
STRUCTURED PERFORMANCE MODELING AND ANALYSIS FOR OBJECT
BASED DISTRIBUTED SOFTWARE SYSTEMS

 P. Katsaros C. Lazos
 Department of Informatics Department of Informatics
 Aristotle University of Thessaloniki Aristotle University of Thessaloniki
 Thessaloniki, 54006, Greece Thessaloniki, 54006, Greece
 katsaros@csd.auth.gr clazos@csd.auth.gr

Abstract

In this paper, we address the problems related to the
performance modeling of object based software systems,
distributed across multiple platforms. Classical flat queuing
models seem to be inappropriate, because of the inevitable
complexity caused by the platform heterogeneity and the
dual client/server role that objects often play in their
interactions. Models should be structured vertically, in
hierarchical levels, as well as horizontally, in interconnected
model components. Each component may be using several
analytically intractable queuing network extensions, for the
precise representation of the synchronization phenomena
that arise in the various object interaction cases. The overall
model structure is utilized not only for incrementally
specifying a complex workload and resource contention
description, but also for approximately analyzing it, by
successive flow equivalence aggregations. In this context,
we discuss the properties that the model should possess, for
achieving satisfactory levels of accuracy. The modeling of
common design cases, like the synchronous object
invocation, the distributed callback and the multithreading
process structure, is illustrated, in the context of CORBA
based object interactions. The suggested approach promotes
the accomplishment of the appropriate type of analysis at the
most suitable level of abstraction, in respect to the specific
credibility and cost requirements of each study.

KEYWORDS: distributed objects, modeling and simulation,
performance evaluation, queuing networks

1 INTRODUCTION

This paper describes a structured modeling approach for
the performance analysis of object-based distributed
software systems. Such an analysis aims in:

• detecting and smoothing architectural bottlenecks
caused by communication costs due to object
interaction,

• detecting performance critical points, where a
more thorough modeling and design study should
be focused,

• achieving adequate scalability, in respect to the
specified application’s requirements.

Each performance model is composed of an anticipated
load, the corresponding computational work and an
appropriate contention model description.

The load description is the result of the so-called
workload characterization process, which aims in describing
the system’s global workload in terms of its main functional
classes and their intensities. We discriminate two different
types of loads: the user behavior based loads and the
artificial or synthetic loads.

A computational work description reflects the system’s
resource demands for a single workload object. As a
workload object, it is considered to be whatever represents
an entity of work, in the context of the conducted modeling
study; it can be a service request, a transaction or anything
else. The level of detail, imposed by the selection of the
elementary workload object, determines the level of detail of
the performance measures to be estimated. This means that
if for example the selected workload objects are service
requests, then the obtained performance results will be
expressed in terms of service requests.

As a contention model, a queuing or an extended queuing
network, can be formed, for representing the interconnection
of the available system resources in an adequate manner.
The term “extended” refers to the queuing networks, that
make use of a number of auxiliary nodes, which violate
product form assumptions, for providing increased modeling
flexibility (passive resource allocation nodes for the
representation of simultaneous resource possession
phenomena, fission/fusion nodes for the representation of
parallel flows of execution etc).

Performance analysis of distributed systems based on
one-level unstructured (flat) models is severally complex,
due to the intricate structure of these systems.

In this work, we suggest the adoption of a structured
modeling approach for the incremental development of
performance models, structured vertically in hierarchical
levels, as well as horizontally, in interconnected
components. Thus, any performance model is expressed as a

hierarchy of interacting contention models and a
corresponding hierarchy of workload objects (job types).
This approach provides a basis for:

• performing approximate, but sufficiently accurate
model analyses, using appropriate simulation or
hybrid simulation techniques, as for example the
ones described in [21] and [2],

• convenient experimentation with different design
alternatives in some parts of the model, without
modifying other parts of it.

The purpose of this paper is not the provision of a
complete systematic approach, but the introduction of a
basic set of foundation concepts and methodological issues
regarding the development of structured performance
models of object based distributed software systems. The
existence of a number of advanced modeling tools (like for
example the ones described in [1], [16] and [8]), for the
implementation and the analysis of performance models of
this form, is a first measure of the feasibility of the described
approach. Important considerations that are imposed by the
theory of near complete decomposability ([3] and [4]) and
have to be taken into account are also discussed. Finally, the
modeling of common design cases, like the synchronous
object invocation, the distributed callback and the
multithreading process structure, is illustrated, in the context
of CORBA based object interactions.

2 STRUCTURED PERFORMANCE MODELS

Structured performance modeling is achieved by
associating a high-level model’s component to a submodel,
so that the model-submodel pair is characterized by exactly
the same set of interactions. Thus, a high-level model may
yield a hierarchical structure, either:

• by separating part(s) of it into a set of
corresponding submodels,

• by refining model components into more detailed
submodels or

• by defining distinct interacting models, which
represent different levels of processing in the same
system.

Whatever specification technique is to be used, there is
no difference in the resulting hierarchy of models.
Generally, structured modeling constitutes an attractive
approach, in cases, where either:

• A model’s size and complexity raises
understanding, management and analysis
difficulties, as the system grows. When structuring

a performance model vertically, in hierarchical
levels and horizontally, in interconnected
components, the internal state of each lower-level
model is only partially transparent to its immediate
higher-level counterpart. In this way, we hide
information among the levels of the hierarchy and
keep the model easier to understand and analyze.

• Our aim is the analysis of the same model in a
number of alternative versions, each one
incorporating changes to specific parts
(components), without affecting the rest of it.

• The model includes a number of identical
submodels, which can be then analyzed only once
and directly aggregated in the rest of cases.

• Different solution techniques or modeling
paradigms are to be used for the performance
submodels.

Structured modeling provides a basis for:

• the adoption of a top-down model specification
procedure and

• for the approximate bottom-up analysis of the
resulting model, by successive composite
submodel aggregations, in the form of flow-
equivalent service centers.

Each submodel in the structure receives jobs from the
higher-level model(s), processes them according to well
defined processing patterns, called services, and when a
service request to a lower-level component is placed, then a
job is sent to the corresponding lower-level submodel. Thus,
each composite submodel provides a set of services and
makes use of services provided by lower-level composite
submodels and a number of basic components, which can be
either queuing or delay centers. Depending on the modeling
environment to be used, each service is described either by
an appropriate algorithmic language or by a graphical or
textual (extended) queuing network notation. The HIT tool
[1], for example, utilizes the first approach, while the
QNAP2 [16] and the RESQME [8] modeling environments,
the second one.

Since each model component is possible to provide more
than one service, it is actually considered as serving a
number of different job classes. Thus, the overall
performance model is eventually expressed as a set of
hierarchically interacting multichain queuing models, with
service centers that can impose service demands either to
lower-level composite models or to predefined basic
components, which represent the system’s hardware
resources and the network.

C P U - A N etw o rk C P U - B D isk - B

A irlin e
R eserv e tio n

A p p

O R B - A

B - O p S y stem
ca lls

O R B - B

S ea rch A g en t

A - O p S y stem
ca lls

D a ta b a se

R eserv a tio n
A g en t

D a ta b a se
C o n n ec tiv ity

L ib ra ry

Airline Reservation App search_for_flight Search Agent search_flight
 search_for_seats_on_flight search_seats
 search_for_active_reservation search_reserv
 make_reservation Reservation Agent mk_reserv
 cancel_reservation canc_reserv
ORB – A, ORB – B send_method_invoc A – Op System calls,
 receive_method_invoc B – Op System calls memcpy, writev,

 send_response etc
 receive_response Database process_query
CPU – A, CPU – B exec_instr Disk – B disk_access
Network transfer_msg

Figure 1 A structured performance model of a CORBA based airline reservation system and some of the
services provided by each one of the model’s components

Our framework suggests using platform independent

service demand descriptions for the service calls to the
system’s hardware and network resources. Thus, machine
instructions are an appropriate way for quantifying CPU use,
as well as visit counts are for I/O activity and sent messages
for network resource demand descriptions. As a
consequence, the hardware service demands are fully
determined by the average time spent on each visit at the
resource and this allows easy model parameterization in
different hardware configuration cases. Moreover, services
provided by composite (sub)models should be possible to be
described parametrically, based on appropriate fitted data
and environment dependent functions, in order to account
for the varying conditions under which they are executed. As
regarding, the system’s load scenarios, they are usually
specified as a set of workload intensities for each one of the
services provided by the model’s top-level component.

In accordance to the modeling concepts discussed so far,
Figure 1 introduces the performance model of a sample
airline reservation application.

Structured modeling also provides, as it has been already
noted, a basis for applying the most suitable submodel
solution techniques and approximately aggregating them, in

the form of flow-equivalent service centers, for analyzing
the model in higher levels of abstraction. Even if one or
more submodels must be solved using simulation, such an
analysis is likely to yield important computational savings,
since, in each submodel aggregation, a large number of
events is replaced by a single event for the high-level model
analysis. The credibility of the employed evaluation
procedure is strongly dependent on the modeling
environment to be used. However, there are also some
important considerations, imposed by the theory of near
complete decomposability, that have to be taken into
account. More precisely, a model is said ([3] and [4]) to be
near completely decomposable, if it is made up of
submodels that always reach an internal equilibrium between
external interactions. Analysis of such models by
decomposition and aggregation guarantees a bounded error
0, which depends on the highest level of coupling between
the submodels. Thus, the choice of the partition of the
submodels is crucial, in order to obtain decompositions with
small 0. Equally important, the theory does not prescribe the
solution techniques to be used for the submodel and the
aggregated model analyses.

Each submodel is solved for all possible job populations
(and job class combinations) that can arise. The technique of

short-circuiting is applied, such as any job that leaves the
submodel is immediately reentered into that. The average
residence times between entering and leaving the submodel
are collected for all job classes and they are used to
approximate the performance of the flow-equivalent, load
dependent aggregate center in the high-level model analysis.

 However, it is obvious, that analysis of submodel
hierarchies is only possible, if a separate computational work
derivation procedure is to be employed. Such a procedure
aims in the model’s load dependent generation of the
computational work devolved on the sub-hierarchy’s top-
level component. An easy to apply alternative is the
Structure and Performance (SP) method ([24]). According to
this, for any model component k, the complexity matrix Ckr
specifies the average number of times that each of the
services provided by the lower level component r is
accessed, when each of component k’s provided services is
executed. Thus, let us consider,

NMN

M

kr

cc

cc

C

serviceNpr

servicepr

serviceMusserviceus

...
....
....
....

...

...

1

111

_

1_

1

=

where cij, 1 ≤ i ≤ N, 1 ≤ j ≤ M, is the average number of
times that service j - provided by the lower level submodel r
- is accessed, every time that service i is called. The
computational work Wkl devolved on any specific
component l, by service requests originated from a possibly
non-adjacent higher-level component k, is the sum of the
products of the complexity matrices of all possible
intervening component paths. Thus, for the sample
application presented in Figure 1, the computational work
devolved on the B-OpSysCalls component is given as:

V%2S6\V&DOO'%&RQ/LE'%&RQ/LEV$JHQWV$JHQWVSSLU

V%2S6\V&DOO25%%25%%V$JHQWV$JHQWVSSLU

V%2S6\V&DOO'%&RQ/LE'%&RQ/LE6HDU$JHQW6HDU$JHQWVSSLU

V%2S6\V&DOO25%%25%%6HDU$JHQW6HDU$JHQWVSSLUV%2S6\V&DOOVSSLU

&&&

&&&

&&&

&&&&

−−−

−−−

−−−

−−−−

⋅⋅

+⋅⋅

+⋅⋅

+⋅⋅=

5H5H5H

5H5H5H

5H

5H5H

Near complete decomposability, implies that application
of successive bottom-up aggregations, can only take place
([5]) at the levels of the model’s hierarchy, where either,

• weak interactions between the adjacent model
components are observed, or

• the time scale of the occurrence of the events in
the higher-level component and the events in the
lower-level one is very different.

Generally, in computer system models, it is true that
consumption of the so-called short-time resources occurs at

a rate, which is typically much greater than the changes
observed in the set of active jobs in the model. However, the
basic aforementioned rules have always to be taken into
account, if a bottom-up aggregation analysis procedure is to
be used. Accumulated small aggregation errors may have
disastrous effects for the overall accuracy. Therefore, it is
important for the modeling environment to be used, to offer
the possibility to obtain confidence interval and error bound
estimates.

Some other considerations that have also to be taken into
account are:

• To not apply decomposition to submodel
hierarchies with multiple entries, especially when
the selection of the entry point is dependent on
events outside of the submodels.

• To avoid shaping submodels, which contain
events, requiring synchronization with events
external to their submodel hierarchy.

• To avoid shaping submodels with long execution
times, since analyzing them by simulation is not
likely to yield important computational savings.

3 PERFORMANCE MODELING OF OBJECT
 BASED DISTRIBUTED SOFTWARE
 SYSTEMS

Traditional one-level unstructured models do not
constitute an adequate means for the credible representation
of object based distributed systems, mainly because of:

• The lack of features that promote the combined
modeling of hardware and software contention as
for example the contention observed for accessing
software servers with a limited number of pseudo-
concurrent threads or for accessing locks on files,
database tables etc.

• The lack of features for the representation of the
dual client/server role that objects often play in
their interaction.

• The lack of features for the representation of
commonly used design patterns such as the
callback interaction and the recursive object
invocation cases.

However, we believe that the modeling framework
described in the previous section is certainly addressing the
first one of the aforementioned limitations and it is also
amenable to appropriately chosen extensions for addressing
the other two.

We suggest the use of a number of well known ([14])
extended queuing modeling constructs, for the representation
of blocking, simultaneous resource possession and parallel
execution flows phenomena. Their use is illustrated in the
context of CORBA-based object interaction cases and is
supported by the modeling tools mentioned so far.

More precisely, a set of four auxiliary nodes has been
found necessary, to allow process blocking and simultaneous
resource possession within model components. An allocate
node (Figure 2a) models acquisition of (a number of
instances of) a resource. The available instances of the
resource are modeled as a pool of tokens. If too few
instances of the resource are available to a transaction, it is
forced to wait in the queue. A release node (Figure 2b)
returns the acquired resource(s). A create node (Figure 2c)
produces a number of instances of the resource, while a
destroy node (Figure 2d) consumes them.

p o o l o f to k en s

(a) (b)

(c) (d)

Figure 2 The set of simultaneous resource possession
modeling constructs

Simultaneous resource possession is a commonplace in
CORBA-based distributed systems, since their basic
communication primitive is the synchronous object
invocation, which causes blocking of the caller until it gets
the reply. Furthermore, nested invocations are also used
quite frequently, causing several objects to be successively
blocked, unless multi-threading is used in the object
implementations. Figure 3 illustrates the representation of a
synchronous object invocation case.

1

O R B - A O b jec t B

ORB – A: a flow equivalent delay representation of a
send_method_invoc service request to a lower
level ORB model component

Object B: a flow equivalent delay representation of a
service request to a lower level server object

Figure 3 Synchronous object invocation using
simultaneous resource possession
constructs

Asynchronous, one-way object invocation is also possible
in CORBA-based software architectures, but it is most often
used as part of the callback interaction pattern. In this case,
the client object passes, as a parameter of the call, a
reference to a callback handler and continues processing.
When the invoked object implementation is ready to return
the result of the method call, then a new one-way invocation
of the callback handler is issued. The parallel execution
flows of the callback’s interaction pattern may be easily
represented using the well-known job fission and fusion
auxiliary nodes (Figure 4).

SDUDOOHO H[HFXWLRQ

IORZ

O R B - A O bject B

Figure 4 The callback interaction pattern

Simultaneous resource possession constructs (Figure 2)
are also an appropriate means for the representation of most
common threading policies. The most important of them
have been experimentally studied in [20]. Thread pool
policies, with a fixed number of threads, can be easily
represented by selecting the number of tokens, in the
modeling construct of Figure 2, to be equal to the number of
available threads. Dynamic thread creation and destruction
policies can be also easily represented, using the create and
destroy auxiliary nodes of the same figure.

The level of detail of a structured performance model
should be adjusted such that:

• its components correspond to the software
components that are most likely to be changed or
exchanged,

• the model is robust with respect to possible
modifications,

• the decomposition accuracy considerations
mentioned in the previous section are taken into
account,

• it is always possible to provide hardware resource
demand measurements or estimates in terms of
component service requests and to satisfy the
contention model’s parameter needs.

However, it is often desirable and hence it should be also
possible to parametrically describe service demands in terms
of data or environment dependent factors. It has been found

([6] and [7]) for example, that in CORBA based distributed
software systems,

• invocation marshaling/unmarshaling costs are
mainly determined by the amount and the types of
the transmitted data and

• invocation demultiplexing costs, which also
constitute a considerable amount of the total
invocation costs, are strongly dependent on the
number of methods declared in the corresponding
IDL interface and the number of active object
implementations in the same platform.

Structured performance models should be exploited for
conducting the appropriate type of analysis at the most
suitable level of abstraction, in respect to the specific
credibility and cost requirements of each study. Some of
these types of analysis, which are more thoroughly discussed
in [12], are:

• The bottleneck analysis, which aims in detecting
the most utilized components that cause
performance degradation in high load situations
and are worth to be analyzed – redesigned in a
lower level of abstraction.

• The sensitivity analysis, which aims in delivering
means for the fast calculation of performance
changes in respect to various (combinations of)
model parameter changes. A metamodeling based
sensitivity analysis approach is described in [11]
and it can be easily adapted for use either for
bounds analysis, parametric analysis, scalability
analysis and system optimization purposes.

Performance modeling and analysis of object based
distributed software systems has been recently become the
subject of a number of important research activities. Thus,
[23] introduces a methodology for transforming distributed
object based designs into performance models that fit into
the well-known software performance engineering (SPE)
approach. Two separate notations are proposed: execution
graphs that represent the software structure and information
processing graphs, which are a form of extended queuing
networks that model the overall system performance. The
later are calibrated in respect to the former.

In [10], the author introduces a hierarchical model
structure based on the so-called augmented queuing
networks that support the use of simultaneous resource
possession characteristics. The resulted model is
decomposed into a number of interdependent product form
multi-class queuing networks that are iteratively analyzed by
an algorithm based on successive surrogate delay
approximations ([9]).

The layered queuing network (LQN) formalism is
another hierarchical representation that allows a software
component to act simultaneously as a client to a number of
software components or hardware resources and as a server
to other software components. The proposed evaluation
algorithms ([18] and [25]) are based on the iterative
computation of a series of intermediate results, up to the
time instant, where the estimated results converge.

A similar layered queuing network model is proposed in
[17] for representing client-server systems where
communication is carried out with synchronous and
asynchronous messages. The model makes use of blocking
queuing centers for representing synchronous
communication phenomena.

An appropriate flow-equivalence algorithm for analyzing
multi-layered models is introduced and evaluated in [13].

Similar to our structured modeling approach, that features
a high degree of modeling flexibility at the cost of being
restricted to only pure or hybrid analysis procedures, are, the
recent work of [19] and the ongoing one, described in [22].

4 CONCLUSIONS AND FURTHER WORK

In this article, we presented a set of foundation concepts
and theory and methodology issues regarding the structured
performance modeling of object-based distributed systems.
Such an approach provides a basis for a top-down stepwise
model development, as well as, for its approximate analysis
by decomposition at the most appropriate points of the
model’s hierarchy.

The described conceptual framework is to be integrated
with a well-established and extensible modeling language.
This language has to be characterized by easiness in
representing hierarchical model structures and a relative
proximity to the systems’ functional descriptions. For these
reasons, we will consider, in future work, the applicability of
the recent extensions of the Unified Modeling Language
(UML) that are specified in [15].

5 REFERENCES

[1] H. Beilner, J. Mater, N. Wei�enberg, “Towards a
performance modeling environment: News on HIT”, Proc. of
the 4th International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation, Palma de
Mallorca, Plenum Publishing Corporation, pp. 57-75, 1988.

[2] A. Blum, L. Donatiello, P. Heidelberger, S. Lavenberg
and E. A. MacNair, “Experiments with decomposition of
extended queueing network models”, In D. Potier (ed.):
Modeling Techniques and Tools for Performance Analysis,
Elsevier Science (North-Holland), pp. 623-640, 1985.

[3] P. Courtois, “Decomposability, instabilities, and
saturation in multiprogramming systems”, Communications
of the ACM, vol. 18 (7), pp. 371-377, 1975.

[4] P. J. Courtois, Decomposability: Queuing and Computer
System Applications, ACM Series, Academic Press, New
York, 1977.

[5] P. Courtois, “On time and space decomposition of
complex structures”, Communications of the ACM, vol. 28
(6), pp. 590-603, 1985.

[6] A. S. Gokhale and D. C. Schmidt, “Evaluating CORBA
latency and scalability over high speed ATM networks”,
Proceedings of the International Conference of Distributed
Computing Systems, Baltimore, Maryland, 1997.

[7] A. S. Gokhale and D. C. Schmidt, “Evaluating the
performance of demultiplexing strategies for real-time
CORBA”, Proceedings of the GLOBECOM’97, Phoenix,
AZ, 1997.

[8] K. J. Gordon, R. F. Gordon, J. F. Kurose and E. A.
MacNair, “An extensible visual environment for
construction and analysis of hierarchically – structured
models of resource contention systems”, Management
Science, vol. 37 (6), pp. 714-732, 1991.

[9] P. A. Jacobson and E. D. Lazowska, “Analyzing queuing
networks with simultaneous resource possession”,
Communications of the ACM, vol. 25 (2), pp. 142-151,
1982.

[10] P. Kahkipuro, Performance modeling framework for
CORBA based distributed systems, PhD thesis, Department
of Computer Science, University of Helsinki, Finland, 2000.

[11] P. Katsaros, E. Angelis and C. Lazos, “Applied
multiresponse metamodeling for queuing networks
experiments: Problems and perspectives”, Proceedings of the
4th International EUROSIM Congress, Eurosim, Delfts, The
Netherlands, 2001.

[12] P. Katsaros, Performance analysis of distributed
software systems, PhD thesis (in Greek), Department of
Informatics, Aristotle University of Thessaloniki, Greece,
2002.

[13] T. Kurasugi and I. Kino, ”Approximation methods for
two-layer queuing models”, Performance Evaluation, vol.
36-37, pp. 55-70, 1999.

[14] S. S. Lavenberg (Ed.), Computer Performance
Modeling Handbook, Academic Press, 1983.

[15] OMG document number: ad/2001-06-14, Response to
the OMG RFP for Schedulability, Performance and Time, B.
Selic and A. Moore (ed.), ARTiSAN Software Tools, Inc., I-
Logix Inc., Rational Software Corp., Telelogic AB, TimeSys
Corporation, Tri-Pacific Software, 2001.

[16] D. Potier and M. Veran, “QNAP2: a portable
environment for queuing systems modelling”, In Proc. of the
1st International Conference on Modeling Techniques and
Tools for Performance Analysis, Amsterdam, pp. 25-63,
1984.

 [17] S. Ramesh and H. G. Perros, “A multilayer client-
server queuing network model with synchronous and
asynchronous messages”, IEEE Transactions on Software
Engineering, vol. 26 (11), pp. 1086-1100, 2000.

[18] J. A. Rolia and K. C. Sevcik, ”The method of layers”,
IEEE Transactions on Software Engineering, vol. 21 (8), pp.
689-700, 1995.

[19] N. N. Savino-Vazquez, J. L. Anciano-Martin, S.
Dumas, J. A. Corbacho, R. Puigjaner, D. Boudigue and G.
Gardarin, “Predicting the behavior of three-tiered
applications: dealing with distributed-object technology and
databases”, Performance Evaluation, vol. 39, pp. 207-233,
2000.

[20] D. C. Schmidt, “Evaluating architectures for multi-
threaded CORBA object request brokers”, Communications
of the ACM, vol. 41 (10), pp. 54-60, 1998.

[21] H. D. Schwetman, “Hybrid simulation models of
computer systems”, Communications of the ACM, vol. 21
(9), pp. 718-723, 1978.

[22] D. Smarkusky, R. Ammar, I. Antonios and H. Sholl,
“Hierarchical performance modeling for distributed system
architectures”, Proceedings of the 5th IEEE Symposium on
Computers & Communications, 2000.

[23] C. U. Smith and L. G. Williams, Performance solutions:
A practical guide to creating responsive, scalable software,
Addison Wesley, 2001.

[24] V. Vetland, P. Hughes and A. Solvberg, “Improved
parameter capture for simulation based on composite work
models of software”, In Proceedings of the 1993 Summer
Computer Simulation Conference, Boston, Massachusetts,
pp. 110-115, 1993.

[25] M. C. Woodside, J. E. Neilson, D. C. Petriu and S.
Majumdar, “The stochastic rendezvous network model for
performance of synchronous client-server-like distributed
software”, IEEE Transactions on Computers, vol. 44 (1), pp.
20-34, 1995.

	Abstract
	1	INTRODUCTION
	2	STRUCTURED PERFORMANCE MODELS
	3	PERFORMANCE MODELING OF OBJECT 	BASED DISTRIBUTED SOFTWARE 	SYSTEMS

