
1

Intrusion Attack Tactics for the Model Checking of
e-commerce Security Guarantees

Stylianos Basagiannis1 Panagiotis Katsaros1 Andrew Pombortsis1

1 Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{basags,katsaros,apombo}@csd.auth.gr

Abstract. In existing security model-checkers the intruder’s behavior is defined
as a message deducibility rule base governing use of eavesdropped information,
with the aim to find out a message that is meant to be secret or to generate mes-
sages that impersonate some protocol participant(s). The advent of complex
protocols like those used in e-commerce brings to the foreground intrusion at-
tacks that are not always attributed to failures of secrecy or authentication. We
introduce an intruder model that provides an open-ended base for the integra-
tion of multiple attack tactics. In our model checking approach, protocol cor-
rectness is checked by appropriate user-supplied assertions or reachability of
invalid end states. Thus, the analyst can express e-commerce security guaran-
tees that are not restricted to the absence of secrecy and the absence of authen-
tication failures. The described intruder was implemented within the SPIN
model-checker and revealed an integrity violation attack on the PayWord micro
payment protocol.

KEYWORDS: intrusion attacks, e-commerce protocols, model checking, SPIN

1 Introduction

Model-checking of cryptographic protocols takes place on a model of a small sys-
tem running the protocol of interest together with an intruder model that interacts
with the protocol. Security flaws are found by an appropriate state exploration ap-
proach that discovers if the system can enter an insecure state, that is, whether there is
an attack upon the protocol.

The basic assumptions are summarized as follows: (i) The encryption method used
is unbreakable, (ii) The intruder can prevent any message from reaching its destina-
tion and (iii) The intruder can create messages of his own. As a consequence of the
foresaid assumptions, model-checking analyses treat any message sent by a honest
user as a message sent to the intruder and any message received by a honest user as a
message sent by the intruder. This setting refers to a system that becomes a machine
that is used by the intruder to generate words (messages). The intruder’s behavior is
defined as a message deducibility rule base governing composition and decomposi-
tion of messages, encryption and decryption with known keys, as well as memoriza-
tion and use of eavesdropped information.

2

In section 2 we provide an overview of the most influential model checking ap-
proaches. All of them use the general Dolev and Yao intruder model [1], but the in-
truder’s goal is restricted in finding out a message that is meant to be secret or in
generating messages that impersonate some protocol participant. Failures of secrecy
or authentication reveal a previously unknown attack on the analyzed protocol.

However, security guarantees cannot always be expressed as absence of secrecy
or authentication failure. A typical case is the well-known family of replay attacks,
where the intruder aims to the playback of previously recorded messages in an at-
tempt to sabotage an ongoing protocol session: in [2] the authors show that failures of
information exchange timeliness that make possible message replays do not always
manifest themselves as secrecy failures. Hence, replay attacks are basically analyzed
[3] with special-purpose modal logics, like the BAN logic (named after the initials of
its inventors [4]). Another complication is that recent studies ([5]) concluded in that
authentication is a protocol dependent notion and there is not a unique definition of
authentication that all secure protocols satisfy.

Sections 3 and 4 introduce a philosophically different approach in designing the
intruder. We also adopt the assumptions of the Dolev - Yao intruder, but instead of
specifying its behavior with a set of rules governing deducibility of messages, we
attempt to combine multiple attack tactics based on a careful analysis of how they
proceed. Attack tactics are formalized and are then combined into a single Dolev -
Yao intruder within the SPIN model-checking environment ([6], [7]). Four types of
attack tactics have been implemented so far, namely: (i) Replay and integrity viola-
tion attacks, (ii) Type-flaw attacks, (iii) Impersonation attacks, (iv) Parallel session
attacks.

Although we cannot claim that our approach covers all possible attack tactics, we
do not exclude known attacks that are not reflected as failures of secrecy or authenti-
cation. The developed Dolev - Yao intruder constitutes a supplemental model-
checking mean, used as an open-ended base for implementing more specialized at-
tack tactics. This makes possible to reveal attacks, which cannot be detected by exist-
ing security model checkers, like for example attacks that subvert non-repudiation
[8], fairness, accountability, abuse-freeness [9] or other e-commerce security guaran-
tees.

An interesting aspect is the comparatively smaller state spaces that make possible
analyses to not be restricted to small systems running the protocol of interest. This
allows application of the proposed intruder model to larger and more complex sys-
tems, thus opening new potentialities in revealing for example multi-protocol attacks
[10] on cryptographic protocols that are executed in the same environment.

With the described approach we discovered an integrity violation attack on the
PayWord micro payment protocol [11]. The obtained results are shown in section 6.

2 Related work

One of the first systems that used the Dolev - Yao intruder and the secrecy failure
approach was the Interrogator tool [12]. Given a final state in which the intruder
knows some word, which should be secret, the Interrogator tries all possible ways of

3

constructing a path by which that state can be reached. If it finds a path, then it has
identified a security flaw.

Finite state analysis of cryptographic protocols has been developed in a range of
published works, which implement the secrecy or authentication failure approach
within the frame of specialized security analysis tools like BRUTUS [13] or within
general purpose model checkers like Murφ [14] and FDR [15].

The most detailed description of a Dolev - Yao intruder [16] is given for the so-
called “Lazy Spy”. The “Lazy Spy” was initially expressed [17] in the traces model
of CSP/FDR and was later integrated into Casper [18], a front-end for semi-
automated CSP description of security protocols. Casper works based on a custom-
made set of rules governing deducibility of messages through encryption and uses a
lazy exploration strategy, which examines the subset of intruder states reachable by
the protocol rules. NRL Protocol Analyzer [19] is another well-known tool with a
similar Dolev - Yao intruder.

In [20] the authors provide a thorough review of the most important state space
analysis contributions until 1999. A more recent contribution for the model checking
of secrecy and authentication is the so-called “lazy intruder” [21] for the on-the-fly
model checker of the AVISPA security toolset [22]. The “lazy intruder” avoids an
explicit enumeration of the possible messages the intruder can generate, by storing
and manipulating constraints about what must be generated. The resulted symbolic
representation is evaluated in a demand-driven way and this approach reduces the
search tree without excluding any attacks.

3 The Intruder Model

We adopt the pessimistic assumption that the intruder has absolute control over the
used communication network, as well as the basic Dolev - Yao assumptions men-
tioned in section 1 regarding his abilities. More precisely, the intruder eavesdrops or
intercepts messages and analyzes them if he possesses the keys required for decryp-
tion. Also, the intruder can generate messages from his knowledge and can send
them to any protocol participant. The new messages are created from already known
messages by applying one or more of four (4) basic operations: encryption, decryp-
tion, concatenation and projection.

Any attempt to enumerate all meaningful messages that the intruder can send will
inevitably lead to an enormous branching of the resulting state space. The model
checking approaches of section 2 attempt to preserve the generality of the intruder
model while applying specialized techniques to overcome the foresaid problem. How-
ever, they are only applicable to a small system running the protocol of interest. If no
attack is found, there is still an open possibility for an attack upon some larger system
(absence of model-checking completeness [23]).

We aim in a less general but complementary approach for the generation of new
messages based on an open-ended base of predefined attack tactics. The structure and
the number of all possible fake messages are restricted by the patterns and the number
of initial messages of the available attack tactics. The intruder model can be thought
as two concurrent processes, where the first aims to eavesdrop/intercept exchanged

4

messages and the second performs a non-deterministically selected attack tactic
against the ongoing protocol session(s) (Figure 1).

Figure 1. The intruder process

Upon reception of a fake message, by some victim, the performed attack step suc-
ceeds and the subsequent execution trace is possible to reach an invalid end state or a
correctness assertion violation. If the victim does not accept the sent fake message,
falls into a fail-stop state, where the “recipient” does not continue with the ongoing
protocol execution. Protocol correctness, whether it is expressed as reachability of an
invalid end state or an assertion check is thus not restricted to secrecy or authentica-
tion guarantees.

An atomic message may come from one of the sets:
- Keys, with members that represent the keys used to encrypt messages, such that

every key k ∈ Keys has an inverse k-1 ∈ Keys. For symmetric cryptography the
decryption key is the same as the encryption key, i.e. k = k-1.

- Agents, with members that represent the names of the honest protocol partici-
pants.

- Nonces, which is an infinite set of randomly generated numbers. Members of
Nonces are used as timestamps that is, any message containing one of them can
be assumed having been generated after the nonce itself was generated.

- Data, with members that represent the plaintext strings exchanged between the
protocol’s participants.

We denote by I the intruder (I ∉ Agents). Also, we define the binary relation,
is_key_of = {(k, id): k∈ Keys, id ∈ Agents ∪ {I},

“key k is used by the participant id”}
such that |is_key_of (k)| =1 in the case of public key cryptography or |is_key_of (k)| =2
in the case of symmetric cryptography.

5

The set Msgs of exchanged messages is defined inductively over the disjoint union
AMsgs = Keys ∪ Agents ∪ {I} ∪ Nonces ∪ Data

that represents the set of atomic messages (Seti ∩ Setj = ∅ for any two Seti, Setj of the
unified sets). More precisely:

- If α ∈ AMsgs then α ∈ Msgs.
- If msgx ∈ Msgs and msgy ∈ Msgs then msgx ⋅ msgy ∈ Msgs, where ⋅ represents

message concatenation.
- If msg ∈ Msgs and k ∈ Keys then {msg}k ∈ Msgs.
Each ag ∈ Agents may attempt to execute the protocol for a bounded number of

times say #Sesag and each such attempt is a separate protocol session noSes, such that
1 ≤ noSes ≤ #Sesag. In a protocol session, ag plays either the role of the initiator or
the responder.

We denote by noSes
nsentag the finite-length concatenation sequence of messages sent

by ag ∈ Agents in the course of session noSes:
)(ag

1
ag

nnn msgsentsent noSesnoSes ⋅= −
with the first term equal to the null sequence that is,) (ag

0 =noSessent . The sequence
noSes

nsentag represents participant’s ag history for session noSes, after having sent
msgn. We denote by noSes

nrcvd ag the finite-length concatenation sequence of messages
received by ag in the course of session noSes. In a given time instant the acquired
participant’s knowledge for the ongoing protocol execution is given as

agknowledge U
j

jag
ircvd

ag
)max(}{ = ∪ agin_knowledge,

for all 1 ≤ j ≤ #Sesag, where agin_knowledge represents the initial knowledge base of ag
(keys, agent identities and so on) and i > 0 represent the terms of the received mes-
sage concatenation sequences. A protocol session for a honest participant ag ∈
Agents is defined formally as a 5-tuple 〈ag, j, agknowledge, j

historyag , P〉, where 1 ≤ j ≤
#Sesag and P is a process description given as a sequence of actions to be performed.
We consider the actions send and receive for sending and receiving messages to/from
other protocol’s participants.

The assumptions mentioned in section 1 for the general Dolev - Yao intruder im-
ply that in a given time instant the acquired intruder’s knowledge for the ongoing
protocol execution is given as

U
jag

)max(}{ jag
iknowledge sentI = ∪ Iin_knowledge,

for all 1 ≤ j ≤ #Sesag, ag ∈ Agents ∪ {I}, where Ιin_knowledge represents the initial in-
truder’s knowledge base and i ≥ 1 represent the terms of the eavesdropped message
concatenation sequences.

The protocol model is given as the asynchronous composition of the models for
each protocol session, including the intruder, whose behavior depends on the defined
attack tactics. Attack tactics are non-deterministically selected and are then executed
within a single thread of control. Each possible execution of the model corresponds to
a finite alternating sequence of global states and actions:

τ = s0 α1 s1 α2 . . . sn, for some n ∈ N

6

such that i
a

i ss i 1 ⎯→⎯− for 0 < i ≤ n and for the transition relation → defined as
→ ⊆ S × PS × A × Msgs × S

where S is the set of global states, PS is the set of protocol sessions and A is the set of
action names.

4 Attack Tactics

We formalized and subsequently implemented a series of basic attack tactics. First,
we present the elementary tactics that are also used in forming more complex attack
scenarios. The implemented attack tactics are the ones that are most often reported in
related bibliography.

4.1 Message INterCePTion (INCPT)

Message interception takes place after the occurrence of some action send (ag, v,
msg)1, for some ag, v ∈ Agents and some msg ∈ Msgs, if there is no receive (v, u,
msg)2 with u ∈ {ag, I} in the suffix execution trace. When intercepting an encrypted
message {msg}k there is no receive (v, u, {msg}k) action in the suffix execution trace.

4.2 Replay attack tactics

Replay attacks take place when the intruder redirects eavesdropped or altered mes-
sages within one (or possibly more) interleaved protocol session(s). We adopt the
replay attack classification of [5] and we formalize the following replay attack tactics
(Figure 3).

REFlections (R-REF):

In a reflection attack the intruder resends an altered version of a previously sent
message back to its sender. Run-internal reflections are performed within the same
protocol session. Interleaving reflections use contemporaneous protocol sessions and
classic reflections use messages obtained from already finished protocol sessions.

The R-REF attack takes place anytime after the occurrence of some action send (v,
ag, msg), with msg representing any non-encrypted msg ∈ Msgs or after the occur-
rence of some action send (v, ag, {msg}k) such that I ∉ is_key_of (k) ∧ k-1∈ Iknowledge.

The foresaid actions result in a global state where either
exists(msg, jv

isent)max()3 = true or respectively exists({msg}k, jv
isent)max() = true

1 The action whereby ag sends msg to v
2 The action whereby v receives msg from u
3 Boolean predicate indicating if the string str appears in message msg ∈ Msgs

7

for some 1 ≤ j ≤ #Sesv, with i ≥ 1 representing the terms of an eavesdropped message
concatenation sequence.

In the performed reflection attack the intruder alters msg based on Iknowledge and
uses the altered msg΄∈ Msgs in an action send (I, v, msg΄) or send (I, v, {msg΄}k΄) for
some k΄ ∈ Iknowledge such that v ∈ is_key_of (k΄).

The R-REF attack succeeds only when v performs the action receive (v, I, msg΄) or
respectively the action receive (v, I, {msg΄}k΄) with the following potential outcomes:

- run-internal reflection
exists(msg΄, jv

ircvd)max() = true or exists({msg΄}k΄, jv
ircvd)max() = true

- classic or interleaving reflection
∃ j΄≠j: exists(msg΄, j΄v

ircvd)max() = true or exists({msg΄}k΄, j΄v
ircvd)max() = true

DEFlections (R-DEF):

In a deflection attack the intruder redirects a possibly altered sent message to some
participant that is neither the message’s recipient nor the sender. Run-internal deflec-
tions are performed within the same protocol session. Interleaving deflections use
contemporaneous protocol sessions and classic reflections use messages obtained
from already finished protocol sessions.

STraight Replays (R-STR):

In a straight replay attack the intruder resends a previously sent message to its in-
tended destination. If the eavesdropped message is replaced by an altered version, this
attack is also known as INTegrity Violation attack (INTV).

Depending on whether this attack is performed within the same session or contem-
poraneous or non-interleaved sessions, straight replays are also characterized either as
run-internal, interleaving or classic replays.

4.3 Type flaw attack tactics (TFLAWS)

A type flaw attack arises when the recipient of a message accepts that message as
valid, but imposes a different interpretation on the bit sequence than the protocol
participant who created it. Type flaw attacks follow the action sequences of the replay
attack tactics and may be optionally combined with a message interception (INCPT),
in order to prevent reception of intercepted message by its recipient such as to per-
form a type flaw based message replay.

I triggers a type flaw attack possibly after having altered an eavesdropped msg ∈
Msgs based on Iknowledge, thus resulting in some msg΄ ∈ Msgs. The subsequent action
performed by I is either send (I, v, msg΄) or send (I, v, {msg΄}k΄) for some k΄∈Iknowledge
such that v ∈ is_key_of (k΄).

This attack tactic succeeds if in the global state after the occurrence of the action
receive (v, I, msg΄) or respectively receive (v, I, {msg΄}k΄) there is some atomic mes-
sage amsg, such that

8

exists(amsg, jv
ircvd)max() = true, 1 ≤ j ≤ #Sesv

with i ≥ 1 representing the terms of jv
nrcvd and for two sets Seti and Setj from the

“disjoint” union Amsgs,

amsg ∈ Seti ∩ Setj

The described insecure global state expresses the fact that it is possible for an
atomic message that was originally intended to have one type (e.g. nonce) to be inter-
preted as having another type (e.g. key or data). However, this possibility occurs only
when both types are represented as bit sequences of the same length, so that when the
intruder positions an atomic message in place of a type flawed one, the recipient is
fooled into accepting the used atomic message as the one expected according to the
owned process description (P).

We note that type flaw attacks [24] may not lead to a direct security compromise,
since it is possible that the plaintext bit string of the atomic message used by I to be
unknown to him (the secrecy is preserved). However, if for example a nonce is used
as a key, this is not a good key, because the main concern in generating nonces is to
be unique in a protocol session, as opposed to keys that basically have to be non-
predictable. Type flaw attacks may result in failures of security properties beyond the
typical secrecy and authentication properties, like for example anonymity and non-
repudiation [25].

4.4 Simple IMPersonation attack (IMP)

An insecure state (precondition) for the performance of an IMP attack is any state
where I can read the contents of a protocol message sent by some ag ∈ Agents, who
acts as initiator of a new protocol session:

{∃ noSessent ag
1 ∈Iknowledge, ag∈Agents, 1≤ noSes≤ #Sesag :

 { noSessent ag
1 =msg for some non-encrypted msg∈Msgs}

 ∨ { noSessentag
1 ={msg}k: is_key_of (k) = I ∨ (is_key_of (k) ≠ I ∧ k-1∈ Iknowledge)}}

The IMP attack tactic takes place when the intruder performs the following three
subsequent actions against some victim v ∈ Agents, such that v ∉ is_key_of (k) and
v ≠ ag:

send (I, v, msg΄), receive (I, v, newSesvsent1), send (I, ag, newSesvsent1)

where msg΄= noSessent ag
1 , when the latter is a non-encrypted message or otherwise

msg΄={msg}k΄, with k΄∈ Iknowledge and v ∈ is_key_of (k΄). Also, vnewSes is a unique ses-
sion identifier for session newSes, in which victim v acts as responder and the boo-
lean predicate exists(v, newSesvsent1) is false. If the last mentioned predicate is true,
ag realizes that the responder in session agnoSes is not the one selected and subse-
quently aborts the corrupted protocol session.

9

4.5 Parallel session attack tactics (PARSES)

Parallel session attacks take place by subsequent interleaving replays among con-
temporaneous protocol sessions, in which the intruder manipulates protocol partici-
pants in multiple roles (initiator or responder), in order to subvert the protocol’s
goals.

The intruder can under special conditions use the cryptographic protocol dialogs:
- As an oracle that is, to foretell the contents of otherwise perfectly encrypted

messages (refer to the oracle session attack shown in [26]).
- To impersonate a protocol participant (e.g. the BAN-Yahalom attack in [5]).

or possibly to subvert properties beyond secrecy and authentication.
In a parallel session attack the execution sequence τ includes a series of action cy-

cles that open with some action send (ag, v, msg) or send (ag, v, {msg}k) and this
results in

exists(msg, j
isent ag
)max() = true or respectively exists({msg}k, jg

isent a
)max() = true

I either opens a new protocol session newSesv΄ or responds to an already opened
session say mv΄ (with v΄∈Agents including ag and v), for which the last action of the
process description P is not included in the prefix execution sequence of τ. The attack
is performed possibly after having altered the eavesdropped msg ∈ Msgs (based on
Iknowledge), thus resulting in sending some msg΄ ∈ Msgs by send (I, v΄, msg΄) or send
(I, v΄, {msg΄}k΄) for some k΄ ∈ Iknowledge such that v΄ ∈ is_key_of (k΄). The interleaving
replay succeeds if the action cycle ends with a receive action by v΄, yielding a global
state such that
exists(msg΄, mv΄

ircvd)max() = true or respectively exists({msg΄}k΄, mv΄
ircvd)max() = true

with max(i) = 1, if m represents a new protocol session (newSes).
A number of successive interleaving replays may end up in a fail-stop global state

or in either an invalid end state or violation of a protocol correctness assertion. The
latter possibility reveals a previously unknown parallel session attack.

5 The PayWord micro payment protocol

We focus on the analysis of the PayWord micro-payment protocol that was first
proposed by Rivest and Shamir in [11]. PayWord is a credit based off-line protocol
implemented by the use of hash chains that are called chains of PayWords. In our
work we will assume the use of the MD5 hash function [27] denoted by w(i). Three
participants are involved in a protocol session: the Customer, the Broker and the
Vendor. The Customer (C) establishes an account with the Broker (B) who issues a
certificate containing customer’s information and B’s name. This certificate will au-
thorize C to construct PayWord chains validating himself to the some Vendor (V).
The basic steps of PayWord micro-payments are shown in Figure 2.

Upon reception of the foresaid certificate (certC), C computes the PayWord
chain w in reverse order based on a randomly chosen term. Then, he signs the so-

10

called commitment (M) of the PayWord protocol which consists of the calculated first
term of the chain (w(0)) along with the required customer information; M is sent to
V. In every single payment, a chain term of type, P:(w(i),i) is sent to V until the
last payment, P:(w(I),I). We consider the (attacked) variable-size payment sce-
nario, where the value of each payment varies between 1 and n. V verifies the pay-
ments P, by applying the hash function w to the last valid payment v times, where v is
the value of the requested payment (w(i-v)). At the end of the day, V reports to B
the last (highest-indexed) payment (w(I),I) - where I=max(i) - received from C
within the current day, together with the owned C’s commitment.

Figure 2. The PayWord micro payment protocol

Table 1. Glossary of the PayWord protocol notation

While the use of the hash chain ensures reduced computational requirements for V,
the attack found on the protocol is based on V’s mechanism, when accepting an al-

IDc Customer ID
IDb Broker ID
IDv Vendor ID
SKb Broker’s key
PKc Customer’s public key
SKc Customer’s secret key

Addrc Customer address
certC Customer certificate
Exp Certificate expiration timestamp
Ic Customer’s information
Im Vendor’s information
D Date

11

tered “hashed” message. Provided the intruder’s ability to perform hash function
calculations by MD5, the detected attack takes place when the intruder intercepts and
alters a variable-size payment request.

6 Verification results

This section provides simulation and verification results obtained within the SPIN
model checking environment for the developed PayWord model, when combined
with the described intruder. The simulation output is shown by the automatically
generated Message Sequence Chart.

Figure 3. INTV attack of a variable-size payment (P): V accepts an altered message

Figure 4. Verification output

12

Figure 3 shows the detected INTV attack. In state 19 C sends a commitment (M),
which is not affected by the intruder and continues with the first variable-size pay-
ment attempt (P). In state 27 the intruder alters message (w1,n1) thus resulting in
the fake message (w1’,n1-1), which is eventually accepted by V. Finally, V dis-
patches message D (deposit) and the protocol session ends with a successful INTV
attack (encoded as an invalid end state).

Figure 4 shows the obtained verification output that revealed the described attack
scenario. The performed state space search reports an error and generates a counter-
example reflecting a feasible path to the defined invalid end state. By the use of the
error trail simulation feature of SPIN we roll back the protocol execution and identify
the detected flaw.

Figure 5. Attack tactics on the PayWord micro payment protocol

Figure 5 summarizes the attack tactics attempted by the described intruder and the

participants’ responses in all protocol steps. Failed attack scenarios are noted as “not

13

accepted!!” and result in fail-stop model states. The detected INTV attack is shown
within the frame in the right-hand side that represents V’s hash mechanism.

7 Conclusion

This work introduces an open-ended Dolev - Yao intruder that combines elementary
and more complex attack tactics in an attempt to subvert security protocol guarantees.
We provided a formalized description of the most often reported attack tactics, which
were implemented within the SPIN model-checking environment. The obtained in-
truder was applied to a range of electronic payment protocols and revealed an integ-
rity violation attack on the PayWord micro-payment protocol.

Although the proposed model is bound to the absence of model checking com-
pleteness - as all published intruder models - it constitutes a supplemental model-
checking mean, capable to reveal violations of protocol correctness properties, be-
yond those checked by existing security model checkers.

The proposed intruder is open to extensions aiming to integrate more specialized
attack tactics that may subvert e-commerce security guarantees like non-repudiation,
fairness, accountability, abuse-freeness and so on.

References

1. Dolev, D. and Yao, A., On the security of public-key protocols, IEEE Transactions on
Information Theory 2/29, 1983, pp. 198-208.

2. Woo, T. Y. C. and Lam, S. S., A semantic model for authentication protocols, In Proc. of
the IEEE Symposium on Research in Security and Privacy, 1993.

3. Meadows, C. A., Formal verification of cryptographic protocols: A survey, Advances in
Cryptology International Conference on the Theory and Application of Cryptology
(Asiacrypt '94), LNCS 917 Springer-Verlag, 1995, pp. 133-150.

4. Burrows, M., Abadi, M. and Needham, R., A logic of authentication, ACM Transaction
on Computer Systems 8/1, 1990, pp. 18-36.

5. Syverson, P. and Cervesato, I., The logic of authentication protocols, In Proc. of the 1st
International School on Foundations of Security Analysis and Design (FOSAD 2000),
LNCS 2171, Springer-Verlag, 2001, pp. 63-137.

6. The SPIN model checker official website, available at http://spinroot.com/
7. Holzmann, G. J., Design and Validation of Computer Protocols, Prentice-Hall, 1991.
8. Kremer, S., Markowitch, O. and Zhou, J., An intensive survey of fair non-repudiation

protocols, Computer Communications, 25/17, 2002, pp. 1606-1621.
9. Shmatikov, V. and Mitchell, J. C., Finite-state analysis of two contract signing protocols,

Theoretical Computer Science, 283, 2002, pp. 419-450.
10. Cremers, C. J. F., Feasibility of multi-protocol attacks, In Proc. of the First International

Conference on Availability, Reliability and Security, IEEE Computer Society Press,
2006.

11. Rivest, R. L. and Shamir, A., Payword and Micromint: Two simple micropayment
schemes, In Proc. of the Fourth International Workshop on Security Protocols, LNCS
1189 Springer-Verlag, 1996, pp. 69-87.

14

12. Millen, J. K., Clark, S. C. and Freedman, S. B., The Interrogator: Protocol Security
Analysis, IEEE Transactions on Software Engineering 13/2, 1987.

13. Clarke, E. M., Jha, S. and Marrero, W., Verifying security protocols with Brutus, ACM
Transactions on Software Engineering and Methodology 9/4, 2000, pp. 443-487.

14. Mitchell, J. C., Mitchell, M. and Stern, U., Automated analysis of cryptographic proto-
cols using Murφ, In Proc. of the IEEE Symposium on Research in Security and Privacy,
IEEE Computer Society, 1997, pp. 141-153.

15. Roscoe, A. W., Modeling and verifying key-exchange protocols using CSP and FDR, In
Proc. of the 8th IEEE Computer Security Foundations Workshop ,IEEE Computer Soci-
ety, 1995, pp. 98-107.

16. Roscoe, A. W., The theory and practice of concurrency, Prentice Hall, 1997.
17. Roscoe, A. W. and Goldsmith, M., The perfect spy for model-checking cryptoprotocols,

In Proc. of the 1997 DIMACS Workshop on Design and Formal Verification of Security
Protocols, 1997.

18. Lowe, G., Casper: a compiler for the analysis of security protocols, In Proc. of the IEEE
Computer Security Foundations Workshop, IEEE Computer Society, 1997, pp. 18-30.

19. Meadows, C., Kemmerer, R. and Millen, J., Three systems for cryptographic protocol
analysis, Journal of Cryptology 7/2, 1994, pp.79-130.

20. Gritzalis, S., Spinellis, D. and Georgiadis, P., Security protocols over open networks and
distributed systems: formal methods for their analysis, design, and verification, Computer
Communications 22, 1999, pp.697-709.

21. Basin, D., Modersheim, S. and Vigano, L., OFMC: A Symbolic Model-Checker for
Security Protocols, International Journal of Information Security, 2004.

22. AVISPA: Automated validation of internet security protocols and applications, 2003,
FET Open Project IST-2001-39252. http://www.avispa-project.org

23. Lowe, G., Towards a completeness result for model-checking of Security Protocols, In
Proc. of the 11th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1998.

24. Clark, J. and Jacob, J., A survey of authentication protocol literature: version 1.0, Tech-
nical Report, University of York, 1997.

25. Heather, J., Lowe, G. and Schneider, S., How to prevent type flaw attacks on security
protocols, In Proc. of the 13th IEEE Computer Security Foundations Workshop, IEEE
Computer Society, 2000, pp, 255-268.

26. Carlsen, U., Cryptographic protocol flaws – Know your enemy, In Proc. of the 7th IEEE
Computer Security Foundations Workshop, IEEE Computer Society, 1994, pp. 192-200.

27. Rivest, R. L., The MD5 Message-Digest Algorithm, Internet informational RFC 1321,
1992.

