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A major challenge that is currently faced in the design of applications for the Internet of Things (IoT)
concerns with the optimal use of available energy resources given the battery lifetime of the IoT de-
vices. The challenge is derived from the heterogeneity of the devices, in terms of their hardware
and the provided functionalities (e.g data processing/communication). In this paper, we propose a
novel method for (i) characterizing the parameters that influence energy consumption and (ii) vali-
dating the energy consumption of IoT devices against the system’s energy-efficiency requirements
(e.g. lifetime). Our approach is based on energy-aware models of the IoT application’s design in
the BIP (Behavior, Interaction, Priority) component framework. This allows for a detailed formal
representation of the system’s behavior and its subsequent validation, thus providing feedback for
enhancements in the pre-deployment or pre-production stages. We illustrate our approach through
a Building Management System, using well-known IoT devices running the Contiki OS that com-
municate by diverse IoT protocols (e.g. CoAP, MQTT). The results allow to derive tight bounds for
the energy consumption in various device functionalities, as well as to validate lifetime requirements
through Statistical Model Checking.

1 Introduction
The evolution of the IP-based internet towards the Internet of Things (IoT) has introduced innovations
in applications from various domains, such as the smart grid, the building and home automation, the
health monitoring and has even boosted a new industrial area, the so-called Industry 4.0. IoT leverages
miniature devices that can exchange data autonomously through wireless communication. These devices,
are usually of small size and low cost, and are also supplied with battery power, in order to widen the
applicable deployment possibilities. An important challenge related to the use of battery power is that
the device lifetime depends solely on the resource demands imposed by the IoT application.

The main difficulty in addressing this challenge is the underlying nature of IoT applications, namely
that they are based on web services designed for continuous and long-lived service delivery through
IoT devices with limited lifetime [6]. Thus, researchers have focused on mechanisms and protocols for
low-power wireless communication, as well as on energy-efficient device hardware design [2]. However,
to the best of our knowledge, there is only limited work towards methods and techniques for real-time
monitoring and characterization of the energy consumption in IoT devices [9]. The main reason behind
this is that such methods usually require direct interaction with the device hardware, which in most cases
is not supported by the devices [7]. Moreover, the existing analytical methods to estimate energy con-
sumption in resource-constrained devices [19] use the device manufacturer characteristics, which may
not be always accurate when compared with measurements taken in the system’s operation environment
[18].

To address these limitations of existing methods and techniques for monitoring the energy consump-
tion of IoT devices, Dunkels et al. [7] introduced a software-based solution, which is available for IoT
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applications in the Contiki OS through the powertrace module. Compared to a hardware-oriented ap-
proach, powertrace allows deriving a generic and hardware-agnostic model that can be applied to various
device types, and enables a fine-grained analysis of the energy consumption at the network-level. How-
ever, powertrace can only support energy monitoring for the individual IoT devices, as well as the entire
system. A resulting limitation is that powertrace cannot measure nor estimate the energy consumption
for the device communication with its connected peripherals (e.g. sensors/actuators). A possible solution
to this end should aim towards a proper characterization and assessment of all the parameters and scenar-
ios that are impacting the energy consumption on a system-level, as described in [16]. Specifically, that
work focuses on characterizing and estimating energy evolution over time in Wireless Sensor Networks
(WSN) through distribution fitting techniques. Distribution fitting is a result of energy profiling in dif-
ferent WSN scenarios; the authors also stress that the analysis and correlation of parameters influencing
energy consumption is a fundamental step towards a system design flow.

In this paper, we propose a model-based characterization of energy consumption in IoT systems and
in their constituent devices. This is achieved by the progressive development of faithful models at the
system-level, which incorporate valid energy profiles for the various system operation scenarios. The
models are implemented in the Behavior-Interaction-Priority (BIP) component framework [1] based on
specifications for the functional behavior and energy constraints for the system under design. BIP enables
effective semantics-preserving transformations for the system-level models, as well as the simulation and
validation of IoT systems in every development stage. The approach supports the system’s validation
through Statistical Model Checking (SMC) against the related requirements provided as user input. This
results in valuable feedback to the system designer for enhancements concerning: (i) the IoT device
lifetime and (ii) the communication/computation energy cost in each IoT device, its sensors/actuators as
well as in the overall system.

The approach is illustrated through a Building Management System (BMS) which features several
well-known IoT devices, such as the Zolertia Z1 1, the Sky mote 2, the OpenMote 3 and SimpleLink Sen-
sortag 4. To this respect, we provide detailed profiling and characterization of the energy consumption,
as well as methods to build efficient IoT applications in BMS systems. Concretely, this paper has the
following contributions:
• an energy-aware model that allows providing valid bounds for the energy consumption in different

device functionalities (e.g. data processing/communication)
• a detailed analysis of the parameters that influence energy consumption in IoT systems, as well as

the results from their integration into the energy-aware model
• a validation technique for energy-consumption and battery lifetime requirements of an application

design through SMC

The analysis of parameters that affect energy consumption through our approach allows for obtain-
ing trustworthy design decisions concerning the scenarios that have a predominant effect in the energy
efficiency of the IoT devices and the overall system.

The rest of the paper is organized as follows. Section 2 provides a brief introduction in the Contiki
IoT ecosystem and the techniques for software-based energy management through the powertrace, as
well as in the BIP framework, which is used for rigorous system design. Section 3 illustrates the proposed
method for energy-consumption management in IoT systems, which is later used in Section 4 to validate

1http://zolertia.com/sites/default/files/ Zolertia-Z1-Datasheet.pdf
2https://wirelesssensornetworks.weebly.com/blog/tmote-sky
3http://openmote.com/
4http://www.ti.com/ww/en/wireless connectivity/sensortag/
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IoT system requirements and provide valid bounds for the lifetime of IoT devices. Finally, Section 5
provides conclusions and perspectives for future work.

2 Background
2.1 Contiki powertrace
Powertrace [7] is a Contiki library that allows the annotation of Contiki programs with primitives, for
monitoring the energy flow in IoT devices. It identifies four individual operating modes that contribute
to a device’s energy consumption:
• Low Power (LPM): the device is usually idle waiting for an event
• CPU: time duration that the microcontroller is used for calculations/data processing
• Radio transmission (Tx): indicating data transmission
• Radio reception (Rx): indicating data reception
The energy consumption varies according to the time that a device remains in each of the above

modes. In order to measure this time, the library provides code primitives that can be used for every
IoT device type. A data logger is used to store the data, which supports energy analytics. Characteristic
examples of such analytics are the duty cycle or the device lifetime. The former refers to the percentage
of time that a device remains in one operating mode, whereas the latter refers to the total time duration
that a device operates autonomously. The period that powertrace uses to measure and log the data can be
configured by the user and has an impact on the performance and accuracy of the mechanism. Finally,
the energy calculation in powertrace also supports hardware-specific parameters, such as the real-time
timer (RTIMER 5) that is used to measure the hardware clock cycles of the device per second.

2.2 The BIP component framework
BIP (Behavior-Interaction-Priority) [1] is a highly expressive, component-based framework with rigor-
ous semantic basis. It allows the construction of complex, hierarchically structured models from atomic
components, which are characterized by their behavior and interfaces. Such components are transition
systems enriched with data. Transitions are used to move from a source to a destination location. Each
time a transition is taken, component data (variables) may be assigned with new values, which are com-
puted by user-defined functions (in C/C++). Atomic components are composed by layered application
of interactions and priorities. Interactions express synchronization constraints and define the transfer of
data between the interacting components. Priorities are used to filter amongst possible interactions and
to steer system evolution so as to meet performance requirements, e.g. to express scheduling policies.
A set of atomic components can be composed into a generic compound component by the successive
application of connectors and priorities.

BIP is supported by a rich toolset including tools that are used to check stochastic systems, through
the Statistical Model Checking (SMC) technique. SMC was proposed as a means to cope with the
scalability issues in numerical methods for the analysis of stochastic systems. Consider a system model
M and a set of requirements, where each requirement can be formalized by a stochastic temporal property
φ written in the Probabilistic Bounded Linear Temporal Logic (PBLTL) [10]. SMC applies a series of
simulation-based analyses to decide PBLTL properties of the following two types:

1. Is the probability PrM(φ) for M to satisfy φ greater or equal to a threshold θ? Existing approaches
to answer this question are based on hypothesis testing [13]. When p=PrM(φ), to decide if p≥ θ ,
we can test H: p ≥ θ against K: p < θ . Such a solution does not guarantee a correct result but
it allows to bound the error probability. The strength of a test is determined by the parameters

5http://anrg.usc.edu/contiki/index.php/Timers#Step 5 - Introduction to rtimer
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(α,β ), such that the probability of accepting K (resp. H) when H (resp. K) holds is less than or
equal to α (resp. β ). However, it is not possible for the two hypotheses to hold simultaneously and
therefore the ideal performance of a test is not guaranteed. A solution to this problem is to relax
the test by working with an indifference region (p1, p0) with p0 ≥ p1 (p0− p1 is the size of the
region). In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1 instead of H against
K. If the value of p is between p1 and p0 (the indifference region), then we say that the probability
is sufficiently close to θ , so that we are indifferent with respect to which of the two hypotheses K
or H is accepted.

2. What is the probability for M to satisfy φ? This analysis computes the value of PrM(φ) that
depends on the existence of a counterexample to ¬φ , for the threshold θ . This computation is of
polynomial complexity and, depending on the model M and the property φ , it may or may not
terminate within a finite number of steps. In [10], a procedure based on the Chernoff-Hoeffding
bound [11] was proposed, to compute a value for p′, such that |p′− p|< δ with confidence 1−α ,
where δ denotes the precision.

The SMC of BIP models is automated by the SMC-BIP tool [17] that supports both types of PBLTL
properties. The tool accepts as inputs the PBLTL property, a model in BIP and a couple of confidence
parameters. The tool provides a verdict in the form of the probability for the property to hold true. Since
the approach is designed for the validation of bounded LTL properties, it is guaranteed to terminate in
finite time.

3 Rigorous design of energy-efficient IoT systems
The overall flow of our method is presented in Figure 1. The process depends on an XML parameter
configuration input file that extends the WPAN network configuration given in [14] as well as on the ap-
plication design expressed in a Domain Specific Language (DSL) [15]. The third input is the requirement
specification, which contains user requirements regarding energy constraints for the IoT application. The
method proceeds throughout the steps described below:

1. Translation for the generation of the Contiki Simulation Configuration: This step leverages
the XML-based configuration with parameters that affect the energy consumption in an IoT appli-
cation, as they are presented in Section 3.1. The configuration is systematically translated in order
to produce all the necessary configuration files for the deployment of a Contiki IoT application as
well as the Contiki simulation configuration (CSC) file, with the system architecture that is simu-
lated within the native Contiki simulation environment (Cooja [8]). The DSL in [15] is also used
to provide all the necessary application-specific parameters during the translation stage.

2. Transformation for the System Model: The actions comprising this step are two-fold. First, the
DSL application description of the previous step is used to form an Application Model, which is
later enhanced with the OS/kernel model, that is formed from the BIP IoT component library [15].
The combination of the two models is performed through the addition of the application mapping
in the DSL [15], that specifies the deployment of application modules onto the systems nodes.

3. Code generation: The CSC file from step 1 along with the DSL application description are used
to generate deployable code. The code is annotated with energy characteristics to allow the cal-
culation of the energy consumed in each operating mode of powertrace. The code is accordingly
simulated in Cooja with the addition of the powertrace library. The simulation result is used for
the energy characterization in the next step.

4. Energy characterization: The analysis of the energy-oriented behavior and characteristics leads
to the construction of an energy model representing the operating modes for each device, as well as
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Figure 1: The proposed design method

the total amount of energy in the system. This model includes all the influential hardware/software
energy constraints, derived from the simulation in the previous step. Those constraints are added
in the energy model in the form of probabilistic distributions using a distribution fitting technique
similar to the one presented in [14].

5. Calibration for the construction of an energy-aware System Model: This step concerns with
the addition of parameters for the runtime characterization of the IoT application with respect to
the BIP System Model as well as the generation of glueing code for the combination of the BIP
System Model with the energy model obtained from the previous steps. The combination leads to
the construction of the Calibrated BIP System Model, which allows to analyze energy aspects and
to evaluate energy requirements.

6. Requirement formalization: This step concerns with the process of expressing a requirement
with temporal logic properties. The properties are derived from the input requirement specification,
where they are expressed in natural language. The resulting properties of this step are used as input
in step 7.

7. Statistical model checking (SMC): In order to verify the model against the requirements we use
SMC. The resulting verification verdict allows to find tight bounds for the energy consumed in the
IoT application as well as in the individual devices.

3.1 Energy-aware parameter configuration
As a first step of the proposed method, the XML-based energy-aware parameter configuration is trans-
lated into the Contiki application configuration files. To better understand the importance of the selected
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parameters for the model we hereby introduce the three categories of parameters that affect the over-
all energy consumption, namely (i) the application layer, (ii) the MAC layer and (ii) the physical layer
parameters. Each category introduces parameters that depend on each other, but there are no inter-
dependencies between the different categories. For instance, the choice of the IoT application protocol
is independent from the choice of the duty-cycling mechanisms in the MAC layer.
MAC layer: The Contiki network stack uses a Radio Duty Cycling (RDC) mechanism, allowing a
device radio to remain active and listen only for certain periods in time. The remaining time it moves in
the LPM mode, where it cannot receive any transmitted packet. This mechanism reduces the consumed
energy, as the radio remains in listening mode for significantly less time. RDC mechanisms are divided
into 1) synchronous and 2) asynchronous, according to the technique that is used for awakening the IoT
device. The former allow to maintain a Time-Division Multiple Access (TDMA) mechanism period,
with which the device wakes up only in the beginning of the period to receive any incoming packets for
a fixed time interval and afterwards switches to LPM mode. The latter allow a device to receive only
the packets destined for it. This is possible through a Sender-initiated mode, where the sender transmits
frequently a preamble packet, that is acknowledged only when the Receiver is awake, or a Receiver-
initiated, where the Receiver transmits broadcast Probe Packet to all network nodes to indicate that it is
awake. Contiki implements various mechanisms for RDC that are based on the two categories and have
different characteristics. These characteristics are considered as the main parameters that influence the
energy consumption in RDC and are:

1. RDC protocol: This parameter refers to the protocol that is used on top of the MAC protocol in
the Contiki network stack, to implement the duty cycling for the IoT devices. The selection of
this protocol affects significantly the overall consumed energy, as it allows the device to switch
between the operating modes with different mechanisms. Therefore, the choice is also present as
one of the parameters of the XML-based energy configuration. In Contiki, there are four allowed
values for this choice, namely the ContikiMAC, the X-MAC, the Low Power Probing (LPP) [8] as
well as the no use of RDC protocol named as nullRDC. ContikiMAC is a protocol based on the
principles behind low-power listening but with better power efficiency. X-MAC is based on the
original X-MAC protocol [5], but has been enhanced to reduce power consumption and maintain
good network conditions. Contiki’s LPP is based on asynchronous receiver-initiated transmission
scheme protocol, where the devices wake up and send a probe to inform other devices on their
receiving availability.

2. RDC frequency: This parameter specifies the frequency with which the IoT devices wake-up to
check the channel for any packets whose transmission is pending through their RDC mechanism.
Channel checking is accomplished by transmitting probe packets to verify any existing activity. In
the presence of channel activity they remain in the Rx operating mode to receive any transmitted
packets from the other network nodes, otherwise they switch to the LPM mode for another duty-
cycling period. By remaining longer in Rx mode an IoT device has increased energy consumption,
therefore we consider the RDC frequency as a significant parameter in the energy parameter XML
configuration.

3. Packet retransmissions: IoT applications are often prone to transmission errors in the MAC layer
that are leading to successive loss of packets, which are usually caused by extensive loss of band-
width. For this reason wireless MAC-layer IoT protocols usually include a mechanism for the
retransmission of non-acknowledged packets in the MAC layer. This mechanism increases the IoT
system reliability, but also keeps the IoT device in the Tx operating mode for longer time durations.
Therefore, the overall energy consumed by an IoT device is increased, making this parameter part
of the energy parameter configuration in our design method.
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Application layer: A Contiki IoT application can use a variety of protocols for data communication.
Each protocol offers different mechanisms and is characterized by different energy consumption. It is
also possible to introduce a different size for the packets to be transmitted. For this reason we define the
application layer parameters as follows:

4. Application protocol: This parameter refers to the protocol that is chosen for data exchange. This
choice depends strongly on the application requirements i.e. safety critical applications require
reliable data transfer through MQTT communication, whereas sensor applications require energy
efficiency and faster communications, therefore they rather rely on CoAP communication. Never-
theless, since the protocols offer different mechanisms, this choice has a significant impact on the
lifetime of an IoT device.

5. Header size: IoT applications usually include compression algorithms to reduce the packet header,
in order to reduce the overall size of the exchanged message. Such algorithms ensure the minimal
radio usage period for data transmission, therefore minimizing the cumulative energy of consump-
tion. However, in IoT devices this is a trade-off since for the computation time of compression/de-
compression of the packets, the IoT device remains in the CPU operating mode. For these reasons,
the header size is considered as a parameter in our input configuration file.

Communication medium: IoT applications usually contain wireless devices that communicate over a
communication medium that is prone to errors, such as collisions that impact the energy consumption.
This category includes the following parameters:

6. Radio interference: This parameter is related to the presence of interference in the communica-
tion medium as a form of additive noise from simultaneous transmissions with the same radio
frequency from proximity networks. Interference leads to increased packet collisions that can im-
pact the energy consumption in the nodes, as they remain in the Tx operating mode for longer
time durations. This parameter is added to the energy parameter configuration by introducing and
properly configuring the disturber mote type as a part of the Contiki IoT application [3].

When the previous analysis is expanded to the entire IoT system architecture we ought to find ad-
ditional parameters impacting the energy consumption. Such a characteristic parameter is the routing
protocol that is used along with IPv4/IPv6 in the networking layer of the Contiki protocol stack to ensure
the connection of Wide Area Network (WAN) IoT networks (e.g. meshed or multi-hop). In this scenario
IoT devices have to be configured as a border router [12] to connect distant networks, which requires the
extensive use of communication bandwidth. The use of the Routing Protocol for Low power and Lossy
Networks (RPL) routing mechanisms increases computation/communication time durations in the IoT
devices as well as in the overall system.

3.2 Energy model
As a part of step 4 of the design flow, an energy model is derived reflecting the true energy consumption
in the BIP System Model. The main equations used to compute energy constraints in the Contiki IoT
environment are as follows. Initially, the duty cycle (D) as a device ratio is computed by:

Dy =
∑

Ny
i=1 Iy ∗Vy ∗∆tyi

Etotal
(1)

where y indicates the operating mode for the IoT device and Ny the relative number of occurrences that
the device visits the respective operating mode y, given that it cannot be in two modes within the same
time interval. Based on the duty cycle of a device in a given operating mode, we can also derive the
overall energy consumption (in Joule) over every device operating mode:
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Etotal =
NLPM

∑
∀i∈DLPM

ILPM ∗VLPM ∗∆tLPMi +
NT x

∑
∀ j∈DT x

IT x ∗VT x ∗∆tT x j +
NRx

∑
∀k∈DRx

IRx ∗VRx ∗∆tRxk +
NCPU

∑
∀z∈DCPU

ICPU ∗VCPU ∗∆tCPU z +EP

(2)
where in every tuple {Iy,V y,∆ty} y indicates the operating mode as in Equation 1 and I,V, and ∆ indicate
respectively the current (in Ampere), voltage (in Volts) and time intervals in which the device remains
in each operating mode. The sum is over the number of occurrences NLPM,NT x,NRx,NCPU of the device
visiting the respective operating mode y and Dy indicates the duty cycle for each mode. EP indicates the
energy consumed by the device peripherals (in Joule). Finally, the device lifetime (lf ) is computed by:

l f =
Cbatt ∗V cc

Etotal
(3)

where Cbatt indicates the overall capacity of the battery for autonomous operation (in Ampere hours),
Vcc the operating voltage (in Volts) and Etotal the total amount of energy.

In Figure 2 we illustrate a fragment of the BIP energy model that is derived in Step 4 of our method.
We also present in Listing 1 the code with associated actions as in the model to facilitate its description.

1 #include "contiki.h"

2 #include "powertrace.h"

3 #include <stdio.h>

4 PROCESS(power , "powertrace example");

5 AUTOSTART_PROCESSES (&power);

6 PROCESS_THREAD(power , ev, data)

7 {

8 static struct etimer et;

9 PROCESS_BEGIN ();

10 /* Start powertracing */

11 int RTIMER = 1; // 1 second reporting cycle

12 powertrace_start(CLOCK_SECOND * RTIMER );

13 etimer_set (&et , CLOCK_SECOND*t);

14 while (1) {

15 ....

16 if(etimer_expired (&et)) {

17 coap_init_message(request , COAP_TYPE_CON ,

18 COAP_POST , 0);

19 coap_set_payload(request , (uint8_t *)msg ,

20 sizeof(msg) - 1);

21 ...

22 COAP_BLOCKING_REQUEST (& server_ipaddr ,

23 REMOTE_PORT , request , client_chunk_handler );

24 }

25 }

26 PROCESS_END ();

Listing 1: Contiki powertrace client
Figure 2: BIP energy model

By using the powertrace start command the radio is activated and it immediately switches to the
LPM operating mode. This is illustrated in Figure 2 through the activate transition. In lines 17-18 the
CoAP message is initiated, which triggers the sndPacket transition in the model. Before a packet is trans-
mitted the device has to initialize its header and payload as its shown in lines 17-20. This is represented
with the process transition in the model, which switches it to the CPU state (i.e. indicating the CPU
processing mode). When processing is finished the packet is transmitted through the sndPacket transi-
tion. When no further transmissions or receptions (through the transition recv) of packets take place,
the model will return to the LPM state for another duty-cycle through the initDutyCycle transition. The
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durations considered in every state or transition of the model are selected from probabilistic distribu-
tions that are gathered from profiling the generated code that is simulated in Cooja [14]. The gathered
distributions correspond to each one of the powertrace operating modes. Finally, the model contains 3
exported transitions (i.e. sndPacket, recv, tick) to interact with the OS/Kernel components of the BIP
system model [15] that is constructed in Step 2 of our method.

4 Case-study: Energy-aware building management system
In this section we present the case-study for validating our method in the context of a Building Man-
agement System (BMS). The application aims at automating the operation of the basic structures of a
building installation, as well as at the remote control of buildings through a WAN network that consists
of multiple WPAN networks, one for each building floor. Such an architectural setup is employed by
new-generation building facilities. In particular, the case-study describes a company building, consisting
of rooms to which workers have access during working-hours (8.00 till 18.00).

Figure 3: Node topology in the building management system

Figure 3 presents the heterogeneous IoT system architecture, where each floor has two unique IoT
devices in the roles of a floor controller and floor server. The architectural heterogeneity allows to
analyze energy consumption in a variety of IoT devices, such as Zolertia Z1 (level 1), Sky mote (level 2),
OpenMote (level 3) and SimpleLink Sensortag (level 4). Each set of floor devices communicates its state
to the lower-level and the lowest level (floor 1 in Figure 3) forwards all the floor states to the Building
Management device located in level 1. This device forms the central system supervisor. It is notified by
all room controllers for their current status and can be accessed or managed remotely as part of the WAN
network. The state of each floor is determined by a set of sensor/actuator resources present in the floor
server devices. In this case-study, we used the common resources amongst the four considered device
types i.e. temperature sensor, humidity sensor, motion sensor, light sensor/actuator, alarm actuator, light
actuator, thermostat actuator.

Concerning the system functionality, each floor server is a node in which every sensor/actuator is
represented as a REST endpoint through which the floor controller can at any time know the current state
of the room. For example, for the temperature sensor the floor controller monitors the temperature in the
room and in case it exceeds the user-defined upper or lower limits, then it switches on the thermostat.
Additionally, the building also employs an energy-saving mechanism, in order to automatically diminish
the thermostat limits during non-working hours. Moreover, the floor controller is also subscribed to the
motion sensor, as well as to the light sensor/actuator, in order to detect motion and open the lights if
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the ambient light in the environment is not sufficient. The corresponding lights that open as a result of
motion detection are linked to the location, where motion was detected.

4.1 Application of the proposed method
We focus now on the individual steps of the design flow in Figure 1 for the outlined BMS application.
Step 1: Translation of the energy parameter configuration
The parameters in Section 3.1 that influence the energy consumption obtain their actual values based
on the application requirements. For the BMS application, we were based on the default values taken
from the kernel libraries of the Contiki OS (Table 1). Moreover, to better demonstrate the impact of the
parameters, we added as a part of our simulations a variation range. The following table introduces this
variation range along with the default values in the Contiki OS.

Energy model parameter Default value Variation range
RDC protocol X-MAC [Contiki-MAC, X-MAC, LPP, nullRDC]

RDC frequency 8 Hz [2-32] Hz (even number)
Packet retransmissions 4 [0-5] ∈ Z

Service protocol CoAP [CoAP, MQTT, HTTP]
Header size 48 bytes [32-64] bytes (even number)
Interference 0 [0-1] ∈ R

Table 1: Energy parameters of the XML configuration
Accordingly, in steps 2 and 3 we used the described XML configuration along with the DSL to generate
the Contiki application as well as the BIP System Model.
Step 4: Energy characterization
Due to the device heterogeneity for each floor in the BMS application, we could only apply the distri-
bution fitting technique to energy data coming from the same device type. We then fitted the data into
Poisson distributions for Tx and CPU modes, whereas the energy for Rx and LPM mode followed a
normal distribution during the course of a day. The resulting distributions of this step are used in Step 5
to calibrate the model of Figure 2.
Step 6: Formalization of system requirements
We identified three requirements for the BMS system, from which only the first one concerns the IoT de-
vice lifetime, whereas the remaining two concern the IoT device duty-cycle in different operating modes.
These requirements are:
Requirement 1. Device lifetime should be at least 1 week.
Requirement 2. The duty-cycle in the LPM mode should remain higher than 90% during working hours.
Requirement 3. The duty-cycle in the Rx mode should not exceed 20% during working hours.

4.2 Experiments
In this section we demonstrate the experiments for evaluating the aforementioned requirements. The
current and voltage values for each operating mode that were used for the calculation of the total energy,
duty cycle and device lifetime from the equations of Section 3.2 were obtained from the IoT devices’
datasheet.

We use the parameters of Section 3.1 to demonstrate the impact of a certain parameter to the overall
energy consumed in a device. To this end, we focused on a certain category parameter and experimented
with all variations of the other parameters in the same category, while the parameters in different cate-
gories were set in their default values (Table 1). This is due to the independence between the categories.

The system requirements were validated through the continuous simulation of the BIP system model
for a working week, where we used SMC to measure the probability for satisfying the requirements of
Section 4.1.
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Requirement 1. We evaluated the property φ1 = l f ≥ 168, where 168 indicates the sum of hours during
the week. For this experiment we used two scenarios the first being with the default values of Table
1 and the second with different sets of the parameters of the same table. For the first scenario we
found that P(φ1) = 0.9, whereas for the second scenario we have conducted several sets of experiments.
These experiments allowed us to demonstrate the contribution of the energy parameters to the device
lifetime (Figure 4). The greatest lifetime impact is observed in experiments involving the RDC protocol
parameter as the difference between maximum and minimum battery autonomy is 130 hours, whereas
with radio interference the difference is 148. On the other hand, we also observe that the variation
in the retransmissions parameter has no impact on the system, as the WAN network of our case-study
is formed by several smaller WPAN networks with a small number of IoT devices. Furthermore, this
Figure allows the system designer to know the values to be used for the parameters of Table 1 to satisfy
this requirement.

Figure 4: Device lifetime for different variations of energy parameters

Requirement 2. We verified the property φ2 = DLPM ≥ 90%. The property is significantly influenced
by the RDC protocol parameter. In particular, it holds for the LPP RDC protocol (P(φ2) = 1) as it is
illustrated by Figure 5, which focuses on the duty cycle of each operating mode. In the same Figure,
since the energy in certain modes (i.e LPM) during our experiments was significantly higher than in
all the remaining operating modes we chose to present our results in logarithmic scale. The reasoning
behind the energy saved with LPP in LPM is that the sum of packets is exchanged during small and
continuous time intervals, while in all the remaining time intervals the device switches to a deep sleep
mode. Concerning the other RDC protocols for ContikiMAC and XMAC, we found P(φ2) = 0.5 and
P(φ2) = 0.7 respectively. The difference between the two RDC protocols is explained by the packet
transmission in ContikiMAC rather than a pulse as in X-MAC, in order to activate the wake-up signal.
Finally, for the nullRDC protocol P(φ2) = 0 as the radio remains in Rx for long time intervals.
Requirement 3. We verified the property φ3 = DRx ≤ 20%. The property holds when the chosen RDC
protocol is LPP (Figure 5). However, with the two other protocols, the observed probability was P(φ3) =
0.8 for XMAC, P(φ3) = 0.6 for ContikiMAC and P(φ3) = 0 for the nullRDC. This is due to the difference
in awakening frequency of the device to listen to incoming packets, especially during working hours
when the data exchange is intense (Figure 5).



12 Model-based design of energy-efficient applications for IoT systems

Figure 5: Duty cycle of the Zolertia floor controller during a working day (in logarithmic scale)

5 Conclusion
We presented a novel method for optimizing the energy configuration in IoT applications, as well as in
the individual IoT devices. The method is based on the principles of rigorous system design by using the
BIP component framework. Currently, the provided support concerns with the design of REST service-
based applications which are deployed on nodes running the Contiki OS. The method takes as input
the application design description in DSL and an XML-based set of energy parameters and generates a
system model in BIP for validating requirements related to energy characteristics. The system model
is calibrated with energy constraints that are obtained by the simulation of the code generated from the
application description. The calibrated model is afterwards used to validate the requirements through
Statistical Model Checking (SMC).

As a proof of concept, the described method has been applied to a building management system.
The system consists of several subsystems deployed in multiple floors of a smart building facility using
several well-known IoT devices. We have verified the energy-related requirements concerning the device
lifetime, as well as the duty-cycle of the devices and the overall system. The results allow us to optimize
the energy consumption on the system and increase the device lifetime.

As future work, it is worth to consider the aspect of remote control in the building, as well as its
impact on the overall energy consumption. This can be accomplished through the presence of border
routers and RPL routing mechanisms in the IoT application. In this direction, an important architectural
characteristic of IoT systems is fog and cloud computing [4], where a significant part of the computation
is no longer handled by the resource-constrained IoT devices. Hence, the overall energy consumption in
the system is reduced. Additionally, the Building Management Controller that was presented in the case-
study can also perform control actions based on the data it gathers, such as shutting down the heating
and lighting system if there is no motion for certain hours during the day.
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