
1

An intruder model with Message Inspection for model checking

security protocols

Stylianos Basagiannis Panagiotis Katsaros Andrew Pombortsis

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
tel.: +30-2310-998532, fax: +30-2310-998419

{basags, katsaros, apombo}@csd.auth.gr

Abstract
Model checking security protocols is based on an intruder model that represents the
eavesdropping or interception of the exchanged messages, while at the same time performs
attack actions against the ongoing protocol session(s). Any attempt to enumerate all
messages that can be deduced by the intruder and the possible actions in all protocol steps
results in an enormous branching of the model’s state space. In current work, we introduce
a new intruder model that can be exploited for state space reduction, optionally in
combination with known techniques, such as partial order and symmetry reduction. The
proposed intruder modeling approach called Message Inspection (MI) is based on
enhancing the intruder’s knowledge with metadata for the exchanged messages. In a
preliminary simulation run, the intruder tags the analyzed messages with protocol-specific
values for a set of predefined parameters. This metadata is used to identify possible attack
actions, for which it is a priori known that they cannot cause a security violation. The MI
algorithm selects attack actions that can be discarded, from an open-ended base of primitive
attack actions. Thus, model checking focuses only on attack actions that may disclose a
security violation. The most interesting consequence is a non negligible state-space
pruning, but at the same time our approach also allows customizing the behavior of the
intruder model, in order e.g. to make it appropriate for model checking problems that
involve liveness. We provide experimental results obtained with the SPIN model checker,
for the Needham Schroeder security protocol.

KEYWORDS: security protocols, verification, model checking, intrusion attacks

1. Introduction

Analyses of existing cryptographic protocols have shown that even when cryptographic
primitives are considered perfectly secure (e.g. perfect encryption by key-based
cryptographic schemes, infeasible inversion of hash functions, nonce values that cannot be
predicted) the protocol itself may have flaws, which can be exploited by an intruder. In the

2

related bibliography [1, 2] there are examples of protocols that were published with errors,
which remained undiscovered for many years. Thus, formal ways of reasoning [3] for
whether a given protocol meets its security goals is an absolute necessity.

Model checking is a widespread fully automatic formal analysis that has been
successful in discovering flaws in protocols considered to be correct. However, ongoing
research has not stopped to look for new ways to tackle the problem of state space
explosion, which still prevents analyses of complex protocols and protocol configurations
(e.g. higher bounds in the number of ongoing protocol sessions).

 In general-purpose model checking [4], state space explosion comes from the
asynchronous composition of the modeled concurrent processes and the inherent symmetry
redundancy of models in many different problem domains. In security model checking, one
additional factor that makes the problem harder is the complexity of the assumed intruder
behavior.

Model checking security guarantees such as secrecy and authentication is based on the
hardest possible assumptions for the dominance of the intruder over the communication
between the protocol participants. These assumptions represent the general Dolev-Yao
intruder model [5]: the intruder can intercept any message transmitted on a public
communication channel and can also replace it with a message constructed from his initial
knowledge and parts of the messages sent by the participants in the same or in other
protocol sessions (intruder’s knowledge base). The new messages are created by applying
one or more out of four (4) basic operations: encryption, decryption, concatenation and
projection. Also, a typical Dolev-Yao intruder model includes additional assumptions, such
as the un-breakability of the encryption used and the possibility the intruder to prevent an
original message from reaching its destination.

With the mentioned assumptions, any attempt to enumerate all possible attacks in all
protocol steps results in an enormous branching of the state space. In the general case, for a
given set of eavesdropped messages, the Dolev-Yao operations may be combined
recursively, thus producing infinitely many possible fake messages. In explicit state model
checking, analysts bound the size of fake messages, in order to set their models finite.
However, memory space becomes crucial, due to the need to store information for each
state, including the local states of all protocol participants and the accumulated knowledge
of the intruder, for the protocol execution. An additional problem is that under the
described assumptions the involved protocol parties interact asynchronously through the
same communication channel. The interleaving and concurrency among them may easily
result into state space explosion. Analysts observed that the size of the state space increases
exponentially with the number of protocol sessions.

Let us consider a protocol execution with two parties A and B acting as initiators of two
separate protocol sessions. The state where initiator A has started the protocol and B is idle
is symmetric to the state where A is idle and B has started the protocol. Symmetry
reductions partition the state space into various equivalence classes, which are exploited by
taking into account only one state from each partition. Symmetry reductions for security
protocol verification have been first implemented in Brutus [6]. In another work [7], the
same authors address the complications of applying partial order reduction, due to tracking
the accumulated knowledge of the intruder. Partial order reduction avoids creating states
that cannot be affected by interleaving the execution of the model’s processes. Results from

3

model checking experiments with partial order reduction pruned the state space by a factor
of 10 to 1877, depending on the examined protocol and the numbers of initiators and
responders. Model checking experiments with symmetry reductions that were applied
together with partial order reduction resulted in reductions of the state spaces by a factor of
up to 58, with a more significant effect in experiments with four to five initiators and four
to five responders.

Techniques that delimit the branching of the state space, due to the intruder’s fake
messages – without excluding possible attacks – have been implemented in specialized
security model checkers [8]. Some techniques [9] exploit certain properties that have been
identified as characteristics of security protocols, but there is also one recent work [10] that
proposes a “divide-and-conquer” approach for reducing the amount of memory needed. A
broad family of state space reduction techniques adopts a symbolic representation of the
state space, in order to avoid to explicitly enumerating all possible messages that the
intruder can generate. In general, most techniques can be exploited, only if the analyst will
adopt the model checking tool that implements the respective technique. We provide a
detailed review of related work in Section 5. However, we believe that any new proposal
for state space reduction still contributes into improving the efficiency and the feasible size
of model checking tasks.

In current article, we introduce the Message Inspection (MI) intruder model, which is
essentially a Dolev-Yao style man-in-the-middle intruder based on the idea of improving
his knowledge with protocol-specific metadata that provide information for the exchanged
messages. In a preliminary simulation run, the intruder tags the eavesdropped messages
with specific metadata parameters enabling him to validate all possible attack actions. The
MI algorithm then decides based on this enhanced knowledge, which of the attacks will
certainly fail and the simulation run terminates with a report of the attack actions that can
be discarded.

This approach guides the pruning of the model’s state-space, since the intruder avoids
performing attacks for which it is a priori known that they cannot uncover a protocol flaw.
The described two-stage procedure does not limit the overall model checking effectiveness,
because the overall analysis can still capture security violations that are encoded as safety
guarantees (secrecy and authentication) and at the same time allows customizing the
intruder model for capturing security violations that involve liveness (e.g. non-repudiation).

Section 2 introduces basic terminology and describes in detail the general Dolev - Yao
intruder model. Section 3 presents the Message Inspection intruder model. The model
structure is formally defined and subsequently we introduce the MI algorithm that decides,
which attack actions will be performed against the analyzed protocol. In Section 4, we
provide experimental results for a MI intruder model in the SPIN model checker [11], when
compared with a generic Dolev-Yao intruder model applied upon the Needham Schroeder
security protocol (NSPK) [12]. Section 5 reviews related work on intruder modeling and
state space reduction techniques, in order to point out the differences from the proposed
intruder model and eventually to discuss its strengths and its weaknesses. Finally,
conclusions and future work prospects are discussed in Section 6.

4

2. Basic terminology and the general Dolev - Yao intruder model

Current section introduces basic terminology for protocol specification and provides a brief
presentation of the attack actions of the general Dolev - Yao intruder model.

An atomic message is any member of one of the following sets:
- Keys: This set includes all the keys used for encryption, such that every key k ∈ Keys

has an inverse k-1 ∈ Keys. For symmetric cryptography, the decryption key is the same
as the encryption key, i.e. k = k-1.

- Agents: The set including all names of the honest protocol participants.
- Nonces: This is a set with members representing randomly generated numbers being

used as timestamps: upon receipt of information that includes a nonce the receiver
knows that the communicated information has been sent after the time instant where
the nonce was generated.

- Data: The members of this set represent the plaintext strings exchanged between the
protocol’s participants.

The intruder is represented by I, with I ∉ Agents. Also, we define the binary relation,

is_key_of = {(k, id): k ∈ Keys, id ∈ Agents ∪ {I}, “key k is used by the participant id”}

In the case of public key cryptography, the cardinality of the set is_key_of (k) for some k ∈
Keys is 1. However, for symmetric cryptography the cardinality of this set is 2, since the
same key is shared between the communicating protocol participants.

The set Msgs of all exchanged messages is defined inductively over the disjoint union,
represented by AMsgs, of the mentioned set of atomic messages with the set {I}:

AMsgs = Keys ∪ Agents ∪ {I} ∪ Nonces ∪ Data (1)

with Seti ∩ Setj = ∅ for any two Seti, Setj of the unified sets. More precisely:
- If α ∈ AMsgs then α ∈ Msgs.
- If msgx ∈ Msgs and msgy ∈ Msgs then msgx ⋅ msgy ∈ Msgs, where ⋅ represents message

concatenation.
- If msg ∈ Msgs and k ∈ Keys then {msg}k ∈ Msgs, where {●}k represents encryption

with key k.
Each ag ∈ Agents may attempt to execute the protocol for a bounded number of times

say #Sesag and each such attempt is a separate protocol session identified by noSes, such
that 1 ≤ noSes ≤ #Sesag. In a protocol session, ag either plays the role of the initiator or the
responder. We denote by noSes

nsentag the finite-length concatenation sequence of messages
sent by ag ∈ Agents in the course of session noSes:

)(ag
1

ag
nnn msgsentsent noSesnoSes ⋅= − (2)

with the first term equal to the null sequence, i.e.) (ag
0 =noSessent . The sequence noSes

nsent ag
represents participant’s ag history for session noSes, after having sent msgn. From now on
this will be denoted by noSes

historyag .

5

We write as noSes
nrcvd ag the finite-length concatenation sequence of messages received by

ag in the course of session noSes. In a given time instant, the acquired participant’s
knowledge for the ongoing protocol execution is given as:

agknowledge U
ag

ag
Ses

noSes
i

noSesrcvd
#

1
)max(}{

=

= ∪ agin_knowledge (3)

where agin_knowledge represents the initial knowledge base of ag (keys, agent identities and
so on) and i > 0 represents the terms of the received message concatenation sequences.

A protocol session for a honest participant ag ∈ Agents is defined as a 6-tuple
〈ag, noSes, c-ag, agknowledge, noSes

historyag , P〉 (4)
where 1 ≤ noSes ≤ #Sesag, c-ag ∈ Agents ∪ {I} is the receiver of the message(s) sent by ag
in session noSes and P is a process description, i.e. a sequence of steps to be performed in
the role of the initiator or the responder. The process steps are given as pairs of:

- an action name, some member of the set Act = {“send”, “receive”} representing the
dispatch or receipt of a message to/from another participant,

- a message pattern that contains one or more message variables (the set MsgsP of
message patterns is defined in the same way as the set Msgs of exchanged messages,
with the additional inductive rule: if var is a message variable, then var ∈ MsgsP).

The assumptions mentioned in section 1 for the general Dolev - Yao intruder imply that
in a given time instant the acquired intruder’s knowledge for the ongoing protocol
execution is given as:

U U
 ag

#

1

ag
)max(

ag

}{
Agents

Ses

noSes
iknowledge

noSessentI
∈ =

= ∪ Iin_knowledge (5)

for all ag∈Agents and i ≥ 1 representing the terms of the eavesdropped message
concatenation sequences. By Ιin_knowledge we denote the initial intruder’s knowledge base.
For the most powerful intruder I, we consider that

Iin_knowledge= Agents ∪ {k ∈ is_key_of -1(I)} (6)
i.e. the intruder knows the names of all honest participants and the key(s) that he uses, if
participating in legitimate protocol sessions either as initiator or responder. If this is not the
examined protocol execution case, then is_key_of -1(I) = ∅.

A protocol model is defined as the asynchronous composition of the models for each
protocol session, including the intruder model, whose behavior depends on the possible
attack actions. In the general Dolev-Yao intruder model [5], attack actions involve the
sending of fake messages that are inferred by applying the deduction rules shown in
equations (7) to (10), for all messages in Iknowledge. In all cases, the premises of the rule are
specified above the line, whereas the deduced messages are given below the line.

- message concatenation:
knowledgexyyx

knowledgeyknowledgex

Imsgmsgmsgmsg
ImsgImsg
∈⋅⋅

∈∈

,
, (7)

- message projection:
knowledgeyx

knowledgeyx

Imsgmsg
Imsgmsg

∈

∈⋅

 ,
 (8)

6

- message encryption: ⇒∈∈• KeyskIknowledgek ,}{
knowledgekx

knowledgeknowledgex

Imsg
IkImsg

∈

∈∈

}{
,

knowledgemsgymsgx

knowledgeyknowledgex

Imsgmsg
ImsgImsg

xy
∈

∈∈
∨

}{,}{
 ,

 (9)

- message decryption:
knowledgex

knowledge

knowledge
knowledgekx

Imsg
Ik

Ik
Imsg

∈

∈
∈

∈ −1 ,}{
 (10)

Existing model checking approaches use the aforementioned Dolev-Yao deduction

rules based on an abstract representation of the messages that the intruder manipulates.
Under the assumptions (i) that the encryption method used is un-breakable and (ii) that it is
possible to prevent an original message from reaching its destination, the intruder model
performs non-deterministically selected attack actions that are executed within a single
thread of control. Each possible execution of the model corresponds to a finite alternating
sequence of global states and “send” or “receive” actions:

τ = s0 α1 s1 α2 . . . sn, for some n ∈ ℵ (11)

such that j
a

j ss j 1 ⎯→⎯− for 0 < j ≤ n and for the transition relation → defined in the
cartesian product,

→ ⊆ S × PS × Act × Msgs × S (12)

where S is the set of global states, PS is the set of protocol sessions and Act is the set of
action names.

3. The MI intruder model

This section introduces the MI intruder model and describes its use throughout the
preliminary simulation run and the model checking phase.

The scope of the MI intruder model includes all security properties that may be encoded
as violations of safety (secrecy and authentication), but it is also possible to customize the
behavior of the intruder model – according to [13] – for model checking properties that
involve liveness (e.g. non repudiation or fairness). More precisely, in SPIN [14], violation
of protocol safety may be detected as reachability of invalid end states or alternatively as
violation of monitor assertions. Properties that involve liveness are expressed in various
ways, including the use of Linear Temporal Logic (LTL). In its current form, the MI
intruder model utilizes message metadata comparisons (encryption characteristics, message
timestamps and message sizes) for detecting attack actions that may be removed, without
excluding any attacks that the analyst needs to check. Attack actions that can be removed
are encoded into an open-ended base of primitive attacks (message replays, integrity
violations, parallel session attacks and type-flaw attacks) that have been formalized in [15].
Since messages are compared one by one, our model and the used open-ended base of

7

attack actions can be applied on analysis problems, where protocol participants exchange
messages on a unicast communication basis. Extension of the MI intruder model for model
checking multicast security protocols would be based on an updated set of primitive attack
actions and on appropriate message metadata comparisons that will possibly take into
account additional metadata values.

The model can be considered as an optimization approach, which is based on a
symbolic representation that avoids explicit enumeration of the messages that the intruder
can generate from Iknowledge. Instead of using the Dolev-Yao deduction rules for inferring all
possible fake messages in each protocol step, the MI intruder model records the
eavesdropped messages in a preliminary simulation run and at the same time creates
discrete metadata values for each recorded message. In this way, the intruder model
manipulates only the metadata that were initially created and not the messages themselves.
MΙ rules that will be introduced later determine which attack actions are appropriate and
must be included in the optimized intruder model for the model checking phase and which
are not. We know, for example, that an encryption scheme attack cannot succeed, if the
intruder does not possess the right key in his knowledge. Consequently, encrypted
messages can be treated differently from plain text or partially encrypted messages and an
obvious optimization is to remove from the general Dolev - Yao model all attack actions,
for which it is a priori known that they cannot succeed. Thus, the analyst can use MΙ, in
order to prune the states found to be irrelevant according to the used MI rules.

For the case shown in Figure 1, the MI intruder model acts as a man-in-the-middle
attacker that dominates the communication between honest agents A and B, by
eavesdropping the exchanged messages. Each message is evaluated by message
characterization mechanisms called metadata functions, in order to create appropriate
metadata values that enhance the intruder’s knowledge for this specific message. The
intruder model then consults the embedded base of attack actions, in order to decide which
of them can be deactivated by the analyst, without excluding any attacks that may reveal a
protocol security flaw. The analyst then proceeds to the model checking phase (2nd protocol
execution) with the altered intruder model.

Figure 1: The Message Inspection intruder model

8

In the general case, the intruder model can instantiate at his discretion new protocol

session(s) with the protocol participants. The intruder then reuses previously recorded
messages – during MI – in order to validate against the protocol, all possible attack actions
enabled in his module. An important issue is that the model does not directly attempt
integrity violations to the intercepted messages through encryption, decryption,
concatenation and projection operations, as implied by the general Dolev-Yao rules. Instead
of this, the model exploits the stored metadata values, in order to violate message integrity
only when the message contents can be read. Thus, the model restricts the inherent
combinatorial complexity, when having to generate all possible concatenations of messages
in Iknowledge that can be analyzed.

3.1 Message metadata

Let us consider a protocol

Pr between participating agents A, B, . . . , Z є Agents and let z
representing the number of protocol steps. We simulate

Pr for a bounded number of

protocol sessions say n. We use the messages of the following table, in order to derive
metadata for the intruder’s knowledge Iknowledge

44444 344444 21

U U
 ag

ag#

1
}

ag
)max({

..
....
...

..

.

,1,

1,2

,11,1

Agents

Ses

noSes
noSes

isent

msgmsg

msg
msgmsg

z

2
1

stepsprotocol

n .21sessions

nzz

n

th

nd

st

thndst

∈ =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

↓

→

 (13)

with bamsg , representing a message sent at the ath step of session b by some ag є Agents.
The intruder model stores metadata for each message shown in (13). The stored

metadata values for some message sent at the ath step of session b, are derived by a
parametric metadata function p(a,b) that is defined as follows.

Definition 1. p(a,b) is a Κth parametric metadata function with Κ sub-functions,

1 ,

)(
.
.

)(
)(

),(

,

2
,

1
,

≥

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

= K

msgp

msgp
msgp

bap

K
ba

ba

ba

 (14)

where the value of p(msga,b)mtd, 1 ≤ mtd ≤ Κ depends on the metadata attribute mtd being
expressed (e.g. Encryption, Size etc.) for the specific message msga,b∈Msgs that is sent at
the ath step of session b.

9

Based on the implemented MI function, the value of p(msga,b)mtd may represent e.g. the

size of the message or whether the message is readable (plain text) or not. The following
definitions instantiate MI for the specific metadata cases of the MI intruder model used in
the model checking of the NSPK.

Definition 1.1. The sub-function p(msga,b)Encryption of p(a,b) represents the readability of the
intercepted message. The image of p(msga,b)Encryption is the set E={0, 1, 2}, where each value
denotes one distinct case of encryption form: 0 is used for no encryption, 1 for partial
encryption and 2 for a fully encrypted message.

][1..]..1[),(,
}{hen 2
}{hen 1

hen 0
)(),(

,

,

,

, nzba
msgmsgw

msgmsgmsgmsgw
msgmsgw

msgpbap

kuba

zkuyba

uba
Encryption

ba ×∈∀
⎪
⎩

⎪
⎨

⎧

=
⋅⋅=

=
== (15)

for some msgu∈Msgs, k∈Keys and msgy⋅msgz ≠ (), i.e. at least one of the concatenated
messages is not null.

MI enables the intruder model to act as a decision-making machine that groups attack

actions into three different operational procedures corresponding to the symbolic values 0
for no encryption, 1 for partial encryption and 2 for full encryption. In this way, the MI
intruder model implements the additional capability to select attack actions, for which
according to known security principles – encoded as MI rules – it is a priori known that
they will not succeed. For example, an encryption scheme attack will not uncover a
protocol flaw, if the intruder does not possess the right key in Iknowledge. Instead of model
checking a series of meaningless attacks, the MI algorithm informs the analyst for the
possibility to correct his model by removing them. Thus the intruder model is simplified
and in effect performs only the necessary attacks. Each attack action belongs to one of the
broad categories of attacks, which were formalized in [15] as specific sequences of “send”
and “receive” actions.

Definition 1.2. The sub-function p(msga,b)Size of p(a,b) represents the message size in bits
for some intercepted message. The image of this sub-function is some set of symbolic values
S={s: s є ℵ and s>0} with natural numbers representing valuations of the size of messages
for the modeled protocol.

][1..]..1[),(,
 (null)sent never is if0

 mapping somefor)(
)(),(

,

,
, nzba

msg
SMsgssizemsgsize

msgpbap
ba

baSize
ba ×∈∀

⎩
⎨
⎧ ×⊆

== (16)

This specific sub-function enables the MI intruder model to track a message as a

numeric valuation of its size, which in turn depends on the size valuations of its constituent
parts. When the MI intruder detects two metadata values in different protocol sessions that
correspond to messages of equal size, then according to [16] it is possible to mount a type
flaw attack, irrespective of whether this attack will succeed or not. Furthermore, if the
protocol is interrupted by some communication error and the intruder model stops receiving
messages (timeout), then the size of the expected messages in all future steps of the same

10

protocol session will be zero (0). In this case, the intruder model ignores the metadata
values of this particular sub-function for the undelivered messages.

The columns of the table shown in (13) represent numbered steps in the simulated
protocol sessions. These columns are seen as monotonically increasing sequences with
positive integer terms bm є ℵ and b0 = 1. The different terms can be considered as message
timestamps that are set by the intruder model for the intercepted messages. They imply a
relative message ordering that for two messages taken from the same or from
interdependent protocol sessions may be used for checking whether one message precedes
the other or not. These comparisons may be useful, since the applicability of some attack
actions depends on the availability of intercepted message parts with timestamp values that
are related in some way to the timestamp of the last intercepted message in the attacked
protocol session. For example, an impersonation attack between two parallel sessions
cannot – according to [16] and [17] – reuse message parts, with timestamp values greater
than the timestamp value of the last intercepted message in the attacked protocol session.

If necessary, the MI intruder model can integrate additional metadata sub-functions
besides those mentioned. After having defined all metadata sub-functions, we define now
the Intruder Knowledge Table [Ikt] as follows:

Definition 2. In a MI intruder model we define the intruder knowledge table [Ikt], which is
populated with the values of a parametric metadata function p(a,b) for all intercepted
messages bamsg , , with (a,b)∈[1..z]×[1..n]:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

),(..)1,(
....
...)1,2(

),1(..)1,1(

][

nzpzp

p
npp

=Ikt (17)

and

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

⎪
⎩

⎪
⎨

⎧

=
⋅⋅=

=
=

⎩
⎨
⎧ ×⊆

=

=

. . .

}{hen 2
}{hen 1

hen 0
)(

 (null)sent never is if0
 mapping afor)(

)(

),(

,

,

,

,

,

,
,

functionssubadditional

msgmsgw
msgmsgmsgmsgw

msgmsgw
msgp

msg
SMsgssizemsgsize

msgp

bap

kuba

zkuyba

uba
Encryption

ba

ba

baSize
ba

][1..]..1[),(nzba ×∈∀

for some set of symbolic values S={s: s є ℵ and s>0} with natural numbers and some msgu

∈Msgs, k∈Keys and msgy⋅msgz ≠ (). The properties of [Ikt] are:
• if bamsg , is never sent (null) then p(a,b)=0 and this means that the intruder has not

intercepted any message sent in the ath protocol step of session b
• if p(a,b)=0 then p(a+φ, b)=0 ∀φ∈ℵ: a+φ≤ z

11

The properties of the [Ikt] table enable manipulation of the collected metadata values,

for deriving protocol-specific model checking improvements like for example a state space
reduction, through simplification of the applied intruder model. For a protocol

Pr and an
intercepted message in protocol step a of session b the intruder model fills in the metadata
values p(a, b). If a < z, then all table entries p(a+φ, b) with φ∈ℵ: a+φ≤ z keep their initial
value, which is zero (0), until the intruder intercepts the respective message. If for some
reason, the protocol session is stopped, then the values of p(a+φ, b) remain zero.

Definition 3. In order to compare two different [Ikt] table entries, say p(a, b) and p(c, d),
such that a≠c ∨ b≠d (where ∨ denotes disjunction), we define the following operator:

p(a, b) ≅ p(c, d), if ()K
dc

K
badcbadcba msgpmsgpmsgpmsgpmsgpmsgp)()(...)()()()(,,

2
,

2
,

1
,

1
, =∨∨=∨= (18)

3.2 The MI intruder model in use

In the preliminary simulation run, the intruder’s knowledge is enhanced with the metadata
of the [Ikt] table. The intruder’s knowledge then includes the following information:

U U
 ag

#

1

ag
)max(

ag

}{
Agents

Ses

noSes
iknowledge

noSessentI
∈ =

= ∪ Iin_knowledge ∪ {[Ikt]} (19)

In this first phase, the intruder model acts as a passive model entity, i.e. it does not execute
“send” actions against honest participants. The performed simulation applies the MI
algorithm to the updated Iknowledge and enables the intruder model to manipulate the message

sequences U U
 ag

#

1

ag
)max(

ag

}{
Agents

Ses

noSes
i

noSessent
∈ =

 for all ag∈Agents based on the [Ikt] table. The obtained

simulation output may include a list of attack actions that can be safely removed from the
MI intruder model.

Figure 2 introduces the two phases of the MI algorithm. We consider agents A, B є
Agents that exchange messages according to process descriptions PI and PR with the actions
performed in the roles of the initiator and the responder for some protocol, say

Pr . The
intruder model acts as a man-in-the-middle entity that captures all messages exchanged
between protocol participants. For each intercepted message, the intruder model creates a
structure p(a, b) corresponding to the [Ikt] table entry for the ath step of session b, as shown
in Figure 2.

The metadata values in the p(a, b) structures are used for comparing the intercepted
protocol messages, in order to select the applicable attack actions. In the MI initialization
phase, the intruder model records all intercepted messages from the executed protocol
sessions. The number of fields in the created structures p(a,b) is the number of metadata
sub-functions that are implemented. When the MI intruder intercepts a message, it updates
the respective [Ikt] table entry, which is used for comparing it – by applying operator ≅ as
defined in definition 3 – with other table entries. Attack actions that according to the made
comparisons are useless are reported in the produced simulation output and it is then
possible to remove them from the MI intruder model. The analyst also removes the MI

12

initialization part and proceeds to the model checking of the security guarantees of interest,
with the optimized MI intruder model that generates a reduced state space.

Figure 2: The MI algorithm

Figure 3. Attack actions for the MI intruder model

Figure 3 shows the open-ended base of attack actions that in the current implementation
of the MI intruder model are checked for their feasibility. The selected attack actions
appear as primitive steps in attacks reported in the related bibliography and have been
proposed in published taxonomies [17, 18, 19] that formalize the observations of intruder
misbehaviors, where the intruder redirects messages among protocol participants. In [15],
we provided formal definitions of the selected primitive attack actions, as well as
bibliographic examples, where these attack actions violate security properties of existing
protocols.

13

Table 1. Attack actions of the MI intruder model and how they are related to the meta-data entries of

the [Ikt] table

Attack Action Action description

A1
Select an intercepted message and send it to its sender (A1_2) or to its
intended recipient (A1_3) or to some participant that is neither the intended
recipient nor the sender (A1_1)

A2 Replace an intercepted message with another message or produce a fake
message by concatenation with some message from Iknowledge

A3 Replace a (part of an) intercepted message that corresponds to some p(a,b)
with a previously intercepted message (part)

A4 Impersonate some ag ∈ Agents using a previously intercepted message that
corresponds to some p(a,b) with a=1

A5 Initiate a new protocol session or manipulate an existing session using a
previously intercepted message that corresponds to some p(a,b)

Table 1 introduces textual descriptions of the sequences of “send” and “receive” actions

for the attack actions of Figure 3, as well as how these actions are related to the metadata
entries of the [Ikt] table.

Attack actions A1 represent the sending of an intercepted or (if combined with another
attack action) a counterfeited message, either to its original sender or to its intended
recipient or even to some participant that is neither the intended recipient nor the sender.
The metadata values p(a, b) do not influence the feasibility of this general attack action.
However, we adopt the assumption that if the sent fake message does no comply with the
pattern of the message expected by the “victim”, then the recipient falls into a fail-stop
state, i.e. he does not continue with the ongoing protocol execution. This assumption
represents the expected behavior of a correct protocol implementation.

Attack action A2, when feasible, alters an intercepted message by replacing it or part of
it with some message from Iknowledge. This is possible only when p(msgα,b)Encryption is 0 or 1.
If p(msgα,b)Encryption=2 and the intruder does not have in Iknowledge the right key for decrypting
the intercepted message, then the contents of the message cannot be read (un-breakability
of the encryption used) and the A2 attack action is not possible.

Attack action A3 replaces a part of an intercepted message or the whole message, with
another message from Iknowledge. The produced fake message can be accepted by the
“victim”, only if its size is the same with the size of the expected message. This can be
checked by appropriate comparisons of stored metadata values for the messages in Iknowledge.
Type flaws with partially altered messages are possible only when p(msgα,b)Encryption is not 2,
i.e. when the intercepted message is (partially) readable. Alternatively, according to [17], a
type flaw attack is also possible, when in a protocol session an honest agent falls into
misinterpretation of a received message, supposed to deliver specific data in some protocol
step. This type flaw attack is an open possibility even when the used intercepted message is
fully encrypted and the intruder does not possess in Iknowledge the key needed to decrypt it.

Attack action A4 initiates a new protocol session be reusing a previously intercepted
message that corresponds to some p(a,b) with a =1. Finally, attack action A5 initiates a new
protocol session or manipulates an existing session by reusing a previously intercepted

14

message. Both A4 and A5 are not based on specific requirements for the encryption form of
the intercepted message.

Table 2. Rules for checking feasibility of attack actions for the MI intruder model

Metadata Enabling conditions Attack Actions
p(msga,b)Encryption= 2 A1, A4, A5
p(msga,b)Encryption= 1 A1, A2, A4, A5

p(msga,b)Encryption≠ 2 and
∃ m∈Msgs: exists(m, msga,b)1 =
true and ∃ amsg ∈ AMsgs ∩
Iknowledge: p(amsg)Size=p(m)Size

A3
Readability p(msga,b)Encryption

p(msga,b)Encryption= 0 A1, A2, A4, A5

Size s1 = p(msga,b)Size and s2 = p(msgc,d)Size

s1 = s2 and a < c

b = d

A3

Table 2 introduces the MI rules for checking feasibility of attack actions in the first

implementation of the MI intruder model. The enabling conditions are used in metadata
comparisons like the ones described in next paragraphs, in order to determine whether an
attack action is feasible or not. Attack actions that in all protocol steps are not feasible can
be safely removed, thus yielding an optimized intruder model for the analyzed protocol.

The metadata sub-function p(msga,b)Encryption plays an important role in this analysis,
since its values determine whether the intercepted message msga,b can or cannot be read.
When msga,b is fully encrypted (p(msga,b)Encryption=2), the intruder model checks in Iknowledge
if it owns the key needed to decrypt the intercepted message. If the key is found, this
message is marked as non-encrypted and the metadata value p(msga,b)Encryption=0 is recorded
in the corresponding field of p(a,b). If it is possible to read only some part of the
intercepted message msga,b then p(msga,b)Encryption=1, i.e. msga,b is partially encrypted. This
is a sufficient condition for enabling attack actions A1, A2, A4 and A5. Moreover, the
possibility to replace a part of the message, say m, with some atomic message amsg from
Iknowledge requires equal metadata values for p(amsg)Size and p(m)Size. This enabling condition
implements the requirement for making an agent vulnerable to misinterpret some part of the
message (attack action A3), which is its size.

In most cases, p(msga,b)Encryption will be 2, which automatically excludes the possibility
of an integrity violation (attack action A2) that requires read access to some part of the
intercepted message.

As we already noted, in type flaw attacks where the intercepted message is replaced as a
whole, there is no special requirement for its encryption form. If the expected message has
the same size with an intercepted message from a previous step of the same protocol
session [17], then it is possible for the intruder to mount a type flaw attack. In the last row
of Table 2 we provide the enabling conditions for this attack action. For a complete
description of the attack actions mentioned in Table 2 the reader is referred to [15].

1 Boolean predicate indicating if the string m appears in message msga,b

15

Let us consider a protocol with four (4) steps that runs in two sessions. For all attack
actions of Table 1, the intruder model compares the metadata values of the intercepted
messages. Each comparison determines if there are attack actions that according to the MI
rules of Table 2 can be safely excluded in the examined protocol step. Attack actions that
do not contribute in the model checking for all protocol steps are reported in the produced
simulation output and it is then possible to remove them from the MI intruder model.

Examples of the comparisons made for the considered 4-step protocol are shown in
Figure 4, for most of the mentioned attack actions. When p(1,1) ≅ p(1,2) and at the same
time holds for these two table entries one of the conditions of Table 2 that enable attack
actions A4 and/or A5, then the MI intruder model can initiate a new protocol session, in
order to attempt a parallel session or an impersonation attack. When p(2,1) ≅ p(2,2) and for
these two table entries hold the conditions of Table 2 that enable attack action A5, then it is
possible the MI intruder to manipulate an existing parallel session for an attack, that may
subvert one of the protocol’s correctness properties. When p(a,b) ≅ p(c,b) and for these two
table entries hold the conditions of Table 2 that enable attack actions A1, then it is possible
the MI intruder to perform a deflection or a reflection message replay. Finally, when p(a,b)
≅ p(c,d) for two messages in different protocol sessions, the last intercepted message is
(partially) readable and at the same time hold the conditions shown in Table 2, then it is
possible the MI intruder to perform a type-flaw attack action.

Figure 4: Metadata comparisons with the [Ikt] table entries for detecting the possible attack actions in

each protocol step

In that case I triggers the attack, possibly after having altered the eavesdropped msg ∈
Msgs based on Iknowledge, thus resulting in a msg΄ ∈ Msgs. The subsequent action performed
by I is either send (I, v, msg΄) or send (I, v, {msg΄}k΄) for a k΄∈ Iknowledge such that v ∈
is_key_of (k΄), i.e. v is the owner of k΄.

This attack action succeeds, if in the global state after the occurrence of the action
receive (v, I, msg΄) or respectively receive (v, I, {msg΄}k΄) there is some atomic message
amsg, such that

16

exists(amsg, noSesv
ircvd)max() = true, 1 ≤ noSes ≤ #Sesv

and for two sets Sete and Setf from the “disjoint” union Amsgs,

amsg ∈ Sete ∩ Setf

where i ≥ 1 represent the terms of the concatenation sequence of messages received by
agent v in the course of session noSes.

Thus, an atomic message that was originally intended to have one type (e.g. nonce) is
interpreted as having another type (e.g. key or data) meaning that the type flaw is exploited,
even though this may not lead to a direct security compromise.

During model checking, the MI intruder model performs all possible attack actions in all
protocol steps, after having excluded - as a result of the preliminary simulation run - the
attack actions whose enabling conditions are not satisfied in all protocol steps. The honest
agents ag ∈ Agents either accept or reject the fake messages based on the implemented
protocol logic.

In essence, the metadata in the [Ikt] table store protocol-specific monitoring
information, which is used in controlling the behavior of the MI intruder model in an
effective way. Apart from the two sub-functions of the current MI intruder model, it is also
possible to exploit the position of metadata entries in the [Ikt] table as message timestamps
or to implement additional sub-functions and MI rules.

This allows further optimizations of the MI intruder behavior based on known security
principles [15, 20, 21, 22, 23], as well as implementation of custom behavior that will
enable model checking requirements beyond those expressed as safety guarantees (i.e.
secrecy and authentication).

4. MI-based model checking

This section presents an exploratory case study for the implemented MI intruder model
with the following aims:

• to provide indicative results and compare the state spaces for the general Dolev-Yao
intruder model and the MI model, in a known model checking context that is
frequently used in related bibliography, i.e. the verification of the Needham-
Schroeder Public Key protocol (NSPK) [12];

• to provide indicative results for the state space of the two intruder models, when
applying partial order reduction and other reduction or state exploration techniques
that are currently available in the SPIN model checker;

• to provide indicative results for variants of the implemented MI model, where one
or more attack actions have been removed.

In the introductory section, we commented on the results obtained from exploratory
case studies, for other state space reduction techniques. An important observation is that the
reported results cannot be generalized and therefore they cannot be compared with each
other.

17

The achieved state space improvements intrinsically depend on the interleaving caused
by the modeled protocol structure, on the encryption form of the exchanged messages and
on the checked protocol configuration (the number of initiators and the number of
responders used). Also, the reported results concern only the reduction techniques available
in the used model checking environment. Implementation of other techniques may be not
possible, if the source code of the tool is not available, or the effort required for
implementing additional techniques like MI for comparison purposes may be prohibitively
high. Finally, the numbers of states reported in the different studies are not comparable,
since these numbers are related to the model representation implemented in the respective
tool.

For these reasons, all the aforementioned studies have an exploratory character [24], i.e.
they provide an opportunity to explore cause-and-effect facts. The primary aim is to derive
indicative results for the effectiveness of the examined reduction techniques. Usually, this
takes place in known model checking problems, i.e. verification of protocols with known
security vulnerabilities that have been previously used in related studies.

4.1 The NSPK protocol

The NSPK protocol aims to establish mutual authentication between the initiator and the
responder, in order to start a message exchange between them. The protocol name suggests
the use of public key cryptography, for delivering authentication guarantees. The reduced
version of the NSPK protocol, shown in Figure 5, includes only three (3) protocol steps,
where in each step the protocol participants A (for the initiator) and B (for the responder)
exchange messages with agent identities and randomly generated nonces (NA, NB),
encrypted by the public keys PK{A} and PK{B}. The sent information can be checked by
the receivers.

In addition to the agents shown in Figure 5 the developed SPIN model includes an
intruder model that has absolute control over the communication between the honest
protocol participants. The reported results concern with two different intruder models, i.e.
the general Dolev-Yao intruder with the deduction rules specified in equations 7 - 10 and
an MI intruder model. Honest agents are encoded as fail-stop processes, i.e. if the message
received in a protocol step is not the expected one, then protocol execution is stopped for
the receiver even though the provided security guarantees have not been violated. Potential
failures of message secrecy or failures of authentication are expressed as invalid end-states
in the SPIN model checking environment.

Figure 5: Reduced version of the NSPK protocol

18

4.2 Model checking the NSPK protocol with the MI intruder model

In a preliminary simulation run with two protocol sessions (Figure 6), the MI intruder
model detected two attack actions, namely A2 and A3 that can be safely removed. More
specifically, the MI intruder acts as a man-in-the-middle entity between agents A and B for
the first protocol session and B and C for the second session.

Upon intercepting an NSPK message, say msga,b, the MI model creates appropriate
metadata values for p(msga,b)Encryption and p(msga,b)Size that are recorded in [Ikt] table (Figure
6i). Since the MI intruder forwards the sent messages to the intended recipients, both
protocol sessions are completed with success. We realize that all protocol messages are
fully encrypted and since the decryption key is never included in Ιknowledge, for all metadata
values p(msga,b)Encryption is 2. We also see the metadata values computed for p(msga,b)Size, for
the message sizes shown in Figure 6, representing the assumption that there are no two
size-similar atomic messages, with the first message being an agent identity and the second
one coming from the set of nonces.

Figure 6: Preliminary MI simulation run: the intruder (i) creates the [Ikt] table, (ii) compares the

metadata and (iii) proposes removal of attack actions A2 and A3

The MI intruder model then performs (Figure 6ii) the metadata comparisons discussed

in section 3.2 by taking into account the MI rules of Table 2. Finally, the intruder model

19

outputs the decisions made (Figure 6iii). Since p(msga,b)Encryption = 2 in all protocol steps,
the integrity violation attack action (A2) is excluded. Also, because p(msga,b)Encryption= 2 for
all exchanged messages and at the same time there are no size-similar messages in the same
protocol session, the MI-based intruder model proposes removing the type flaw attack
action (A3).

Figure 7 provides the model checking result for the described NSPK model, when using
the optimized MI intruder and the partial order reduction functionality of the SPIN model
checker. An invalid end state is reached at depth 25 of the produced reachability graph (264
stored states and 1493 states accessed as hash conflicts) and the search is stopped after
having detected the reported error (errors: 1).

A subsequent guided simulation explores the generated counterexample and creates the
message sequence diagram of Figure 8. The reached invalid end state corresponds to the
state, where agent B acting as responder accepts a fake NSPK message that causes him to
initiate a new protocol session. The used message is created by the intruder model in the
role of the initiator according to the message pattern of the first of the three messages
shown in Figure 5. This invalid authentication in effect causes a successful impersonation
attack against B, who perceives the intruder as an honest protocol participant.

The same security violation has been also detected with a generic Dolev-Yao intruder
model, but in that case the reached depth of the detected invalid end state was 48.

Figure 7: Verification output for NSPK with the detected invalid end state at depth 25

20

Figure 8: Guided simulation of the generated counterexample with the detected impersonation attack

against NSPK

4.3 State space reduction and state exploration alternatives with the MI intruder model

To enable comparison between the general Dolev-Yao intruder model and the optimized
MI intruder model for the NSPK protocol, it is necessary [24, 25] to characterize the used
working modes of the SPIN model checking environment, to capture the characteristics of
the compared objects and finally to highlight the unique aspects of the performed
experiment. The following description provides an opportunity to assess the
appropriateness of the experiment’s design for understanding cause and effect relationships,
which is the primary objective of the study.

The formal definition [26] of the performed experiment is given in Table 3. We analyze
the behavior of the two intruder models (independent variable), for the purpose of exploring
cause and effect facts, with respect to (a) the size of the generated reachability graphs
(dependent variable) and (b) the implied memory usage (dependent variable), in the context
of the NSPK protocol model and the MI intruder model that were implemented in SPIN.

Table 3. Formal definition of experiment

Analyze the general Dolev - Yao intruder model vs. the MI intruder
model

For the purpose of exploring cause and effect relationships
With respect to the size of the generated reachability graphs (number of states)

and the implied memory usage
From the point of
view of

the model checking practitioner

In the context of the NSPK protocol model and the MI intruder model that were
implemented in SPIN

The research questions and the associated metrics used in our study are:
i. Question 1: Does the intruder model have a significant impact in the size of the

model’s state space?
Metrics used: We compare the state spaces (numbers of states and implied memory
usage) produced with the two intruder models in the following cases:
- First, we compare the size of the complete reachability graphs, i.e. model checking

is not stopped when having detected the invalid end state. In our opinion, this is a
more representative view of the improvement possibilities opened by an optimized
MI intruder model, since the security flaw in general may be discovered at an
arbitrary depth of the state space.

- We also compare the size of the partial state spaces up to the depth of the detected
invalid end state (refer to the sample results shown in Figure 7). Obviously, the size
reduction achieved by the optimized MI intruder model in this case is orders of

21

magnitude less than the size reduction achieved in the aforementioned more
general case.

ii. Question 2: To what extend does the MI intruder model influence the size of the state
space for different combinations of attack actions?
Metrics used: We compare the size of the complete reachability graphs for 14
different versions of the MI intruder model.

Table 4. State space reduction and state exploration techniques in SPIN

SPIN working modes Description
Exhaustive search with
partial order reduction
(P.O.R.)

By default, SPIN [14] constructs both the state space and the transition relation on-the-fly by
applying a Depth-First Search over the model’s state space. Partial order reduction avoids
creating states that cannot be affected by interleaving the execution of the model’s processes.
It is based on the dependencies that may occur between certain process statements, trying to
discover the statements that are independent.

Supertrace search In SPIN, to enable fast lookup of states they are stored in a hash table. Supertrace search or
bit-state hashing is an option that decreases memory use by consuming only a small number
of bits per state. When normal state storage is impossible, due to the limited memory,
supertrace search provides an attractive alternative that increases significantly the capacity to
store states. On the other hand, there is a low probability of loss of coverage, since when a
hash collision happens the algorithm incorrectly infers that the state was already visited and
therefore, this state is skipped. However, this cannot lead to false error reports.

Hash-compact search In the hash-compact method, a hash function is utilized, in order to compress the state
descriptor irrespective of the number of bits used to 64 bits. The resulting 64-bit values are
then stored in a lookup table and in this way SPIN simulates a hash table with memory size
far beyond what would be available otherwise.

State space compression The so-called collapse compression works in the following way: SPIN identifies and stores
the state configurations of each model process and instead of storing a complete state
descriptor in the global state vector it uses the sequence of identifiers for the involved
processes. It is a lossless compression technique that guarantees exhaustive coverage.

Breadth-First Search This state exploration option enables on-the-fly model checking with Breadth-First Search
over the generated reachability graph.

Statement merging Statement merging is a special case of partial order reduction. This method suppresses
redundant interleavings of process statements whenever possible, but it does not perform
optimizations when non-interleaved sequences of statements can be merged into a single step.

The default working mode of the SPIN model checker includes the partial order

reduction functionality. However, in order to understand the cause and effect relationships
associated with the use of the compared intruder models, we also report the size of the state
spaces produced in the working modes of Table 4. Supertrace search tends to find errors
quickly if they exist, but it is not the most productive option for demonstrating error-
freedom. It is recommended as an attractive choice, when we first attempt to verify a model
and the state space size is completely unknown. Hash-compact search exhibits superior
accuracy, when tuned for a known state space. The main advantage of the breadth-first
search option - which is effective only for safety properties (secrecy and authentication) - is
that it finds the shortest path to an error state, while the depth-first search often finds a
longer path. The (collapse) compression option reduces the memory requirements for an
exhaustive search at the cost of increasing the run-time requirements.

Figure 9a shows a typical sequence of model checking tasks involved, when the size of
the model’s state space is completely unknown. It also introduces the explored cause and
effect facts associated with the problem of the wasteful branching of the state space and the

22

use of a general Dolev-Yao intruder model. The results exposed in next paragraphs affirm
the possible exhaustion of the available memory, even in the case of the NSPK protocol
model that includes only three protocol steps, which were executed in two parallel sessions.
Also, the obtained results confirmed the cause and effect relationship of Figure 9b, i.e. they
revealed a significant reduction of the model’s state space when using the optimized MI
intruder model.

(a)

(b)

Figure 9: Cause and effect facts for (a) the general Dolev – Yao and (b) the MI intruder models

More precisely, Figure 10 provides the results obtained for the complete reachability
graphs of the NSPK protocol model with (a) the optimized MI intruder model and (b) the
general Dolev-Yao intruder respectively. We report the number of unique states stored by
SPIN in a hash table, in order to enable fast lookup. SPIN outputs this number in all model
checking reports together with the sum of stored and matched states that in fact represents
the accessed transitions. The number of stored states provides an estimate of the size of the
state space that also includes additional states, which are accessed as hash collisions.

Memory usage (not shown in Figure 10) for the optimized MI intruder varies between
2.9 and 33 MB, apart from the compression alternatives that when used with partial order
reduction expands to about 260 MB. This is not surprising, since according to the theory
[27], in some cases compression techniques can result in memory expansion. If a
compression technique performs well in a given context is typically discovered by
experimentation. On the other hand, the complete reachability graph for the NSPK model
with the general Dolev - Yao intruder consumed the available memory space, which was

23

set to 1 GB, apart from the compression alternatives, where the memory usage is limited to
about 363 MB.

The numbers of stored unique states in Figure 10 show a reduction of about 103 times,
when applying the optimized MI intruder. In model checking with a compression working
mode this gap is widened and if using the hash-compact search with partial order reduction,
the model with the Dolev-Yao intruder stores about 4⋅103 times the number of states for the
MI intruder.

(a)

(b)
Figure 10: Size of complete reachability graphs for NSPK (a) with the optimized MI intruder model

and (b) with the general Dolev-Yao intruder model

In Figure 10b, the working modes with no compression exhibit less stored unique states
when compared with the working modes that apply compression. This is explained by a
vast number of hash collisions that are not shown in the graph. As an example, when the
Dolev-Yao intruder model is applied with partial order reduction, the typical exhaustive
search yields 4.3⋅106 hash collisions in a hash table with 8⋅106 stored unique states. If using
the optimized MI intruder, the reported hash collisions do not exceed the 43 cases in all
tested working modes.

We conclude that for a protocol model with more steps, model checking with the
general Dolev-Yao model is likely to require a compression technique like supertrace

24

search or hash-compact search, which in fact open a possibility for coverage loss. From this
perspective, the optimized MI intruder yields a reduced state space with improved
possibilities to be handled by SPIN in a predictable manner. In Figure 10a we also observe
that partial order reduction, when combined with Breadth-First Search, is not as effective as
it is when combined with Depth-First Search.

Figure 11, provides results for the partial state spaces generated up to the depth of the
detected invalid end state. The NSPK protocol model with the Dolev-Yao intruder model
generated state spaces with about 2.5 times the number of stored unique states for the MI
intruder. This improvement depends on the depth where the error is discovered and from
this point of view the Breadth-First Search finds the shortest path to the error. While in
Figure 7 (MI intruder with Depth-First Search) the error was detected at depth 25 (1.4⋅103
hash collisions in a hash table with 264 stored unique states), when using Breadth-First
Search the error was discovered at depth 5 (no hash collisions in a hash table with 112
stored unique states). On the other hand, when verifying NSPK with the Dolev-Yao
intruder model and Depth-First Search the error is detected at depth 48 resulting in 7.3⋅104
hash collisions in a hash table with 698 stored unique states.

Figure 11: Size of partial state spaces for the NSPK security flaw with the optimized MI intruder model

(MI) and the general Dolev-Yao intruder model (DY)

In the second part of this exploratory study, Figure 12 shows the effects on the size of
the complete reachability graph, when using different versions of the MI intruder model,
where each version includes different combinations of attack actions. We report stored
unique states obtained with exhaustive search, where hash collisions are negligible. These
results make it possible to compare relative state space reductions, when using the different
versions of the MI intruder model. In effect, they provide potentially valuable data for costs
and benefits towards extending the MI rules of Table 2, for more efficient use of the MI
intruder model. However, as we already noted the reported results depend on the
interleaving caused by the modeled protocol structure, as well as on the checked protocol
configuration (the number of initiators and the number of responders used).

Although it is shown that the intruder model has a dominant effect in memory usage
and the size of the state space, an obvious threat to the internal validity of our exploratory
study is the possibility of confounding. In the related bibliography, this term is often used
to refer to all factors covarying with the considered independent variables (intruder model
used), which also influence the dependent variables (memory usage and size of the state
space) but have not been included in the experiment’s design. We explored many possible
combinations of the two intruder models with the reduction and the state exploration

25

techniques provided in SPIN, but our experiment was not extended to different numbers of
initiators and responders, which we think are factors that may covary with the selected
intruder model. The most prominent threat to the external validity of the presented study is
that the reported reductions in the state space of the NSPK protocol with the optimized MI
intruder model, cannot be generalized to other protocols and protocol configurations. As
noted in the introduction of the described study, there is no similar study with results that
can be generalized, since reported state space improvements intrinsically depend on the
protocol structure reflected by the analyzed model.

Figure 12: Complete reachability graphs for MI intruder models in NSPK model checking with

different combinations of attack actions

4.4 Guidelines for the model checking practitioner

For the model checking practitioner, an effective procedure for applying the MI intruder
model to large model checking problems includes the following steps:

1. A first preliminary simulation run with the MI intruder model will provide valuable
feedback for the applicable optimizations in the protocol model.

2. Since the size of the state space is still unknown, there is no need to directly apply
the detected optimizations in the first verification attempt. We propose this first
verification to take place with an efficient search option such as supertrace search

26

together with partial order reduction. However, we remind that the mentioned
search option opens a possibility for loss of coverage.

3. For proving the absence of security flaws in a model with very large state space, the
analyst now can choose between the following two options.

a. To apply an alternative compression method if available (like the
hash/compact search or the collapse compression). This option incurs an
additional cost, either in the form of increased model checking run time or in
the form of repetitive trials, in order to fine tune the state space.

b. To apply the possible MI intruder model optimizations. With the current
model implementation, the analyst modifies the PROMELA code manually,
in order to remove the useless attack actions.

4. The optimized MI intruder model may set the model checking problem in a size,
which can be handled by the available exhaustive search options. If however this is
still not achieved, then the analyst returns to step 3, where either tries to apply an
accurate compression method together with additional reduction techniques such as
symmetry reductions or alternatively to implement new optimizations in the current
MI intruder model.

New optimizations will be based on inventing new MI rules for more efficient use of
the MI intruder model or on step-by-step analyses of additional attack actions, beyond those
mentioned in Table 1. However, any extension to the current MI intruder model requires
PROMELA programming skills, as well as a basic understanding of the algorithmic details
of the current implementation.

5. Related work

In related bibliography, there are significant research contributions concerning uses,
extensions and improvements of the Dolev-Yao intruder model. Many of these works [2,
28, 29, 30] provided a basis for integrating a custom user-specified intruder model into
innovative model checking techniques for the analysis of security properties.

One of the first systems that implemented the Dolev - Yao assumptions and the secrecy
failure verification approach was the Interrogator tool [28]. Given a final state in which the
intruder knows some message, which should be secret, the Interrogator tries all possible
ways of constructing a path that reaches this particular state. If it finds such a path, then it
has identified a security flaw.

Finite state analysis of cryptographic protocols can take place in specialized security
model checkers, like BRUTUS [6], where security violations are encoded as failures of
secrecy or authentication. Alternatively, finite state analysis is often carried out in general-
purpose model checkers like Murφ [31] and the FDR (Failures Divergence Refinement)
[32] model checker.

When focused on the problem of the state space explosion, a series of interesting works
exploit symmetry and partial order reduction techniques [6, 7, 31, 33]. In [10], the authors
propose model checking with pre-configuration, which is a divide-and-conquer method for
verifying security protocols.

27

In [9], the authors prove the soundness of two optimizations for the intruder model. The
first optimization technique lets the intruder always intercepting messages sent by the
honest protocol participants, instead of making such interception optional. The second
technique prevents the intruder from sending messages to honest participants in states
where at least one of the honest participants is able to send a message. This can be
considered as an alternative to partial order reduction techniques that exploit the relative
independence of the honest participants. In the performed experiments, the first mentioned
technique resulted in significant reductions in the number of reachable states (by a factor of
20) and the execution time. The second mentioned optimization technique resulted in
further 43% reduction in the number of states and a 40% reduction in the execution time.

An interesting variant of the Dolev - Yao intruder model is proposed in [30], for
analyzing an unbounded number of protocol sessions with either bounded or unbounded
numbers of messages.

Symbolic reduction [29] exploits a symbolic state transition relation, which gives rise to
a finite symbolic state space [34, 35], where symmetry redundancy is eliminated. Each
symbolic state summarizes a – possibly infinite – number of concrete states that can be
obtained by instantiating variables in the symbolic state specification.

“Lazy” intruder models [29, 33] aim in a demand-driven exploration of the model’s
state space by overlooking fake messages that do not match the patterns of the messages
awaited by the protocol participants.

In [36], the authors introduce an optimized intruder model for the verification of
satisfiability properties, provided the interception of all exchanged messages and the
assumption that some of the abilities of the intruder have an instantaneous effect.

Athena [37] builds on a different model representation, where in contrast to the
conventional trace-based modeling approaches, a set of protocol runs that differ only in the
order of interleaving executions of the individual participants is represented by only one
state. This is achieved due to a clever extension to the strand space model representation.
There is some form of symbolic reduction functionality, but Athena also allows the
development of protocol-specific or general pruning theorems. Through this semi-
automated approach the analyst uses theorems, in order to prune from the state space all
states proved that do not contribute to the final result.

In [13], the authors propose a specialized intruder model for verifying a class of
liveness properties in security protocols. The intruder’s behavior is proved that conforms to
the Dolev-Yao assumptions, with the only difference that he does not delay the delivery of
intercepted messages.

Finally in [38], the authors extend a flexible specification framework based on the
Dolev - Yao intruder model. The analysis is designed for security protocol verification
based on typed multi-set rewriting with a static check called access control. The proposed
static check aims in catching specification errors, such as a principal trying to use a key that
he is not entitled to access.

The MI intruder model can be compared only with other approaches that optimize the
branching of the state space, due to the intruder’s fake messages, without excluding
possible attacks. Existing intruder models [6, 9, 29, 31, 33], whether they are based on mere
state space exploration or whether they combine it with natural deduction-style reasoning or
“lazy” evaluation, delimit the state space branching by exploiting information about the

28

messages that protocol participants expect. This optimization avoids generating from the
intruder’s knowledge, fake messages that cannot have an effect in the protocol’s execution,
if every protocol participant rejects them as unexpected.

To the best of our knowledge, the MI intruder model is the first model that uses
message metadata collected from a preliminary simulation run. This data enhances the
intruder’s knowledge with additional information regarding protocol behavior facts that in
some cases cannot be observed dynamically across the explored state space paths. It is thus
possible to improve the pruning of the state space by exploiting known security principles.
Given the intruder’s knowledge for the protocol execution, these principles allow
determining in advance, whether an attack action can or cannot cause a security violation.

An apparent weakness of the described two-stage model checking procedure is that it is
likely to result in a less general protocol-specific intruder model. However, we believe that
this may be more useful from a generic Dolev - Yao model that is potentially difficult to
yield results for a computationally hard model checking task. A worth to mention limitation
is that the MI intruder model can be implemented only in model checkers that allow
simulated execution of the protocol model. This is true for many general-purpose model
checkers, like Murφ and SPIN. In current implementation, the analyst is expected to
interfere with the intruder model, in order to remove the useless attack actions. This
requires some basic knowledge of the intrinsic details of the intruder model, but this
shortcoming may be bypassed in a prospective MI-based model checking environment that
will automate the described approach.

The strength of the MI intruder model lies in the fact that it provides an approach for
customizing the intruder behavior, in order to deliver additional model checking
optimizations. For a potential extension concerning insertion of feasibility check for a new
attack action the analyst will have to implement additional MI rules and metadata
comparisons. Appropriate enabling conditions will be derived by natural deduction over the
sequence of send and receive actions that specify the analyzed attack action. If necessary,
the model may be extended by including additional metadata parameters, but this will cause
modifications in the MI initialization code that stores metadata values for the intercepted
messages.

 Finally, besides the provided results for the combined use of the MI intruder model
with partial order reduction, MI may be combined with symmetry reduction and/or other
reduction techniques from those mentioned in current section. An open problem is our
model’s potential integration into security model checkers that employ advanced state
space exploration techniques, such as “lazy” evaluation.

6. Conclusion

The MI intruder model aims to restrict the inherent combinatorial complexity of security
model checking with general Dolev-Yao intruder models. This is achieved through message
inspection that allows customizing the intruder behavior, by taking into account protocol
specific metadata for the structure and the characteristics of the exchanged messages. The
only requirement is that it can be implemented in model checking environments that

29

support both simulation and model checking of the analyzed security protocol. We
conducted a series of experiments for exploring the improvements in the model checking of
the NSPK protocol, when compared with the generic Dolev-Yao intruder model. The
PROMELA code for the MI-based model checking of the NSPK protocol is available
online in [39].

The MI intruder model provides an open-ended framework for integrating additional
protocol-specific model checking optimizations. More innovative extensions considered as
future prospects include integration into the intruder’s knowledge of fine grained
information for the patterns of messages expected by the protocol participants. In this case,
appropriate MI rules will make it possible to further restrict the set of messages composed
by the intruder. Other future perspectives are the incorporation of intruder model
optimizations that exploit certain security protocol properties [9], as well as implementation
of a customized intruder model for properties that involve liveness [13], like session
termination or timeliness. In these cases, the intruder model has to fulfill specific fairness
assumptions, which are not covered in the general case. A long-term development goal is
the design of an integrated modeling environment that will provide the described
functionality in a usable model checking package.

Acknowledgments

We acknowledge the anonymous referees for their helpful comments, which contributed to
improving the quality of the article.

References

1. Burrows M., Abadi M. and Needham R., “A logic of authentication”, ACM Transactions on

Computer Systems, Vol. 8 (1), pp.18-36, 1990.
2. Lowe G., “An attack on the Needham-Schroeder public key authentication protocol”,

Information Processing Letters, Vol. 56 (3), pp.131-136, 1995.
3. Lopez, J., Ortega, J. J., Troya, J. M., “Protocol engineering applied to formal analysis of

security systems”, In Proc. of Int. Conf. of Infrastructure Security, Bristol, UK, LNCS 2437,
Springer-Verlag, pp. 246-259, 2002.

4. Clarke M. E., Grumberg O. and Peled D. A., “Model Checking”, MIT Press, 1999
5. Dolev D. and Yao A., “On the security of public-key protocols”, IEEE Transactions on

Information Theory, Vol. 2(29), pp.198-208, 1983.
6. Clarke E. M., Jha S. and Marrero W., “Verifying security protocols with Brutus”, ACM

Transactions on Software Engineering and Methodology Vol. 9(4), pp.443-487, 2000.
7. Clarke, E., Jha, S. and Marrero, W., “Partial order reduction for security protocol verification”,

In Proc. of the 6th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), Berlin, Germany, 2000.

8. Gritzalis, S., Spinellis, D. and Georgiadis, P., “Security protocols over open networks and
distributed systems: formal methods for their analysis, design, and verification”, Computer
Communications 22, pp.697-709, 1999.

9. Shmatikov, V. and Stern, U., “Efficient finite-state analysis for large security protocols”, In
Proc. of the 11th Workshop on Computer Security Foundations (CSFW), pp. 106-120, 2000.

30

10. Kim K., Abraham J. A. and Bhadra J., “Model Checking of Security Protocols with Pre-
configuration”, In Proc. of the 4th International Workshop on Information Security
Applications, WISA, Korea, LNCS 2908, Springer-Verlag, pp.1–15, 2003.

11. The SPIN model checker official website, available at http://spinroot.com (last accessed
13/2/2009).

12. Needham, R. M. and Schroeder, M. D., “Using Encryption for Authentication in Large
Networks of Computers,” Communications of the ACM 21, 1978.

13. Cederquist J., Torabi I. and Dashti M. , “An intruder model for verifying liveness in security
protocols”, In Proc. of the 2006 ACM Workshop on Formal Methods in Security Engineering
(FMSE), ACM Press, New York, USA, pp.23-31, 2006.

14. Holzmann G. J., “The Spin Model Checker - Primer and Reference Manual”, Addison-Wesley,
2003.

15. Basagiannis S., Katsaros P. and Pombortsis A., “Intrusion Attack Tactics for the model
checking of e-commerce security guarantees”, In Proc. of the 26th International Conference on
Computer Safety, Reliability and Security (SAFECOMP), Nuremberg, Germany, Springer
Verlag LNCS 4680, pp.238-251, 2007.

16. Huang D., Sinha A. and D. Medhi, “A double authentication scheme to detect impersonation
attack in link state routing protocols”, In Proc. of the IEEE International Conference on
Communications (ICC), 2003.

17. Heather, J., Lowe G. and Schneider S., “How to prevent type flaw attacks on security
protocols”, In Proc. of the 13th IEEE Computer Security Foundations Workshop, IEEE
Computer Society, pp.255-268, 2000.

18. Syverson, P. and Cervesato, I., “The logic of authentication protocols”, In Proc. of the 1st
International School on Foundations of Security Analysis and Design (FOSAD 2000),
Springer-Verlag LNCS 2171, pp. 63-137, 2001.

19. Carlsen, U., “Cryptographic protocol flaws – Know your enemy”, In Proc. of the 7th IEEE
Computer Security Foundations Workshop, IEEE Computer Society, pp. 192-200, 1994.

20. Zhang, C., Zhou, M. C. and Yu, M., “Ad hoc network routing and security: A review”,
International Journal of Communication Systems, Vol. 20 (8), pp.909-925, 2007.

21. Basagiannis S., Katsaros P., Pombortsis A. and Alexiou N., “Probabilistic model checking for
the quantification of DoS security threats”, Computers & Security, Vol. 28 (6), pp. 450-465,
2009

22. Grunske, L., Joyce, D., “Quantitative risk-based security prediction for component-based
systems with explicitly modeled attack profiles”, Journal of Systems and Software, Vol. 81,
pp.1327-1345, 2008.

23. Amadio R. M. and Charatonik W., “On Name Generation and Set-Based Analysis in the
Dolev-Yao Model”, In Proc. of CONCUR, Springer-Verlag LNCS 2421, pp.499-514, 2002.

24. Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam, K.
and Rosenberg, J. “Preliminary guidelines for empirical research in software engineering”,
IEEE Transactions on Software Engineering, Vol. 28, Issue 8, pp. 721 – 734, 2002.

25. Wohlin, C., Petersson, H., Aurum, A., Shull, F. and Ciolkowski, M., “Software inspection
benchmarking – A qualitative and quantitative comparative opportunity”, In Proc. of the 8th
IEEE International Symposium on Software Metrics, IEEE Computer Society, pp. 118-127,
2002.

26. Briand, L., Bunse, C., Daly, J., and Differding, C., “An experimental comparison of the
maintainability of object-oriented and structured design documents”, Empirical Software
Engineering, Vol. 2, Issue 3, pp. 291–312, 1997.

27. Gregoire, J.-C., “State space compression in SPIN with GETSs”, In Proc. of the 2nd SPIN
Workshop, pp. 90-108, 1996.

31

28. Millen J. K., Clark S. C. and Freedman S. B., “The Interrogator: Protocol Security Analysis”,
IEEE Transactions on Software Engineering, Vol. 13(2), 1987.

29. Basin D., Modersheim S. and Vigano L., “OFMC: A Symbolic Model-Checker for Security
Protocols”, International Journal of Information Security, 2004.

30. Chevalier Y., Kuesters R., Rusinowitch M., Turuani M. and Vigneron L. “Extending the
Dolev-Yao Intruder for Analyzing an Unbounded Number of Sessions”, Computer Science
Logic (CSL) and 8th Kurt Goedel Colloquium (8th KCG), 2003.

31. Mitchell, J. C., Mitchell, M. and Stern, U., “Automated analysis of cryptographic protocols
using Murφ”, In Proc. of the IEEE Symposium on Security and Privacy, pp. 141-151, 1997.

32. Roscoe A. W., “Modeling and verifying key-exchange protocols using CSP and FDR”, In
Proc. of the 8th IEEE Computer Security Foundations Workshop, IEEE Computer Society, pp.
98-107, 1995.

33. Roscoe A. W. and Goldsmith, M., “The perfect spy for model-checking cryptoprotocols”, In
Proc. of the 1997 DIMACS Workshop on Design and Formal Verification of Security
Protocols, 1997.

34. Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
M. and Tacchella, A., “NuSMV 2: An OpenSource Tool for Symbolic Model Checking”, In
Proc. of the International Conference on Computer-Aided Verification (CAV), Copenhagen,
Denmark, 2002.

35. Panti, M., Spalazzi, L. and Tacconi., S., “Using the NUSMV model checker to verify the
Kerberos Protocol”. In Proc. of the 3rd Collaborative Technologies Symposium (CTS), pp. 27-
31, 2002.

36. Armando A. and Compagna L., ”An Optimized Intruder Model for SAT-based Model-
Checking of Security Protocols”, in Proc. of the Workshop on Automated Reasoning for
Security Protocol Analysis ARSPA, ENTCS, pp.91-108, 2004.

37. Song D., “Athena: a new efficient automatic checker for security protocol analysis”. In P.
Syverson, ed., In Proc. of the 12th IEEE Computer Security Foundations Workshop, Italy,
IEEE Computer Society Press, pp.192-202, 1992.

38. Cervesato I., “The Dolev-Yao intruder is the most powerful attacker”, In Proc. of the 16th
Annual Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,
2001.

39. Message Inspection Intruder Modeling Framework, online: http://mathind.csd.auth.gr/
mi_work.html (last accessed 13/2/2009).

