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Abstract 

In this paper, we address the problems related to the 
performance modeling of object based software systems, 
distributed across multiple platforms. Classical flat queuing 
models seem to be inappropriate, because of the inevitable 
complexity caused by the platform heterogeneity and the 
dual client/server role that objects often play in their 
interactions. Models should be structured vertically, in 
hierarchical levels, as well as horizontally, in interconnected 
model components. Each component may be using several 
analytically intractable queuing network extensions, for the 
precise representation of the synchronization phenomena 
that arise in the various object interaction cases. The overall 
model structure is utilized not only for incrementally 
specifying a complex workload and resource contention 
description, but also for approximately analyzing it, by 
successive flow equivalence aggregations. In this context, 
we discuss the properties that the model should possess, for 
achieving satisfactory levels of accuracy. The modeling of 
common design cases, like the synchronous object 
invocation, the distributed callback and the multithreading 
process structure, is illustrated, in the context of CORBA 
based object interactions. The suggested approach promotes 
the accomplishment of the appropriate type of analysis at the 
most suitable level of abstraction, in respect to the specific 
credibility and cost requirements of each study. 
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1 INTRODUCTION 

This paper describes a structured modeling approach for 
the performance analysis of object-based distributed 
software systems. Such an analysis aims in: 

• detecting and smoothing architectural bottlenecks 
caused by communication costs due to object 
interaction, 

• detecting performance critical points, where a 
more thorough modeling and design study should 
be focused, 

• achieving adequate scalability, in respect to the 
specified application’s requirements. 

Each performance model is composed of an anticipated 
load, the corresponding computational work and an 
appropriate contention model description.  

The load description is the result of the so-called 
workload characterization process, which aims in describing 
the system’s global workload in terms of its main functional 
classes and their intensities. We discriminate two different 
types of loads: the user behavior based loads and the 
artificial or synthetic loads.  

A computational work description reflects the system’s 
resource demands for a single workload object. As a 
workload object, it is considered to be whatever represents 
an entity of work, in the context of the conducted modeling 
study; it can be a service request, a transaction or anything 
else. The level of detail, imposed by the selection of the 
elementary workload object, determines the level of detail of 
the performance measures to be estimated. This means that 
if for example the selected workload objects are service 
requests, then the obtained performance results will be 
expressed in terms of service requests. 

As a contention model, a queuing or an extended queuing 
network, can be formed, for representing the interconnection 
of the available system resources in an adequate manner. 
The term “extended” refers to the queuing networks, that 
make use of a number of auxiliary nodes, which violate 
product form assumptions, for providing increased modeling 
flexibility (passive resource allocation nodes for the 
representation of simultaneous resource possession 
phenomena, fission/fusion nodes for the representation of 
parallel flows of execution etc).  

Performance analysis of distributed systems based on 
one-level unstructured (flat) models is severally complex, 
due to the intricate structure of these systems.  

In this work, we suggest the adoption of a structured 
modeling approach for the incremental development of 
performance models, structured vertically in hierarchical 
levels, as well as horizontally, in interconnected 
components. Thus, any performance model is expressed as a 



hierarchy of interacting contention models and a 
corresponding hierarchy of workload objects (job types). 
This approach provides a basis for: 

• performing approximate, but sufficiently accurate 
model analyses, using appropriate simulation or 
hybrid simulation techniques, as for example the 
ones described in [21] and [2], 

• convenient experimentation with different design 
alternatives in some parts of the model, without 
modifying other parts of it. 

The purpose of this paper is not the provision of a 
complete systematic approach, but the introduction of a 
basic set of foundation concepts and methodological issues 
regarding the development of structured performance 
models of object based distributed software systems. The 
existence of a number of advanced modeling tools (like for 
example the ones described in [1], [16] and [8]), for the 
implementation and the analysis of performance models of 
this form, is a first measure of the feasibility of the described 
approach. Important considerations that are imposed by the 
theory of near complete decomposability ([3] and [4]) and 
have to be taken into account are also discussed. Finally, the 
modeling of common design cases, like the synchronous 
object invocation, the distributed callback and the 
multithreading process structure, is illustrated, in the context 
of CORBA based object interactions. 

2 STRUCTURED PERFORMANCE MODELS 

Structured performance modeling is achieved by 
associating a high-level model’s component to a submodel, 
so that the model-submodel pair is characterized by exactly 
the same set of interactions. Thus, a high-level model may 
yield a hierarchical structure, either: 

• by separating part(s) of it into a set of 
corresponding submodels, 

• by refining model components into more detailed 
submodels or 

• by defining distinct interacting models, which 
represent different levels of processing in the same 
system. 

Whatever specification technique is to be used, there is 
no difference in the resulting hierarchy of models. 
Generally, structured modeling constitutes an attractive 
approach, in cases, where either: 

• A model’s size and complexity raises 
understanding, management and analysis 
difficulties, as the system grows. When structuring 

a performance model vertically, in hierarchical 
levels and horizontally, in interconnected 
components, the internal state of each lower-level 
model is only partially transparent to its immediate 
higher-level counterpart. In this way, we hide 
information among the levels of the hierarchy and 
keep the model easier to understand and analyze. 

• Our aim is the analysis of the same model in a 
number of alternative versions, each one 
incorporating changes to specific parts 
(components), without affecting the rest of it. 

• The model includes a number of identical 
submodels, which can be then analyzed only once 
and directly aggregated in the rest of cases. 

• Different solution techniques or modeling 
paradigms are to be used for the performance 
submodels. 

Structured modeling provides a basis for:  

• the adoption of a top-down model specification 
procedure and  

• for the approximate bottom-up analysis of the 
resulting model, by successive composite 
submodel aggregations, in the form of flow-
equivalent service centers.  

Each submodel in the structure receives jobs from the 
higher-level model(s), processes them according to well 
defined processing patterns, called services, and when a 
service request to a lower-level component is placed, then a 
job is sent to the corresponding lower-level submodel. Thus, 
each composite submodel provides a set of services and 
makes use of services provided by lower-level composite 
submodels and a number of basic components, which can be 
either queuing or delay centers. Depending on the modeling 
environment to be used, each service is described either by 
an appropriate algorithmic language or by a graphical or 
textual (extended) queuing network notation. The HIT tool 
[1], for example, utilizes the first approach, while the 
QNAP2 [16] and the RESQME [8] modeling environments, 
the second one. 

Since each model component is possible to provide more 
than one service, it is actually considered as serving a 
number of different job classes. Thus, the overall 
performance model is eventually expressed as a set of 
hierarchically interacting multichain queuing models, with 
service centers that can impose service demands either to 
lower-level composite models or to predefined basic 
components, which represent the system’s hardware 
resources and the network. 
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Airline Reservation App search_for_flight   Search Agent  search_flight 
   search_for_seats_on_flight     search_seats 
   search_for_active_reservation     search_reserv 
   make_reservation   Reservation Agent  mk_reserv 
   cancel_reservation      canc_reserv 
ORB – A, ORB – B send_method_invoc   A – Op System calls, 
   receive_method_invoc   B – Op System calls  memcpy, writev, 

  send_response      etc 
   receive_response    Database   process_query 
CPU – A, CPU – B  exec_instr    Disk – B   disk_access 
Network   transfer_msg 

Figure 1 A structured performance model of a CORBA based airline reservation system and some of the 
services provided by each one of the model’s components 

 
Our framework suggests using platform independent 

service demand descriptions for the service calls to the 
system’s hardware and network resources. Thus, machine 
instructions are an appropriate way for quantifying CPU use, 
as well as visit counts are for I/O activity and sent messages 
for network resource demand descriptions. As a 
consequence, the hardware service demands are fully 
determined by the average time spent on each visit at the 
resource and this allows easy model parameterization in 
different hardware configuration cases. Moreover, services 
provided by composite (sub)models should be possible to be 
described parametrically, based on appropriate fitted data 
and environment dependent functions, in order to account 
for the varying conditions under which they are executed. As 
regarding, the system’s load scenarios, they are usually 
specified as a set of workload intensities for each one of the 
services provided by the model’s top-level component. 

In accordance to the modeling concepts discussed so far, 
Figure 1 introduces the performance model of a sample 
airline reservation application. 

Structured modeling also provides, as it has been already 
noted, a basis for applying the most suitable submodel 
solution techniques and approximately aggregating them, in 

the form of flow-equivalent service centers, for analyzing 
the model in higher levels of abstraction. Even if one or 
more submodels must be solved using simulation, such an 
analysis is likely to yield important computational savings, 
since, in each submodel aggregation, a large number of 
events is replaced by a single event for the high-level model 
analysis. The credibility of the employed evaluation 
procedure is strongly dependent on the modeling 
environment to be used. However, there are also some 
important considerations, imposed by the theory of near 
complete decomposability, that have to be taken into 
account. More precisely, a model is said ([3] and [4]) to be 
near completely decomposable, if it is made up of 
submodels that always reach an internal equilibrium between 
external interactions. Analysis of such models by 
decomposition and aggregation guarantees a bounded error 
0, which depends on the highest level of coupling between 
the submodels. Thus, the choice of the partition of the 
submodels is crucial, in order to obtain decompositions with 
small 0. Equally important, the theory does not prescribe the 
solution techniques to be used for the submodel and the 
aggregated model analyses.  

Each submodel is solved for all possible job populations 
(and job class combinations) that can arise. The technique of 



short-circuiting is applied, such as any job that leaves the 
submodel is immediately reentered into that. The average 
residence times between entering and leaving the submodel 
are collected for all job classes and they are used to 
approximate the performance of the flow-equivalent, load 
dependent aggregate center in the high-level model analysis. 

 However, it is obvious, that analysis of submodel 
hierarchies is only possible, if a separate computational work 
derivation procedure is to be employed. Such a procedure 
aims in the model’s load dependent generation of the 
computational work devolved on the sub-hierarchy’s top-
level component. An easy to apply alternative is the 
Structure and Performance (SP) method ([24]). According to 
this, for any model component k, the complexity matrix Ckr 
specifies the average number of times that each of the 
services provided by the lower level component r is 
accessed, when each of component k’s provided services is 
executed. Thus, let us consider, 
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where cij, 1 ≤ i ≤ N, 1 ≤ j ≤ M, is the average number of 
times that service j - provided by the lower level submodel r 
- is accessed, every time that service i is called. The 
computational work Wkl devolved on any specific 
component l, by service requests originated from a possibly 
non-adjacent higher-level component k, is the sum of the 
products of the complexity matrices of all possible 
intervening component paths. Thus, for the sample 
application presented in Figure 1, the computational work 
devolved on the B-OpSysCalls component is given as: 
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Near complete decomposability, implies that application 
of successive bottom-up aggregations, can only take place 
([5]) at the levels of the model’s hierarchy, where either,  

• weak interactions between the adjacent model 
components are observed, or  

• the time scale of the occurrence of the events in 
the higher-level component and the events in the 
lower-level one is very different. 

Generally, in computer system models, it is true that 
consumption of the so-called short-time resources occurs at 

a rate, which is typically much greater than the changes 
observed in the set of active jobs in the model. However, the 
basic aforementioned rules have always to be taken into 
account, if a bottom-up aggregation analysis procedure is to 
be used. Accumulated small aggregation errors may have 
disastrous effects for the overall accuracy. Therefore, it is 
important for the modeling environment to be used, to offer 
the possibility to obtain confidence interval and error bound 
estimates.  

Some other considerations that have also to be taken into 
account are: 

• To not apply decomposition to submodel 
hierarchies with multiple entries, especially when 
the selection of the entry point is dependent on 
events outside of the submodels. 

• To avoid shaping submodels, which contain 
events, requiring synchronization with events 
external to their submodel hierarchy. 

• To avoid shaping submodels with long execution 
times, since analyzing them by simulation is not 
likely to yield important computational savings. 

3 PERFORMANCE MODELING OF OBJECT 
 BASED DISTRIBUTED SOFTWARE 
 SYSTEMS 

Traditional one-level unstructured models do not 
constitute an adequate means for the credible representation 
of object based distributed systems, mainly because of: 

• The lack of features that promote the combined 
modeling of hardware and software contention as 
for example the contention observed for accessing 
software servers with a limited number of pseudo-
concurrent threads or for accessing locks on files, 
database tables etc. 

• The lack of features for the representation of the 
dual client/server role that objects often play in 
their interaction. 

• The lack of features for the representation of 
commonly used design patterns such as the 
callback interaction and the recursive object 
invocation cases. 

However, we believe that the modeling framework 
described in the previous section is certainly addressing the 
first one of the aforementioned limitations and it is also 
amenable to appropriately chosen extensions for addressing 
the other two. 



We suggest the use of a number of well known ([14]) 
extended queuing modeling constructs, for the representation 
of blocking, simultaneous resource possession and parallel 
execution flows phenomena. Their use is illustrated in the 
context of CORBA-based object interaction cases and is 
supported by the modeling tools mentioned so far. 

More precisely, a set of four auxiliary nodes has been 
found necessary, to allow process blocking and simultaneous 
resource possession within model components. An allocate 
node (Figure 2a) models acquisition of (a number of 
instances of) a resource. The available instances of the 
resource are modeled as a pool of tokens. If too few 
instances of the resource are available to a transaction, it is 
forced to wait in the queue. A release node (Figure 2b) 
returns the acquired resource(s). A create node (Figure 2c) 
produces a number of instances of the resource, while a 
destroy node (Figure 2d) consumes them. 

 

p o o l o f to k en s
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(c ) (d )  

Figure 2 The set of simultaneous resource possession 
modeling constructs 

Simultaneous resource possession is a commonplace in 
CORBA-based distributed systems, since their basic 
communication primitive is the synchronous object 
invocation, which causes blocking of the caller until it gets 
the reply. Furthermore, nested invocations are also used 
quite frequently, causing several objects to be successively 
blocked, unless multi-threading is used in the object 
implementations. Figure 3 illustrates the representation of a 
synchronous object invocation case. 
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ORB – A: a flow equivalent delay representation of a 
send_method_invoc service request to a lower 
level ORB model component 

Object B: a flow equivalent delay representation of a 
service request to a lower level server object 

Figure 3 Synchronous object invocation using 
simultaneous resource possession 
constructs  

Asynchronous, one-way object invocation is also possible 
in CORBA-based software architectures, but it is most often 
used as part of the callback interaction pattern. In this case, 
the client object passes, as a parameter of the call, a 
reference to a callback handler and continues processing. 
When the invoked object implementation is ready to return 
the result of the method call, then a new one-way invocation 
of the callback handler is issued. The parallel execution 
flows of the callback’s interaction pattern may be easily 
represented using the well-known job fission and fusion 
auxiliary nodes (Figure 4). 
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Figure 4 The callback interaction pattern 

Simultaneous resource possession constructs (Figure 2) 
are also an appropriate means for the representation of most 
common threading policies. The most important of them 
have been experimentally studied in [20]. Thread pool 
policies, with a fixed number of threads, can be easily 
represented by selecting the number of tokens, in the 
modeling construct of Figure 2, to be equal to the number of 
available threads. Dynamic thread creation and destruction 
policies can be also easily represented, using the create and 
destroy auxiliary nodes of the same figure.  

The level of detail of a structured performance model 
should be adjusted such that: 

• its components correspond to the software 
components that are most likely to be changed or 
exchanged, 

• the model is robust with respect to possible 
modifications, 

• the decomposition accuracy considerations 
mentioned in the previous section are taken into 
account, 

• it is always possible to provide hardware resource 
demand measurements or estimates in terms of 
component service requests and to satisfy the 
contention model’s parameter needs. 

However, it is often desirable and hence it should be also 
possible to parametrically describe service demands in terms 
of data or environment dependent factors. It has been found 



([6] and [7]) for example, that in CORBA based distributed 
software systems,  

• invocation marshaling/unmarshaling costs are 
mainly determined by the amount and the types of 
the transmitted data and 

• invocation demultiplexing costs, which also 
constitute a considerable amount of the total 
invocation costs, are strongly dependent on the 
number of methods declared in the corresponding 
IDL interface and the number of active object 
implementations in the same platform. 

Structured performance models should be exploited for 
conducting the appropriate type of analysis at the most 
suitable level of abstraction, in respect to the specific 
credibility and cost requirements of each study. Some of 
these types of analysis, which are more thoroughly discussed 
in [12], are: 

• The bottleneck analysis, which aims in detecting 
the most utilized components that cause 
performance degradation in high load situations 
and are worth to be analyzed – redesigned in a 
lower level of abstraction. 

• The sensitivity analysis, which aims in delivering 
means for the fast calculation of performance 
changes in respect to various (combinations of) 
model parameter changes. A metamodeling based 
sensitivity analysis approach is described in [11] 
and it can be easily adapted for use either for 
bounds analysis, parametric analysis, scalability 
analysis and system optimization purposes. 

Performance modeling and analysis of object based 
distributed software systems has been recently become the 
subject of a number of important research activities. Thus, 
[23] introduces a methodology for transforming distributed 
object based designs into performance models that fit into 
the well-known software performance engineering (SPE) 
approach. Two separate notations are proposed: execution 
graphs that represent the software structure and information 
processing graphs, which are a form of extended queuing 
networks that model the overall system performance. The 
later are calibrated in respect to the former.  

In [10], the author introduces a hierarchical model 
structure based on the so-called augmented queuing 
networks that support the use of simultaneous resource 
possession characteristics. The resulted model is 
decomposed into a number of interdependent product form 
multi-class queuing networks that are iteratively analyzed by 
an algorithm based on successive surrogate delay 
approximations ([9]). 

The layered queuing network (LQN) formalism is 
another hierarchical representation that allows a software 
component to act simultaneously as a client to a number of 
software components or hardware resources and as a server 
to other software components. The proposed evaluation 
algorithms ([18] and [25]) are based on the iterative 
computation of a series of intermediate results, up to the 
time instant, where the estimated results converge. 

A similar layered queuing network model is proposed in 
[17] for representing client-server systems where 
communication is carried out with synchronous and 
asynchronous messages. The model makes use of blocking 
queuing centers for representing synchronous 
communication phenomena.  

An appropriate flow-equivalence algorithm for analyzing 
multi-layered models is introduced and evaluated in [13]. 

Similar to our structured modeling approach, that features 
a high degree of modeling flexibility at the cost of being 
restricted to only pure or hybrid analysis procedures, are, the 
recent work of [19] and the ongoing one, described in [22]. 

4 CONCLUSIONS AND FURTHER WORK 

In this article, we presented a set of foundation concepts 
and theory and methodology issues regarding the structured 
performance modeling of object-based distributed systems. 
Such an approach provides a basis for a top-down stepwise 
model development, as well as, for its approximate analysis 
by decomposition at the most appropriate points of the 
model’s hierarchy.  

The described conceptual framework is to be integrated 
with a well-established and extensible modeling language. 
This language has to be characterized by easiness in 
representing hierarchical model structures and a relative 
proximity to the systems’ functional descriptions. For these 
reasons, we will consider, in future work, the applicability of 
the recent extensions of the Unified Modeling Language 
(UML) that are specified in [15]. 
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