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ABSTRACT 

Research and industrial experience reveal that code reviews as a 

part of software inspection might be the most cost-effective tech-

nique a team can use to reduce defects. Tools that automate code 

inspection mostly focus on the detection of a priori known defect 

patterns and security vulnerabilities. Automated detection of logi-

cal errors, due to a faulty implementation of applications’ functio-

nality is a relatively uncharted territory. Automation can be based 

on profiling the intended behavior behind the source code. In this 

paper, we present a code profiling method based on token classifi-

cation. Our method combines an information flow analysis, the 

crosschecking of dynamic invariants with symbolic execution, and 

code classification heuristics with the use of a fuzzy logic system. 

Our goal is to detect logical errors and exploitable vulnerabilities. 

The theoretical underpinnings and the practical implementation of 

our approach are discussed. We test the APP_LogGIC tool that im-

plements the proposed analysis on two real-world applications. The 

results show that profiling the intended program behavior is feasib-

le in diverse applications. We discuss in detail the heuristics used 

to overcome the problem of state space explosion and that of the 

large data sets. Code metrics and test results are provided to demon-

strate the effectiveness of the proposed approach. This paper ex-

tends the work that appears in an article currently submitted to an 

international conference with proceedings. In this adequately ex-

tended version of our method we present classification mechanisms 

that can take into account multiple user input and provide a detailed 

description of the used source code classification techniques and 

heuristics.  

Categories and Subject Descriptors 

D.3.3 [Software Engineering]: Software/Program Verification - 

Class invariants, Correctness proofs, Formal methods, Model che-

cking. 

General Terms 

Algorithms, Reliability, Experimentation, Security, Human Fac-

tors, Theory, Verification.   

 

 

1. INTRODUCTION 
During software development, technical design requirements are 

prepared by the staff. These guidelines are based on business requi-

rements gathered, that define how the application will be written, 

i.e. what the programmer wants his code to do and what not to do. 

Usually, threats and vulnerabilities are identified during the soft-

ware development Life Cycle, using modern techniques for static 

and dynamic analysis of programs. These techniques have been 

proven effective in detecting a priori known flaws (such as injecti-

ons or buffer overflows), but they do not go far enough in the de-

tection of logical errors (i.e., erroneous translation of software re-

quirements causing unintended program behavior, due to execution 

flow deviations). As an example, we consider the following [5]: “a 

web store application allows, using coupons, to obtain a one-time-

discount-per-coupon on certain items; a faulty implementation can 

lead to using the same coupon multiple times, thus eventually zero-

ing the price”. Automated detection of such program behavior is a 

relatively uncharted territory. 

In previous publications, we worked towards addressing this prob-

lem by extracting the programmed behavior of Applications Under 

Test (AUT) with code profiling techniques. Potential logical errors 

are then detected and classified by applying heuristics on the gat-

hered data. This work is an extended version of a paper currently 

submitted to an international conference and is pending review. 

This updated version presents new classification mechanisms and 

provides a much clearer view into source code classification and 

heuristics. Our approach is based on previous research [5-7] and 

consists of the following steps:  

(a) For an AUT, a representation of its programmed behavior is 

generated in the form of dynamic invariants, i.e. source code 

rules in the form of assert statements. Invariants are collected 

by dynamic analysis of the AUT with the Daikon tool from 

MIT [12]. 

(b) A preliminary analysis with the JPF tool from NASA and cu-

stom-made methods gathers a set of execution paths and pro-

gram states along these paths  

(c) Static analysis and classification of source code that recogni-

zes input data vectors, decision points and instructions that en-

force context checking on variables. This classification not 

only creates a map of all program points, in which execution 

can follow different paths (execution flow branching points), 

but can also group instructions about specific variables and 

assign ranks on each one. This rank depicts how dangerous a 

variable is, based on it usage inside the source code. 
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(d) One group of logical errors is detected by crosschecking the 

information gathered in (b) with the dynamic invariants col-

lected in (a). Invariants are checked upon multiple execution 

paths and their accessed program states.  

(e) Another type of logical errors, those that manifest due to faulty 

input data manipulation, is detected by a tainted object propa-

gation analysis which uses the above mentioned classification 

technique. “Tainted” input data are traced throughout the sour-

ce code and the applied sanitization checks are verified.     

The main contributions of this paper are summarized as follows: 

- We elaborate on our approach that was first discussed in [6] 

[7], to show how the programmed behavior of an AUT can be 

validated efficiently and can be used as a map for logical error 

detection. 

- We introduce fuzzy logic membership sets used to classify lo-

gical errors: (i) Severity, with values from a scale quantifying 

the impact of a logical error, with respect to how it affects the 

AUT’s execution flow and (ii) Vulnerability: with values from 

a scale quantifying the likelihood of a logical error and how 

dangerous it is. The proposed fuzzy sets aim to automate rea-

soning based on the analysis findings, similarly to a code audit 

process. 

- We extend our classification method to cover multiple input 

vectors (source code data entry points). We present a 

technique were information extracted from an AUT is grouped 

into instructions with common variables and weighted 

accordingly. This way it adequately shows how dangerous the 

use of a source code variable might be in an AUT. 

- We analyze two real-world, open source applications with di-

verse characteristics: the Reaction Jet Control (RJC) applica-

tion from NASA's Apollo Lunar Lander and an SSH frame-

work called JSCH from the JCraft company [18], with thou-

sands of downloads per week. Our tests involve the injection 

of logically malformed data based on code metrics, which 

pinpoint probable code locations for representative faults [15]. 

The injected logical errors divert the AUT’s execution paths 

to non-intended states. 

In Section 2, we review previous work on the used techniques. Sec-

tion 3 provides the background terminology and some definitions 

needed to describe our approach. In Section 4, we present the sour-

ce code classification used by APP_LogGIC and link it to our Fuz-

zy Logic ranking system. In Section 5, we present the method im-

plementation in the APP_LogGIC tool and we discuss the problems 

faced and the found solutions. Section 6 focuses on the results of 

our experiments with the two AUTs. We conclude with a review of 

the main aspects of our approach and a discussion on possible fu-

ture research plans. 

2. RELATED WORK 
In [5], the authors describe how they used the Daikon tool [13] to 

infer a set of behavioral specifications called likely invariants that 

represent the behavioral aspects during the execution of web ap-

plets. They use NASA's Java Pathfinder (JPF) [8, 9] for model che-

cking the application behavior over symbolic input, in order to 

validate whether the Daikon results are satisfied or violated. The 

analysis yields execution paths that, under specific conditions, can 

indicate the presence of certain types of logic errors that are en-

countered in web applications. The described method is applicable 

only to single-execution web applets. Finally, it is not shown that 

the approach can scale smoothly to larger, standalone applications.  

A variant of the same method is used in [6] and [7], where we pre-

sented a first implementation of the APP_LogGIC tool. In [6], we 

specifically targeted logical errors in GUI applications. We presen-

ted a preliminary deployment of a Fuzzy Logic ranking system to 

address the problem of false positives and we applied the method 

on lab test-beds. In [7], the Fuzzy Logic ranking system was for-

mally defined and further developed.  

The research presented in [10], focuses exclusively on specific 

flaws found in web applications. In [11], the authors combine ana-

lysis techniques to identify multi-module vulnerabilities in web 

applications, but they do not address the problem of profiling sour-

ce code behavior or logical errors per se. 

Zeller [31] developed a state-altering technique, the delta debug-

ging technique, which requires one passing and one failing execu-

tion that are identical in terms of the program paths. The intuition 

behind this technique is that any difference between the two 

identical executions is probably the cause of the failure. 

Zhang, Gupta, and Gupta [32] developed a variant of delta debug-

ging called predicate switching that also alters the states of predi-

cates during program execution. Given a failing execution, the goal 

of predicate switching is to find the predicate that if switched (i.e., 

from false to true or true to false) causes the program to execute 

successfully. The first limitation of state-altering techniques is that 

they do not deal with the problem of semantic consistency because 

by altering a program state, the techniques do not guarantee that the 

new execution is an actual execution [35].The second limitation of 

state-altering techniques is that they require the execution of the 

program each time a state is altered. The second limitation of state-

altering techniques is that they require the execution of the program 

each time a state is altered [35]. While trying to detect logical er-

rors, we came across similar problems. Our method uses a one-time 

execution coupled with dynamic analysis of the AUT which seems 

to bypass these issues. 

Other related work, which tries to detect errors in source code, uses 

program slicing. Weiser [33] defined program slicing and applied 

it to debugging. The drawback in Weiser’s technique is that the sli-

ce set often contains many program entities (in some cases the who-

le program). Zhang, Gupta, and Gupta [34] present a technique that 

uses a threshold to prune the backward slice computed for a parti-

cular program entity. By pruning the backward slice, their techni-

que can reduce the size of the computed slice set. The first limitati-

on of the above slicing techniques is that they do not account for 

the strength of the dependences between program entities and how 

likely each program entity is the cause of the failure. The second 

limitation of these techniques is that the slice sets can sometimes 

be very large. The third limitation is that the techniques do not pro-

vide the developer with information on how to start searching for 

the fault. The fourth limitation is that the techniques only compute 

program entities that are associated with failures instead of finding 

program entities that caused the failure [35]. 

In this work, the method that we first proposed in [6] and [7], is 

evolved to a more complete and effective approach with the capa-

city to be tested on real-world, complex applications, instead of 

test-beds and simple GUI AUT. 

3. PROFILING THE BEHAVIOR BEHIND 

THE SOURCE CODE 
Judging from experiments, requirements analysis [17], and previ-

ous research [5] [6] [7] on profiling the logic behind an AUT, we 

need: (i) a set of parsable logical rules (dynamic invariants) refer-
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ring to the intended program functionality, (ii) a set of finite execu-

tion paths and variable valuations with adequate coverage of the 

AUT functionality, (iii) the Boolean valuation of the logical rules 

over the set of execution paths to enable detection of logical errors 

and (iv) a classification system for source code instructions to filter 

variables in branch conditions and data input vectors. 

3.1 Extracting intended program functionali-

ty as Logical Rules (Dynamic Invariants) 
The functionality of an AUT is captured in the form of dynamic 

invariants generated by the Daikon tool from MIT: invariants are 

logical rules for variables, such as p!=null or var== 

“string” that hold true at certain point(s) of a program in all 

monitored executions. Dynamic invariants represent the program-

med behavior. If the monitored executions are representative use-

case scenarios of the AUT, then the generated dynamic invariants 

refer to the AUT’s intended functionality. Intuitively, if an execu-

tion path is found that violates a (combination of) dynamic invari-

ant(s), this means that a possible logical error exists, which affects 

the variable(s) referred in the invariant. 

 

3.2 Program states and their variables 
In order to verify Daikon invariants, we need to crosscheck them 

with a set of finite execution paths and variable valuations, with 

adequate coverage of the AUT functionality. In this section, we in-

troduce formal definitions for the used data sets. 

An imperative program P = (X, L, ℓ0, T) defines [27] a set X of 

typed variables, a set L of control locations, an initial location ℓ0 ∈ 

L, and a set T of transitions. Each transition τ ∈ T is a tuple (ℓ, ρ, 

ℓ΄), where ℓ, ℓ΄ ∈ L are control locations, and ρ is a constraint over 

free variables from X ∪ X΄, where X denotes values at control lo-

cation ℓ and X΄ denotes the values of the variables in set X at con-

trol location ℓ΄. For verification purposes, the set L of control loca-

tions comprises the source code points, which control the execution 

flow of a program, i.e. conditional statements, such as branches and 

loops. 

State of a program P is a valuation of the variables in X. The set of 

all possible states is denoted as u.X. We shall represent sets of states 

using constraints. For a constraint ρ over X ∪ X΄ and a valuation (s, 

s΄) ∈ u.X × u.X΄, we write (s, s΄) |= ρ if the valuation satisfies the 

constraint ρ. We focus on AUTs with an explicitly provided initial 

state that assigns specific values to all variables in X. Finite com-

putation of the program P is any sequence (ℓ0, s0), (ℓ1, s1), ... , (ℓk, 

sk) ∈ (L × u.X), where ℓ0 is the initial location, s0 is an initial state, 

and for each i ∈ {0, ..., k −1}, there is a transition (ℓi, ρ, ℓi+1) ∈ T 

such that (si, si+1) |= ρ. A location ℓ is reachable if there exists some 

state s, such that (ℓ, s) appears in some computation. An execution 

path or, simply, path of the program P is any sequence π = (ℓ0, ρ0, 

ℓ1), (ℓ1, ρ1, ℓ2), ... , (ℓk-1, ρk-1, ℓk) of transitions, where ℓ0 is the initial 

location. 

 

3.3 Source code profiling for logical error de-

tection 
According to NIST [21], the impact that a source code point has in 

a program may be captured by the program’s Input Vectors (entry 

points and variables with user data) and Branch Conditions (e.g. 

conditional statements like if-statements). These characteristics de-

termine the program’s execution flow. Our approach studies how 

the AUT’s execution is affected by crosschecking the truth values 

of the extracted dynamic invariants. 

A logical error is defined as follows: 

Definition 1. A logical error manifests if there are execution paths 

πi and πj with the same prefix, such that for some k0 the transition 

(ℓk, ρk, ℓk+1) results in states (ℓk+1, si), (ℓk+1, sj) with si ≠ sj and for 

the dynamic invariant rk, (si-1, si) ⊨ rk in πi and (sj-1, sj) ⊭ rk in πj, 

i.e. rk is satisfied in πi and is violated in πj. 

If a program error located in some transition does not cause un-

stable execution in the analyzed paths, it does not manifest as a lo-

gical error according to Def. 1. For this reason, our framework a-

dopts a notion of risk for logical error detection. Risk is quantified 

by means of a fuzzy logic classification system based on two mea-

suring functions, namely Severity and Vulnerability. These functi-

ons complement invariant verification and act as source code filters 

for logical error detection.   

Our fuzzy logic approach also aims to confront two inherent pro-

blems in automated detection of code defects: the large data sets of 

the processed AUT execution paths and the possible false positives. 

Regarding the first mentioned problem, APP_LogGIC helps the co-

de auditor to focus only to those transitions in the code that appear 

having high ratings in our classification system. Regarding false 

positives and due to the absence of predefined error patterns, 

APP_LogGIC’s ratings implement criteria that take into account 

the possibility of a logical error in some transition. 

3.3.1 Severity (critical source code points) 
Depending on the logic realized by some transition (ℓk, ρk, ℓk+1), 

k0 a logical error might be of high severity or not. We consider 

that all program transitions have a severity measurement and we 

define the measuring function Severity for quantifying the relative 

impact of a logical error in the execution of the AUT, if it were to 

manifest with the transition (ℓk, ρk, ℓk+1). Severity(ℓk, ρk, ℓk+1) mea-

sures the membership degree of the transition in a fuzzy logic set. 

Variables from states (ℓk, sk) and (ℓk+1, sk+1) that are used in the 

transition are weighted based on how they affect the execution 

flow. Those variables that directly affect the control-flow (e.g. they 

are part of the AUT’s input vectors and are used in branch conditi-

ons) are considered dangerous: if a logical error were to manifest 

because of them, it causes an unintended behavior. 

Definition 2. Given a transition τ ∈ T enabled at a source code 

point, we define Severity as 

Severity(τ) = v ∈ [0, 5] 

measuring the severity of τ on a Likert-type scale [29] from 1 to 5. 

If a logical error were to manifest at a source code point, the scale-

range captures the intensity of its impact in the AUT’s execution 

flow. A fuzzy logic method evaluates transitions as being of high 

Severity (4 or 5), medium (3) or low (1 or 2). Technical details a-

bout the criteria used in severity assignments are presented in sec-

tion 5.5. 

3.3.2 Vulnerability (logical error likelihood and dan-

ger based on its type) 
Vulnerability is a measuring function quantifying the likelihood of 

a logical error in a given transition and how dangerous it is, based 

on its type. Vulnerability memberships are evaluated by taking into 

account: (i) the violations of dynamic invariants by the reached 

program states and (ii) input from an information flow analysis re-

vealing the extent to which variable values are sanitized by condi-

tional checks [21]. 

Definition 2: Given a tuple (τ, s, r), where r is a dynamic invariant, 

τ = (ℓ, ρ, ℓ΄) and (ℓ΄, s) ∈ (L×u.X), we define Vulnerability as 

Vulnerability (τ, s, r) = v ∈ [0, 5] 
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Ratings here also use a Likert scale [29] from 1 to 5. Same as with 

Severity(τ), our fuzzy logic method evaluates transitions as being 

of “high” Vulnerability, “medium” or “low”. 

Tables 2-3 in Section 5.5 show the considered severity and vulner-

ability levels, while a more detailed presentation of the fuzzy logic 

system is given in [7]. 

3.3.3 Quantifying the risk associated with program 

transitions 
According to OWASP, the standard risk formulation is an opera-

tion over the likelihood and the impact of a finding [6]: 

Risk = Likelihood * Impact 

We adopt this notion of risk into our framework for logical error 

detection. In our approach, Severity(τ) reflects the relative Impact 

of the transition τ at some source code point, whereas Vulner-

ability(τ, s, r) encompasses the Likelihood of a logical error in τ. 

Given the dynamic invariant r for τ, an estimate of the risk associa-

ted with τ can be computed by combining Severity(τ) and Vulner-

ability(τ, s, r) into a single value called Risk. There may be many 

different options for combining the values of the two measuring 

functions. We opt for an aggregation function that allows taking 

into account membership degrees in a Fuzzy Logic system [16]: 

Definition 3. Given an AUT and a set of paths with s ∈ u.X repre-

senting an accessed state and τ ∈ T an executed transition associat-

ed with the dynamic invariants r, function Risk(τ, s, r) is the aggre-

gation 

Risk(τ, s, r) = aggreg(Severity(τ), Vulnerability(τ, s, r)) 

with a fuzzy set valuation 

Risk(τ, s, r) = {Severity(τ)} ∩ {Vulnerability(τ, s, r)} 

Aggregation operations on fuzzy sets are operations by which se-

veral fuzzy sets are combined in a desirable way to produce a single 

fuzzy set. APP_LogGIC applies defuzzification [20] on the resul-

ting set, using the Center of Gravity technique. Defuzzification is 

the computation of a single value from two given fuzzy sets and 

their corresponding membership degrees, i.e. the involvedness of 

each fuzzy set presented in Likert values.  

Risk ratings have the following interpretation: for two tuples 

vs1=(τ1, s1, r1) and vs2=(τ2, s2, r2), if Risk(vs1) > Risk(vs2), then vs1 

is more dangerous than vs2, in terms of how τ1 and τ2 affect the 

execution of the AUT and if the analysis detects a manifested logi-

cal error. In next section, we provide technical details for the tech-

niques used to implement the discussed analysis. 

 

4. DISSECTING THE SOURCE CODE: AST 

CLASSIFICATION AND HEURISTICS 

There exist source code points where execution flow can follow 

different paths. According to them, invariants are classified as im-

portant or not for logical error detection; i.e. invariants about vari-

ables used in control flow points should be checked for violations 

whereas others can be discarded most of the times [5] [6] [7]. Also, 

there exists another group of source code points that APP_LogGIC 

utilizes: Points where input data from users enters an application 

(input vectors) is stored or used (sinks).  

APP_LogGIC detects, evaluates and classifies both these code 

point groups. To do that, it utilizes the JavaC compiler to contruct 

and parse an abstract syntax tree (AST) representation of an AUT’s 

source code. Fig. 1 depicts a sample source code and its AST tree. 

Along with the above mentioned two categories, the method also 

analyzes all source code instructions associated with them. The fol-

lowing section presents the types of data extracted and used by 

APP_LogGIC. 

 

 

 

4.1 Types of data gathered 

Using the AST tree, our method parses source code and gathers in-

formation concerning six (6) categories of instructions, namely: (1) 

control flow locations, (2) input vector locations, (3) variable decla-

rations, (4) variable assignments, (5) method declarations, and (6) 

method invocations. As far as control flow (1) and input vectors 

location is concerned, these categories involve specific objects, 

methods and classes. According to Oracle Java [29] [30], these are 

the following: 

(1) Control flow locations 

According to [29], boolean expressions determine the control 

flow in several kinds of statements. 

a. if-statements (§14.9) 

b. switch-statements (§14.11) 

c. while-statements (§14.12) 

d. do-statements (§14.13) 

e. for-statements (§14.14) 

(2) Input vector locations 

Figure 1. Source code and its AST representation 
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Java has numerous methods and classes that accept data from 

users [30]. They can be broadly summarized in the following 

two categories: 
 

a. Byte and number-oriented I/O (streams) 

BufferedInputStream  BufferedOutputStream  

ByteArrayInputStream  ByteArrayOutputStream  

DataInputStream  DataOutputStream  

FileInputStream  FileOutputStream  

FilterInputStream  FilterOutputStream  

LineNumberInputStream  ObjectInputStream  

ObjectOutputStream  PipedInputStream  

PipedOutputStream  PrintStream  

PushbackInputStream  SequenceInputStream  

StringBufferInputStream  

 

b. Character and Text I/O (readers – writers) 

BufferedReader BufferedWriter 

CharArrayReader CharArrayWriter 

FileReader FileWriter 

FilterReader FilterWriter 

InputStreamReader  LineNumberReader 

OutputStreamWriter  PipedReader 

PipedWriter PrintWriter 

PushbackReader StringReader 

StringWriter  

c. Miscellaneous I/O  

Console Scanner 

Javax.Swing Channels 

Based on [30] and common programming experience, monitoring 

these sets of Java objects seems to be an adequate, albeit not 

entirely thorough, way of tracing user data inside Java applications.  

5. THE APP_LOGGIC TOOL 

5.1 APP_LogGIC’s architecture 
APP_LogGIC flags possible logical errors based on information for 

their impact on the program’s behavior and their location in code. 

The more suspicious a source code point is, the higher it scores in 

the Fuzzy Logic system. Fig. 2 below depicts the following 

methods: 

(a) The Invariant-Based Method extracts dynamic invariants and 

verifies them against tuples (ℓ, s) of program states at specific 

code locations gathered from AUT executions. For every 

checked state s and dynamic invariant r a vulnerability rating is 

then applied using the function Vulnerability(τ, s, r). 

(b) The Input Vector Analysis Method analyzes input vectors and 

applies a Vulnerability rating on variables of program states 

that hold input data, as in (a). 

(c) The Information Extraction Method analyzes branches in the 

source code and rates them using the function Severity(τ). 

Figure 2. The APP_LogGIC architecture 
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(d) Fuzzy Logic ranking system: APP_LogGIC combines all infor-

mation gathered from (a), (b) and (c), and assesses the Risk of 

source code points and states based on their position and the 

analysis findings. 

5.2 Invariant-Based Method 
To automate verification of dynamic invariants for logical error 

detection we need: (i) a set of parsable rules representing the prog-

rammed behavior for the AUT, (ii) a set of execution paths and in-

formation for the contents of the state variables and (iii) a complete 

analysis of the AUT’s source code to gather input vectors, and map 

all possible points, in which execution flow can be diverted. 

5.2.1 Extracting the programmed behavior (Dynamic 

Invariants) 
Daikon performs dynamic analysis and produces dynamic inva-

riants which describe the AUT’s programmed behavior. If the tool 

is run for a sufficient set of use-cases that covers the expected 

AUT’s functionality, then the extracted programmed behavior mat-

ches the programmer’s intended behavior. An example dynamic in-

variant generated from our tests is: 

rjc.Chart.Wait_for_stable_rate_100000203_exe

c():::ENTER 

this.TopLevel_Chart_count == 2.0 

[...] 

Figure 3. Invariants produced by Daikon’s dynamic analysis 

Daikon runs the program, observes the values that the program 

computes and then reports, as in Fig. 3, assertions about source co-

de variables that hold true throughout all AUT executions (much 

like “laws of conduct” for correct execution [12] [13]). The dyna-

mic invariant of Fig. 3 shows that, upon invocation of method 

Wait_for_stable_rate_exec(), the value of variable 

TopLevel_Chart_count is equal to ‘2’. 

APP_LogGIC has a built-in Daikon parser that creates method 

objects with invariant objects based on the tokens of the parsed 

invariants. Thus, we have a fast way to parse invariants by method 

type, variable or class type. 

5.2.2 Verifying dynamic invariants - logical error de-

tection 
Let us consider the invariant shown in Fig. 3. APP_LogGIC checks 

if there are execution paths with the same prefix and some differing 

program state corresponding to the shown dynamic invariant. If 

true, APP_LogGIC tries to find a path/state combination that vio-

lates that assertion upon entering the exec() method (variable’s 

value is not ‘2.0’) and, simultaneously, a second combination that 

satisfies it. This contradiction, if present, is a sign of a possible lo-

gical error in exec() and variable TopLevel_Chart_count. 

APP_LogGIC uses Severity ranks and focuses on dynamic inva-

riants that refer to variables used in conditional statements (branch 

conditions), which are responsible for execution path deviations; if 

there is a possibility for a logical error manifestation, then this may 

happen in a branch condition since conditional branching is a deci-

sion-making point in the control flow [5].  

The current implementation of APP_LogGIC fully classifies if-sta-

tements detected in source code. AST analysis produces meta-data 

describing source code branches and stores them in the following 

form: 

BRANCH::93::3::TopLevel_Chart_count::==::0::

Chart.java 

 

Fig. 4 depicts information gathered by APP_LogGIC concerning 

an if-statement location. The first token represents the type of con-

trol flow location (in this case, a BRANCH). The second token is 

the source code line in which the statement can be found. The third 

token is the Severity rank appointed to this branch based on APP_-

LogGIC’s Fuzzy Logic rules. All control locations and their respe-

ctive variables get a Severity rating, depending on how much they 

can affect the execution of an AUT. More information on how Se-

verity ratings are applied by APP_LogGIC’s Fuzzy Logic system 

appears in Section 5.5, Table 2. 

Switch-statements are currently not fully implemented in the tool. 

Also, due to Daikon’s inability to produce invariant rules for loops 

(for, do, while statements), APP_LogGIC does not analyze these 

control flow locations.  

5.3 Input Vector Analysis Method 
All AUT meta-data gathered by APP_LogGIC using its AST tree 

focuse on the types of data presented in Section 4.1. Information is 

stored in multiple files, using a token based approach similar to the 

one presented in Fig. 4 above.  

DECLARE::12::double::sig_3::0::Main22::Subsy

stem114.java 

ASSIGN::17::sig_3::e_and_edot_2[(int)(1)]::M

ain22::Subsystem114.javada 

 

Figure 5 above depicts AST meta-data gathered about variable 

sig_3 in class Subsystem114 of the ReactionJetController 

(RJC) AUT. 

A method based on tainted object propagation analysis 

complements the dynamic invariant method for logical error 

detection. All variables that hold input data (input vectors) and the 

checks enforced upon them are analyzed for their role in 

conditional statements (as in section 3.3) and for the following 

correctness criterion: all input data should be sanitized before their 

use [21]. 

This analysis shows: (i) whether a tainted variable (i.e. a variable 

that contains potentially dangerous input data) is accessed in a 

conditional statement without having previously checked its initial 

values, (ii) if data from a tainted variable is passed along in methods 

and other variables and (iii) instances of user input that are never 

checked or sanitized in any way. 

APP_LogGIC checks tainted variables by analyzing the conditions 

enforced on their content. For example, if an input vector variable 

is used only in the conditional statement if (a != null) and 

then variable a is used in a command execution without further sa-

nitization of its contents, then this check is flagged as ineffective 

and APP_LogGIC gives a high rating on the Vulnerability scale for 

that variable.  

5.3.1 Verifying Input Vectors - Tainted object detec-

tion 

APP_LogGIC checks whether a tainted variable is accessed in a 

conditional statement without having previously checked its initial 

values, using the following algorithm. To do that, the general algo-

rithm followed is the following: 

Figure 4.  APP_LogGIC AST branch analysis data 

Figure 5.  APP_LogGIC AST branch analysis data 
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1. Get input vector X and its method from list L of detected input 

vectors. 

2. REPEAT while list L is not empty. 

(a) Detect DECLARATIONS of variable A, used in vector X. 

 Save variable A initialization data type. 

(b) Detect ASSIGNMENTS of data to variable A in same met-

hod/class. 

 If an ASSIGNMENT edits variable A’s data context, 

flag A as safe (checkEnforced = TRUE). 

(c) Detect ASSIGNMENTS of variable A to other variables or 

methods. 

 If ASSIGNMENTS of A to other variables or methods 

exist AND A is not flagged as safe (checkEnforced = 

FALSE) 

 Add all new variables tainted by A to list L. 

(d) Detect control-flow location and sanitization checks where 

variable A is used as a left-operand in the if-statement. 

 If variable A is not safe (checkEnforced = FALSE), flag 

variable high in the Vulnerability scale (see Table 3 for 

classification rankings). 

3. REPORT input vectors from L that are not flagged as safe. 

More information, as to how rank values are assigned, is provided 

in Tables 2-3 of Section 5.5.  

APP_LogGIC currently cannot detect errors based on the applica-

tion variables’ context. This needs semantic constructs to analyze 

information behind input data. Instead, our method uses a broader 

way to flag dangerous input vectors: If an instruction directly edits 

a variable holding input data, we consider that the programmer has 

implemented controls on that input data, thus flag variable as safe. 

5.3.2 Classifying potentially dangerous Methods 

In order to create a list of instruction that are of importance when 

checking for security exploits in Java AUTs, we user the Juliet Test 

Suite. This is a collection of test cases in the Java language, provi-

ded by the National Institute of Standards and Technology (NIST). 

The Juliet Test Suite is a collection of over 81,000 synthetic C/C++ 

and Java programs with known flaws. These programs are useful 

as test cases for testing the effectiveness of static analyzers and ot-

her software assurance tools, and are in the public domain [36]. As 

far as Java tests are concerned, it contains examples for 112 diffe-

rent CWE. Each test case focuses on one type of flaw, but other 

flaws may randomly manifest. An example can be found in the 

following Table 1. 

Any type of vulnerability can be checked with APP_LogGIC’s In-

put Vector analysis method simply by inserting instructions of in-

terest into its MethodFinder AST tree analyzer. The following table 

depicts an example set of instructions checked by APP_LogGIC for 

our proof-of-concept tests. 

The method combines information gathered in order to assign ranks 

that either increase or decrease the Severity rank of specific variab-

les in instructions. The overall Severity is used as an input for de-

tecting how dangerous the use of a variable inside the AUT. In Sec-

tion 6 we provide a detailed test case classification example produ-

ced by APP_LogGIC using Juliet Suite’s OS injection tests. 

Table 1. Juliet Suite set used by Input Vector Analysis method 

for OS command injection detection 

Juliet Suite - Critical Java instructions for OS injection 

Java Package Instruction 

java.io readLine 

Runtime exec 

ResultSet getString 

System Getenv 

Cookie getValue 

HttpServletRequest getParameter 

System getProperty 

Properties getProperty 

5.4 The Fuzzy Logic ranking system 

As explained in Section 3, a Fuzzy Logic system add-on [19] is 

used in APP_LogGIC and ranks possible logical errors. In order to 

aid the APP_LogGIC end-user, Severity and Vulnerability values 

are grouped into 3 sets (Low, Medium, High), with an approximate 

width of each group of (5/3) = 1,66~1,5 (final ranges: Low in 

[0…2], Medium in (2…3,5] and High in (3,5…5]). 

5.4.1 Severity (impact of a source code point on exe-

cution flow) 
As a program transition we consider any instruction at a source 

code point that accesses variable values of the program’s state. By 

measuring the Severity of a transition, we also assign the given 

Severity rating to the accessed variables; e.g., the IF-statement if 

isAdmin == true) {...} represents a check on isAdmin:  

This conditional branch is a control flow point where unintended 

execution deviations may occur [5]. Thus, the involved transition 

is classified as important (rating 3-5 on the scale). The variable 

isAdmin and its transition are rated as Medium (3). A variable is 

assigned only one rating, depending on how the variable is used in 

transitions throughout the AUT.  

Table 2 below depicts the Likert ratings for Severity. For example, 

if two transitions exist, an if-statement and a data input transition, 

then a variable used in both transition will get an overall Severity 

value of five (5) as it can be shown on the last line of Table 2. 

Formal presentations on the ranking system and its conditions can 

be found in [7]. 
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Table 2. App_LogGIC's Severity ranks in the Likert scale 

Linguistic 

Value 
Severity Condition 

Severity 

Level 

Low Random variable Severity 1 

Low Random variable Severity 2 

Medium Severity for variables used as data sinks (i.e. data originated from user input) 3 

Medium Severity for variables used in a conditional branch once on an “IF” branch 3 

High 
Severity for variables used in a conditional branch twice or more on an “IF” branch and/or 

a “SWITCH” branch 
4 

High 
Severity for variables used as a data sink and in a conditional branch on an “IF” branch 

and/or a “SWITCH” branch 
5 

 

Table 3. APP_LogGIC Vulnerability levels in the Likert scale 

Linguistic 

value 
Vulnerability Condition 

Vulnerability 

level 

Low No invariant incoherencies / No improper checks of variables. 0 

Medium 
Multiple propagation of input data using only general, insufficient checks on vari-

able content (Input Vector Method) 
2 

Medium 
Sound checks in variable contents but multiple propagation to method variables with 

relatively improper checks (Input Vector Method) 
3 

High 
Improper/insufficient checks on variables holding input data – Variables also used 

in branch conditions (Input Vector Method) 
4 

High 
Invariant enforcement AND invariant violation in alternate versions of same execu-

tion path  (Invariant-Based Method) 
5 

 

5.4.2 Vulnerability 
By measuring the Vulnerability of a tuple (τ, s, r) as seen in Section 

3.3, we also assign the given Vulnerability rating to the accessed 

variables used in transition τ and the corresponding program state. 

Similar to Severity, a variable is assigned only one overall Vulner-

ability rating, depending on how the variable is used in transitions 

throughout the AUT. Rating conditions are presented in Table 3. 

5.4.3 Risk 
Risk represents a calculated value assigned to each tuple (τ, s, r) 

and its corresponding variables, by aggregating the aforementioned 

Severity and Vulnerability ratings. Our tool produces a set of 

graphs where the combined risk factor is drawn. It is calculated us-

ing Fuzzy Set Theory: Fuzzy Logic’s linguistic variables in the 

form of IF-THEN rules (Fig. 6). For clarity, all scales (Severity, 

Vulnerability and Risk) share the same linguistic characterization: 

“Low”, “Medium” and “High”. 

Fig. 6 below shows how Risk is calculated. For the complete set of 

the defined formal Fuzzy Logic rules, please refer to [7].  

 

 

Table 4 that follows, depicts the fuzzy logic output for Risk, based 

on the aggregation of Severity and Vulnerability. 

 

Table 4. Risk for each variable = Severity x Vulnerability 

          Severity                                     

 

Vulnerability 

Low Medium High 

Low Low Low Medium 

Medium Low Medium High 

High Medium High High 

 

6. EXPERIMENTS AND TEST RESULTS 
We found no commercial test-bed or open-source revision of an 

AUT with a reported set of existing logical errors. For this reason, 

our experiments were based exclusively on formal fault injection 

into three different open-source applications:  

(i) A classification example of source code vulnerable to OS 

command injection. 

(ii) The Apollo Lunar Lander Reaction Jet Controller (RJC) 

provided along with SPF by the Java Pathfinder team in NASA 

Ames Research Center [9]. 

(iii) An SSH framework called JSCH from the JCraft company 

[18].  

IF Severity IS low AND Vulnerability IS low THEN Risk IS 

low 
Figure 6.  Example of a Fuzzy Logic rule 
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6.1 Example Classification: OS injection vul-

nerability 
As mentioned earlier in Section 4.1, APP_LogGIC is able to extract 

information about six categories of instructions using the compiled 

AST tree.  

Figure 7.  Juliet Suite OS command injection test case 

Let us consider this exploit shown above in Fig. 7. Variable data 

is initialized. Then it is given data from an outer source (input vec-

tor, namely properties.getProperty. At last, it is used as 

a sink in the following instruction, getRuntime().exec, with-

out checking nor applying any sanitization variable data’s data 

context. APP_LogGIC extracted the following information, con-

cerning this case: 

ASSIGN::20::data::""::bad::test.java 

ASSIGN::33::data::properties.getProperty::da

ta::bad::test.java 

VECTOR::33::2::data::PROPERTIES::"data"::tes

t.java 

DECLARE::69::Process::process::Runtime.getRu

ntime().exec::osCommand+data::bad::test.java 

VECTOR::69::2::exec::GETTEXT::Runtime::test.

java 

Figure 8. Extracted information on variable data  

By grouping information as shown in Fig. 8, APP_LogGIC 

detected the input vector and raised the Severity value to rank two 

(shown in bold above). Another two ranks are added since 

instruction exec is considered dangerous by APP_LogGIC (last line 

in Fig. 8). APP_ LogGIC found no sanitization checks in the code 

above, effectively checking the variable’s content. Thus, the 

Severity rank given was not lowered. This raised a flag and 

provided the user of our tool with enough information to detect the 

potential flaw without having to go through the entire code of the 

AUT. Ranks given as output by our method, considering variable 

data, can be seen in Tables 5-6 below. To compare the results, the 

reader is advised check them against Tables 2-3. 

 

Table 5. Severity rank assigned for Juliet Test case. 

Medium 
Severity for variables used as data sinks (i.e. 

data originated from user input) 
3 

 

Table 6. Vulnerability rank assigned for Juliet Test case. 

High 
No check or improper checks in variables depen-

ded on input data and used in branch conditions. 
4 

6.2 Invariant tests: RJC Application 
In order to validate APP_LogGIC’s effectiveness, we injected two 

faults into NASA’s RJC application. A malformed Java object was 

created that was initialized with an invalid value. The result of in-

jecting the object in the source code was a change in the AUT’s 

execution flow from its intended path to an erroneous one, thus 

causing a logical error.  

Our approach was based on recent results from the field of fault 

injection, which show that the key issue for the injection of softwa-

re faults is fault representativeness [15]: there is a strong relation-

ship between fault representativeness and fault locations, rather 

than between fault representativeness and the various types of 

faults injected. 

6.2.1 Injection metrics 
In order to inject faults into RJC, we had to pinpoint source code 

methods with relatively high representativeness. To do that, we 

used common software engineering metrics. According to [15], 

fault-load representativeness can be achieved by looking at the fol-

lowing metrics: Lines of Code and Cyclomatic Complexity which 

represent respectively the number of statements and the number of 

paths in a component [15] [23]. The Average methods per Class 

counts the number of methods defined per type in all Class objects 

in Java. If this metric scores high, it benefits these experiments sin-

ce method invocation paths will be more complex and, therefore, 

likely more error-prone. This metric synergizes well with Cyclo-

matic Complexity in the RJC experiments. With the above mentio-

ned metrics, we detected methods in RJC that have high represent-

tativeness and then we injected logic errors in them. Our analysis 

was based on the CodePro Analytix tool from Google. 

More specifically, we evaluated the system behavior when one of 

its components is faulty and not the behavior of the faulty compo-

nent itself. We did not consider additional metrics, as metrics tend 

to correlate with each other. On the other hand, the used metrics 

suffice in order to detect key points in the source code for fault in-

jection [15]. 

Table 7. Highest metric scores for NASA’s RJC 

 
Lines of 

code 

Cyclomatic 

complexity 

Average 

methods/type 

Rjc.Chart.java 10,48 3,31 29 

Rjc.Chart_1.java 13,68 3,31 29 

Rjc.Chart_2.java 13,68 3,31 29 

public void bad() throws Throwable 

{ 

   String data; 

   data = ""; /* Initialize data */ 

 

(...) 

 

/* FLAW: Read data from .properties file 

*/ 

   data =properties.getProperty("data"); 

   String osCommand; 

             

if(System.getProperty("os.name").toLowerC

ase().indexOf("win") >= 0) 

{ 

/* running on Windows */ 

osCommand = 

"c:\\WINDOWS\\SYSTEM32\\cmd.exe /c 

dir "; 

} 

 

(...) 

 

/* POTENTIAL FLAW: command injection */ 

Process process = 

Runtime.getRuntime().exec(osCommand + 

data); 

   process.waitFor(); 

} 
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Rjc.Reaction_Jet_

Control0.java 
99,50 7,50 2 

Rjc.Reaction_Jet_

Control1.java 
85,50 7,50 2 

Based on Table 7, these five classes have the highest ratings in RJC 

source code. Reaction_Jet_Control classes have the highest Lines 

of Code and Complexity values. Yet, their average methods per ty-

pe are significantly low. Also, they have no execution-defining 

branch statements inside their code able to diverge the execution of 

RJC. To this end, we decided to inject the faulty values in the 

rjc.Chart.Wait_for_stable_rate_100000203 _exec() method within 

Chart.java. JPF provided the needed method invocation paths that 

were used by APP_LogGIC to check the Daikon-generated dyna-

mic invariants. 8063 method invocation paths were satisfying the 

invariant “TopLevel_Chart_count == 2” and three injected paths 

were violating it.  

APP_LogGIC detected the dynamic invariant violation for both of 

the two fault injections. Variable TopLevel_Chart_count held 

injected data and was also used in an if-statement: APP_LogGIC’s 

Fuzzy Logic system classified the logical error with the following 

ratings: 

Table 8. Severity rank for RJC injection by APP_LogGIC 

Medium 

Severity for variables used in a CB ONCE on: 

o An “IF” branch 

o A‘SWITCH’ branch 

3 

 

Table 9. Vulnerability rank for RJC injection by 

APP_LogGIC 

High 

Invariant enforcement AND invariant violation in 

alternate versions of same execution path  (Inva-

riant-Based analysis) 

5 

 

A total of 6,240 control flow locations (such as if-statements) were 

gathered and analyzed from symbolic execution. Also, 515,854 

method invocations and variable Store and Invoke instructions 

were processed. The injected paths had 8,064 comparisons. Before 

injection, all 8,064 paths were found satisfying the rule. After 

injection, three (3) paths were found having different states (vari-

able TopLevel_Chart_count had different values while entering and 

exiting method exec()). Both injected faults were discovered and 

all possible deviated execution paths were detected. Data sets ac-

quired can be downloaded using the link at the end of this article.  

To cope with the inherent analysis scalability problems, we switc-

hed to method invocation paths instead of entire execution paths. 

This is consistent with the Daikon analysis, since Daikon dynamic 

invariants only describe a program’s execution during entry and 

exit of a method invocation. As a consequence, the size of the data 

set for the RJC AUT was reduced from 155MB to 73MB and the 

execution of the APP_LogGIC analysis was speed up by ~5 min, 

an improvement of up to 80%. 

6.3 Tainted object propagation tests: JSCH 

framework 
JSCH [18] is an SSH2 framework licensed under a BSD-style open-

source license. Here, we tested APP_LogGIC’s capability to detect 

logical errors manifesting from input data. We did not have to inject 

any logical errors in JSCH since, to some extent, some were already 

present in examples provided along with the framework’s code. 

JSCH uses SSH connections and built-in encryption for security. 

Yet, the examples provided with its source code have improper 

sanitization of user input. 

Using Tainted Object analysis, AST trees and the Java compiler, 

APP_LogGIC created a map of the AUT (variable assignments, 

declarations, method invocations etc.). The analysis followed the 

tainted input and gathered the variables were input data could reside 

(a.k.a. sinks) to detect whether sanitization checks are been enforc-

ed or not. APP_LogGIC detected variables without proper sanitiza-

tion and ranked these input vectors accordingly: 

Table 10. Severity rank for JSCH input vectors by 

APP_LogGIC 

Medium 
Severity for variables used as data sinks (i.e. 

data originated from user input) 
3 

 

Table 11. Vulnerability rank for JSCH input vectors by 

APP_LogGIC 

High 
No check or improper checks in variables depen-

ded on input data and used in branch conditions. 
4 

APP_LogGIC found out that sanitization checks in JSCH were only 

comparing initialization data to actual variable data. This is a com-

mon logical error [21], since such checks can only show that vari-

able data is updated compared to their initial value, but lack further 

content checks.  

The tool detected eleven (11) sinks where data was stored without 

proper sanitization. Its Fuzzy Logic system calculated which of the-

se points are dangerous based on their position and utilization insi-

de the source code; it then detected and ranked four of them as po-

tentially dangerous. Indeed, out of the eleven aforementioned vari-

ables used in sinks, the four variables that were detected by 

APP_LogGIC where the only ones that did not have proper saniti-

zation checks enforced on their data. 

6.4 Method applicability issues 
Even though APP_LogGIC’s result had a 100% success rate in 

flagging dangerous and injected points for logical errors, yet, the 

sample upon which APP_LogGIC was tested still remains very 

small to claim such a high average detection rate. The applicability 

of the method presented depends on how thoroughly the input vec-

tors and dynamic invariants are analyzed. At the moment, 

APP_LogGIC can only analyze simple invariants and two types of 

input vectors.  

Yet, judging from the parsable syntax of dynamic invariants, one 

can safely deduct that, with the right parser, most dynamic inva-

riants can be verified. This program could evolve into a potentially 

valuable tool: program tests created by developers using APP_Log-

GIC in various stages of the development cycle, could help detect 

logical errors and reduce the costly process of backtracking to fix 

them.  

State explosion remains a major issue, since it is a problem inherit-

ed by the used analysis techniques. Yet, state explosion is manage-

able using source code classification. Both Daikon and JPF can be 

configured to target specific source code methods of interest rather 

than analyze the entire source code of an AUT. Severity ranking 

helps this. The use of method invocation paths downsized the initial 

data set for RJC from 155MB to 73MB and speeded up execution 
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almost 80% in comparison with experiments using the entire exe-

cution paths (Table 12). Both of the analyzed applications are rela-

tively small in comparison to other AUT (in the order of many GB), 

so it is something to consider for future research or implementation. 

Table 12. Execution times for APP_LogGIC experiments 

 
Execution – Full 

paths and states 

Execution – Method in-

vocation paths and states 

Size 155 MB 73MB 

Time 

elapsed 

~ 18 min (RJC) 

~ 6 min (JSCH) 

~ 4 min (RJC) 

~ 6 min (JSCH) 

Errors 

detected 

2 out of 2 

injections (RJC) 
2 out of 2 (RJC) 

 

APP_LogGIC ran on an Intel Core 2 Duo E6550 PC (2.33 GHz, 

4GB RAM). 

7. CONCLUSIONS 
Preliminary results show that profiling the intended behavior of 

applications is feasible (up to a certain complexity level) even in 

real-world applications. Logic profiling aside, the use of Fuzzy Lo-

gic provides some advantages: (i) It reduces the data to be analyzed 

by focusing on high impact (dangerous) source code points (Seve-

rity ranking) and (ii) it is a way to treat false positives by assessing 

logical errors and ignoring irrelevant dynamic invariants (Vulner-

ability ranking): errors in non-critical points of the source code 

which do not divert execution can be discarded; i.e. invariant vio-

lations referring to source code points that do not somehow affect 

any conditional branches (such as if-statements) during execution.  

On the other hand, the method suffers by a number of limitations. 

The types of vulnerabilities found are limited to those which violate 

explicit, simple invariant rules like “a == -1” or “b == 

“string”“. Complex rules generated by Daikon need deep se-

mantic analysis to manipulate and understand. Also, Daikon does 

not support analysis of loops (“While” and “For”). On top of that, 

Daikon’s dynamic execution must cover as much AUT function-

ality as possible, if a logical error is to be discovered. Otherwise, 

dynamic invariants generated will not correctly describe the AUT 

behavior intended by its programmer.  

We plan to explore different approaches using design artifacts pro-

vided by developers during design for a more efficient reasoning of 

the source code [24]. The idea is to explore these challenges using 

semantic constructs such as XBRL [25] or OWL [26] to describe 

complex programming logic more soundly, without having to deal 

with Daikon’s restrictions.  

Another venue is to test this method on control systems used in cri-

tical infrastructures (CI) or manufacturing facilities. Widely used 

programmable logic controllers (PLC) control functions in critical 

infrastructures such as water, power, gas pipelines, and nuclear fa-

cilities [37][38]. Possible logic errors might lead to weaknesses that 

make it possible to execute commands not intended by their prog-

rammer. The effect of this attack might lead to cascading effects 

amongst numerous interconnected CI [39-42].  

Also, testing PLC will probably need information and business pro-

cess analysis of their execution. Thus, this research venue will pro-

bably intertwine with the research idea proposed above (i.e. searc-

hing AUT for logic errors using design artifacts provided by deve-

lopers). 

Note: Method invocation path files, files containing the AST tree 

mapping by APP_LogGIC, together with execution snapshots for 

RJC and JSCH, can be found at:  

http://www.cis.aueb.gr/Publications/APP_LogGIC-2014.zip 
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