
Design of embedded systems with complex task

dependencies and shared resource interference

(Short Paper)

?

F. Gioulekas1,5 and P. Poplavko2, R. Kahil2, P. Katsaros1,4, M. Bozga2, S.
Bensalem2 and P. Palomo3

1 Information Technology Institute, CERTH, Greece
gioulekas@teemail.gr

2 Universite Joseph Fourier - Verimag, Grenoble, France
petro.poplavko, rany.kahil, marius.bozga, saddek.bensalem@imag.fr

3 Deimos-Space S.L.U, Madrid, Spain
pedro.palomo@deimos-space.com

4 Aristotle University of Thessaloniki, Greece
katsaros@csd.auth.gr

5 Current a�liation: University General Hospital of Larissa, Greece

Abstract. Languages for embedded systems ensure predictable timing
behavior by specifying constraints based on either data streaming or
reactive control models of computation. Moreover, various toolsets facil-
itate the incremental integration of application functionalities and the
system design by evolutionary refinement and model-based code gen-
eration. Modern embedded systems involve various sources of interfer-
ence in shared resources (e.g. multicores) and advanced real-time con-
straints, such as mixed-criticality levels. A su�ciently expressive model-
ing approach for complex dependency patterns between real-time tasks is
needed along with a formal analysis of models for runtime resource man-
agers with timing constraints. Our approach utilizes a model of compu-
tation, called Fixed-Priority Process Networks, which ensures functional
determinism by unifying streaming and reactive control within a timed
automata framework. The tool flow extends the open source TASTE
tool-suite with model transformations to the BIP language and code gen-
eration tools. We outline the use of our flow on the design of a spacecraft
on-board application running on a quad-core LEON4FT processor.

Keywords: model-based design, embedded systems, model of computation,
code generation, multicores.

1 Introduction

The model-based design philosophy for embedded systems is grounded on the
evolutionary design using models [4], which support the analysis, the gradual

? This work was supported by ESA under contract No. 4000111814/14/NL/MH. This
is a short paper accepted in the new ideas and work-in-progress section of SEFM
2017.

refinement and the setting of real-time attributes that ensure predictable timing
behavior. For being able to analyze the models, they are specified with languages
based on formal models of computation [1], which allow the synthesis and the
optimization of behavior into an implementation solution. Such models provide
syntax for describing dependencies between the runtime entities of a design and
rules for computation of the behavior, given the syntax. The well-known stream-
ing models of computation are suitable for describing complicated data transfer
functions, whereas the reactive control models used in synchronous languages
are suitable for complex control dependencies, which are compiled to sequential
code as tasks, and classical schedulability methods can then be applied.

However, in modern embedded systems the task dependencies are further
complicated, due to various sources of interference in shared software and hard-
ware resources (e.g. buses, DMAs, I/Os in multicores) and additional constraints,
such as mixed-criticality levels, dynamic voltage and frequency scaling. Thus, the
design should ensure predictable timing behavior, while allowing adaptation to
unexpected overload cases by dynamically reallocating resources.

To this end, we present a rigorous design approach that integrates a re-
cently introduced model of computation, the Fixed Priority Process Networks
(FPPNs) [3], with the TASTE toolset [5] and a timed automata analysis frame-
work with “resource managers” [6], i.e. software functions that monitor utiliza-
tion of compute resources and adapt the schedule in cases of shortage [2].The
FPPN model of computation combines the expressiveness of streaming and re-
active control, retains the e�ciency potential of parallel processing and ensures
functional determinism, i.e. the program’s outputs are neither dependent on the
tasks’ execution times, nor on their scheduling. TASTE is an open source toolset
based on a system-level architecture description language, the AADL. It sup-
ports the incremental model-based integration (through ASN.1) of application
functionalities using various languages (C/C++, SDL, VHDL, Ada, Python)
and tools (SCADA, Simulink). We utilized TASTE’s extensibility support to-
wards enabling the design of FPPN programs. Moreover, a model transformation
was implemented to a timed automata modeling framework in BIP, a language
with formal operational semantics and code generation tools, for execution en-
gines ported to various embedded platforms. Our approach allows scheduling
the program’s tasks, while taking into account their dependencies and the var-
ious sources of interference, through explicit interference models and resource
managers. A resource manager is an integral part of an online scheduler that
implements a customized online scheduling policy.

We present the scheduling of a Guidance, Navigation and Control (GNC)
application on the quad-core LEON4FT in ESA’s Next Generation Micropro-
cessor platform (NGMP) [7]. Section 2 summarizes background knowledge on
the FPPN model of computation. Section 3 introduces the TASTE toolset ex-
tensions to support FPPNs, the TASTE2BIP model transformations and task
graph extraction, which enable the application’s scheduling based on appropriate
interference models. Section 4 presents the scheduling of the GNC application
and the paper concludes with an overview of the exposed contributions.

2 Fixed Priority Process Networks

The FPPN [3] extends the reactive control models of computation by intro-
ducing synchronization and pipelined execution for a set of processes (tasks),
which communicate data through channels. It allows the specification of time
dependent, yet deterministic, behavior and real time task properties (sporadic or
periodic activations with deadlines), and can be scheduled on single or multiple
processors with or without priorities. The determinism is ensured by a func-

tional priority relation between the tasks that are executed in an order, which is
determined first by the task release times, i.e. when the tasks are invoked, and
secondly by the task priorities.

An FPPN consists of processes, data channels and event generators. The
processes represent subroutines with functional code featuring internal variables
and ports connected to their input/output channels. A subroutine invocation
is defined as a job with bounded execution time, which is subject to worst-
case execution time (WCET) analysis. Every process is associated with an event
generator, which can be either periodic or sporadic. The data channels support
non-blocking read and write operations, which means that reading from an empty
channel does not block the reader. The returned data value is accompanied by
a validity flag, i.e. a boolean indicator of whether the data is valid. There are
inter-process and external (environment) channels of two possible types, FIFO
or blackboard. The blackboard remembers the last written value, which can be
read multiple times.

Every process p has a deadline dp. An event generator’s sequence of times-
tamps ⌧k determines when the kth job of process p is “activated”. The periodic
processes are activated with period Tp, whereas for sporadic processes Tp de-
notes the minimum inter-arrival time. Each job’s execution has to be completed
by Dk = ⌧k + dp. We assume that all simultaneous process activations are sig-
naled synchronously and we consider two variants of FPPN semantics. According
to the zero-delay semantics the processes’ execution takes zero time and since
all deadlines can be met without exploiting parallelism, we assume for simplic-
ity that it takes place sequentially. The deterministic ordering of non-blocking
accesses to the shared variables between the processes is ensured by a set of
rules detailed in [3]. The zero-delay semantics allows the functional simulation
of the FPPN through its sequential execution. The real time semantics defines
how the FPPN is executed on embedded platforms, which is a relaxed version
of the zero-delay semantics, since it allows jobs to have any execution time, as
well as to start concurrently at any time after their invocation.

For certain subclasses of FPPNs it is possible to statically derive a task graph,
which then serves as input to a scheduling algorithm. A task graph is a directed
acyclic graph TG(J, E) with nodes representing jobs J = {Ji} and edges E that
are called precedence edges, which constrain the job execution order. A job is
characterized by a tuple Ji = (pi, ki, Ai, Di, Ci) wherepi is the process to which
the job belongs, ki is the job’s invocation count, Ai 2 Q�0 is the arrival time,
Di 2 Q+ is the required time (absolute deadline) and Ci 2 Q+ is the WCET.

3 Design and scheduling for FPPNs in TASTE

Fig. 1 delineates our model based design flow that integrates FPPNs within
TASTE [5], along with a timed automata modeling framework in BIP [3] (parts
in grey color depict our contribution) and its associated scheduling and code gen-
eration tools. The latter ensure predictable timing behavior, when executing the
application on a multithreaded BIP Runtime Environment (BIB RTE). Specifi-
cally, a representation of the software is provided through the TASTE front-end
tools (Interface View, Data View, Deployment View), which were amended to
capture FPPN-compliant models. The TASTE functions can be assigned at-
tributes that characterize the FPPN node (e.g. blackboard, periodic process).
Each process is associated with a unique integer (larger numbers imply lower pri-
orities) and a criticality level (only HI and LO are supported), for scheduling the
application with multiple criticality levels [6]. Additionally, functional C/C++
code primitives are inserted in TASTE including also ASN.1 based data types.

The next step is the TASTE2BIP model transformation, where (i) the TASTE
FPPN is transformed to a BIP FPPN model and (ii) the TASTE attributes are
used to generate the task graph through graph rewriting. At this stage, we take
into account the interference on shared software and hardware resources, which
invalidates the canonical WCET and schedulability analysis, due to a feedback
influence. This step involves the design of an interference model, as detailed
in [6]. The schedule obtained from the static scheduler together with the inter-
ference model are then translated into parameters of the online-scheduler model
in BIP. The joint application and scheduler representation is compiled into an
executable, which is linked with the resource manager BIP RTE and executed
on the target platform on top of the real time operating system.

A2

Multi-Core CPU

BIP Compiler

Executable

Application + Online Scheduler (BIP)

BIP RTE

δ-interference
model

Offline Scheduler

Task

Graph

Application
(C/C++ Functional Code)

Application
(AADL & XML)

TASTE Toolset
(Data-View, Interface-View, Deployment-View)

TASTE-to-BIP
compiler

Incremental refinement
Model Transformation

Graph Re-writing
Task-Graph extraction

BIP &
Scheduler

FPPN Model

TASTE
FPPN Model

BIP
FPPN Model

a b

τ1
[a > b]

Attributes
(TASTE labels)

Tasks
(TASTE

function nodes)

Condition: dependency pattern
(a, b functional priorities)

τ2

A1
[A1 = f(τ1)]

Pattern
b after a

[A2 = f(τ2)]

TASK – Graph
fed to BIP

Fig. 1. Model-based design and tool flow for FPPNs in TASTE.

4 Case-Study: Guidance Navigation Control Application

The described approach was applied on the design and scheduling of a GNC ap-
plication ported onto ESA’s NGMP with the aim to utilize multiple cores of the
quad-core LEON4FT processor [7]. The main objective of a GNC application is
to a↵ect the movement of the vehicle and provide the corresponding sensor and
controller with the necessary data. It comprises the Guidance Navigation Task
(Functional Priority = 4, Period = 500ms, Deadline = 500ms, WCET=22ms),
the Control Output Task (Functional Priority = 3, Period = 50ms, Deadline =
50ms, WCET = 3ms) that sends the outputs to the appropriate spacecraft unit,
the Control FM Task (Functional Priority=2, Period=50ms, Deadline=50ms,
WCET=8ms) which runs the control and flight management algorithms, and
the Data Input Dispatcher Task (Functional Priority=1, Period=50ms, Dead-
line=50ms, WCET=6ms), which reads, decodes and dispatches data to the right
destination whenever new data from the spacecraft’s sensors are available.

2

1

0

 0 100000 200000 300000 400000 500000 600000

Pr
oc

es
so

rs

time

Gantt chart

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2P3 P3 P1 P2 P3 P1P1 P2 P3 P1 P2 P3 P1 P2P1 P3 P1 P2P2 P3P3P2

P4

Fig. 2. Execution of the GNC application on LEON4FT (in microseconds).

The TASTE2BIP tool transformed the TASTE Interface View models (XML
and C language) to an equivalent FPPN BIP model. The calculated hyper-period
(least common multiple of periods) was H = 500ms. The Guidance Navigation
and Control Output Tasks start with time o↵sets 450ms and 30ms, respectively.
This information was inserted into the BIP model by manually modifying the
default design flow script. The task graph data was then passed to the BIP
o✏ine scheduler tool, which estimated the load (utilization) to be 112% (thus
requiring two compute cores) and provided the time-triggered scheduling tables.
This computation took into account the interference of the BIP engine and the
precedence constraints. The last step was to compile the BIP model, to link it
with the BIP RTE and to execute it on the quad-core LEON4FT processor. The
executables were subsequently loaded and executed on the LEON4FT board. Fig.

2 depicts the execution of the GNC model on the NGMP, within a time frame
equal to the hyper-period of 500ms plus another 50ms. The GNC application
utilizes one core for the resource manager P20 (BIP RTE and BIP controllers)
and two computing cores for the application’s tasks. Process P1 corresponds to
the Data Input Dispatcher Task, P2 to the Control FM Task, P3 to the Control
Output Task and P4 to the Guidance Navigation Task. Minor time shifts to the
jobs execution time are noticed and this is due to the P20 overhead. However,
runtime overhead is present in every execution environment.

5 Conclusion

A rigorous model-based design flow was introduced for embedded systems with
complex task dependencies and shared resource interference, which is integrated
with the TASTE toolset. Task dependencies and shared resource interference
are arbitrated through dependency patterns according to the FPPN model of
computation. Experimental results demonstrated the e�cacy of the proposed
design flow through the modeling and execution of a GNC application on the
quad-core LEON4FT processor. As future work, we intend to support more than
two criticality levels, and at the TASTE2BIP model transformation level the use
of additional languages such as ITU-T SDL and Simulink. Furthermore, we also
intend to utilize more TASTE design capabilities by implementing test-bench
wrappers using python test-benching.

References

1. Radojevic, I., Salcic, Z.: Models of Computation and Languages. In: Embedded
Systems Design Based on Formal Models of Computation, pp 7 - 41, Springer (2011).

2. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Inf. Comput. 205(8), pp. 1149 1172. Elsevier (2007).

3. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga, M.: Models for Determin-
istic Execution of Real-time Multiprocessor Applications. In: Design, Automation
and Test in Europe Conference and Exhibition, pp. 1665 1670, DATE 2015. Greno-
ble, France (2015).

4. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the Prototype to the Final
Embedded System Using the Ocarina AADL Tool Suite. ACM Trans. on Emb.
Comp. Syst. vol 7(4), pp. 42:1 – 42:25 (2008).

5. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: A Real-
time Software Engineering Tool-chain Overview, Status, and Future. In: 15th Inter-
national Conference on System Design Languages, SDL Forum, pp. 26 37. Toulouse,
France (2011) .

6. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-Critical Sys-
tems Design with Coarse-Grained Multi-core Interference. In: Margaria T., Ste↵en
B. (eds) Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques, ISoLA 2016. LNCS, vol. 9952. Springer, Cham (2016).

7. GR-CPCI-LEON4-N2X: Quad-Core LEON4 Next Generation Microprocessor Eval-
uation Board, http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-
n2x.

