Linearizer 
algorithm (Chandy and Neuse 1982). The solution of all of 
the submodels represents an iteration of the algorithm. The 
algorithm is applied iteratively, until the changes in 
estimated mean response times, between successive 
iterations, is below a specified tolerance.  
When solving the hierarchy of models only software 
contention is taken into account. After the algorithm 
terminates, a second model, in which software contention 
is ignored, is created. Each process is included in a single 
hardware resource contention queuing network and the 
amount of time that a process does not spend competing 
for devices is used as a think time in the model. 
With new estimates of device responsiveness, another 
solution for the software contention model is found. The 
method of layers alternates between software and hardware 
contention models, until the estimates for mean response 
times of non-serving processes differ by less than some 
tolerance. This approach is similar to the method of 
complementary delays (Heidelberger and Trivedi 1983) 
that proceeds by using closed queuing networks, 
augmented by a virtual delay service center. 
The method of layers supports the use of multiple entry 
FIFO rendezvous servers, as in the case of the SRVNs 
based solution techniques. Additionally, the use of the so 
called multi-servers permit the representation of multiple 
thread servers (as opposed to the SRVNs based solution 
techniques). 
The combination of the use of the Linearizer, which often 
provides superior accuracy, when compared to the Bard-
Schweitzer algorithm and the simultaneous solution of all 
servers in a layer yields, in some cases, more accurate 
results, compared to the ones obtained by the SRVN based 
solution variants. In the sequel, the basic method of layers 
estimation is outlined: 

1. Initialize the response time estimates for process 
groups, with the mean service times, assuming no 
hardware or software contention. The initial 
response times are computed level by level in a 
bottom-up manner. 

2. WHILE group response times have not reached a 
fixed point DO 

 WHILE group response times have not reached 
 a fixed point DO 
 FOR each software submodel selected in a top-
 down manner DO 
 solve the submodel using Linearizer with the 
 following residence time expressions (Rolia and 
 Sevcik 1995): FIFO, rendezvous, multiple entry, 
 multi-server and delay 
 END FOR 

 END WHILE 
 solve the hardware resource contention submodels 
 using Linearizer with the following residence time 
 expressions (Rolia and Sevcik 1995): PS, FIFO, 
 LIFO, priority preemptive resume, and delay 
 Update the group response time estimates 
 END WHILE 
 
The Method of Decomposition 
 
The method of decomposition, introduced in (Kahkipuro 
2000), was designed specifically for distributed object 
software performance models. It includes approximations, 
which overcome the limitation of not being applicable (as 
in the case of the methods already described) in models 
with cyclic graph dependencies. Cycles may be introduced, 
when two objects are allowed to make synchronous 
invocations to each other, as for example in the case of the 
callback interaction pattern. This type of interaction is 
sometimes used as a means to avoid extensive blocking 
times that may be caused by the use of a single 
synchronous object invocation. Recursive invocations to 
the same object are allowed, since this is also possible in 
real world applications. 
In the sequel, we provide a description of the core solution 
technique. The overall approach lies on the well-known 
method of surrogate delays (Jacobson and Lazowska 
1982), in order to decompose the model into multiple 
queuing networks, so that the primary and the secondary 
(software or hardware) resources of a blocking access are 
always in different networks. As a result, we obtain a set of 
multi-chain product form queuing networks. 
For each case of simultaneous resource possession, the 
primary network is created by removing all secondary 
resources and all accesses to them and then by including a 
surrogate delay resource. The following transformations 
are carried out: 

• for each access to the primary resource, its service 
demand is increased by the sum of the response 
times obtained for all blocking invocations to the 
secondary resources 

• for each chain (class), the service demand of the 
surrogate delay server is defined to be the sum of 
the response times for all non blocked accesses of 
the secondary resources used by the chain 

For each primary network, a set of secondary networks is 
created. These networks contain the secondary resource 
itself and an auxiliary delay server, for modeling the time 
the jobs spend elsewhere in the system. Each chain in the 
original queuing network generates at most two secondary 
chains: 

• a closed one, if there are blocking accesses, with 
its population defined as the maximum number of 
accesses that can reach the secondary resource in 
parallel (multithreading server) and 

• a secondary chain that corresponds to a chain with 
non blocking accesses to the resource, with the 
same parameters (equal arrival rates in case of 
open chains and equal populations in case of 
closed ones) 



 

The service demands for all non blocking and blocking 
secondary resource accesses remain the same, unless there 
are nested blocking accesses to other resources. In this 
case, the service demand is increased by the sum of the 
response times obtained for the nested accesses. For closed 
secondary chains the service demand imposed to the 
auxiliary delay server is calculated through the Little’ s 
rule, by using the throughput of the calling resource, in the 
corresponding primary network. For open secondary 
chains there is no need to specify a service demand for the 
auxiliary delay server.    
The resulted networks are to be solved by an approximate 
Bard-Schweitzer MVA algorithm, modified appropriately 
(by the load concealment transformation, as described in 
Agrawal 1985) for the simultaneous solution of the open 
and the closed chains. Input parameters for some networks 
require the existence of a solution for some other networks 
and it is even possible to obtain cyclic dependencies. Thus, 
the solution is carried out iteratively and in each repetition 
the input parameters of the networks are adjusted to the 
outcome of the previous repetition, until the throughputs of 
the secondary resources are sufficiently close to the 
throughputs of the corresponding primary ones. 
To conclude, the method of decomposition does not 
support priority scheduling, as opposed to the SRVNs 
based solution, proposed in (Woodside et al. 1995) and the 
method of layers. 
 
3. AN EXTENDED FLOW-EQUIVALENT 

APPROXIMATION 
 
The standard decomposition or flow-equivalent method 
(Courtois 1977 and Chandy et al. 1975) is a well known 
approximation, based on the replacement of a subset of the 
model’s queuing centers, with a single, flow-equivalent 
center, characterized by a calculated state-dependent 
service rate. 
Flow-equivalent based performance estimation techniques 
have been used in various simultaneous resource 
possession models (Sauer 1981). However, these methods 
could not be applied to models, where jobs that possess 
different types of passive resources (i.e. different sets of 
blocked object servers, as in the case of synchronous 
nested object invocations) compete with other jobs for the 
same active resources. 
Recently, in (Kurasugi and Kino 1999), the authors 
introduced an extended flow-equivalent approximation, for 
overcoming this particular restriction. The proposed 
approximation is described in the frame of a general two-
layer queuing network, where the upper layer represents 
software resource contention and the lower layer, the 
caused hardware resource contention (Figure 1). 
The existence of a single upper layer does not provide 
adequate support for the representation of nested object 
invocations, where multiple object servers may be blocked 
at the same time. However, the advent of such an extended 
flow-equivalent approximation opens new prospects for the 
development of efficient non-iterative estimation 
techniques and for this reason, we proceed to the 
description of it. 

Let us consider a queuing model, where the upper layer 
consists of R FIFO software servers labeled as 1, 2, . . . , R 
and the lower layer consists of N queues representing 
hardware resources that are labeled as 1, 2, . . . , N. Each 
software server owns ki (≥1) threads, i ∈ 1, . . ., R and one 
queue. 

n2 jobs

server 1
k1 threads

server 2
k2 threads

n1 jobs
type 2

(closed)

queue 2
h2 servers

queue 3
h3 servers

queue 1
h1 servers

software layer
hardware layer

server 1 jobs
number: y1=min(n1,k1)

server 2 jobs
number: y2=min(n2,k2)

 

Figure 1: A two-layer queuing network with 
simultaneous resource possession 

A job (object invocation) that arrives at server i will 
immediately be routed to the lower layer upon its arrival, if 
there is an available thread at the server. The time period 
in which a job passes to and returns from the lower layer is 
referred to as the server’s service time. Each queue j ∈ 1, . 
. ., N in the lower layer owns hj (≥1) servers and one queue. 
Each job routed to the lower layer from software server i 
will travel through the queues at that layer, according to a 
specified Markovian routing chain, associated with the 
software server i. Subsequent routing of a job (object 
invocation) through the various software servers, in the 
upper layer, can be conducted according to a number of 
possible (open or closed) routing chains, that represent the 
desired software functionality. In this article, our 
description, for the upper layer, is restricted to the simple 
case of a single closed routing chain, with vi denoting the 
relative frequency for a job to visit the software server i. 
Let xj(i) be the total number of jobs of software server i, 
placed at the lower layer queue, j. The number of jobs of 
software server i, in the lower layer is given as, 
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and the aggregate queue occupancy vector is defined as 

y = (y1, y2, …, yR) 

If ni is the total number of jobs (object invocations) at the 
software server i, then yi=min(ki,ni). 
For any job arriving at the queue j, the required service 
time will depend on the particular software server the job 
comes from and is subject to an exponential distribution 
with parameter µj(i). The service discipline at each lower 
layer queue can either be FIFO, PS (Processor Sharing) or 
LIFOPR (LIFO Preemptive Resume). If the discipline is 



 

FIFO, the parameters µj(i) are the same for any i, i.e. µj(i) = 
µj(h), for any h ≠ i. 
The extended flow-equivalent method, proposed in 
(Kurasugi and Kino 1999), is summarized in the following 
steps: 

1. Calculate the numbers of jobs 
)),min(),...,,(min( 11 RR knkn=y  in the lower layer, for 

all possible software server vectors, n = (n1, n2, …, 
nR). 

2. Each y-job based model is created from the original 
two-layer model, by disregarding the behavior of 
jobs in the upper layer and setting a short circuit at 
each software server, so that each job arriving at the 
server from the lower layer returns immediately to it. 
Thus, each short-circuited server can be effectively 
replaced by a state-dependent virtual service center, 
whose service rate is calculated in the following 
manner:  

a. Solve the shaped y-job based models, for all 
y, by using the convolution algorithm, in 
order to obtain the normalization constants 
G(y). 

b. Approximate the service rate )(* n
ι
µ  at the 

software server i as 
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where ei = (0, . . ., 0, 1, 0, . . ., 0), with the 
unit placed in the i-th position. 

In (Kurasugi and Kino 1999), the authors also propose a 
Markov based approximation and an alternative closed 
form approximation, for the upper layer, which we think 
are inappropriate for the performance evaluation of nested 
object invocations. Thus, we omit their description. 
The extended flow-equivalent approximation of (Kurasugi 
and Kino 1999) may be used as is, in the hybrid simulation 
setting, in the way described in the next section. On the 
other side, we continue working to take advance of it, in 
order to provide a novel estimation technique that will 
successfully address the needs for efficient performance 
prediction, under the existence of synchronous, nested 
object invocations, in the software layer. The software 
servers’ workload derivation procedure, to be used, will be 
based on the one introduced in (Vetland et al. 1993). 
 
4. SINGLE-RUN SIMULATION BASED 

PERFORMANCE EVALUATION 
 
Recently, (Nikolaidou and Anagnostopoulos 2003) 
introduced a network/application oriented modeling 
approach, for distributed system simulation. In (Katsaros 
and Lazos 2002) we focued on the development of 
(hybrid) simulation queuing models, for object based 
distributed software. Alternatively, (Brosso et al. 2002) 
introduces the use of XML Petri Nets (PNML), as a means 
for structured Petri-net model development. Also, recent 
advances (Anagnostopoulos and Nikolaidou 2003) in 
Faster-than-Real-Time simulation opened new prospects in 
model to system validation. In this section, we are 
restricted to the single-run output analysis of complex 
hierarchical model configurations, like the ones described. 

We propose the use of the so-called regenerative method 
for sequentially controlled estimation of steady-state 
performance measures, for the following reasons: 

• it is based on a sound theoretical foundation, 
• it is not bound to the problem of the “system 

initialization bias”, 
• it is characterized by appealing asymptotic 

properties, 
• its accuracy has been tested both in “flat” 

(Katsaros and Lazos 2003a), as well as, in 
hierarchical queuing network models (Blum et al. 
1985) and 

• it is also applicable in the hybrid simulation 
setting, with state-dependent service rates 
(Schedler 1993). 

Although this method is not in widespread use, due to an 
inherent difficulty in identifying regeneration system states, 
there is significant theoretical progress towards this 
direction, in the last few years. The most notable advances 
rely on a generalized semi-Markov (GSMP) system 
representation and conclude to general results that may be 
utilized, for the regeneration state selection, at the more 
abstract level of a queuing network model (Schedler 1993). 
In (Katsaros and Lazos 2003a), we have experimentally 
evaluated the effectiveness of alternative selection 
strategies, in the sequentially controlled setting, in terms of 
both the obtained accuracy and the observed efficiency 
behavior. 
 
5. CONCLUSIONS AND FURTHER RESEARCH 

WORK 
 
This work is focused on the available approximate solution 
methods that we believe they may have an impact in the 
practice of distributed object systems performance 
modeling. They are all based on iterative estimations that 
scale well in large software performance models, but are 
also characterized by unknown calculation time and not 
guaranteed convergence, for the measures of interest. 
The SRVNs based solution techniques lack support for 
cyclic object invocation dependencies, recursion and 
multithreading servers, since they were initially designed 
for the performance analysis of general software systems. 
The method of layers allows the use of multithreading 
servers, but requires that processes request service only 
from one level lower, in the hierarchy. Both approaches 
offer support for synchronous, as well as asynchronous 
object method invocations, by the use of the two-phase 
rendezvous type interaction mechanism and multiple 
entries software servers.  
Priority scheduling is mainly required for the modeling of 
real-time distributed object systems (Katsaros and Lazos 
2003b) and is also included as an open possibility for the 
two aforementioned methods. On the other side, it is not 
supported by the method of decomposition, which, as 
opposed to the two other alternatives, allows cyclic object 
invocation dependencies (callbacks) and recursion.  
Although there are still great challenges for improvements 
in the existing core estimation techniques and the 
specialized approximation heuristics used by them, the 
advent of the extended flow-equivalent approximation, 



 

described in section 3, opens new prospects for the 
development of new, efficient solution approaches. 
Significant progress has been also carried out in the field 
of model parameter capture (Chatzigeorgiou 2003 and 
Vetland et al. 1993). 
Simulation based analysis for hierarchical model structures 
like the ones used in the described analysis methods is an 
absolute necessity, since it is basically the only alternative 
for checking the validity of the used approximations. The 
proposed single-run output analysis method is based on a 
sound theoretical foundation, it is not bound to the problem 
of the “system initialization bias” and it is also 
characterized by appealing asymptotic properties. 
Furthermore, its accuracy has been tested in “flat” 
(Katsaros and Lazos 2003a), as well as, in hierarchical 
queuing network models (Blum et al. 1985) and we have 
also theoretically checked its applicability in the hybrid 
simulation setting, with state-dependent service rates. 
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