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ABSTRACT
DeGroot learning is a model of opinion diffusion and forma-
tion in a social network of individuals. We examine the be-
havior of the DeGroot learning model when external strate-
gic players that aim to bias the final consensus of the social
network, are introduced to the model. More precisely, we
consider the case of a single decision maker and the case
of two competing external players, and a fixed number of
possible influence actions on each individual. When study-
ing the influence problems, we focus on the stochastic pro-
cesses underlying the solution of DeGroot problems. In case
of one decision maker, the analysis of the DeGroot model
leads to the formation of a Markov Decision Process (MDP)
and in the case of two external competing players the model
is reduced to a Stochastic Game (SG). Since such models
are heavily used in probabilistic model checking we apply
tools of the field to solve them. Preliminary experimental
results confirm the viability of our approach, which relies
on the common mathematical foundations of the DeGroot
problems and probabilistic model checking.

CCS Concepts
•Human-centered computing→ Social networks; •Ma-
thematics of computing→Markov processes; •Com-
puting methodologies → Stochastic games; Model
verification and validation; •Theory of computation
→ Algorithmic game theory;

Keywords
Social networks; Opinion dynamics; DeGroot model; Stochas-
tic games; Probabilistic model checking

1. INTRODUCTION
Opinion dynamics is the research field of investigating the

mechanisms of opinion diffusion among individuals, under-
standing their basic principles and proposing models that in-
corporate the basic rules of opinion formation. Many models
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have been introduced that imitate the underlying principles
of opinion diffusion [7, 9, 10] and are being examined [12] in
order to determine elaborate characteristics of the opinion
formation process and ways to bias the diffusion process.

The DeGroot model was introduced by Morris H. DeG-
root in 1974 [7] and suggests a simple mechanism of opinion
propagation: every individual forms his opinion by averag-
ing his own opinion with those of his friends. The process is
repeated until all opinions converge. Even though the mech-
anism is simple, it models sufficiently opinion diffusion and
incorporates elaborate characteristics of the process. The
individuals form a social network with friendships and the
location of each individual in this network is of vital impor-
tance for the prevalence of his opinion in the consensus. The
averaging of opinion highlights the importance of centrality
of individuals in the network and provides solid ground for
experimentation on the opinion formation process.

Model checking is the scientific field of examining systems
that are represented in a mathematical language and verify-
ing their properties. Probabilistic model checking focuses on
the analysis of systems that have probabilistic behavior and
uses algorithms to examine the validity of probabilistic prop-
erties [12, 15]. Several software tools have been developed
to analyze probabilistic models [16, 5, 3, 6] and verify their
properties. We have chosen for our experiments the PRISM
model checker [16] and the PRISM-games extension [3] due
to their efficiency and wide range of functionalities.

In this work, we experiment on variations of the opin-
ion formation mechanism. We extend the DeGroot model
with the introduction of external influence to the opinion
formation process. Our aim is to extract the strategies that
external players could develop in order to interfere with the
process and their bias in the final consensus. The common
mathematical foundations of DeGroot model and the proba-
bilistic model checking offer the opportunity to examine the
behavior of the model under a new prism and, hence, we use
software from the field.

The paper is organized as follows: Section 2 presents con-
cise descriptions of the DeGroot model, stochastic games
and the model checking problem, Section 3 describes the
implementation of the models and demonstrates the exper-
imental results, and Section 4 summarizes the findings and
restrictions that were highlighted by our experiments.

2. PRELIMINARIES

2.1 The DeGroot Model
The core idea of the DeGroot model is that individuals



tend to adopt the opinions of their friends. Each individual
has an initial opinion and a set of friends that he shares his
opinion with. The range of trust in his friends’ beliefs may
vary. After the opinions are exchanged, an update process
is initiated by each individual that averages his opinion and
the opinions of his friends. DeGroot proved that, under cer-
tain conditions, the opinions of all members converge after
adequate number of iterations [7].

An effective representation of a social group is a social
graph. Every individual of the group is represented as a
node in the graph and his friendships to other members are
depicted as adjacent edges to the corresponding nodes. Fig-
ure 1 is a social graph consisting of six members. Each node
has the depicted adjacencies according to its outgoing edges.
The weights attached to the edges represent the range of
trust of a member to the opinions of his neighbors and are
used in the opinion update process. Their sum for each node
equals to one. Hence, the updated opinion of a node is the
weighted average of the opinions of its neighbors. We should
notice that every node is neighbor with itself, i.e. he takes
his own opinion into account in the averaging process.
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Figure 1: A social network with six members.

In terms of linear algebra, the graph of Figure 1 is repre-
sented as a 6 × 6 adjacency matrix P . Each item pij of P is
the averaging factor of node i to node j. If F0 is the vector
of initial opinions of the nodes, then the averaging process
of DeGroot model is described in Equation 1.

Fn = PFn−1 = PnF0 (1)

Fn and Fn−1 represent the opinion vectors after n and n−1
iterations of the averaging process respectively.

DeGroot remarked that P can be interpreted as the one-
step transition matrix of a Markov chain and applied the
standard limit theorems of Markov chains theory to deter-
mine its convergence. In Theorem 2 he states: “if all the
recurrent states of the Markov chain communicate with each
other and are aperiodic, then a consensus is reached” [7] (re-
current states have a finite hitting time with probability 1).

In [14], Jackson uses the definitions of strongly connected
and closed groups to formulate the conditions under which
a consensus is reached in a social network. A strongly con-
nected group of agents is a group of nodes S that can reach
each other via a set of consecutive directed edges and a closed
group of nodes is a set C such that there is no directed link
from an agent in C to an agent outside C. Jackson states
in Proposition 8.3.1 that “Under P , any strongly connected
and closed group of individuals reaches a consensus for every
initial vector of beliefs if and only if it is aperiodic”. Golub
and Jackson used the definitions of simple cycles in [11] to

examine the aperiodicity of matrix P . A simple cycle is a
set of consecutive directed edges that start from and lead
to the same node which is the only node that appears twice
in the traversal of the edges. Golub and Jackson state in
Definition 2 that “the matrix P is aperiodic if the greatest
common divisor of the lengths of its simple cycles is 1”.

2.2 Stochastic Games
Stochastic games were introduced by Shapley [19] and

form a mathematical model which incorporates actions and
payments for two strategic players interacting on a finite set
of N game states. At each state k, the two players choose
their actions i and j from the sets of available actions Mk

and Nk and the next state l of the game is determined prob-
abilistically depending on their actions. The probability of
reaching state l from state k is pklij . Shapley also intro-
duced a stopping factor at each stage, i.e. a probability that
the game stops after the players make their moves, defined
as skij > 0 ∀i, j, k. Since skij is positive for every i, j and
k, it is certain that the game will end after a finite num-
ber of steps because the probability of an infinite game is
p∞ =

∏∞
t=1(1− stij)→ 0 where stij is the stopping factor at

step t when players choose their ith and jth alternatives.
The mathematical model of stochastic games includes pay-

offs for the players in the form of payments of the second
player to the first at each state k. The payment akij is deter-
mined based on the ith and jth actions of the players at each
state k. Both players have incentives to choose their actions
properly in order to maximise their long-term payoff in the
game developing, thus, strategies that indicate their moves
in every state of the game. Shapley defined the value val of
a stochastic game Γ as the minimum expected payoff that
the first player expects to receive regardless of the second
player’s strategy. He proved the existence of the value val

of a stochastic game and of optimal strategies for the players
that achieve this value. Moreover, the optimal strategies are
stationary, i.e. the formation of the strategies depend only
on the current state of the game and any history of previous
states is of no use.

Stochastic games can be perceived as a generalization of
Markov Decision Processes (MDP). MDPs represent math-
ematically the behaviour of one strategic entity (the deci-
sion maker) in a specific environment. The introduction
of a second strategic entity in the environment transforms
the mathematical model to a stochastic game. Several algo-
rithms have been proposed that solve MDPs [1, 13]. Markov
chains can be perceived as stochastic games where both play-
ers have no alternatives in each state of the game.

2.3 Model Checking
Probabilistic model checking is an automated formal ver-

ification technique for analyzing systems or processes with
probabilistic behavior. Model-checking tools like PRISM [16]
combine graph-theoretic algorithms for reachability analysis
with iterative numerical solvers. They can evaluate proper-
ties of the form P1q(ψ) with 1∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1]
(Q is the set of rational numbers) or P=?(ψ), which compute
the probability that a path satisfies ψ. The path formula
ψ is interpreted over the paths of the probabilistic model,
which can be a Discrete Time Markov Chain (DTMC), a
Continuous Time Markov Chain (CTMC), or an MDP.

A PRISM model is a parallel composition of modules,
whose state is determined by a set of variables. A module



consists of a collection of guarded commands. In an MDP
or DTMC, each such command consists of a guard g (i.e., a
state predicate) and one or more updates for the module’s
variables, where each update ui is labeled by the probability
λi with which ui occurs from a state satisfying the guard g.
When a module has a command whose guard is satisfied in
the current model state, it can update its variables proba-
bilistically, according to the specified updates. In a DTMC
or a CTMC model, only one command can be enabled in
a state. In MDPs, multiple commands (actions) may be
enabled simultaneously, thus representing a nondeterminis-
tic choice between multiple discrete probability distributions
over successor states.

PRISM-games [3] is an extension of PRISM that supports
the formulation and the analysis of turn based stochastic
multi-player games. Stochastic games are described in a
modeling language similar to the one for PRISM. A model
is composed of modules, whose behavior is specified by a set
of guarded commands, each of which contains an (optional)
action label, a guard, and a probabilistic update for the
module’s variables. For action-labeled commands, multiple
modules execute updates synchronously, if all their guards
are satisfied. Each probabilistic transition in the model is
thus associated with either an action label or a single mod-
ule. A model also defines players, each of which is assigned
modules, as well as a disjoint subset of the model’s synchro-
nizing action labels. A module can be part of multiple play-
ers as long as each enclosed command is assigned to exactly
one player. Thus, each probabilistic transition is assigned to
one player. All possible probabilistic transitions on a state
must belong to the same player; PRISM-games detects and
disallows concurrent actions. All players must be divided
into two groups. These groups of players (coalitions) act
as adversaries of each other, thus taking into account their
competitive behavior.

PRISM-games supports an extension of rPATL (Proba-
bilistic Alternating-time Temporal Logic with Rewards), a
CTL-style branching-time temporal logic that can be used to
express quantitative properties of stochastic games with re-
wards. rPATL allows one to write coalition-based properties
that identify a strategy that maximizes or minimizes either
the expected probability of a path or the expected value of
the accumulated reward while reaching a set of states.

3. DEGROOT MODEL AND EXTENSIONS
AS STOCHASTIC PROCESSES

In this work, we present the formulation of the DeGroot
model as a stochastic process (DeGroot Problem DP) along
with two extensions where external influence is wielded by
strategic entities: the DeGroot Influence Problem (DIP) and
the DeGroot Game (DG). The software that we used to
construct the DeGroot model and our extensions’ models
is PRISM and PRISM-games.

3.1 The DeGroot Problem (DP)

3.1.1 Definition of DP
The DeGroot Problem DP consists of a tuple (G 〈N,P 〉 , O0)

where G is the graph of the model, N = {1, ..., n} is a set of
nodes, P is a real-valued n×n matrix with non-negative ele-
ments and O0 = {o0,1, ..., o0,n} is a vector of initial opinions
of nodes N . The element pi,j of matrix P represents the link

weight of node i to node j that is used in the opinion update
process of node i. The matrix P is also referred to as the
adjacency matrix as it defines the links of the nodes to each
other [14]. In case two nodes are not linked, the correspond-
ing element of matrix P is zero. The sum of each row i of
matrix P is equal to 1 as its elements represent the factors
of the weighted averaging process of node i in the DeGroot
model. The opinions o0,i of vector O0 are real values that
represent the belief of the corresponding node on a specific
matter of interest. Their range is from 0 to 1.

Our goal in the DP problem is to evaluate using PRISM
the final opinion in state of consensus given all the parame-
ters (G 〈N,P 〉 , O0). Solving the underlying DeGroot model
is a problem of polynomial complexity. The influence of
each node of the social network is determined by the eigen-
vector centrality of the node. Algorithms for such problems
have been studied especially in the context of the popular
PageRank centrality [17]. The exact complexity depends on
the specific parameters of the problem [2].

3.1.2 Solving DP
As a start point, we modelled the social graph of an exam-

ple DP ∗ = (G∗ 〈N∗, P ∗〉 , O∗0) as a DTMC in PRISM. Figure
2(a) depicts the graph G∗ of model DP ∗ used in our exper-
iment. The graph is strongly connected and the greatest
common divisor of all simple cycles is 1. Therefore, matrix
P ∗ converges and the underlying DeGroot model reaches
a consensus. The DTMC model consists of six states that
correspond to the six nodes of our graph. The transitions
between the states are defined by matrix P ∗. The initial
opinions of all nodes were set to 0.5 except node’s 1 and
node’s 6 opinions which were set to 0 and 1 respectively.

Our aim was to extract the stationary probability vector
π as DeGroot defined it in [7]. The stationary probability
vector π is the solution of Equation 2 and its components
are non negative numbers whose sum is 1.

πP ∗ = π (2)

Vector π can be used to calculate the opinion in the state
of consensus of our social network. From Equations 1 and
2 we can deduce that o∗c , the opinion in consensus, can be
computed by multiplying the transpose π vector with the
initial opinions of the nodes, as described in Equation 3.

o∗c = πO∗0 (3)

The extraction of the stationary probability vector π was
achieved using the available functionalities of PRISM, which
allows the computation of the steady state probabilities of
the DTMC corresponding to the factors of vector π when
the DeGroot model converges.

The factors of vector π and the opinion in state of con-
sensus o∗c of the DP ∗ retrieved by our PRISM model are
presented in Table 1.

3.2 The DeGroot Influence Problem (DIP)

3.2.1 Definition of DIP
We extend the DeGroot Problem DP with the introduc-

tion of a strategic entity D that aims to tamper with the
consensus formation process in order to bias the final opin-
ion of the social graph towards a preferred one.

The DeGroot Influence Problem (DIP) consists of a tuple
(G 〈N,P 〉 , O0, D 〈A, t〉) where G is the graph of the model,
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Figure 2: (a) Graph G∗ of DP ∗ and the factors of P ∗ (b) Graph G∗ of DIP ∗ and strategy σ (green arrows) of
the decision maker (c) Graph G∗ of DG∗ and strategies σ1 and σ2 (green and blue arrows) of players D1, D2.
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Figure 3: (a) The decision maker D chooses action
a21 = b (b) The distribution of all p2j , j ∈ N is re-
formed after the normalization process.

N = {1, ..., n} is a set of nodes, P is a real-valued n × n
matrix with non-negative elements, O0 = {o0,1, ..., o0,n} is a
vector of initial opinions of nodes N , D is the strategic entity
(i.e. the decision maker) that interferes with the consensus
formation process, A is the set of actions available toD and t
is the target opinion of D. The elements G,N,P,O0 comply
with the same restrictions as in DP . The set of actions
A consists of real-valued elements aij representing action j
that D can undertake on node i. Each aij corresponds to
an alteration of the value pij of matrix P . Set A contains
actions for the non-zero elements of P .

Figure 3 illustrates the undergoing changes forced by an
action aij chosen by D. The decision maker chooses action
a21 = b. The element p21 = 1

4
is increased by a factor b and

D enhances, thus, the opinion of node 1 in the update pro-
cess of node 2 (Figure 3a). The modified value of p21 = 1

4
+b

forces a normalization process for all p2j , j ∈ N in order to
comply with the weighted averaging process of the DeGroot
model of the graph G. The normalization reforms the distri-
bution of node’s 2 factors (Figure 3b). p21 is increased while
p22 and p24 are decreased. This example demonstrates that
a single action on element pij of G triggers the alteration
of other elements and, consequently, the alteration of the
stationary probability vector π of the whole graph.
D is urged to select the proper actions aij in order to bias

the consensus of G towards t. Hence, D aims to construct a
strategy σ = {aij |aij ∈ A} that would alter the stationary
probability vector π into π′ to promote the prevalence of the
opinions of those nodes that are closest to t. We should note
that the decision maker can only choose one action for every
node of the graph, i.e. ∀aij , akl ∈ σ, i = k ⇒ j = l.

3.2.2 Solving DIP
We implemented an example DIP ∗ = (G∗ 〈N∗, P ∗〉 , O∗0 ,

D∗ 〈A∗, t∗〉) as a MDP in PRISM. The graph G∗ and the
opinion vector O∗0 is equivalent to the graph of the DP ∗

implementation of Section 3.1.2. In our experiment, the
decision maker D∗ was provided with a set of actions A∗

consisting of actions a∗ij with values set to 0.25 for all the
existing links of graph G∗ and the target opinion t∗ was set
to 0. The MDPs can be solved in polynomial time using
dynamic or linear programming approaches [21, 18].

The aim of our implementation was to force the decision
maker to construct a strategy σ∗ in PRISM, that would pro-
mote his target opinion t∗ hosted by node 1, and extract it
in order to examine it. With the use of a suitable property
expression, PRISM exported the decision maker’s strategy
in the form of a DTMC eliminating, thus, the non-used ac-
tions of the MDP. The extracted DTMC that incorporated
strategy σ∗ was subsequently imported in PRISM in order
to compute the reformed stationary probability vector π′

imposed by the strategy’s actions. Vector π′ and the graphs
consensus was computed accurately as in the case of DP ∗.

The reformed stationary probability vector π′ of our ex-
periment is presented in Table 1 and the actions of the con-
structed strategy σ∗ are depicted in Figure 2(b) as green
arrows. It is evident that the decision maker’s strategy se-
lected these actions that promoted the diffusion of node’s 1
opinion. The same deduction can be made by examining the
factors of π′: the factor of node 1 is significantly increased
and this enhancement is also clear in its neighbouring node
3. The factors of the rest of the nodes were decreased and
the opinion in state of consensus was decreased as it was
intended by the decision maker’s strategy.

3.3 The DeGroot Game (DG)

3.3.1 Definition of DG
A further extension of the DeGroot Problem DP is the

introduction of a second strategic entity to the DeGroot In-
fluence Problem DIP that aims to bias the formation of
consensus towards his favored opinion.

The DeGroot Game (DG) consists of a tuple (G 〈N,P 〉 , O0,
D1 〈A1, t1〉 , D2 〈A2, t2〉) where G is the graph of the model,
N = {1, ..., n} is a set of nodes, P is a real-valued n × n
matrix with non-negative elements, O0 = {o0,1, ..., o0,n} is
a vector of initial opinions of nodes N , D1 and D2 are the
two strategic entities (i.e. players) that interfere with the
consensus formation process, A1 and A2 is the set of ac-
tions available to D1 and D2 respectively and t0 and t1 are
their target opinions. The sets A1 and A2 consist of real-
valued elements a1,ij and a2,ij respectively representing the



Table 1: Vectors π, π′ and π′′ and the final opinions.
Node Opinion Factors of

vector π
Factors of
vector π′

Factors of
vector π′′

1 0 0.2045 0.3943 0.2232
2 0.5 0.0454 0.0343 0.0322
3 0.5 0.2727 0.3086 0.2594
4 0.5 0.1363 0.0617 0.0773
5 0.5 0.2272 0.1509 0.2447
6 1 0.1136 0.0503 0.1631

Final opinion 0.45454 0.32800 0.46994

jth action of each player on node i. Each a1,ij and a2,ij
corresponds to an alteration of the value pij of matrix P .

The mechanism of the players’ actions is equivalent to
the mechanism described in the case of DIP : when the two
players choose their actions a1,ij and a2,iz they alter the
values pij and piz of P that correspond to the weights of
node’s i links to nodes j and z. Each alteration represents
an enhancement of the leading node’s opinion. After the
weights of the links are updated, a normalization process
for all pik, k ∈ N is necessary in order to apply the weighted
averaging process of the DeGroot model. Consequently, all
the elements pik are influenced by actions a1,ij and a2,iz
and the stationary probability vector π of the graph G is
reformed to π′′ as the result of the players’ actions.

PlayersD1 andD2 are urged to select the proper actions in
order to influence the consensus formation process towards
their target opinions t1 and t2. The players develop their
strategies σ1 = {a1,ij |a1,ij ∈ A1} and σ2 = {a2,ij |a2,ij ∈ A2}
and the chosen actions of their strategies contribute to the
formation of a new stationary probability vector π′′ of the
graph G. The restrictions of the decision maker’s strategy in
DIP apply also to strategies σ1 and σ2 of the DG’s players:
each player can choose only one action for each node.

3.3.2 Solving DG
We implemented an example GD∗ = (G∗ 〈N∗, P ∗〉 , O∗0 ,

D∗1 〈A∗1, t∗1〉 , D∗2 〈A∗2, t∗2〉) as a stochastic game in PRISM-
games. The graph G∗ and the opinion vector O∗0 is equiva-
lent to the graph of the DP ∗ of Section 3.1.2. The sets A∗1
and A∗2 consisted of actions a∗1,ij and a∗2,ij with values set
to 0.25 for all the existing links of graph G∗ and the target
opinions t∗1 and t∗2 were set to 0 and 1 respectively impos-
ing, thus, a competitive relation between the players. The
stochastic game developed in PRISM-games was a stopping
game with a stopping factor sf = 0.05.

The question whether at least certain classes of stochas-
tic games can be solved in polynomial time is still open.
In [4] Condon showed that simple stochastic games are in
NP∪ coNP. The stochastic game used in our extended model
is at least as hard as simple stochastic games. Several com-
plexity results are provided in [20]. Consequently, for influ-
ence games in this class one has to carefully design the model
or make compromises to keep the computational demand for
the solution at an acceptable level.

The aim of our experiment was to urge the players to
develop competing strategies in the PRISM-games frame-
work and retrieve these strategies. Player’s D∗1 strategy
should promote his target opinion t1 hosted by node 1 while
player’s D∗2 strategy should be aiming for the prevalence of
his target opinion t2 hosted by node 6. The proper incentives
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Figure 4: Measured execution times of our experi-
ments

for the construction of such strategies were expressed with
the use of rPATL and the desired strategies were developed.
The strategies were extracted with the use of PRISM-games
simulation functionality [8]. The results of the strategies
construction’s process were imported in a separate DTMC
model of PRISM-games and both the stationary probability
vector π′′ and the consensus were computed.

Figure 2(c) presents the results of our experiment for the
DeGroot game GD∗. The green arrows represent the strat-
egy developed by player D∗1 and the blue arrows represent
player’s D∗2 strategy. Player D∗1 wields his influence on the
edges that maximizes the probability of reaching node 1
while player D∗2 chooses to affect the edges leading to node 6.
The reformed stationary distribution vector π′′ is presented
in Table 1. The factors of nodes 1 and 6 are increased com-
pared to the initial factors of π although node’s 1 increase
is not as significant as in the DIP ∗ (vector π′) because of
the intervention of player’s D∗2 strategy. Node’s 5 factor is
also increased as a consequence of player’s D∗2 strategy: his
actions affect the edges leading to node 6 and, as node 5 is
the only node connecting it with the social graph, its factor
is also affected. Nodes’ 2, 3 and 4 factors are decreased com-
pared to those derived from DP ∗ (vector π). The opinion in
state of consensus is increased compared to the final opin-
ions of both DP ∗ and DIP ∗. This is due to D∗2 ’s strategy
which increased node’s 6 factor in GD∗.

3.4 Measurement of execution time
In the final stage of our work we developed a set of exper-

iments consisting of large models for DP , DIP and DG in
order to examine the performance of the software in terms
of execution time. We automated the process of transcrib-
ing large social graphs into PRISM language representing
settings of DP , DIP and DG and executed the resulting
problems using PRISM-games’ explicit engine . The social
graphs of our experiments were generated based on scale-free
graphs and the links between the nodes formed an exponen-
tial distribution. The restriction of the generated graphs for
strong connectivity was satisfied with the addition of proper
edges that formed a cycle containing all the nodes. Each
node of the graph had an edge leading to itself and, there-
fore, the common divisor of all simple cycles was 1. Hence,
all the requirements for the reach of consensus were met.

The set of experiments consisted of ten categories depend-
ing on the number of the graph’s nodes and the sample
set for each category consisted of 50 auto-generated models.
Figure 4 illustrates the average execution times for each cate-



gory. In case of the DP experiments, the measurement times
correspond to the process of building the model and evalu-
ating the stationary probability vector π of the graph. It
is evident that the execution times exhibit linear behaviour
and were rapidly computed even for larger models (the av-
erage time for a graph with 100 nodes is 0.0679 seconds). In
case of DIP , the experiments contained the process of build-
ing the model and exporting the decision maker’s strategy
through the evaluation of the suitable property. The mea-
surements revealed a significant increase in the complexity
of the calculations (the average time for a graph with 100
nodes is 6.5455 seconds). In case of DG, the measured times
correspond to the process of building the model and gener-
ating the strategies for both players. The results indicate
an exponential-like increase in the complexity (the average
time for a graph with 100 nodes is 38.1375 seconds).

4. DISCUSSION
The DeGroot model shares common mathematical foun-

dations with Markov chains. When external influence is
wielded in DeGroot model, it corresponds to an intervention
to the underlying Markov chain. This type of interventions
are extensively studied in the field of model checking. There-
fore, in this work we used software from the field of model
checking in our study of DeGroot model and our extensions.

The successful modelling of the DeGroot model, as DeG-
root ProblemDP , and its extensions with the use of software
for model checking highlights the strong underlying coher-
ence of the models to stochastic processes. The DeGroot
model is based on Markov chains, its extension with one de-
cision maker is reduced to a MDP and the extension with two
players is essentially a stochastic game. Figure 5 presents
schematically the coherence of our experiments’ models to
stochastic processes.

Markov 
chains 

MDP 
Stochastic 

games 

DeGroot 
Problem (DP) 

DeGroot 
Influence 

Problem (DIP) 

DeGroot 
Game (DG) 

Figure 5: Coherence of models to stochastic pro-
cesses.

Eigenvector centrality is the dominant factor in our ex-
periments. In case of the DP , the stationary probability
vector π extracted by the corresponding Markov chain de-
fines the opinion in state of consensus. When external influ-
ence is wielded, the players aim to bias vector π in order to
manipulate the final opinion in stable state. In our exper-
iments we demonstrated the influence of external strategic
entities on the reformation of vector π: in the case of DIP
the reformed vector π′ promoted the opinion of the decision
maker’s favourite node while in the case of DG the vector
π′′ exhibited the influence of the players’ strategies towards
the nodes hosting their preferred opinions.

Our research unveiled the restrictions of modelling the
DeGroot model to stochastic processes. More specifically in
DP , the formulation of DeGroot Model as a Markov chain

and of DIP as a MDP can be effectively accomplished while
in the case of DG, the execution of the stochastic game
would exhibit exponential increase of complexity due the
multiple alternatives offered to the players of the game.
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