
1

A simulation process for asynchronous event processing systems:

evaluating performance and availability in transaction models

Anakreon Mentis Panagiotis Katsaros Lefteris Angelis

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax: +30-2310-998419

{anakreon, katsaros, lef}@csd.auth.gr

2

Abstract

Simulation is essential for understanding the performance and availability behavior of

complex systems, but there are significant difficulties when trying to simulate systems with

multiple components, which interact with asynchronous communication. A systematic

process is needed, in order to cope with the complexity of asynchronous event processing

and the failure semantics of the interacting components. We address this problem by

introducing an approach that combines formal techniques for faithful representation of the

complex system effects and a statistical analysis for simultaneously studying multiple

simulation outcomes, in order to interpret them. Our process has been successfully applied

to a synthetic workload for distributed transaction processing. We outline the steps

followed towards generating a credible simulation model and subsequently we report and

interpret the results of the applied statistical analysis. This serves as a proof of concept that

the proposed simulation process can be also effective in other asynchronous system

contexts, like for example distributed group communication systems, file systems and so

on.

KEYWORDS: asynchronous event processing, simulation, performance evaluation,

transaction processing

1. Introduction

Systems with asynchronous event processing involve components that communicate by

exchanging messages, which are not delivered in the order that are sent or are even lost.

Examples include distributed systems for transaction processing, file systems, data services,

group communication services etc. There are two sources of complexity in the

specification, design and implementation of these systems: (i) components can be in one of

a multitude of states, when they receive a message and (ii) systems involve some failure

3

semantics. Simulation-based analysis for performance and availability must rely on

verifiably correct models, as well as on simulation output analyses that highlight the main

factors that determine whether the anticipated goals can be met.

This work introduces a coherent simulation process that simplifies the development and

analysis of complex models for asynchronous event processing systems. The process steps

include automata-based model specification, model checking, simulation code generation,

model validation and simulation output statistical analysis. The whole process has been

successfully applied for evaluating the effects of transaction models and their associated

parameters on system performance and availability.

Analysis of transaction processing models is supported by the ACID Model Checker

[14] and the ACID Sim Tools [16], developed by the authors. Our tool support provides a

library of methods for simulating basic operations, such as storing a transaction entry in a

log file or attempting a lock on an object. A state machine specification of the system

model is checked for the expected correctness properties. The verified model is then used to

generate simulation source code that invokes the library methods and manages the model

entities interactions. The derived formally-validated simulator is subsequently used in

simulations of key execution scenarios (e.g. local to highly distributed transactions, I/O

bound or CPU bound resource contention) to find out if the model achieves the expected

performance and availability goals. An appropriate statistical analysis explores the

feasibility of the performance and availability goals.

The first process steps have been also employed in [18], a related work for a different

statistical analysis that specifically focuses on the evaluation of complex metric

interactions. In the present article we introduce a complete simulation process that aims to

determine whether the anticipated performance and availability goals can be met, rather

than a statistical analysis to address existing metric correlations.

4

Section 2 introduces the steps of the proposed simulation process. Section 3 presents

how the process is applied to transaction processing models, as a proof of concept for its

effectiveness on complex system models. A synthetic transaction workload scenario is

provided to demonstrate the application of the process steps. Section 4 focuses on the

statistical analysis of the obtained simulation results towards evaluating the feasibility of

expected performance and availability goals. Results for the transaction processing problem

of Section 3 are provided. Related work is presented in Section 5 and the paper concludes

with remarks on the effectiveness of our proposal and future research directions.

2. Model development and simulation process

Figure 1 presents the simulation process for an asynchronous system model towards

evaluating the performance and the availability of a distributed system. The steps of the

process are:

1. Model definition, by means of state machines specifying the model entities and

their interactions. As an example, the classical 2PC transaction model [3] can be

defined in terms of states and transitions for the transaction coordinator and

worker entities.

2. Validation for possible discrepancies between the model and the respective

specification, followed by verification of correctness. The model is refined until it

conforms to the desired properties. As an example, the classical 2PC transaction

model is expected to “eventually commit or abort all executed transactions” [15].

3. Generation of event handling code for simulating the model.

4. Selection of key execution scenarios that are either considered as typical use cases,

or scenarios that are rarely executed but have a significant performance impact.

Typical use cases for transaction models result in scenarios of local or highly

5

distributed transactions. System failures are rare events, but they can have baneful

effects in performance and availability for a transaction model, if the checkpoints

(i.e. removal of obsolete entries from the log file) that are taken on a regular basis

are not properly configured.

5. For each scenario, establish performance and availability goals by specific

measurable criteria that an application must meet. Goals are expressed as bounds

on metrics such as throughput, response time and operational availability.

6. Define a workload mix of jobs arriving with different intensities and the following

resource demands:

a. Software resources such as the number of read/write stable storage

accesses, CPU time and number of exchanged messages.

b. Hardware resources such as the number of CPUs, I/O and network latency.

7. Validate the developed simulation model in terms of:

a. Its utility and effectiveness in identifying the factors that determine the

feasibility of the performance goals.

b. Whether model parameters and their numerical values have real system

equivalents.

8. Execute simulation runs with different combinations of parameter values for the

model. The selected combinations form a designed experiment for exploring the

impact of the parameters on performance and availability.

9. Analyze statistically the simulation results in order to determine whether the

performance goals are achieved. Statistical analysis also reveals the factor(s) that

heavily influence goal achievement. If the goals are not met, the found effects

guide the analyst into revising the initial model. In transaction processing for

example, if a throughput goal fails and an interdependency is identified between

6

the atomic commit protocol (ACP) and the applied timeout policies, a solution

could be to modify the ACP, in order to reduce the time span of exclusive object

usage.

Figure 1. Simulation-based evaluation of performance and availability goals for

asynchronous system models

2.1 Model definition

Models are specified in terms of entities that interact with synchronous or asynchronous

messages. Most of the model complexity is caused by asynchronous interactions. State

machines termed as roles define the behavior of entities involved in asynchronous

7

interactions. Synchronous interactions with the rest of the model entities are encoded in the

role state transitions. More specifically, in transaction processing, the transaction

coordinator and worker are examples of role entities, whereas the transaction log

management and concurrency control functionality is provided by instances of synchronous

entities.

State transitions are defined by the source and target states, the triggering message and

a sequence of operations invoked upon the state change. The target state of a transition is

non-deterministically defined, whenever there is no sufficient information at design time.

This is the first source of non-determinism in our modeling approach. Operations may: (i)

schedule messages to be received by some entity, (ii) cancel scheduled messages and/or

(iii) perform a computation, such as statistics collection. Definition of messages that are

generated and/or canceled by all invoked operations is necessary for verifying model

correctness. Operations may depend on run-time information to decide which messages are

generated or canceled and this is the second source of non-determinism.

2.2 Model verification

In model verification, the analyst provides constraints based on execution history to

eliminate the second source of non-determinism. Remaining non-deterministic transitions

reflect possible model execution paths that are verified.

During verification, state machines are checked for the possibility of an incomplete

transition relation, as well as if the expected model properties are met. An example property

considered in [15] for transaction processing is that: “Role entities eventually reach a

decision (commit or abort), even in the presence of communication or system failures”. In

general, correctness properties are classified in three broad categories, namely safety,

reachability and liveness. Verification is performed by an appropriate model checking

8

algorithm [14]. It is possible that models with many asynchronous interactions cannot be

fully verified, unless an advanced abstraction method is applied [5]. This is due to the fact

that the algorithm suffers from the state space explosion problem, which is inherent in

model checking.

2.3 Code generation for handling simulated events

The model specification that includes roles, state transitions and messages is then used to

synthesize simulation source code. The produced code handles the events generated by the

role state transitions and the synchronous interactions with the model entities. The only

assumption is that an appropriate library provides the implementation of the simulated

events. In [16], we provide a library for transaction models that simulates functionality,

such as the storage of a transaction entry into a log file, the request for a lock on an object

etc.

Code generation is based on an event handling template. Figure 2 shows a simplified

version of the used template for transaction model simulation. Placeholders such as <r> are

replaced by data collected from the model. Comments on the right side indicate blocks of

code that are replicated for each element of a collection populated from the model. For

example, the code block from lines 8 to 27 is expanded for each role contained in the

model, where placeholder <r> is replaced by the role name.

The part of the template starting from line 7 is applicable to any asynchronous system

simulation. For each role state machine, depending on the message to be handled and the

current state, we distinguish between the cases of an enabled deterministic or a non-

deterministic transition. In a deterministic transition, the current role state is changed to the

target state and the operations associated in model specification with the particular

transition are invoked. Non-deterministic transitions (line 18) require user-provided

9

methods for selecting the transition to be executed, based on run-time information related to

the simulated key performance scenarios. As an example from a transaction model

simulation, the coordinator, upon a vote received for the transaction outcome, either

broadcasts the decision to the transaction workers or waits for the workers that have not yet

voted. The number of workers involved in a transaction is specific to the key execution

scenarios that refer to particular transaction workloads.

Figure 2. Template for event-handling code generation in transaction model simulations

In order to apply this process step to other models apart from transaction processing, the

user needs to (i) provide a library with the implementation of simulated events, (ii) modify

the lines 1 – 6 of the code generation template and (iii) provide methods that are invoked at

runtime to resolve non-determinism.

10

2.4 Key execution scenarios

Execution scenarios represent workloads of user interactions and the associated system

behavior. Key execution scenarios are those, which mainly influence the system’s

performance from the user’s perspective. Two important categories are scenarios that are

often executed and scenarios that although rarely executed, have definite performance

requirements.

In transaction processing for example, a scenario defines the structure of submitted

transactions, i.e. the jobs executed by the transaction and their interdependencies caused by

read or read/write access on shared objects. Often executed scenarios include workloads of

local read-only transactions. A critical scenario is the recovery after system failure(s), with

the requirement that recovery time should be as short as possible. In group communication

systems, scenarios define the submitted processes, their submission order and their

interdependencies.

2.5 Performance and availability goals

Each key execution scenario is associated with one or more performance goals that

establish quantitative criteria for evaluating the system’s performance and availability

characteristics. For example, a performance goal may state that throughput should be higher

than a certain value or it may pose constraints on resource usage (CPU time, number of I/O

accesses). Goals are evaluated by metrics, but the used metrics should not mask significant

performance variations. This can happen when the model’s results are only presented as

averages. Simulation allows for inspection of the detailed results (minimum and maximum

values), while at the same time appropriate output analysis techniques provide control over

the measured variation.

11

Goals may induce conflicting requirements on a scenario, leading to trade-offs that are

addressed in a series of related works. In [10, 11, 17] we have used synthetic metrics that

encode the conflicting goals, while in another work [6] we computed cost and benefit

metrics, so that different design alternatives can be compared based on their net-benefit

value.

2.6 Software and hardware requirements

Software requirements for an execution scenario determine the demands in computational

resources, such as the number and size of messages that are exchanged between networked

processes, the number of physical I/O operations, the number of CPU instructions etc.

Worst case estimates may be used, so that if the goals are addressed it is then unnecessary

to invest time into deriving more precise estimates.

Service times for the devices that comprise the execution environment (CPU time, I/O

time etc.) are determined based on the estimated software requirements. For instance, the

network bandwidth needs to be sufficient for exchanging the expected number of messages,

the required CPU time should be available by one or more processors etc. Processing

overhead for the exchange of messages, method calls and I/O should be taken into account.

2.7 Simulation model validation

Model validation determines whether the model is an accurate representation of the real-

world from the perspective of its intended uses [7]. The model’s structure should not

contradict the knowledge about the structure of a real system [13] derived either by a

specification or experience from a similar system. At the same time, the model’s structure

should be appropriate, in order to reveal all factors that determine feasibility of the

12

performance goals. Face validity tests if the abstractions adopted by the simulation expert

result in a recognizable representation of the real system.

Finally, simulation parameters (e.g. disk read/write latency and network latency) and

their numerical values are examined in parameter-verification tests, if they represent

realistic values.

3. Simulation-based evaluation of transaction models

As a proof of concept for our simulation process, we present the evaluation of performance

and availability goals for transaction processing systems. Such systems yield complex

simulation models with a high degree of asynchronous message processing by the

transactional entities. The process steps 1-3 are presented in detail in [14]. Here, we

summarize the simulation model abstractions of ACID Sim Tools [16] for transaction

processing and we demonstrate the application of process steps 4-8 to a synthetic workload.

3.1 Simulation model abstractions for distributed transaction processing

The adopted simulation model abstractions are based on a minimal set of assumptions that

represent an object-based computational model such as the OMG Core Object Model [19].

Clients send transaction requests to application servers that maintain a repository of

encapsulated objects. Application servers manage the objects and the runtime environment.

Managed objects may invoke methods on other objects residing in the same or in another

server.

A transaction is a program execution that reads and/or modifies the state of persistent

objects via the invoked object methods [12]. It consists of a sequence of methods executed

on one or more servers. Invoked methods incur computations with specific CPU time

demands. A transaction is aborted in case of inconsistencies in objects state, potential

13

deadlocks or overload conditions. Transactions are local, if all objects reside in the same

server, read-only if none of the invoked methods updates the object state and blocking if an

object is exclusively shared among two or more transactions.

Atomicity, Consistency, Isolation and Durability (ACID) guarantees are provided by

the transaction manager. It implements a distributed transaction coordination protocol [24]

such as two-phase commit (2PC) or one of its optimized variants (e.g. 2PC Presume

Commit).

Concurrency control guarantees the isolation property of transactions. Locking

protocols require transactions to wait when requested locks cannot be granted. A timeout

policy is applied for deadlock resolution, according to which a transaction is aborted when

a timer expires. To avoid lock contention thrashing and subsequent deadlocks, transactional

servers limit their multiprogramming level, i.e. the maximum number of transactions that

can be concurrently processed. When this limit is reached, newly arriving transactions are

held in a transaction admission queue.

Crash recovery, transaction atomicity and durability are achieved by maintaining

recovery data in a stable log that survives server crash failures. A server and its objects are

unavailable to clients during crash recovery. Recovery time is improved by periodical

removal of redundant log entries (checkpoints).

3.2 Key execution scenarios

Key execution scenarios include workloads with various degrees of distribution (localized

to highly distributed transactions), different mixes of read-only, update and blocking

transactions that affect lock contention and diverse conditions of resource contention, such

as I/O bound and CPU bound workloads. Scenarios that occur rarely, but have a significant

14

performance effect include settings with different frequencies of server failures and

checkpoint intervals.

3.3 Performance and availability goals

Typical performance goals for distributed transaction processing concern throughput,

response times and operational availability. Throughput is the percentage of committed

transactions. Response time is the time span between issuing a transaction request and

committing the transaction. Availability is the percentage of time during which a

transactional server processes incoming requests. Performance goals are often connected

with a particular transaction type, such as the distributed or the locally executed

transactions or even a group of transactions that share common locks. For this reason, we

advocate the use of separate throughput and response time metrics for the mentioned

transaction types, since they can exhibit very different performance behavior in a system.

High availability requires short recovery times after server failures. The size of the

transaction log file is important not only for the recovery costs, but it also influences

rollbacks of aborted transactions: locks are retained until transaction recovery is complete.

Transactions that await processing are blocked until the used locks are released, thus

affecting the measured throughput. It is therefore evident that throughput and response

times depend on the implementation, the configuration and the tuning of the transactional

servers.

3.4 Synthetic transaction workload

The studied key execution scenarios are based on a synthetic transaction workload that uses

a number of objects distributed among two servers (acp1 and acp2). Table 1 summarizes

the aggregate computational and memory requirements for the transaction classes that

15

comprise the workload. Transaction classes invoke object methods in a specific order. Lock

acquisition on the shared objects is performed in the same order. We assume exponentially

distributed size of object states and CPU time demands for the invoked methods and we

show the aggregated means over all objects that reside on the same server.

Table 1: Transaction classes (CPU time and memory demands)

Transaction Class Characteristics CPU demands (sec)
- exponential -

State Size (Kb)
- exponential -

acp1 acp2 acp1 acp2
tr1 local (acp1), read – only 0.03 15
tr2 distributed, read – only 0.06 0.01 10 5
tr3 distributed, read – write 0.06 0.05 10 5
tr4 local (acp2), read – only 0.07 15
tr5 distributed, read – only 0.01 0.1 5 5
tr6 distributed, read – write 0.01 0.1 5 10
tr7 local (acp2), read – only 0.07 15
tr8 distributed, read – only 0.01 0.02 5 5
tr9 distributed, read – write 0.01 0.06 5 10

Table 2: System parameters

Network Latency / message: 0.06 sec

Server Disk Read Latency Disk Write Latency Mean Time To Repair
acp1 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec
acp2 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec

System-related parameters are summarized in Table 2. We assume fixed network

latency, since the two servers exchange only small-size control messages. Message losses

can be easily modeled in ACID Sim Tools by assigning a loss probability in the

communication of the transactional servers.

The basic two phase commit protocol and the two implemented variants are blocking

protocols: upon a network failure, objects that participate in transactions are either aborted

or, if the transaction has entered the voting phase, all participating objects are locked until

the network link is restored. Occasional message losses are therefore tolerated, but we do

not expect significantly different effects in the system’s performance. For this reason,

message losses have not been included in the simulated synthetic workload.

16

3.5 Simulation model validation

A series of parameter verification tests build our confidence that the used parameter

values represent real system cases. Network latency, for example, depends on the network

infrastructure and the distance between the communicating peers. Measurements taken in

our experiments yielded values averaged over 60 ms, which is in agreement with latency

statistics provided by network vendors [25]. Read and write disk latency is obtained by

vendor specifications.

3.6 Simulation experiments

Let us consider the following performance goal:

“Optimize the throughput of the locally executed transactions that form the larger part of

 the expected workload”

This goal may be connected to some lower bound for the throughput of the locally executed

transactions.

Table 3: Parameters for key execution scenarios (factors)

Factors Level 1 Level 2 Level 3
Atomic commit protocol (ACP)
- all servers -

Two-Phase Commit
Presume Nothing (PRN)

Two-Phase Commit
Presume Commit (PRC)

Two-Phase Commit
Presume Abort (PRA)

Multiprogramming Level (MPL)
- all servers -

2 3 4

Checkpoint intervals (CI) - periodic
(sec) for all servers

500 1300 2100

Transaction timeouts (TT) in sec
- all transaction classes -

0.9 1.1 1.3

Mean interarrival times (MIT), exp.
- all transaction classes -

0.4 0.6

Mean interarrival time of server fail
-stop failures (MITofSF) - exponential

18 m 5 hours 51m 12 hours

The research question associated with the aforementioned goal is:

“How throughput of locally executed transactions and other metrics are affected

17

 by the statistically significant factors in the considered execution scenarios”

Systematic experimentation and statistical analysis can indicate the required parameter

values, so that the expected goal is fulfilled, if it is feasible. Experimental design was based

on preliminary simulation runs for exploring the variability of the performance metrics and

parameters were assigned values, so that the experimental region covers this variability as

much as possible. A full experiment was performed with all combinations of the parameter

values shown in Table 3. In all simulation runs, concurrency control adheres to the widely

used two-phase locking (2PL) scheme.

The full experiment includes 486 cases with simulated time of 55h 30m for each of

them. Sufficiently long simulation runs ensure that results are obtained when the model is

in the steady-state. The CPU time in a personal computer with a single-core processor and 1

GB RAM varied between a few minutes to 12 minutes, depending on the used simulation

parameters. Experiments with short interarrival rate and high multiprogramming level

process more transactions and require more time to complete. ACID Sim Tools exhibited a

stable behavior without memory leaks and the memory usage varied between 5 % and 50 %

of the system’s memory. Alternative experiment designs with less CPU time are the so-

called uniform designs that we used in [10]. For each simulation case, the method of

independent replications was used, in order to compute 95% confidence intervals for the

metrics of interest.

4. Statistical analysis

We propose the use of multivariate analysis of variance (MANOVA) [8], which is an

extension of factorial ANOVA designed to simultaneously look at several outcomes of an

experiment. MANOVA is essentially a multivariate test that limits the inflation of the error

rate resulting from multiple tests (univariate ANOVA), where each test examines a

18

dependent variable (metric) [9]. MANOVA also detects groups of interacting dependent

and independent variables by examining their correlations.

In the simulation results for the considered key execution scenarios, we realized that all

histograms for the measured metrics exhibit either high skewness or multimodality

(different distributions), which means that they are not normally distributed. Since the

analysis of variance requires the dependent variables to be normally distributed, we applied

the Blom’s transformation [4] that is based on the rankings of the values in each variable.

This transformation utilizes the ranks ir of the values and the cumulative Normal

distribution function)(Φ .1 :







 

4/1

8/3

+n

r
Φ=s i1

i

(a) (b)

Figure 3. Distribution of simulation results for the throughput of distributed transactions

before and after the normal transformation

The histogram in Figure 3a shows the distribution of the values representing the

throughput of distributed transactions in the performed simulation runs. Figure 3b shows

that the distribution of the new variable is almost perfectly fitted by the standard normal

distribution with mean 0 and standard deviation 1. The selected transformation preserves

the effect of the factors (Table 3) on the dependent variables (metrics).

19

MANOVA is simultaneously applied to all normal transformations of the dependent

variables, with respect to the 6 factors. The model includes initially the 6 main factor

effects, the 15 two-way interactions (i.e. all possible combinations for unordered pairs of

factors) and the 20 three-way interactions. Interactions of higher order are not considered,

since it would complicate the interpretation of the results.

By examining the F-ratios produced by MANOVA, we concluded that the following

interactions are not significant:

 ACP * MPL * CI, ACP * MPL * MITofSF, ACP * CI * TT, ACP * CI * MIT,
 ACP * CI * MITofSF, MPL * CI * TT, CI * TT * MIT, ACP * MPL

All main effects and the rest of the factor interactions are statistically significant for the

obtained model. Regarding the validity of the model, it is well fitted to the simulation

output: the R-squared value for each dependent variable that shows the percentage of

variability explained by the model is in all cases very close to 1.

In order to assess the impact of each factor on the dependent variables, we performed a

series of statistical tests that accompany the MANOVA implementation in the statistical

program SPSS [22]. Table 4 summarizes the factors that have statistically significant effect

on the dependent variables.

Table 4: Main factor effects on transaction processing performance and availability

(X = statistically significant effect,  = no effect)

Metrics ACP MPL CI TT MIT MITofSF
Acp1 server availability - - X - - X
Acp2 server availability - - X - - X
Local transactions throughput X X X X X X
Distributed transactions throughput X X X X X X
Mean response time for local transactions X X X X X X
Mean response time for distributed transactions X X X X X X
Mean blocking time X - X X - X

20

In Figure 4 we provide representative bar-charts that are indicative of the way that

dependent variables are affected by the considered factors. The height of each bar shows

the transformed mean value for a specific factor level.

 Figures 4a and 4b show the impact of checkpoint interval on the availability of the

Acp1 server and the throughput for distributed transactions. Frequent checkpoints improve

the measured server availability by reducing the size of the log file. On the other hand,

checkpoints compete with the ongoing transactions for I/O and prolong the recovery of

aborted transactions. In effect, frequent checkpoints cause degradation of the measured

throughput (Figure 4b).

(a) (b)

(c) (d)

Figure 4. Bar-charts for the main factor effects on performance and availability

21

Figure 4c shows the impact of timeout intervals on the throughput of distributed

transactions. More transactions can commit for longer timeouts although other performance

goals such as response time deteriorate. In Figure 4d we see that the multiprogramming

level improves the response time of distributed transactions. With more available threads,

transactions spend less time queued for computational resources.

Profile plots like the ones shown in Figure 5 are appropriate for visualizing the

interaction effects between factors. They are an important evaluation tool for the impact of

different combinations of protocols and protocol parameters on performance goals. For the

sake of brevity we present only a few of the produced profile plots.

(a)

(b)

(c)

Figure 5. Interaction effects between CIs, MPLs and ACPs on the throughput of local

transactions

Figure 5 reveals an interesting interaction effect between the ACPs and the CIs, as well

as between the CIs and the MPLs on the throughput of local transactions. A significant

improvement is observed for CIs period of 1300 sec and the 2PC Presume Abort protocol.

22

We also note differences in the rates of variation for the examined CIs intervals, when

increasing the servers’ MPLs.

Regarding the performance goal of section 3.6 we observe that:

“The best options for the throughput of locally executed transactions, is the

combination of 2PC Presume Abort with four available threads in the system’s servers

and CIs that do not diverge significantly from the level of 1300 sec.”

Figure 6 visualizes the interaction effects between CIs, MPLs and ACPs on the

availability of the Acp2 server. We observe that when the checkpoint frequency is overly

high, using more than three threads has a negative effect on the measured availability. 2PC

Presume Abort seems to scale evenly for MPLs from 2 to 4 threads for not overly frequent

CIs.

(a)

(b)

(c)

Figure 6. Interaction effects between CIs, MPLs and ACPs on the availability of Acp2

5. Related work

23

Our approach targets the problem of simulation-based performance analysis for

asynchronous systems.

A detailed account of existing model checking techniques for software architecture

specifications is provided in [26]. There are also several works focusing on model driven

development for simulation analysis. In [21], the authors propose a systematic performance

evaluation process based on queuing networks. Models are assumed correct, which may be

not self-evident for asynchronous systems with complex interactions between the model

components.

It is true that very few works can generate verifiably correct simulation models. The

BIP (Behaviour, Interaction, Priority) component framework [2] introduces atomic

components, expressed by state machines, that interact via connectors. Selection between

simultaneously enabled interactions is performed based on their assigned priorities. A

hierarchy of atomic and compound components is used to model the target system [23] and

to generate a concrete implementation. Correctness with respect to system properties is

derived out of correctness properties local to the atomic components. BIP also features a

simulation-based performance analysis tool. In overall, BIP mainly focuses on the

development of correct-by-construction executable models, whereas our approach is based

exclusively on model checking. An additional characteristic of our work is the proposal for

multivariate analysis of the simulation results.

Timed Rebeca [1] is an actor-based modelling and simulation language. Model

checking is performed on a mapping of Rebeca models into timed automata and the

produced models can then be simulated. The simulation results are analyzed, in order to

determine if the performance goals are achieved. The authors do not consider a systematic

performance analysis process like the one we propose with the multivariate statistical

analysis.

24

6. Conclusion

We introduced a simulation-based process for the performance analysis of asynchronous

event processing systems. Our process covers the problems of model specification, model

checking for the generation of correct simulation code, selection of key execution scenarios

for the performance goals of interest, model validation and simulation output statistical

analysis.

The process has been successfully applied on a synthetic workload with key execution

scenarios of distributed transaction processing. This is a typical case of complex systems

with asynchronous event processing. We tackle the complexity associated with the

performance evaluation of such systems, based on (i) “correct” simulation models for

faithful representation of the complex system effects and (ii) statistical analysis for

simultaneously studying several outcomes of the simulation experiment.

As a future research prospect, we plan to extend our approach towards the development

of a performance benchmarking methodology by applying advanced statistical techniques

of archetypal analysis [20].

References

[1] Aceto, L., Cimini, M., Reynisson, A. H., Ingolfsdottir, A., Sigurdarson, S. H., Modelling and

Simulation of Asynchronous Real-Time Systems using Timed Rebeca, Proc. 10th

International Workshop on the Foundations of Coordination Languages and Software

Architectures (FOCLASA), Aachen, Germany, pp. 1-19, 2011

 [2] Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.,

Rigorous Component-Based System Design Using the BIP Framework, IEEE Software, 28

(3), pp. 41–48, 2011

25

[3] Bernstein, P. A., Newcomer, E., Principles of Transaction Processing, 2nd Ed., Morgan

Kaufmann, 2009

[4] Blom, G., Statistical estimates and transformed beta variables, Wiley, New York, 1958

[5] Clarke, E. M., Grumberg, O., Peled, D. A., Model Checking, MIT Press, 1999

[6] Deshpande, T., Katsaros, P., Basagiannis, S., Smolka, S., “Formal analysis of the DNS

Bandwidth Amplification Attack and its countermeasures using probabilistic model

checking”, Proc. 13th IEEE Int. High Assurance Systems Engineering Symposium (HASE),

Florida, pp. 360-367, 2011

[7] DoD, DoD Instruction 5000.61: Modeling and Simulation (MandS) Verification, Validation,

and Accreditation (VVandA), Defense Modeling and Simulation Office, Office of the

Director of Defense Research and Engr., 2002

[8] Harris, R. J., A primer of multivariate statistics, 3rd Edition, Lawrence Erlbaum Associates,

Mahwah, 2001

[9] Katsaros, P., Angelis, E., Lazos, C., “Applied multiresponse metamodeling for queuing

network simulation experiments: problems and perspectives”, Proc. of the EUROSIM 2001

Congress, EUROSIM, Delfts, The Netherlands, 2001

[10] Katsaros, P., Angelis, L., Lazos, C., “Performance and effectiveness trade-off for

checkpointing in fault tolerant distributed systems”, Concurrency and Computation: Practice

and Experience, 19 (1), John Wiley & Sons, pp. 37-63, 2007

[11] Katsaros, P., Lazos, C., “Optimal object state transfer - recovery policies for fault tolerant

distributed systems”, Proc. of the IEEE/IFIP Int. Conference on Dependable Systems and

Networks (DSN), Florence, Italy, pp. 762-771, 2004

[12] Martin, C. P., Ramamritham, K., “Toward formalizing recovery of (advanced) transactions”,

in: Jajodia, L. Kerschberg (Eds.), Advanced Transaction Models and Architectures, Kluwer,

Boston, 1997

26

[13] Martis, M. S., “Validation of simulation based models: a theoretical outlook”, The Electronic

Journal of Business Research Methods, 4 (1), pp. 39–46, 2006

[14] Mentis, A., Katsaros, P., “Model checking and code generation for transaction processing

software”, Concurrency and Computation: Practice and Experience (to appear), John Wiley &

Sons, 2011

[15] Mentis, A., Katsaros, P., “The ACID model checker and code generator for transaction

processing”, Proc. of the 2009 High Performance Computing & Simulation Conference

(HPCS), pp. 138–144, 2009

[16] Mentis, A., Katsaros, P., Angelis, L., “ACID Sim Tools: A simulation framework for

distributed transaction processing architectures”, Proc. of the 1st Int. Conference on

Simulation Tools and Techniques for Communications, Networks and Systems, Marseille,

France, 2008

[17] Mentis, A., Katsaros, P., Angelis, L., “Synthetic metrics for evaluating performance of

software architectures with complex tradeoffs”, Proc. of the 35th EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA), Patra, Greece, pp. 237-242,

2009

[18] Mentis, A., Katsaros, P., Angelis, L., Kakarontzas, G., “Quantification of interacting runtime

qualities in software architectures: insights from transaction processing in client-server

architectures”, Information and Software Technology, 52 (12), pp. 1331-1345, 2010

[19] Object Management Group, Object Management Architecture Guide, revision 3.0, OMG

Technical Committee Document ab/97-05-05, June 1995

[20] Porzio, G. C., Ragozini, G., Vistocco, D., “On the use of archetypes as benchmarks”, Applied

Stochastic Models in Business and Industry, 24, pp. 419-437, 2008

[21] Smith, C. U., Williams, L. G., Performance solutions: A practical guide to creating

responsive, scalable software, Addison-Wesley, 2001

27

[22] SPSS for Windows, SPPS Inc, http://www.spss.com, (last access: 23rd of April 2012)

[23] Stachtiari, E., Mentis, A., Katsaros, P. “Rigorous analysis of service composability by

embedding WS-BPEL into the BIP component framework”, Proc. of the 2012 IEEE 19th

International Conference on Web Services (ICWS), Honolulu, Hawaii, pp. 319-326, 2012

[24] Thanisch, P., “Atomic commit in concurrent computing”, IEEE Concurrency, pp. 34-41, Oct.

– Dec. 2000

[25] Verizon network latency statistics, Verizon, http://verizonbusiness.com/about/

network/latency, (last access: 23rd of April 2012)

[26] Zhang, P., Muccini, H., Li, B., “A classification and comparison of model checking

software architecture techniques”, Journal of Systems and Software, 83 (5), pp. 723-744,

2010

