
Quantitative Analysis of a Certified E-mail Protocol in
Mobile Environments: A Probabilistic Model Checking

Approach

S. Basagiannisa,∗, S. Petridoua, N. Alexioua, G. Papadimitrioua, P. Katsarosa

aDepartment of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki,
Greece

Abstract

Formal analysis techniques, such as probabilistic model checking, offer an effec-
tive mechanism for model-based performance and verification studies of com-
munication systems’ behavior that can be abstractly described by a set of rules
i.e., a protocol. This article presents an integrated approach for the quantita-
tive analysis of the Certified E-mail Message Delivery (CEMD) protocol that
provides security properties to electronic mail services. The proposed scheme
employs a probabilistic model checking analysis and provides for the first time
insights on the impact of CEMD’s error tolerance on computational and trans-
mission cost. It exploits an efficient combination of quantitative analysis and
specific computational and communication parameters, i.e., the widely used
Texas Instruments TMS320C55x Family operating in an High Speed Downlink
Packet Access (HSDPA) mobile environment, where multiple CEMD partici-
pants execute parallel sessions with high bit error rates (BERs). Furthermore,
it offers a tool-assistant approach for the protocol designers and analysts to-
wards the verification of their products under varying parameters. Finally, this
analysis can be also utilized towards reliably addressing cost-related issues of
certain communication protocols and deciding on their cost-dependent viability,
taking into account limitations that are introduced by hardware specifications
of mobile devices and noisy mobile environments.

Keywords: Certified e-mail, probabilistic model checking, CTMC, mobile
environments

1. Introduction

During the last decades, the fact that a number of communication protocols
have been published with security flaws [1, 2, 3] urges the protocol designers

∗Corresponding author
Email addresses: basags@csd.auth.gr (S. Basagiannis), spetrido@csd.auth.gr

(S. Petridou), nalexiou@csd.auth.gr (N. Alexiou), gp@csd.auth.gr (G. Papadimitriou),
katsaros@csd.auth.gr (P. Katsaros)

Preprint submitted to Computers & Security December 27, 2010

to “strengthen” their products with additional cryptographic mechanisms (e.g.,
public key cryptography) that secure and guarantee the safe completion of pro-
tocol’s sessions. But, the tradeoff of gaining in security is losing in terms of
computational cost. Increased computational cost, in turn, entails that a proto-
col cannot be adopted by low-cost hardware equipment, such as mobile devices.
Moreover, when discussing protocols’ cost in mobile environments, parameters
that determine transmission cost, such as the high bit error rate (BER), should
be taken into consideration. However, predicting computational and transmis-
sion costs is often impossible, due to the presence of multiple participants exe-
cuting parallel sessions. For example, nowadays, the widespread use of wireless
and mobile communications [4, 5, 6, 7] along with the services and applications
supported in new generation’s mobile devices [8] entails low-cost infrastructure
operating in noisy environments. In fact, current WWANs (Wireless Wide Area
Networks) are primarily based on second (2G) and third (3G) generation mo-
bile technologies such as GSM (Global System for Mobile Communications) and
HSDPA (High Speed Downlink Packet Access), respectively [9, 10, 11]. Thus, it
is fundamental to define the conditions under which a secure protocol is suitable
for mobile environments.

Nowadays, research in formal methods leads to the development of verifica-
tion techniques that facilitate the early detection of software or hardware defects
in Information and Communication Technology (ICT) systems [12]. Moreover,
formal analysis techniques, such as probabilistic model checking, are considered
to be an effective way for studying security failures in communication systems,
since they can discover design flaws in protocols.

In this paper we propose the use of probabilistic model checking [13] to ana-
lyze the Certified E-mail Message Delivery (CEMD) protocol [14, 15]. Current
work aims at providing a quantitative analysis in mobile environments. Nowa-
days, one of the most dominant applications used by mobile devices, e.g., smart
phones and PDAs, is the e-mail delivery service [8]. Given the popularity of
e-mail service and the current trend for secure communications, analyzing the
cost of security in e-mail service is an important issue. CEMD protocol provides
all the anticipated security properties, i.e., fairness, confidentiality, timeliness
and TTP invisibility [14] that an e-mail protocol ought to support. Moreover,
it is a well accepted protocol in related bibliography based on the well known
ANR protocol [15].

An abstract representation of the proposed analysis is presented in Fig. 1.
As shown in the inner circle our analysis considers the security properties, i.e.,
fairness, timeliness, confidentiality and TTP invisibility, of CEMD. The CEMD
protocol is modeled as a Continuous-Time Markov Chain (CTMC) [16], while
its properties are expressed as Continuous Stochastic Logic (CSL) formulas [17].
The PRISM framework [18] performs automated analysis of the CEMD proto-
col and verifies the security guarantees it provides. Then, the aforementioned
CTMC model is used for the quantitative analysis of the protocol’s cost-related
properties. These properties are twofold: computational cost imposed by low-
cost participants, i.e., mobile devices, and transmission cost due to high BER in
mobile environments. As a result, our study provides answers for whether or not

2

the CEMD protocol can assure security guaranties for low-cost participants in-
volved in multiple protocol sessions and operating in error-prone environments,
and if so, at what cost. Thus, the next two circles of Fig. 1 represent the last
contribution of our analysis which takes into consideration that CEMD proto-
col operates in noisy environments such those of mobile communications and
involves multiple participants executing parallel protocol sessions. The outer
circle of Fig. 1 represents the proposed quantitative analysis incorporating all
the above components.

1.1. Contribution
To the best of our knowledge, this is the first work that applies probabilistic

model checking for the quantitative analysis of a protocol under specific compu-
tational and communication parameters. The current paper considers the widely
used Texas Instruments TMS320C55x Family operating at 200MHz [19, 20].
Although, nowadays, mobile processors’ speed up to 1GHz, there are many
CPU manufacturers who support products working on different modes. For ex-
ample, Intel launched a Mobile Pentium III processor with two working modes,
namely full power mode at 800MHz and low power mode at 650MHz [21].
This characteristic is very important, since fundamental communication com-
ponents, e.g., protocols, and their mechanisms, e.g., cryptographic operations,
can be developed in a way that exploits their low power mode feature. This
entails that protocol designers and analysts can verify their products consider-
ing them as operating in low power mode. In this way protocols and security
services will be always fully supported contrary to other mobile functionalities
in which energy scale-down techniques can be applied e.g., display scale down
optimizations (background half or fully dim). Consequently, this paper exploits
CPUs at the low corner of 200MHz, since it is significant for CPU to provide
critical services when it operates in low power mode. Works in [8, 21, 22, 23]
also pinpoint the necessity of minimizing CPU energy consumption in mobile
devices.

Thus, in this work, we consider computational cost in line with the CPU
cycles and the time required by the aforementioned mobile processors to per-
form RSA operations, i.e. encryption and decryption processes, required by the
CEMD protocol. This actually means that the proposed computational cost
analysis considers battery life through CPU cycles. Although display and appli-
cations, e.g., camera, mp3 and games, consume a great portion of battery life,
it is found that CPU and memory are the dominant consuming subsystems in
3G mobile devices [8]. In fact, the CPU power is consumed due to instructions’
execution and their fetching from the memories or caches. This in conjunction
with the fact that security protocols embed cryptographic mechanisms that,
nowadays, require increasing bit size keys, e.g., greater than 512 bits, results in
great deal of CPU expenditure.

The communication parameters that the proposed analysis takes into ac-
count is the presence of BER in mobile networks, which constitutes them as
noisy environments, and the multiple CEMD participants executing parallel
sessions. The values of BER in mobile communications are considerable high

3

compared to those in wired networks and, thus, they should be taken into ac-
count. Even in cases where protocols such as HSDPA are adopted the values of
BER vary from 10−6 to 10−3 [10].

Thus, the contribution of the current analysis is that it combines compu-
tational and communication parameters, met at current mobile devices and
networks, in order to put them into a quantitative analysis which studies an
e-mail protocol offering security services. Results derived from this analysis can
be exploited by hardware designers who aim to support provision of CEMD pro-
tocol services. Given the environment where their products will operate as well
as their hardware specifications, they can launch a similar analysis with specific
parameters in order to obtain an estimate of the anticipated computational and
transmission cost. This information in conjunction with the time that proto-
col’s sessions require to be completed will provide answers about the feasibility
of executing the CEMD protocol in hardware with specific characteristics. But,
besides this restrictive perspective, the described analysis can be adopted in
whatever combination of software and hardware. Thus, the perspective of this
work is to provide a methodology for protocol designers and analysts towards
the verification of their products under varying parameters.

The remainder of this paper is organized as follows. Section 2 provides a
review of related studies, in order to point out the novelty of the proposed
analysis approach. Section 3 is a brief introduction to the probabilistic model
checking principles based on CTMC models and CSL logic. The CEMD protocol
and the PRISM CTMC model along with the assumptions introduced for the
proposed quantitative analysis are presented in Section 4. Section 5 discusses
the results derived from the analysis as well as the overall usability and potential
impact of them. Conclusions and future work insights are given in Section 6.

2. Related Work

Given the widespread use of wireless and mobile communications [4, 5, 6, 7],
it is essential for protocol designers to verify the security properties [24] that
they are supposed to provide as well as to quantify their cost-related properties.
This fact makes probabilistic model checking a promising approach towards
quantitative analysis of protocols [13, 25]. The importance of enabling quanti-
tative analysis for a given cryptographic protocol was first shown in [26]. In that
work, the author proposes a formal framework for weighting the cost of the par-
ticipants, in order to verify the degree of a protocol’s resistance against Denial
of Service (DoS) attacks, in the context of the resource intensive task of mutual
authentication. Recently, the aforementioned approach has formed the basis
for the analysis framework of [27]. The latter work [27] allows a more accurate
representation of the protocol’s computational cost. However, its drawback is
that it employs simulation rather than verification for quantitatively analyzing
the protocol’s computational cost.

Another stochastic modeling approach for quantifying the availability of soft-
ware systems under attack, is described in [28]. In this work the authors repre-
sent the system by a semi-Markov process (SMP). Using the appropriate SMP

4

model, they derive an embedded Discrete-Time Markov Chain (DTMC) [29],
that consists of the necessary state transition probabilities. Once the steady-
state DTMC probabilities have been computed, the sojourn time distributions
for the model’s states are used to compute the SMP’s steady-state probabili-
ties. This enables the calculation of the system’s availability whilst concurrently,
through parametric sensitivity analysis, the sensitivity of system’s availability is
studied. Stochastic modeling and analysis competence are required, since SMP
is not developed by an automated analysis tool, such as PRISM. Furthermore,
the system-level analysis does not take into account any resource expenditure
for the considered states and, thus, it is not able to evaluate the protocol’s
messages processing cost.

Another quantitative analysis approach is described in [30]. The authors
specify a three-way-handshake of the TCP protocol in probabilistic rewriting
logic in order to verify DoS resistance. The described representation generates
a model for the VESTA toolset [31]. It is basically a timed probabilistic model
that is analyzed by Monte Carlo simulation, upon which a series of interrelated
statistical hypothesis tests are applied, in order to check whether the quantita-
tive property of interest is fulfilled. However, such an approach, also known as
statistical model checking, does not produce the same accurate results as the
ones obtained by probabilistic model checking [32]. Finally, the aforementioned
approach is not appropriate for the analysis of communication protocols, since
it does not cope with cost-related properties, such as the message generation
and processing costs.

3. Protocol Analysis with Probabilistic Model Checking

PRISM is a powerful probabilistic model checking tool for verifying the
quantitative properties of a system [13]. It supports three types of models:
DTMCs (Discrete-Time Markov Chains), MDPs (Markov Decision Processes)
and CTMCs. In this work, a CTMC representation of the CEMD protocol [14]
is developed, together with an encoding of cost-related properties that are ver-
ified over the full state space of the model. CTMC analysis is chosen due to its
strength in representing systems with dynamic behavior, e.g., communication
protocols, and its advantage of being amenable to analytic treatment and nu-
merical computation , e.g., calculation of computational and transmission cost
over a finite time period. In the following paragraphs, the basic probabilistic
model checking and CTMC principles, necessary for our work, are described.

3.1. Probabilistic Model Checking Principles
Model checking in general involves the verification of properties over labeled

state transition systems [33]. In the context of probabilistic model checking,
DTMC, CTMC and MDP are models that embed additional information about
the likelihood of transitions between states to occur.

In PRISM, a probabilistic model is defined as a set of m modules (reac-
tive modules), M = {M1, . . . ,Mm}. Each Mi module is defined as a pair of

5

(V ari, Ci), where V ari is a set of integer-valued local variables with finite range
and Ci is a set of commands. The set V ari defines the local state space of
module Mi and in turn V ar denotes the set of all local variables in the model,
i.e., V ar =

⋃m
i=1 V ari. Furthermore, each variable v ∈ V ar has an initial value

v̄.
The behavior of module Mi is defined by the set of commands Ci. Each

command c ∈ Ci takes the form of (g, (λ1, u1), . . . , (λnc , unc)), comprising a
guard g and a set of pairs (λj , uj), where λj ∈ <>0 and uj is an update for
each 1 ≤ j ≤ nc. A guard g is a predicate over the set of all local variables
V ar and each update uj corresponds to a possible transition of module Mi. If
V ari contains ni local variables, {v1, . . . , vni

}, then an update takes the form
(v′1 = expr1) ∩ . . . ∩ (v′ni

= exprni
), where exprj is an expression in terms of

the variables in V ar. If an update leaves the values of some variables in V ari

unchanged, the model description may omit this information.
In CTMC model specification, the constants λj determine the rates attached

to the transitions (i.e., the delay which occurs before the update takes place),
whilst in DTMC model specification λj defines the probabilities attached to the
transitions and, thus, λj ∈ (0, 1] for 1 ≤ j ≤ nc [29].
Example 1. The model of Listing 1 defines a CTMC consisting of a single
module M1. Module M1 has a single local variable v with value range {1, . . . , 5}
and initial value 1. Hence V ar = V ar1 = {v} and v̄ = 1. The following three
lines describe the module’s set of commands C1. In the above notation each
command (g, (λ1, u1), . . . , (λnc , unc)) is written []g → λ1 : v1 + . . . + λnc : vnc .
For example, the second command has the guard (v > 1)&(v < 5) and two
updates, v′ = v − 1 and v′ = v + 1 on which a rate 0.5 is assigned. 2

3.2. Continuous-Time Markov Chain (CTMC) principles
CTMCs are a commonly used technique in the field of performance and

dependability analysis of computer and especially of real-time communication
systems [34]. A CTMC is defined as a tuple (S, s̄, R, L), where:

• S is a finite set of states

• s̄ ∈ S is the initial state

• R : S × S → <≥0 is the transition rate matrix and

• L : S → 2AP is the labeling function of atomic propositions AP that are
true in S.

In CTMC the transition rate matrix R gives the rate of the transition, e.g.,
from a state s to s′ within time t. For this transition, the actual probability will
be 1 − e−R(s,s′)·t. Thus, in a CTMC model, the transition probability P (s, s′)
in a single step will be:

P (s, s′) =





R(s,s′)∑
s
′′∈S

R(s,s′′)
if s

′′ 6= s′

1 if s = s′

0 if s 6= s′

6

A path ω in a CTMC is a non-empty sequence s0t0s1t1s2 . . ., where, for all
i ≥ 0, there is a state si ∈ S for which R(si, si+1) > 0 and ti ∈ <>0. The value
ti denotes the amount of time spent in the state si, while ω(k) represents the
kth state of the path ω, i.e., sk. A further detailed description of the CTMC
semantics is provided in [17].

3.3. A brief description of Continuous Stochastic Logic (CSL)
CTMC properties are encoded as formulaes of the Continuous Stochastic

Logic (CSL) [17]. In CSL the analyst develops partial specifications of the
steady-state and the transient behavior of CTMCs. The syntax of CSL is as
follows:

φ ::= true | α | φ ∧ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= X φ | φ U≤t φ | φ U φ

where a is an atomic proposition, operator ./∈ [≤, <,≥, >], p ∈ [0, 1] and t ∈
<≥0. P./p[ψ] indicates that the probability of the path formula ψ, which is
satisfied from a given state in a CTMC model, satisfies ./ p. CSL can also
describe path formulaes with operators such as X (next) or U≤t (time bounded
until with t ∈ <≥0), as shown above. Finally, the S operator refers to the
steady-state behavior of the CTMC. Formula S./p[φ] means that the steady-
state probability of being in some state satisfying φ meets the bound ./ p.

As stated previously, the PRISM model checker also supports the specifi-
cation and analysis of properties quantifying costs and rewards. This feature
enables the analyst to use probabilistic model checking not only for measuring
the actual probability of reaching a system state, but also, for determining a
range of quantitative measures relating to the model’s behavior.

For a CTMC (S, s̄, R, L), a reward structure is a tuple (%, ι), where:

• % : S → <≥0 is a vector of state rewards, and

• ι : S × S → <≥0 is a matrix of transition rewards.

A reward structure (%, ι) for a CTMC allows the specification of four distinct
types of rewards R:

• Instantaneous R./r[I=t]: the expected value of the reward at time-instant
t is ./ r,

• Cumulative R./r[C≤t]: the expected reward cumulated up to time-instant
t is ./ r,

• Reachability R./r[F φ]: the expected reward cumulated before reaching φ
is ./ r,

• Steady-state R./r[S]: the long-run average expected reward is ./ r.

Cumulative reward properties are employed for the proposed quantitative veri-
fication of the proposed CTMC model.

7

4. Quantitative Analysis of the CEMD Protocol

4.1. The CEMD Protocol
E-mail protocols aim to provide strong fairness in order to ensure that the

recipient receives the e-mail message, if and only if the sender receives the
receipt of it. In [14] the authors propose such a protocol, namely the Fair
Certified E-mail Delivery (CEMD). CEMD provides non-repudiation of origin,
non-repudiation of receipt and strong fairness, whilst it makes use of an off-line
and transparent trusted third party (TTP) only in exceptional circumstances,
i.e., when the communicating parties fail to complete the e-mail for receipt
exchange due to a network failure or a party’s misbehavior. Besides the above,
its design aimed at reducing the overall computational cost (i.e., cryptographic
operations) for protocol’s efficiency and cost-effectiveness [14].

More specifically, the CEMD protocol comprises two sub-protocols; the Ex-
change Protocol where the sender A and the recipient B attempt to exchange
message M for its receipt, and the Receipt Recovery Protocol activated by the
sender A when there is a need to send a request to TTP for receipt recovery
after having failed to obtain B’s receipt.

The Exchange Protocol of CEMD consists of the following four (4) discrete
messages, also shown in Fig. 2:

1. E1 = (h(M), SignA(h(M))): sender A transfers to recipient B a hash
value h(M) of the message M along with its digital signature SignA(h(M))
on M .

2. E2 = (V RESB , CertB): recipient B verifies SignA(h(M)) from message
E1 and confirms the result using h(M). Then, he computes his Verifiable
and Recoverable Encrypted Signature (V RESB) message and sends to A
a message E2 consisting of V RESB and his certificate CertB , signed by
TTP .

3. E3 = (M): message E3 constitutes the e-mail message M that A wants
to send to B.

4. E4 = (rb): recipient B generates and sends a random prime number rb to
sender A in order A to be able to derive B’s correct receipt using rb.

The Receipt Recovery Protocol consists of three (3) discrete messages as
depicted in Fig. 2:

1. R1 = (M,CertB , V RESA): the sender A transfers to the TTP the mes-
sage R1 consisting of the message M , the recipient’s B certificate CertB
and its V RESA, where V RESA is derived from V RESB such that TTP
accepts A’s request.

2. R2 = (rb): Once the entity A receives R1, TTP confirms that sender A has
sent the correct message M in order to avoid the unlawfully recovery of
B’s receipt rb for him. In other words, h(M), received by party B in step
E1 and used for computing V RESB , must be identical to the hash value
of message M computed by TTP in the first step of the Receipt Recovery
Protocol. As a result, TTP will decrypt V RESA using its private key in

8

order to derive a secret key between TTP and party B and using it to
recover receipt rb. Finally, TTP sends to A the message R2 containing
the rb in order that A computes the receipt of the recipient B.

3. R3 = (M): TTP forwards the original message M to the recipient B.

CEMD protocol has to provide certain security properties towards its partic-
ipants. According to [14, 15], the CTMC model of CEMD protocol is designed
in respect to the following characteristics:

• fairness, i.e., neither the sender nor the recipients should they gain ad-
vantage in a random protocol’s interruption. For this reason CEMD par-
ticipants are considered to employ an off-line TTP entity to ensure fair
completion of the CEMD protocol.

• timeliness, i.e., all of the participants should be able to successfully ter-
minate the protocol in a given finite time. We considered that all sessions
once initiated will not fail. This design feature will force successful com-
pletion of each session in a finite amount of time allowing us to anticipate
timeliness property in results.

• confidentiality, i.e., only the intended recipient should learn the contents
of an e-mail message. Confidentiality of the participants is kept, since
RSA encryption (using modulo exponentiations), of all CEMD messages
is considered unbreakable.

• TTP invisibility, i.e., the TTP should only be used in cases of network
failure or participants’ misbehavior. In the proposed model the TTP entity
involves in the CEMD session only when participant A fails to receive a
proper receipt of B. Otherwise TTP does not interfere to the protocol
resulting in TTP invisibility.

Moreover, the developed CTMC model supports not only two participants,
namely sender A and recipient B, but a number of multiple sessions that sender
A keeps simultaneously with a set of recipients B = {B1, . . . , Bn}, according
to Table 1, which represents a more realistic scenario. However, assurance of
these properties entails strong cryptographic operations [15], and thus, increased
computational cost for the protocol’s participants. It is therefore questionable
whether a secure protocol, such as the one described, can effectively operate
over environments characterized by requirements for low-cost hardware, such as
mobile devices. Furthermore, it is fundamental for a secure protocol designed
for mobile environments to be tested in line with the feature of BER, since
BER determines the transmission cost, which along with the computational
cost imposes considerable restrictions.

Thus, the purpose of the proposed analysis is to provide quantitative results
for the cost-related properties of the CEMD protocol, i.e., computational and
transmission cost. These results concern multiple sessions among sender A and
the set of recipients B that are supposed to take place in mobile environments.

9

The value of this analysis is that it provides answers in whether or not a com-
munication protocol is a cost-permitted approach in environments with specific
requirements such as mobile environments.

For the above purpose, we firstly built a CTMC model for the CEMD pro-
tocol [14]. The Markov Chain created was augmented with cumulative reward
properties R that represent the computational and transmission cost imposed
when the model reaches a state, i.e., s. Then, the CEMD protocol was executed
by configuring appropriately the BER and considering up to 7 parallel sessions.
The visibility of the TTP entity was also considered as an execution parameter.

4.2. Probabilistic Model Checking of CEMD
The proposed CTMC analysis of the CEMD protocol (CEMD-CTMC) con-

sists of four (4) procedural steps, namely the Develop, Derive, Adopt and
Embed steps, as shown in Fig. 3.

4.2.1. Develop the CEMD-CTMC Model
The CEMD-CTMC model, developed in the PRISM model checker, com-

prises three (3) modules, namely M = {MA,MB , MTTP }, corresponding to the
entities shown in Table 1. Module MA represents the sender A and initiator of
the e-mail exchange protocol, while module MB embodies a fixed set of recip-
ients B communicating with A, thus modeling a parallel sessions scenario. It
is assumed that all the recipients Bi, i = 1, . . . , 7 trust the same TTP entity,
represented by the module MTTP .

The structure of the CTMC model supports probabilistic model checking
for up to n = 7 parallel sessions, one for each of Bi recipient, i = 1, . . . , 7,
in order to emulate a real-world scenario of e-mail delivery. Nowadays, it is
usual that a simple email user initiates a fair certified email session with more
than one participants concurrently, but at the same time hardware limitations
pose restrictions to a limited number of parallel sessions. Considering parallel
sessions, the modules of set M interact by updating their local variables in
line with the protocol’s communication steps presented in Section 4.1. These
updates over a finite set of variables correspond to the modeled state transitions
for the distinct participants. The number of recipients is defined by the constant
number of B machines, as shown in Listing 2. TTP can either be visible
or not during a session according to A’s choice, as prescribed by the CEMD
principles [14]. Table 2 provides the notations used in the PRISM model.

Two parameters associated with the cost-related properties of CEMD are
defined, namely the computational and the transmission cost. More specifically,
parameter ver Ei, i = 1, . . . , 4, is associated with the computational cost, since
it defines the rate of positive verification of a message Ei, i = 1, . . . , 4. The rate
of negative verification of Ei message is defined as 1−ver Ei and it is associated
with the transmission cost, since it results in message retransmission. Parameter
ber is also related with the transmission cost, since it denotes the rate for an error
to be occurred during the transmission of a message Ei, i = 1, . . . , 4. The rate of
the successful transmission of a message Ei is defined as 1−ber. In Listing 2, it is

10

assumed that the verification rate remains the same for verifications performed
by the same entity. Thus, ver E1 = ver E3 and ver E2 = ver E4, since the
verification of E1 and E3 messages is performed by recipients Bi, i = 1, . . . , 7,
while messages E2 and E4 are verified by the sender A.

Parameters TTP certificates and no TTP are associated with the TTP
invisibility security property. More specifically, TTP certificates is defined
in MA and counts the number of certificates that TTP produces. This entails
that TTP certificates counts simultaneously the sessions completed with TTP
being visible. On the other hand, no TTP is a counter, also defined in MA, for
sessions successfully completed with TTP being invisible. Hence, the formula
finish that is supposed to be satisfied in the model’s final state, is defined as
the sum of TTP certificates and no TTP counters that has to be equal to
number of B machines.

For all modules developed in our model, namely MA,MB ,MTTP , a num-
ber of local control variables is fixed and defined to have a maximum value
equal to number of B machines, which represents the number of parallel ses-
sions considered in the proposed analysis. For example, ACK counter A local
control variable of MA counts the initial ACK messages received by recipients
B, as shown in Listing 3. Thus, ACK counter A ∈ V arA is used in guard
g = (ACK counter A < number of B machines) which controls the com-
mands c1 and c2 shown in lines 7 and 9 of Listing 3, with c1, c2 ∈ CA. If
g is TRUE command c1 will perform the update u1 = (ACK counter A′ =
ACK counter A + 1) & (A state′ = 1) with rate λ1 = 1− ber and respectively
c2 command will perform the update u2 = (A state′ = 0) with rate λ2 = ber.
For the synchronization of MA and MB synchronization labels are used, e.g.,
[A send ACK] in line 7 of MA and 18 of MB , presented in Listing 3. The
interpretation of the code in Listing 3 is that A will send a maximum of ACK
messages according to the number of B machines parameter each of which is
transmitted successfully with a rate of 1−ber in accordance with BER in mobile
environments.

4.2.2. Derive Computational and Transmission Cost Parameters
In this step, the computational and transmission cost parameters of the

CEMD protocol are derived from the CEMD specifications [14]. More specif-
ically, computational cost is calculated in line with the CPU cycles required
for processing CEMD messages, i.e., E1 − E4 and R1 − R3, as it is stated in
Section 1.1. Table 3 presents the CPU cycles consumed in encryption and de-
cryption actions of messages E1 − E4 and R1, R2 verification, when the widely
used Texas Instruments TMS320C55x Family operating at 200MHz is em-
ployed [19, 20] . More specifically, in the analysis the encryption and decryp-
tion cost are calculated at 8.84× 106 and 36.36× 106 CPU cycles, respectively,
when the corresponding action takes place at the sender A or the recipients
Bi, i = 1, . . . , 7. However, the encryption process during the protocol’s step
R1 is executed at the TTP , which is considered to operate at 2GHz, and thus
the CPU cycles are computed at 8.84 × 105. The computational cost of other
mathematical calculations, such as multiplication or division, is considered to

11

be negligible. Transmission cost is a function of negative verifications and BER
occurrence, since both cases entail message retransmission. Obviously, cost
calculation considers the parallel sessions scenario, the CEMD-CTMC model is
based on, and TTP visibility, since transmission of only E1−E4 messages entails
TTP invisibility, whilst E1 − E4 followed by R1 −R3 indicate TTP visibility.

Based on Table 3, the reward modules of the CEMD-CTMC model, described
in Section 4.2.4, are constructed.

4.2.3. Adopt Bit-Error-Rate Parameter
According to Section 4.2.2 BER is one of the two parameters that cause the

model’s transmission cost. The values of BER in mobile communications are
considerably high compared to those in wired networks and, thus, they should be
taken into account. Even in cases where protocols such as HSDPA are adopted,
the values of BER vary from 10−6 to 10−3 [10, 11, 35, 36]. The proposed CEMD
analysis considers this range of BER values as shown in Table 2. The presence of
BER in mobile networks constitutes them as noisy environments, since CEMD
messages may be delivered with errors, and thus, their retransmission is re-
quired. As an example, Listing 4 shows sender A and recipient Bi, i = 1, . . . , 7,
exchanging message E1.

Synchronization label [A send E1 error] in line 5 of MA and 16 of MB

indicates that message E1 has been successfully transmitted by A with a rate
1− ber and received by Bi. Thus, the state of A is updated, i.e., (A state′ = 3).
In case of error occurrence, A returns to (A state′ = 2) with rate ber. Upon
receipt of E1, Bi proceeds to message’s verification. Positive verification occurs
with rate ver E1 and indicates an update in Bi’ state, i.e., (B state′ = 4),
while in case of negative verification the modules are synchronized through the
label [incorrect ver of E1]. This occurs with rate 1 − ver E1 and entails that
both participants go back to their previous states, i.e., (A state′ = 2) and
(B state′ = 2).

Listing 4 along with Table 3 makes clear the way transmission cost is in-
corporated in the proposed analysis taking into account both BER occurrence
and negative verification rates. Apparently, the same logic for the transmission
cost calculation is employed in protocol’s steps (E2, E3, E4 and R1, R2, R3) that
follow.

4.2.4. Embed cost parameters in rewards
At this final step, the cost parameters, described in Section 4.2.2, as well

as the ber parameter, described in Section 4.2.3, are embedded in the proposed
CEMD-CTMC model as rewards. Thus, in accordance with Table 3, rewards
for both the computational and transmission cost of CEMD should be defined.

More specifically, “Exponentiation” rewards count the CPU cycles required
in messages’ verification due to encryption and decryption processes. For exam-
ple, in Listing 4 the transition labeled [verification of E1] (line 18) triggers an
increase of computational cost. “Retransmission” rewards measure messages’
transmission cost based on the errors occurred during a message’s transmission

12

as they are expressed by BER parameter. For example, in Listing 4 the tran-
sitions labeled [A send E1 error] (line 7) and [incorrect ver of E1] (line 20)
trigger an increase of transmission cost.

5. Results

As it has been mentioned, the proposed analysis aims at providing quanti-
tative results for the cost-related properties of the CEMD protocol, i.e., compu-
tational and transmission cost. These results consider multiple sessions among
sender A and a set of recipients B = {B1, . . . , Bn}, n = 7. The aforemen-
tioned entities are considered to belong to the widely used Texas Instruments
TMS320C55x Family and operate at 200MHz [19, 20] inside a HSDPA mobile
environment, where BER varies from 10−6 to 10−3 [10, 11, 35, 36].

The developed CTMC-CEMD model is designed in respect to the security
characteristics delivered by the CEMD protocol. CEMD is designed in this way
as to guarantee security properties such as fairness and confidentiality for the
involved participants. The authors in [14] propose the use of the RSA cryp-
tosystem for message exchanges that will preserve fairness of the participants.
In this way, even if the protocol fails in one of its steps, sender A or recipient Bi,
i = 1, . . . , 7, will not gain additional knowledge against each other. Moreover,
in the developed model there is no intruder entity involved in the communica-
tion between the CEMD participants. Such an assumption offers, by default,
confidentiality for all of the protocol participants.

For the quantitative analysis of the proposed CEMD-CTMC model, cumu-
lative reward properties of the form R./r[C≤t], are employed as mentioned in
Section 3.3. Cumulative reward properties associate a reward with each path
of the model, but only up to a given time bound. The property [C≤t] corre-
sponds to the reward cumulated along a path until t time units have elapsed.
Timeliness, as a security property that an e-mail protocol should provide, can
be verified through a user defined time boundary. Thus, the first CSL query Q1

is defined as a cumulative type query as follows:

Q1 : R{“Computational Cost”} =? [C <= C0]

whose interpretation is: “which is the overall Computational Cost for complet-
ing all protocol’s sessions in a finite amount of time C0?”. Fig. 4 provides results
for CEMD’s computational cost as a function of time (expressed in time units)
for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7}.

More specifically, in the Q1 structure R{“Computational Cost”} composes
the reward structure (%, ι) which is defined inside the CEMD-CTMC model
according to the cost parameters of CEMD specifications shown in Table 3
(column CPU cycles). C0 is a constant representing the time boundary t and
varies from 0 to 75 with step 2, as shown in Fig. 4.

Apart from timeliness and successful completion of protocol, TTP invisi-
bility should also be studied. Given that TTP ought to be used in cases of
network failures or participant’s misbehavior, it would be useful to study the

13

CEMD’s computational cost with respect to TTP invisibility scenarios. Thus,
for the analysis purpose, three different cases and the results are shown in Fig. 4.
Firstly, in Fig. 4(a), the probability of TTP being visible is defined P TTP ' 1
indicating that TTP will be involved in all participants’ sessions, secondly, in
Fig. 4(b) the TTP ’s visibility is selected with P TTP = 0.5 and finally, in
Fig. 4(c), the CEMD protocol completes its sessions with TTP being invisible
and, thus, P TTP ' 0.

As it is expected the higher the probability of TTP visibility the greater
the computational cost of the protocol. This is confirmed by the y-axis of
Fig. 4(a)-Fig. 4(c) which depicts the number of CPU Mcycles required by the
corresponding mobile devices operating at 200MHz to complete the CEMD
protocol. As it is mentioned in Section 4.2.2, these results are derived based
on the calculation that the encryption and decryption cost are 8.84 × 106 and
36.36×106 CPU cycles, respectively, when the corresponding action takes place
at the sender A or the recipients Bi, i = 1, . . . , 7. When the encryption process
is executed by the TTP , i.e., during the protocol’s step R1, then the CPU cycles
are 8.84 × 105 CPU cycles, since TTP is considered to operate at 2GHz. At
the same time, as the probability of TTP being visible increases, the overall
protocol completion time increases as well. For example, for n = 4 recipients,
i.e., B = {B1, B2, B3, B4}, the protocol’s computational cost for P TTP ' 0
(Fig. 4(c)) is 1009 CPU Mcycles and all the sessions require about 54 time units
to be completed. When P TTP = 0.5 (Fig. 4(b)) the respective cost is 1044
CPU Mcycles and time rises to 56 units and, finally, for P TTP ' 1 (Fig. 4(a))
the cost is 1080 CPU Mcycles and time units are 58. The interpretation for the
above observations lies on the definition of the computational cost, which is a
straight function of the CPU cycles required for verifying E1 − E4 and R1, R2

messages. Since messages R1 and R2 are associated with the TTP visibility, it
is obvious the probability of TTP ’s visibility has a positive relationship with the
overall computational cost, as well as with the amount of time for the successful
completion of the protocol’s session.

A second observation is that the more the protocol’s recipients the greater
the computational cost of the protocol, as indicated by the level of each curve
in Fig. 4(a)-Fig. 4(c). Obviously, the same stands for the relationship between
the number of recipients and the protocol’s completion time. Indicatively, when
P TTP ' 0 (Fig. 4(c)), for n = 2, i.e., B = {B1, B2}, the protocol’s compu-
tational cost is 504 CPU Mcycles and all the sessions require about 40 time
units to be completed. These observations are lower than the ones for n = 4.
For P TTP = 0.5 (Fig. 4(b)) the cost for n = 2 recipients is 522 CPU Mcy-
cles and time rises to 44 units, while for P TTP ' 1 (Fig. 4(a)) the cost is
540 CPU Mcycles and time units are 48. The explanation in this case is that
more protocol’s recipients entail more messages to be exchanged and thus more
exponentiations to be computed.

Then, two separate scenarios are launched for transmission cost analysis. In
the first one we study the impact of varying the verification rate of sender A,
while in the second scenario the verification rate of the recipients {B1, . . . , B7}
is changed.

14

More specifically, the cumulative query Q2 is defined in order to obtain the
protocol’s transmission cost under the assumption that the verification rate of
sender A varies:

Q2 : R{“Transmition Cost”} =? [C <= C0], and a = 0.7, 0.8, 0.9

The interpretation of this query is: “which is the overall Transmission Cost
for completing all protocol’s sessions in a finite amount of time C0 for different
verification rates of sender A?”. The answer is graphically presented in Fig. 5,
which depicts the CEMD’s transmission cost as a function of time (expressed in
time units) for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7}, and for a = 0.7, 0.8, 0.9
verification rates of sender A. The verification rates of sender A are defined to
be close to 1, since the entity A initiates the protocol and thus it is considered
to be more reliable to complete it successfully.

The above values of a have been chosen to be at a high rate level, since
the entity A is the protocol’s initiator and, thus, it is considered to have a low
probability for negative verifications (e.g., it initiates a session only when it
has the required bandwidth). Fig. 5(a)-5(c) show the protocol’s transmission
cost for 1 up to 7 parallel sessions when ber = 10−3 and for a = 0.7, 0.8, 0.9,
respectively. The effect of A’s verification rate is that the higher the value of
a the lower the protocol’s cost. This is because positive verifications reduce
retransmissions. Indicatively, for n = 4 recipients, i.e., B = {B1, B2, B3, B4},
the protocol’s transmission cost for a = 0.7 (Fig. 5(a)) is 2.95 and all sessions
require about 42 time units to be completed. These values are lower than the
respective cost of 1.84 and time of 34 units when a = 0.8 (Fig. 5(b)). Finally,
for a = 0.9 (Fig. 5(c)) the cost is further decreased at 0.88 and time units drop
to 32.

Similarly to the results derived by query Q1, the increase in the number of re-
cipients entails greater transmission cost, while timeliness property is preserved.
This is also natural in case of query Q2, since more recipients Bi, i = 1, . . . , 7,
trigger the exchange of more messages. More messages not only increase the
transmission cost but also cause delay in sessions completion. Thus, all curves in
each sub-figure “move up” in line with the increase in the number of recipients.
At the same time, curves in Fig. 5(a) are “shifted” to the right compared those
in Fig. 5(b), which are “shifted” to the right compared to those in Fig. 5(c).

The next cumulative query Q3 also concerns the protocol’s transmission cost
but under different verification rates of recipients of set B:

Q3 : R{“Transmition Cost”} =? [C <= C0], and b = 0.3, 0.5, 0.7

The interpretation of Q3 is: “which is the overall Transmission Cost for com-
pleting all protocol’s sessions in a finite amount of time C0 for different verifi-
cation rates of all the recipients of set B?”. Fig. 6 provides the answer, since
it presents CEMD’s transmission cost as a function of time (expressed in time
units) for {B1, . . . , B7} recipients.

In this scenario, low rates of b correspond to high probability of negative
verifications, since recipients Bi, i = 1, . . . , 7, are the protocol’s responders

15

(e.g., they may be prone to errors due to hardware limitations or device misbe-
havior). Fig. 6(a)-6(c) depicts the protocol’s aggregated transmission cost for
b = 0.3, 0.5, 0.7, respectively, and for 1 up to 7 parallel sessions when ber = 10−3.
The effect of Bs’ verification rate is that the higher the value of b the lower the
protocol’s cost and the earlier the time for sessions’ completion. This is because
positive verifications reduce retransmissions. Moreover, in all three sub-figures,
the number n of recipients has a straight positive relationship with the protocol’s
transmission cost, while it also affects the overall time required for successful
completion of the CEMD sessions.

In practice, we observe that for n = 4 parallel sessions, if verification rate
of recipients is b = 0.3 (Fig. 6(a)) the transmission cost reaches 18.72 after 88
time units. If verification rate is b = 0.5 both cost and time for completion
are lower, i.e., 8.04 and 56 time units, respectively, and finally for b = 0.7 the
corresponding values are much lower at 3.46 and 40 time units. Obviously, if
parallel sessions increase the above values will also be increased keeping their
relationship.

Quantitative analysis results derived from Fig. 4-6 show that all curves are
“fixed” after a finite time period indicating that cost is also “fixed”, since no
more protocols actions either processing or transmission take place (however,
the higher verification rates of sender A lead to earlier convergence compared
to the lower verification rates of recipients which result in convergence delay, as
indicating by the x-axis of Fig. 5 and Fig. 6). This behavior is caused because
our model has been designed not to fail even if a number of faults occur (e.g.,
[A send E1 error], [incorrect ver of E1] in Listing 4). Such a design feature
will eventually allow the successful e-mail message delivery for all the initiated
CEMD sessions.

Time convergence, presented in Fig. 4-6, is also confirmed when different
values of ber are employed. The results of Tables 4 and 5 refer to transmission
cost and they are derived when the indicative in mobile environments values
of ber = 10−6 and ber = 10−3 are used [35, 10, 11, 36]. In Table 4 the dif-
ferent values of BER are studied under a = 0.8 verification rate of sender A,
whilst in Table 5 we set the verification rate of recipients, i.e., {B1, . . . , B7}
where n = 1, . . . , 7, at b = 0.5. As it is expected higher values of ber result in
increasing transmission cost. In fact, the more the parallel sessions the bigger
cost overhead. Indicatively, for n = 7 the cost overhead reaches at 4.8% after
60 time units when a = 0.8 and at 5.7% after 80 time units when b = 0.5. The
higher values of Table 5 compared to those of Table 4 as well as the later time
convergence are due to the low verification rate of the recipients.

An extra confirmation of the above behavior is provided by the results of
query Q4 that follows. We define the PCTL query Q4:

Q4 : P =? [F <= C0 finish], and b = 0.2, 0.9

where the argument finish is a boolean formula defined in our model (List-
ing 3, line 18) to check whether or not the initiated sessions will be completed
successfully. The interpretation of Q4 is: “which will be the computed proba-
bility of all CEMD sessions being completed successfully in the time boundary

16

C0 for different verification rates of all the recipients of set B?”. The answer
is provided by the Fig. 7, which shows the probability of B1, . . . , B7 recipients
completing their sessions as a function of time.

More specifically, Fig. 7(a) and Fig. 7(b) depict the probability of all CEMD
sessions being completed when the verification rate of all the recipients of set
B is b = 0.2 and b = 0.9, respectively. These values correspond to a repre-
sentative range for recipients’ verification rate. The different curves in each
figure correspond to the different number of recipients, from n = 1 up to n = 7.
Obviously, all the curves, in both sub-figures, converge at 1, indicating the suc-
cessful completion of all protocol sessions. However, time differentiates these
curves, i.e., the more the protocol’s recipients the later the time of curves’ con-
vergence. Moreover, the higher the verification rate of recipients the earlier the
convergence, as indicating by the x-axis of Fig. 7(a) and Fig. 7(b). A low verifi-
cation rate for recipients Bi, i.e., b = 0.2, entails an unstable environment, since
it means that recipients succeed in verifying exchanging messages with a low
probability. But, a low probability leads to failures and messages’ retransmis-
sion, thus, in delays in sessions’ completion. For example, in Fig. 7(a) (b = 0.2),
we observe that the probability of completing successfully the protocol becomes
1 after 147 time units for n = 7 and almost 75 time units for n = 1. On the
other hand, for a higher verification rate, b = 0.9 (Fig. 7(b)), all the sessions are
completed with probability 1 after a period of 40 time units when n = 7 and
after 25 time units when n = 1. Comparing the two graphs we can also observe
that, for example, when n = 3, the probability for successful completion of all
the three sessions will be 1 in 30 time units for b = 0.9, while for b = 0.2 in 30
time units the probability of all three sessions being completed is 0.13.

Such divergences indicate that the CEMD protocol is prone to the specific
hardware characteristics of participants, since, for example, an obsolete or low-
cost device produces delays in executing exponentiations. At the same time, the
CEMD protocol is prone to the environment it operates, since high BER leads to
transmissions errors, which result in negative verifications and retransmissions.

6. Conclusions and a Look Ahead

This work proposes a quantitative analysis as a means for the evaluation of
the CEMD protocol operating in prone to errors environments, such as mobile
networks, while supporting parallel sessions. Our analysis is based on the de-
velopment of a parameterized CTMC model which implements parallel CEMD
sessions. The CEMD-CTMC model is designed in respect to the security prop-
erties imposed by the CEMD protocol and, then, is augmented with specific
computational and transmission cost parameters derived from CEMD specifi-
cations. The probabilistic model checking analysis, launched, aims at quanti-
tatively verifying the general cost of protocol. Such an approach gives insights
for deciding on whether the CEMD protocol can operate upon hardware de-
vices with specific power limitations (e.g., computational resources) and under
environments with specific BERs.

17

As a future research prospect, we plan to extend our model in order to
tune computational rewards according to hardware specifications of devices used
in mobile communications (e.g., CPU processing power, memory capabilities)
and transmission rewards according to specific networks’ bandwidth. A second
insight is to study computational cost in line with energy consumption (e.g.,
battery life). Finally, it would be interesting to build a general quantitative
probabilistic model checking framework which will be a tool-assistant, protocol-
independent approach for analysts/designers, in order to verify their properties
of interest.

References

[1] G. Lowe, Breaking and fixing the needham-schroeder public-key protocol
using fdr, Software - Concepts and Tools 17 (3) (1996) 93–102.

[2] G. Lowe, A. W. Roscoe, Using csp to detect errors in the tmn protocol,
IEEE Transactions on Software Engineering 23 (10) (1997) 659–669.

[3] S. Basagiannis, P. Katsaros, A. Pombortsis, N. Alexiou, A probabilistic
attacker model for quantitative verification of dos security threats, in: Proc.
of the 32nd Annual IEEE International Conference on Computer Software
and Applications (COMPSAC’08), Finland, 2008, pp. 12–19.

[4] D. Miorandi, E. Uhlemann, S. Vitturi, A. Willig, Guest editorial: Special
section on wireless technologies in factory and industrial automation, part
i, IEEE Transactions on Industrial Informatics 3 (2) (2007) 95–98.

[5] Q. Bi, G. Zysman, H. Menkes, Wireless mobile communications at the
start of the 21st century, IEEE Communications Magazine 39 (1) (2001)
110–116.

[6] Y. Zhang, N. Ansari, H. Tsunoda, Wireless telemedicine services over inte-
grated ieee 802.11/wlan and ieee 802.16/wimax networks, IEEE Commu-
nications Magazine 17 (1) (2010) 30–36.

[7] C. Liaskos, S. Petridou, G. Papadimitriou, Cost-aware wireless data broad-
casting, IEEE Transactions on Broadcasting 56 (1) (2010) 66–76.

[8] N. Sklavos, K. Touliou, A system-level analysis of power consumption & op-
timizations in 3g mobile devices, in: Proc. of the 1st International Confer-
ence on New Technologies, Mobility & Security (NTMS’07), France, 2007,
p. 225235.

[9] M. Mouly, M. Paulet, The GSM System for Mobile Communications, pub-
lished by the authors, ISBN 2-9507190-0-7, 1992.

[10] N. K. C. K. Sohaib, J. Nordberg, Hsdpa system simulation, in: Proc. of
the 2nd International Symposium on Communications, Control and Signal
Processing (ISCCSP’06), Morocco, 2006.

18

[11] D. Kliazovich, M. Devetsikiotis, F. Granelli, Formal methods in cross layer
modeling and optimization of wireless networks: State of the art and future
directions, in: S. Kotsopoulos, K. Ioannou (Eds.), Heterogeneous Next Gen-
eration Networking: Innovations and Platforms, IDEA Group Inc., 2008,
pp. 1–24.

[12] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

[13] M. Z. Kwiatkowska, G. Norman, D. Parker, Prism 2.0: A tool for prob-
abilistic model checking, in: Proc. of the 1st Int. Conf. on Quantitative
Evaluation of Systems (QEST’04), Netherlands, 2004, pp. 322–323.

[14] A. Nenadic, N. Zhang, S. Barton, Fair certified e-mail delivery, in: Proc. of
the 2004 ACM Symposium on Applied Computing (SAC’04), USA, 2004,
pp. 391–396.

[15] G. Ateniese, C. Nita-Rotaru, Stateless-recipient certified e-mail system
based on verifiable encryption, in: Proc. of the The Cryptographer’s Track
at the RSA Conference on Topics in Cryptology (CT-RSA’02), Germany,
2002, pp. 182–199.

[16] W. J. Stewart, Introduction to the numerical solution of Markov chains,
Princeton University Press, 1994.

[17] A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton, Model-checking continous-
time markov chains, ACM Transactions on Computational Logic 1 (1)
(2000) 162–170.

[18] Prism model checker, World Wide Web electronic publication.
URL http://www.prismmodelchecker.org/

[19] R. Hwang, F. Su, L. Huang, Fast firmware implementation of rsa-like se-
curity protocol for mobile devices, Wireless Personal Communications 42
(2007) 213–223.

[20] R. Hwang, F. Su, L.Huang, J. Peng, Implementing the rsa algorithm on the
ti tms320c55x family, in: Proc. of the 37th IEEE International Carnahan
Conference on Security Technology, USA, 2003, pp. 569–572.

[21] P. Prasithsangaree, P. Krishnamurthy, On a framework for energy-efficient
security protocols in wireless networks, Computer Communications 27 (17)
(2004) 1716–1729.

[22] R. Mayo, P. Ranganathan, Energy consumption in mobile devices: Why
future systems need requirements-aware energy scale-down, Special Issue
on Power Management (2003) 26–40.

[23] R. Karri, P. Mishra, Minimizing energy consumption of secure wireless
session with qos constraints, in: Proc. of the 8th International Conference
on Communications (ICC’08), USA, 2002, pp. 2053–2057.

19

[24] P. Katsaros, A roadmap to electronic payment transaction guarantees and
a colored petri net model checking approach, Information & Software Tech-
nology 51 (2) (2009) 235–257.

[25] S. Basagiannis, P. Katsaros, A. Pombortsis, N. Alexiou, Probabilistic model
checking for the quantification of dos security threats, Computers & Secu-
rity 28 (6) (2009) 450–465.

[26] C. Meadows, A cost-based framework for analysis of denial of service in
networks, Journal of Computer Security 9 (1-2) (2001) 143–164.

[27] S. Tritilanunt, C. Boyd, E. Foo, J. M. G. Neto, Using coloured petri nets to
simulate dos-resistant protocols, in: Proc. 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, Denmark, 2006,
pp. 261–280.

[28] B. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K. S. Trivedi,
Modeling and quantification of security attributes of software systems, in:
Proc. of the IEEE/IFIP Int. Conference on Dependable Systems and Net-
works (DSN’02), Washington, DC, USA, 2002, pp. 505–514.

[29] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondetermin-
istic systems, in: Proc. of the 15th Conference on Foundations of Computer
Technology and Theoretical Computer Science, India, 1995, pp. 499–513.

[30] G. Agha, M. Greenwald, C. A. Gunter, S. Khanna, J. Meseguer, K. Sen,
P. Thati, Formal modeling and analysis of dos using probabilistic rewrite
theories, in: Proc. the IEEE Workshop on Foundations of Computer Secu-
rity (FCS’05), Chicago, IL, USA, 2005.

[31] K. Sen, M. Viswanathan, G. Agha, Vesta: A statistical model-checker and
analyzer for probabilistic systems, in: Int. Conference on Quantitative Eval-
uation of Systems, Los Alamitos, CA, USA.

[32] K. Sen, M. Viswanathan, G. Agha, On statistical model checking of stochas-
tic systems, in: Proc. of the 17th Int. Conference on Computer Aided Ver-
ification (CAV’05), UK, 2005, pp. 266–280.

[33] E. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT Press, 2000.

[34] M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Modeling and Verifi-
cation of Real-Time Systems: Formalisms and Software Tools, John Wiley
& Sons, 2008.

[35] G. Varrall, R. Belcher, 3G Handset and Network Design, Wiley, 2003.

[36] P. Nicopolitidis, M. Obaidat, G. Papadimitriou, A. Pomportsis, Wireless
Networks, John Wiley & Sons, 2003.

20

Table 1: CTMC-CEMD Entities

Table 2: CTMC-CEMD parameters’ notation

Table 3: Computational and Transmission Cost Parameters

Table 4: Transmission cost as a function of time for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7},
a = 0.8 verification rate of sender A and ber = 10−6, 10−3

Table 5: Transmission cost as a function of time for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7},
whose verification rate is b = 0.5 and ber = 10−6, 10−3

Listing 1: Example of a CTMC model in PRISM language

Listing 2: Definition of CTMC-CEMD parameters

Listing 3: Control variables and modules’ synchronization

Listing 4: Synchronization of A and Bi during the exchange of E1

21

Figure 1: An abstract representation of the proposed analysis

Figure 2: An overview of the CEMD protocol

Figure 3: The CEMD quantitative analysis using probabilistic model checking

(a) Probability of TTP’s visibility PTTP ' 1

(b) Probability of TTP’s visibility PTTP = 0.5

(c) Probability of TTP’s visibility PTTP ' 0

Figure 4: Computational cost as a function of time for n = 1, . . . , 7 recipients, i.e.,
{B1, . . . , B7}

(a) a = 0.7

(b) a = 0.8

(c) a = 0.9

Figure 5: Transmission cost as a function of time for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7},
and for different verification rates of sender A: a = 0.7, 0.8, 0.9

(a) b = 0.3

(b) b = 0.5

(c) b = 0.7

Figure 6: Transmission cost as a function of time for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7},
whose verification rates are: b = 0.3, 0.5, 0.7

(a) b = 0.2

(b) b = 0.9

Figure 7: The probability for n = 1, . . . , 7 recipients, i.e., {B1, . . . , B7}, to complete their
sessions as a function of time

22

Symbol Description

A Protocol’s sender
B = {B1, . . . , Bn} Set of recipients communicating with A, n = 7
TTP Trusted Third Party

Symbol Description

number of B machines Number of recipients n = 7
ber Bit error rate (10−6 − 10−3)
ver Ei Rate of positive verification for message Ei, where i = [1..4]
TTP certificates Certificates produced by TTP and received by A
no TTP Sessions completed with TTP being invisible
finish Formula representing the final state of the model

Protocol Step CPU cycles Negative Verification BER occurrence

E1 62.88× 106 X X
E2 54.04× 106 X X
E3 8.84× 106 X X
E4 36.36× 106 X X
R1 8.84× 105 - X
R2 8.84× 106 - X
R3 - - X

Time 14 28 44 60 74

ber 10−6 10−3 10−6 10−3 10−6 10−3 10−6 10−3 10−6 10−3

n = 1 0.418 0.424 0.451 0.458 0.452 0.458 0.452 0.458 0.452 0.458

n = 2 0.753 0.765 0.903 0.917 0.904 0.917 0.904 0.917 0.904 0.917

n = 3 0.988 1.005 1.353 1.374 1.356 1.376 1.356 1.376 1.356 1.376

n = 4 1.135 1.156 1.799 1.826 1.808 1.835 1.808 1.835 1.808 1.835

n = 5 1.216 1.240 2.233 2.267 2.260 2.294 2.260 2.294 2.260 2.294

n = 6 1.252 1.279 2.644 2.684 2.712 2.753 2.712 2.753 2.712 2.753

n = 7 1.265 1.295 3.018 3.064 3.163 3.211 3.164 3.212 3.164 3.212

Time 20 40 60 80 100

ber 10−6 10−3 10−6 10−3 10−6 10−3 10−6 10−3 10−6 10−3

n = 1 1.931 1.939 2.019 2.027 2.020 2.028 2.020 2.028 2.020 2.028

n = 2 3.684 3.699 4.037 4.053 4.040 4.056 4.040 4.056 4.040 4.056

n = 3 5.162 5.182 6.050 6.074 6.060 6.084 6.060 6.084 6.060 6.084

n = 4 6.327 6.352 8.049 8.081 8.080 8.112 8.080 8.112 8.080 8.112

n = 5 7.206 7.234 10.021 10.060 10.100 10.140 10.100 10.140 10.100 10.140

n = 6 7.846 7.877 11.938 11.985 12.119 12.167 12.120 12.168 12.120 12.168

n = 7 8.288 8.321 13.767 13.821 14.136 14.193 14.140 14.197 14.140 14.197

23

ctmc

module M1
v: [1..5] init 1;
[] (v=1) -> 1:(v’=2);
[] (v>1) & (v<5) -> 0.5:(v’=v-1) + 0.5:(v’=v+1);
[] (v=5) -> 1:(v’=4);
endmodule

1 ctmc
// Number of recipients that A communicates with

3 const number_of_B_machines;
// BER parameter

5 const error_factor =1000;
6 const double error_env_wired =1;
7 const double ber=(error_env_wired/error_factor);

// Verifications
// Positive verification rates for messages Ei (where i = [1...4])
// Negative verification rate for Ei is defined as (1-Ei)

11 const double a; // A’s verification rate
12 const double b; // Bs ’ verification rate
13 const double ver_E1=b;
14 const double ver_E2=a;
15 const double ver_E3=b;
16 const double ver_E4=a;

// Formula finish represents the final state of the model
18 formula finish = (TTP_certificates + no_TTP = number_of_B_machines);

...

// Protocol ’s sender
2 module A

// ACKs sent by sender A to a recipient B_i
4 ACK_counter_A: [0.. number_of_B_machines] init 0;

...
// A sends ACK to B_i

7 [A_send_ACK] (ACK_counter_A < number_of_B_machines) -> 1-ber: (
ACK_counter_A ’= ACK_counter_A +1) & (A_state ’=1);

// Transmition error
9 [A_send_ACK_error] (ACK_counter_A < number_of_B_machines) -> ber: (

partyA_state ’=0);
...

11 end module
// Protocol ’s recipients

13 module B
// ACKs received by sender A to a recipient B_i

15 ACKS_received_B: [0.. number_of_partyB_machines] init 0;
...
// B_i receives ACK from A

18 [A_send_ACK] (ACKS_received_B < number_of_partyB_machines) -> (
ACKS_received_B ’= ACKS_received_B +1) & (B_state ’=1);
...

20 end module

24

// Protocol ’s sender
2 module A

...
// A sends E1

5 [A_send_E1] (E1_queue_A < number_of_B_machines) & (E1_queue_A <
ACKS_received_A) -> 1-ber: (A_state ’=3) & (E1_queue_A ’= E1_queue_A +1);

// E1 Transmition error (BER)
7 [A_send_E1_error] (E1_queue_A < number_of_B_machines) & (E1_queue_A <

ACKS_received_A) -> ber: (A_state ’=2);
// E1 will be retransmitted after negative verification error

9 [incorrect_ver_of_E1] (E1_queue_A > 0) -> (A_state ’=2) &
(E1_queue_A ’= E1_queue_A -1);

...
11 endmodule

// Protocol ’s recipients
13 module B

...
// B receives E1

16 [A_send_E1] (E1_queue_B < number_of_B_machines) ->
(E1_queue_B ’= E1_queue_B +1) & (B_state ’=3);
// Correct verification of E1

18 [verification_of_E1] E1_queue_B >0 & (E2_queue_B < number_of_B_machines)
-> ver_E1: (B_state ’=4) & (E2_queue_B ’= E2_queue_B +1) &
(E1_queue_B ’=E1_queue_B -1);
// Incorrect verification of E1

20 [incorrect_ver_of_E1] E1_queue_B >0 & (E2_queue_B < number_of_B_machines)
-> 1-ver_E1: (B_state ’=2) & (E1_queue_B ’=E1_queue_B -1);
...

22 endmodule

25

26

27

(a)

(b)

(c)

28

(a) (b)

(c)

29

(a) (b)

(c)

(a) (b)

30

