
Model Checking for Generation of Test Suites in Software Unit Testing

Vasilios Almaliotis, Panagiotis Katsaros, Konstantinos Mokos
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{valmalio, katsaros}@csd.auth.gr, mokosko@otenet.gr

I. INTRODUCTION

Reports on software economics mention that testing plays
a significant role in software development, since more than
50 percent of the total cost of a software project is often
expended in testing. Although, software testing can show the
presence of bugs, it is inadequate for showing their absence
and requires highly skilled engineers. Traditionally, software
testing and model checking are dealt as separate verification
and validation activities. However, recent works invest on
the potential of model checking towards reducing the cost of
software testing [1, 2]. The common denominator of these
techniques is the development of an appropriate set of linear
temporal logic (LTL) formulae that when applied to the
program model produce a set of test cases for a given
coverage criterion.

Specifically, in [1] the authors try to reduce the cost for
test case generation by employing heuristic algorithms in
order to minimize the set of LTL formulae in the test suite.
The syntax of the used LTL formulae is relatively
straightforward for a human being, but their production is not
easily automated [2].

In this article we focus on the automated extraction of a
model program from the source, in an attempt to reduce the
cost for the generation of test cases for unit testing. The
created model program is constructed exclusively for test
case generation, which means that additional information is
embedded and the program undergoes suitable
transformations, in order to aid the specific model checking
process that yields the expected test cases. By abstracting
this information at the level of the model program we
eliminate the need to specify it in the LTL formulae. In this
way, the needed LTL formulae are kept as simple as possible
and therefore we can support end-to-end automation from
the source program to the generation of the expected test
cases.

II. MODEL CHECKING FOR GENERATION OF TEST

SUITES IN SOFTWARE UNIT TESTING

The proposed method for automatic generation of test
cases in software unit testing relies on a Kripke structure
representation of the model program and is performed in two
phases as shown in Figure 1.

Figure 1. Proposed Method Process

During the first phase, the software unit is parsed and
abstracted into an initial model program. The initial model
program is enhanced with breakpoints and possible
execution paths are thus differentiated during the automated
translation of the flow statements to the control flow
constructs of the extended model program. The model
program is expressed in PROMELA, which is the input
language of the SPIN model checker [3]. In the second
phase, hierarchically organized breakpoints of the extended
model program are selected based on the chosen coverage
criterion (post-processing) that was determined during the
path differentiation process of the previous phase. By
automatically deriving combinations of breakpoints an
appropriate LTL formula is created. The counterexamples
obtained from model checking the generated LTL formulae,
form the test suite for the coverage criterion at hand. The
prototype tool support that is currently available implements
the multiple condition coverage criterion [4], which is
considered as the most comprehensive control flow coverage
alternative. It is relatively straightforward to implement a
less costly coverage criterion such as edge/condition
coverage but in the current prototype this requires

intervention in the source code of the second level of
processing.

A. Control Flow Statements Translation

Program execution is affected by the control flow
statements (if-then, if-then-else, switch-case and condition
controlled loops) of a software unit. Program execution paths
are determined by the decisions made at program locations
with conditional expressions, where one or more predicates
are combined with Boolean operators. The fundamental idea
behind our approach is a path differentiation process during
the automated translation of the control flow statements to
PROMELA control flow constructs. More precisely:

 all edges of the program’s control flow graph are
covered and

 basic paths are built for each different combination
of decisions in a conditional expression.

In the post-processing phase, breakpoints are injected at
the end of each basic block and are used later to construct the
LTL formulas. The breakpoints are organized into tree
structures - one for each non nested control flow statement -
that are used for optimizing the number of test cases needed
for the coverage criterion at hand. Leafs of the
aforementioned trees point to the breakpoints that do not
dominate any other breakpoint of the hierarchy.

B. Patterns of LTL formulae for the generation of test
cases

Automatic construction of LTL formulas is based on the
following pattern: every program execution path starts from
an entry point, then accesses some of the basic blocks that
exist in the body of the program and ends in an exit point.
All aforementioned program locations are represented by
breakpoints injected during the model construction and both
the entry and exit points are kept in separate structures.

C. Deriving Combinations of breakpoints automatically

Given the model, the pattern on which LTL formulae will
be based and the set of breakpoints organized in a tree
structure, it is possible to combine these breakpoints under
the restrictions of the LTL pattern, in order to automatically
produce LTL formulae that will generate the test cases.

The method for automatic generation of test cases in
software unit testing relies on the utilization of information
that is available in the model and the non-dominant
breakpoints that exist within the control flow statements. We
select breakpoint combinations corresponding to paths that
access multiple non-nested control statements in one
execution. This may lead to an explosion in the number of
test cases, but many of these combinations are not valid. By
combining more than one tree structure between the entry
and exit points additional information is obtained for
execution paths that initially were not evident.

Alternatively, it is also possible to take all the non-
dominant breakpoints within a control flow statement and
create all combinations between these breakpoints and the
possible entry and exit points of the program unit. This
method is powerful enough if we are interested to test all the
commands into a single unit, because test cases are built for

all possible paths between an entry point and an exit point,
paths that access basic blocks of control flow statements in
the maximum nesting level.

The developed algorithm for combining breakpoints can
be applied for both aforementioned approaches. For each tree
structure of breakpoints, we choose the leaves that represent
the non-dominant breakpoints of the model. Each set of non-
dominant breakpoints is stored in a vector, which is then
passed to a routine that recursively returns the Cartesian
product of all sets of non-dominant breakpoints inside the
vector. The obtained combinations are used to form the LTL
formulae that will generate the test cases.

III. CONLUSION

We described a method for the generation of test cases in
coverage-base unit testing. The method relies on the
transformation of the source code to a SPIN model with
injected breakpoints. The breakpoints differentiate the
program’s basic blocks and at the same time provide
sufficient information for the generation of test cases by
model checking simple LTL formulae. Automation has been
achieved not only in the program to model transformation,
but also in post-processing the breakpoints of the model
program for the production of a test suite for the preferable
coverage criterion.

Our work demonstrates the feasibility of automated
generation of test suites by the use of model checking. Many
of the problems encountered in related work have been
successfully addressed, in an attempt to provide a higher
degree of automation in unit testing. We experienced
problems like for example the need for fine tuning the source
to model abstraction, while at the same time the model
retains the necessary fidelity for the generation of input
values representing complete definitions of test cases. The
program’s execution environment and its role in the source
to model transformation is an additional problem that has to
be properly addressed. Last but not least, an interesting
future research prospect is the automated generation of test
cases for selected program variables, based on the well-
known data flow coverage criteria.

REFERENCES
[1] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow

testing as model checking,” in ICSE. IEEE Computer Society, 2003,
pp. 232–243.

[2] S. Rayadurgam and M. P. E. Heimdahl, “Coverage based test-case
generation using model checkers,” Engineering of Computer-Based
Systems, IEEE International Conference on the, vol. 0, p. 0083, 2001.

[3] G. J. Holzmann, “The model checker spin,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279–295, 1997.

[4] G. J. Myers, The Art of Software Testing, Second Edition, 2nd ed.
Wiley, June 2004.

