
Model Checking for Generation
of Test Suites in Software Unit Testing

Vasilios Almaliotis Panagiotis Katsaros Konstantinos Mokos
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{valmalio,katsaros}@csd.auth.gr, mokosko@otenet.gr

Abstract—Model checking is a technique for exhaustively
searching the model’s state space for possible errors. Testing
is a common method for enhancing the quality of a software
product by checking for errors in program executions sampled
according to some criterion called coverage criterion. Testing is a
costly process especially if it is not supported by an appropriate
method (and tool) for generating test suites, i.e. sets of test cases
that fulfil a specific coverage criterion. This work introduces a
method based on model checking, that supports generation of
test cases for coverage based unit testing. As a proof of concept,
we provide results obtained from the developed prototype tool
support. Our method relies on automatically deriving from the
source code a SPIN model with injected breakpoints. Test cases
are obtained as counterexamples of violated Linear Temporal
Logic (LTL) formulae that are automatically produced based on
the selected coverage criterion.

Keywords—Software testing, Model Checking, Unit Testing,
Coverage Criteria.

I. INTRODUCTION

Software economics reports and related bibliography[1]
mention that more than 50 percent of the total cost of a soft-
ware project is expended in testing . According to [2], software
testing can show the presence of bugs, but never their absence.
On the other hand, model checking is an effective technique
applied to a model of the system that is exhaustively checked
in order to detect all existing errors. Although software testing
and model checking have been traditionally dealt as separate
verification and validation activities a few recent works [3, 4,
5] invest on the potential of model checking towards reducing
the cost of software testing.

These approaches are based on the capability of model
checking algorithms to discover a model execution trace
for system properties that are violated. Every such trace is
known as counterexample and in fact constitutes an execution
sample that can be used as a test case. The potential of
model checking to be used in the generation of test cases is
hampered by its limited applicability in the analysis of real-
scale software systems, due to the well-known problem of state
space explosion.

The work described in this article focuses on the use of
model checking in the testing of the smallest units of software
design that are commonly referred as components or modules.
The generated test cases form the test suites for unit testing,
an activity that aims to uncover errors within the boundary
and the constrained scope of the module.

In the first step of the proposed method the source program
is parsed and abstracted into what we call a model program.
Model programs are expressed in PROMELA, the model input
language of the SPIN model checker [6]. Basic blocks of
the model program are differentiated by the injection of a
breakpoint, which is used as target in the path selection phase.
In this second phase breakpoint targets are selected based
on the chosen coverage criterion and for every selected path
an appropriate linear temporal logic formula is derived. The
counterexamples obtained from the model checking of the
generated LTL formulae form the test suite for the chosen
coverage criterion. The prototype tool support that is currently
available implements the multiple condition coverage criterion
[1], which is considered as the most comprehensive control
flow coverage alternative. It is relatively straightforward to im-
plement a less costly coverage criterion such as edge/condition
coverage but in the current prototype this requires intervention
in the source code of the second level of processing.

In section II we review related work and at the same time we
highlight the differences of our proposal. Section III sets the
definitions for the representation of the model program and
section IV presents the automated verification of the model
program for the generation of the test suite. Section V provides
the results obtained for an example Java program and the paper
concludes with a summary of the presented method, comments
on its potentialities and future research prospects.

II. RELATED WORK

White box testing based on test cases generated by model
checking has been previously addressed in [7, 8, 9, 10, 11].
The common denominator of the aforementioned techniques
is the development of an appropriate set of LTL formulae that
when applied to the model program produces the requested set
of test cases. The model program represents the control flow of
the unit under test and although its existence is a prerequisite,
little has been done for how to automatically derive it from
the source code. Some of the mentioned works try to reduce
the cost for the generation of test cases by employing heuristic
algorithms [10] in order to minimize the set of LTL formulae
in the test suite.

In this article we focus on the automated extraction of the
model program from the source, in an attempt to further reduce
the cost for the generation of test cases. The created model

1 i n t method (i n t a , i n t b , i n t c) {
2 i n t d = 0 ;
3 i f (a <10) {
4 i f (b>=20 && a <5) d =50;
5 e l s e d =0;
6 }
7 e l s e {
8 i f (b<50) d =30;
9 e l s e d =10;

10 }
11
12 i f (c ==3) d =40;
13
14 re turn d ;
15 }

vs{start}

v1{da, db, dc, dd}

v2{ua}

v3{ub, ua} v4 {ub}

v5{dd} v6

{dd}

v7

{dd}

v8 {dd}

v9{uc}

v10 {dd}

vf{final}

Fig. 1. Source code and the corresponding flow graph representation of a software unit

program is constructed exclusively for test case generation,
which means that additional information is embedded and the
program undergoes suitable transformations, in order to aid
the specific model checking process that yields the expected
test cases.

Also, in the works reported in related bibliography the LTL
formulae used in the generation of the test suite are instances
of property patterns whose syntax is relatively straightforward
for a human being, but their production is not easily auto-
mated. For example, in [11] LTL formulae contain the values
used before and after the execution of a selected transition, as
well as the guard that enables its execution. In general it is
difficult to devise an algorithmic approach that will collect this
information from the model program. Our approach eliminates
the need to specify the aforementioned information within the
used LTL formulae by abstracting it at the level of the model
program. In this way, the needed LTL formulae are kept as
simple as possible and it is thus possible to support end-to-
end automation from the source program to the generation of
the expected test cases.

III. PROBLEM DEFINITION

This section introduces the adopted representation of the
software unit’s source code as a model program and discusses
the use of LTL for the generation of the test suite correspond-
ing to a coverage criterion.

A. Model Program

The system under test (SUT) is represented by a Kripke
structure T = (S, I,A, δ), where S is a finite set of program
states, I ⊂ S is a non-empty set of initial states, A is a labeling
function such that A : S → 2AP with AP the set of all atomic
propositions and δ ⊆ S × S is a total transition relation.

A flow graph G = (V, vs, vf , A) is a directed graph, where
V is the finite set of total states, vs ∈ V is the initial vertex,

vf ∈ V is the final vertex and A ⊆ V × V is the finite
set of arcs, that connect the states. Each vertex represents a
statement and arcs determines the flow between the statements.
The point of interest in each vertex, is the definition and use
of variables that take part in program. For a variable a, we
denote its definition as da and its use as ua.

The Kripke structure T represents the SUT if S = V , I =
{vs} and δ = A ∪ {(vf , vf)}. By expressing the SUT with a
Kripke structure, which is a widely used system representation
in model checking, we set a basis to automatically obtain the
program paths needed for the coverage criterion of preference.
Each program path is a test case and the set of test cases
obtained for a given coverage criterion forms a test suite.

B. Linear Temporal Logic

The Kripke structure T reflects all possible program behav-
iors and it is used for model checking LTL formulae defined
over the set AP of atomic propositions. LTL makes it possible
to express patterns of succession of events, without having to
explicitly refer to the time that events occur. A syntactically
correct LTL formula is produced by the use of the following
grammar rules: ϕ ::= true | α | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2

with α representing atomic propositions over the set of pro-
gram’s variables, O for the temporal operator next and U for
until.

Two other operators derived from those shown in the
grammar rules are the operator ♦ (eventually) and the operator
� (always).

Related works on the generation of test cases use LTL
formulae to search for paths that contain a specific sub- path or
a given state. These approaches can be used for developing test
suites that provide coverage of the branches of the source code
and the coverage criteria used are the most common criteria
in the practice of software testing [11]. The obtained path
is given by predicates defined over the program’s variables as

precondition and postcondition, as well as by the guard clauses
of the intermediate transitions.

Model checking has been also used for data flow testing
[10]. In this case an appropriate LTL formula searches for
program paths between specific operations, like the definition
and the use of one or more named variables. For the control
flow graph of Figure 1 branch coverage will generate test cases
that will cover vertices {v3, v4, v5, v6, v7, v8, v10} and dataflow
coverage would search for example all possible paths between
definition and usage of program variable d. However, as stated
in [9] control flow statements affect dataflow coverage and this
dependence can be encoded in LTL formulae.

IV. MODEL CHECKING FOR COVERAGE BASED UNIT
TESTING

The proposed method for coverage based unit testing relies
on the model program representation of the previous section.
The control flow branches and the states of the model program
suffice for the expression of LTL formulae that detect program
paths for a given coverage criterion, but the form of an
appropriate LTL formula is inevitably complicated. Instead
of this, the implemented approach is not based solely on the
derivation of an appropriate formula, but enhances the model
program representation with additional information for the
construction of the alternative program paths. A direct impact
is that the formulae used for the detection of program paths are
simplified, i.e. part of the work required for the development
of appropriate LTL formulae is transferred to the construction
of the model program. We believe that this approach opens
prospects for automating the development of LTL, formulae
thus raising the degree of automation in the construction of a
test suite.

A. Translation of Control Flow Statements

Program execution flow is affected by control flow state-
ments like if-then, if-then-else, switch and condition controlled
loops. In all cases, program paths are determined by the
decisions made as a consequence of conditional expressions
with one or more predicates combined with Boolean operators.
The fundamental idea behind branch coverage is to create test
cases that will cover all edges of the program’s control flow
graph. Multiple condition coverage is another criterion that
requires a test case for each different combination of decisions
in a conditional expression.

Every predicate that cannot be broken into smaller predi-
cates is called a clause. The mutations of a given clause, say ci,
are in the set Mi = {ci,¬ci} and consequently each decision
made for a conditional expression is given as an l-ary boolean
function d : M l

i → B, where B = {0, 1} and l is the number
of clauses in the expression. We define the function f that for
each d(ml

i), where ml
i ∈ M l

i , returns the basic block b for
the edge corresponding the decision. Thus, for a conditional
statement with an else part, say e, we have

(f(d(ml
i)) = b) ∧ (f(¬d(ml

i)) = e).

root

b1 b2

b4b3 b6b5

Fig. 2. Breakpoint hierarchy tree of program in Figure 1

The described interpretation leads to different program paths
that a model checking algorithm can distinguish if there is
a way to identify the different states reached by the model
program. To support this we insert additional information
during the source to model program translation. This infor-
mation is used as an analogue to the breakpoint and it is
utilized in path selection. For an if-then-else statement the
proposed abstraction results in the following model program
representation

(f(d(ml
i)) = b ∧ breakpointz,j,n)∧

(f(¬d(ml
i)) = e ∧ breakpointz,j,n+1)

for all ml
i ∈M l

i and for the nth decision of the zth control
flow statement found in the basic block of the jth level of
nesting. The model program is enhanced with one breakpoint
namely breakpoints,n for every entry point and a separate
breakpoint, say breakpointf,n for each return statement of
the unit’s code. From now on, SP and EP will respectively
represent the set of all entry points and the set of all exit
points.

In a post-processing phase, the breakpoints are organized
into tree structures, one for each non nested control flow
statement, that are used for optimizing the number of test
cases needed for the coverage criterion at hand. Leafs of the
aforementioned trees cite the breakpoints that do not dominate
any other breakpoint of the hierarchy. In essence, as it is
shown in Figure 2, breakpoints are organized by their level
of nesting, also called depth. Each tree includes all possible
data flows between breakpoints in the corresponding control
flow statement with possibly multiple nesting levels.

B. Patterns of LTL formulae for the generation of test cases

The enhanced model program provides a basis for finding
program paths (i.e. test cases) returned as counterexamples
of model checking runs. Appropriate formulae that describe
program paths comply with a simple property pattern and
we call them witnesses. Due to their simplicity they can be
produced automatically, if we assume access to the model
program and the trees of breakpoints.

bs

b121 b122 b221 b222

b111 b211

bf

bs

b121 b122 b221 b222

b111 b211

bf

Fig. 3. Reduction of necessary breakpoints of program in figure 1

For utilizing the capability of model checking algorithms to
detect a counterexample, every witness is turned into a trap
property, i.e. if p is a witness we obtain a test case by model
checking ¬p.

The pattern of LTL witnesses is
• ltl ::= ♦ (breakpoints ∧ ♦ (subltl))

with breakpoints ∈ SP
• subltl ::= breakpointi ∧ ♦ (subltl) | breakpointf

with breakpointf ∈ EP
All paths to be covered are represented by LTL trap proper-

ties that are produced automatically. The number of needed
LTL properties depends on the coverage criterion at hand.
Multiple condition coverage requires comparatively higher
number of test cases form other control coverage alternatives.
Finally, we note the requirement that at least one test case
should be included in the test suite for all entry points and all
exit points.

C. Deriving Combinations of breakpoints automatically

Given the model, the pattern based on which LTL formulae
can be constructed and the set of breakpoints organized in a
tree structure, it is possible to combine these breakpoints under
the restrictions of the LTL pattern, in order to automatically
produce LTL formulae that will generate the test cases.

The simplest method to combine the breakpoints, is a naive
combination without discriminating them. This method, has
as result, the production of a large number of formulas. Also,
some of which will be invalid, because of the wrong execution
order of the combined breakpoints. Another problem is the
lack of information for the path lengths.

A more intelligent method, utilizes information available in
the model, in order to minimize the breakpoint combinations.
Based on this information, it is possible to derive an order for
the breakpoints involved in the LTL formulae, since code is
executed sequentially. Ley us assume that apart from the sets
SP and EP , of breakpoints, our analysis also yields the sets

IF1 and IF2. In this case, the set of possible combinations
is: C = SP × IF1 × IF2 × EP . In the general case,
for a program with n control statements the set of possible
breakpoint combinations is C = SP ×

∏n
i=1 IFn × EP .

Sequential ordering results in a restricted set of breakpoint
combinations ,that however still includes redundant paths. The
reason is that some breakpoints dominate other breakpoint
meaning that the paths for the dominated breakpoints also
contain other breakpoints. By filtering sets of breakpoints in
order to keep only the dominated ones, we further reduce the
length of LTL formulae that are used for test case generation.
Let us denote by FIFi the filtered set IFi of breakpoints.
Then, the set

C = SP ×
∏n

i=1 FIFn × EP

will correspond to test cases that represent distinct paths.

In algorithm in Figure 1, we see the main process of
the combination of non-dominant breakpoints. The function
getNonDominantsBreakpointsList, is not described in depth,
because its purpose is to retrieve the leafs of the given trees.
That is happened because the tree is structured in such way
that leaf nodes are not dominating parent nodes.

For the sake of completeness, we have to mention that some
of the paths that are generated, may be invalid. That happens,
because sometimes control statements neutralize each other.
Another approach to overcome this difficulty is to create LTL
formulas, is to create a test case for one control statement at
time. This will lead us to create the follow set:

C = {∀i ∈ [1, n], i ∈ Z|SP × IFi × EP}

Once the LTL formulas are created, the remaining process
contains the execution of them, in a model checker. We use the
SPIN model checker [6], to check the properties in a model
coded in PROMELA.

Algorithm 1 Generate LTL formulas

Procedure constructLTL(breakpointTrees)
1: for ∀breakTree ∈ breakpointTrees do
2: nonDominantVector ← getNonDominantsBreakpointsList(breakTree)
3: end for
4: findAllCombinations(nonDominantVector)

Procedure findAllCombinations(nonDominantV ector)
1: if nonDominantVector.size > 1 then
2: nonDominands ← nonDominantVector.pop()
3: nextTreesCombinations ← findAllCombinations(nonDominantVector)
4: for ∀nonDominant ∈ nonDominands do
5: for ∀nextTreesCombination ∈ nextTreesCombinations do
6: combinationList.add(nonDominant,nextTreesCombination)
7: end for
8: end for
9: return combinationList

10: else
11: return nonDominantVector
12: end if

V. EXAMPLE

In this section, we will demonstrate the principle of our
theory, with a simple example. We will apply the method,
to the program in Figure 1. With this small example, we
concentrate in the process of automatic creation of the model
and LTL formulas. In other words, we skip some of model
extraction drawbacks, to illustrate the contribution of this
article.

First, we have available only the source code of method.
Given this source code we have to apply some transformation
to produce the corresponding model. This transformation is
the application of multiple condition coverage criterion. This
means that for a control statement, we have to create a number
of alternative paths, equal to the possible combinations of
the predicates in control statement. For example, the follow
control statement which is taken from Figure 1 (line 4), will
be transformed as:

/ / I n s o u r c e
i f (b>=20 && a <5) d =50;
e l s e d =0;
/ / I n model
i f (b>=20 && a <5) d =50;
e l s e i f (b>=20 && ! (a <5)) d =0;
e l s e i f (! (b>=20) && a <5) d =0;
e l s e d =0;

With this transformation, we are able to force the model
checker to reach the specific paths. The next step is to insert
the breakpoints in order to discriminate those paths. For our
convenience, we represent the transformation in Java code,
because of the excessive length of the PROMELA code.
Finally, the program from Figure 1, will be transformed as:

i n t method (i n t a , i n t b , i n t c) {
s h o r t b r e a k p o i n t =0 ;

i n t d = 0 ;

i f (a <10) {
i f (b>=20 && a <5) {

d =50; b r e a k p o i n t =5 ;
} e l s e i f (b>=20 && ! (a <5)) {

d =0; b r e a k p o i n t =6 ;
} e l s e i f (! (b>=20) && a <5) {

d =0; b r e a k p o i n t =7 ;
} i f ((! b>=20) && ! (a <5)) {

d =0; b r e a k p o i n t =8 ;
} e l s e {

d =0; b r e a k p o i n t =9 ;
}
b r e a k p o i n t =1 ;

} e l s e {
i f (b<50) {

d =30; b r e a k p o i n t =10;
} e l s e {

d =10; b r e a k p o i n t =11;
}
b r e a k p o i n t =2 ;

}

i f (c ==3) {
d =40; b r e a k p o i n t =3 ;

} e l s e {
b r e a k p o i n t =4 ;

}

b r e a k p o i n t =12;

re turn d ;
}

Note, that in the PROMELA model, the if statement
transformed in an if-else statement, in order to separate the
branches for test case generation.

From this transformed code, we can identify four different
breakpoint trees: entry point tree, first control command tree,
second control command tree and exit point tree. Only the
control command trees are true trees, because entry and exit
point trees contain only one root and one child. The total sets
of breakpoints we take from the program are:

SP = {b0}
IF1 = {b1, b2, b5, . . . , b11}
IF2 = {b3, b4}
EP = {b12}

After the breakpoint reduction in the previous sets we keep
only the non-dominant breakpoints. In this example, the only
set that is affected by this process, is the set of the first control
statement. This set became:

IF1 = {b5, . . . , b11}

We observe that from the previous set, the process excludes
only breakpoints with number 1 and 2.

The last step is to combine the filtered sets in order to obtain
the final paths. The final set that include all combination of
filtered sets is the set:

C = {b0} × {b1, b2, b5, . . . , b11} × {b3, b4} × {b12}

After this step, we have available the total LTL formulas and
the method’s model. The last step is to perform the check, by
applying those LTL formulas in model, with a model checker.
After the model checker execution, we take the actual test
cases in a form that inform us about the initial value of inputs
and the values that variable has at the exit of the method. The
implementation of this attribute, is hard-coded in the model.

VI. CONCLUSION

We introduced a method for generation of test cases in
coverage-base unit testing. The method relies on the trans-
formation of the source code to a SPIN model with injected
breakpoints. The breakpoints differentiate the program’s basic
blocks and at the same time provide sufficient information
for the generation of test cases by model checking simple
LTL formulae. Automation has been achieved not only in the
program to model transformation, but also in post-processing
the breakpoints of the model program for the production of a
test suite for some preferable coverage criterion. We provided
results obtained from the prototype tool support.

Our work demonstrates the feasibility of automated gen-
eration of test suites by the use of model checking. Many
of the problems encountered in related work have been suc-
cessfully addressed, in an attempt to provide a higher degree
of automation in unit testing. We experienced problems like
for example the need for fine tuning the source to model
abstraction in a way that eliminates the possibility of state
space explosion, while at the same time the model retains the

necessary fidelity for the generation of input values represent-
ing complete definitions of test cases. The program’s execution
environment and its role in the source to model transformation
is an additional problem that has to be properly addressed.
Last but not least, an interesting future research prospect is
the automated generation of test cases for selected program
variables, based on the well-known dataflow coverage criteria.

REFERENCES

[1] G. J. Myers, The Art of Software Testing, Second
Edition, 2nd ed. Wiley, June 2004. [Online]. Available:
http://www.worldcat.org/isbn/0471469122

[2] O.-J. Dahl, E. W. Dijkstra, and T. Hoare, Structured Programming.
London: Academic Press, 1972.

[3] P. Ammann, P. E. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” in ICFEM, 1998, pp. 46–.

[4] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow
information,” IEEE Trans. Software Eng., vol. 11, no. 4, pp. 367–375,
1985.

[5] J. Jacky, M. Veanes, C. Campbell, and W. Schulte, Model-Based
Software Testing and Analysis with C#, 1st ed. Cambridge University
Press, 2007.

[6] G. J. Holzmann, “The model checker spin,” IEEE Trans. Software Eng.,
vol. 23, no. 5, pp. 279–295, 1997.

[7] P. Ammann, P. E. Black, and W. Ding, “Model checkers in software
testing,” NIST-IR 6777, National Institute of Standards and Technology,
Tech. Rep., 2002.

[8] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A temporal logic based
theory of test coverage and generation,” in TACAS, ser. Lecture Notes
in Computer Science, J.-P. Katoen and P. Stevens, Eds., vol. 2280.
Springer, 2002, pp. 327–341.

[9] H. S. Hong and H. Ural, “Dependence testing: Extending data flow
testing with control dependence,” in TestCom, ser. Lecture Notes
in Computer Science, F. Khendek and R. Dssouli, Eds., vol. 3502.
Springer, 2005, pp. 23–39.

[10] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow
testing as model checking,” in ICSE. IEEE Computer Society, 2003,
pp. 232–243.

[11] S. Rayadurgam and M. P. E. Heimdahl, “Coverage based test-case
generation using model checkers,” Engineering of Computer-Based
Systems, IEEE International Conference on the, vol. 0, p. 0083, 2001.

[12] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[13] P. E. Black, V. Okun, and Y. Yesha, “Mutation operators for specifica-
tions,” in ASE, 2000, pp. 81–.

[14] G. J. Holzmann, “Logic verification of ansi-c code with spin,” in SPIN,
ser. Lecture Notes in Computer Science, K. Havelund, J. Penix, and
W. Visser, Eds., vol. 1885. Springer, 2000, pp. 131–147.

[15] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–
1542, 1994.

[16] G. J. Holzmann and M. H. Smith, “Software model checking,” in
FORTE, ser. IFIP Conference Proceedings, J. Wu, S. T. Chanson, and
Q. Gao, Eds., vol. 156. Kluwer, 1999, pp. 481–497.

[17] E. M. Clarke, “The birth of model checking,” in 25 Years of Model
Checking, ser. Lecture Notes in Computer Science, O. Grumberg and
H. Veith, Eds., vol. 5000. Springer, 2008, pp. 1–26.

[18] T. Jéron and P. Morel, “Test generation derived from model-checking,”
in CAV, ser. Lecture Notes in Computer Science, N. Halbwachs and
D. Peled, Eds., vol. 1633. Springer, 1999, pp. 108–121.

[19] A. Engels, L. M. G. Feijs, and S. Mauw, “Test generation for intelligent
networks using model checking,” in TACAS, ser. Lecture Notes in
Computer Science, E. Brinksma, Ed., vol. 1217. Springer, 1997, pp.
384–398.

[20] H. S. Hong and H. Ural, “Using model checking for reducing the cost
of test generation,” in FATES, ser. Lecture Notes in Computer Science,
J. Grabowski and B. Nielsen, Eds., vol. 3395. Springer, 2004, pp.
110–124.

