

On the design of access control to prevent sensitive
information leakage in distributed object systems: a

Colored Petri Net based model

Panagiotis Katsaros1

1 Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
katsaros@csd.auth.gr

http://delab.csd.auth.gr/~katsaros/index.html

Abstract. We introduce a Colored Petri Net model for simulating and verifying
information flow in distributed object systems. Access control is specified as
prescribed by the OMG CORBA security specification. An insecure flow arises
when information is transferred from one object to another in violation of the
applied security policy. We provide precise definitions, which determine how
discretionary access control is related to the secure or insecure transfer of in-
formation between objects. The model can be queried regarding the detected in-
formation flow paths and their dependencies. This is a valuable mean for the
design of multilevel mandatory access control that addresses the problem of en-
forcing object classification constraints to prevent undesirable leakage and in-
ference of sensitive information.

1 Introduction

For a secure application it is not enough to control access to objects, without taking
into account the information flow paths implied by a given, outstanding collection of
access rights. The problem is faced by the use of multilevel mandatory policies, where
users have no control and therefore they cannot be bypassed. Access to objects is
granted on the basis of classifications (taken from a partially ordered set) assigned to
objects and subjects requesting access to them.

The rigidity of these policies implies the need for a systematic design approach. In
the design of mandatory access control we aim to enforce object classification con-
straints to prevent undesirable leakage and inference of sensitive information, while at
the same time guaranteeing that objects will not be overclassified (to maximize infor-
mation visibility). The set of constraints is decided based on the restrictions of the
system’s enterprise environment and on a view of the potential information flow paths.
Our work aims to provide information regarding the system’s structure, to be used in
the design of appropriate mandatory access control.

In distributed object systems, objects interact by synchronous, asynchronous or de-
ferred synchronous messages and detection of information flow is complicated by the
presence of bi-directional information transfer between the senders and the receivers.

Information transfer from the sender to the receiver is accomplished through message
parameters, while the opposite, through message reply. An information flow does not
require direct message exchange between objects (indirect information flow paths).
An object acquires information only when writing to its attributes and this operation
results in one or more direct or indirect information flows.

We assume that access control is specified as prescribed by the OMG CORBA se-
curity specification. An insecure flow arises when information is transferred from one
object to another in violation of the applied security policy.

We introduce a Colored Petri Net model to detect information flow paths based on
system’s object method dependencies and the applied access control. The model was
implemented in CPN Tools ([7]), an advanced ML-based tool for editing, simulating
and analyzing Colored Petri Nets.

To detect the insecure flow paths we implement the definitions we provide to de-
termine how the applied discretionary access control is related to the secure or inse-
cure transfer of information between objects. If there is an insecure flow to an object,
we are often interested in enforcing an appropriate object classification constraint over
all (and not only the insecure) sources of information flow to that object. In that case,
we use the CPN Tools state space analysis functions to make queries regarding the
detected flow paths.

Thus, the proposed model is a static analysis tool that provides data for the system-
atic design of multilevel mandatory access control. We preferred to use Colored Petri
Net model checking and not to use Finite State Machine model checking because: (i)
Colored Petri Nets possess the expressiveness and the formal analysis capacity of a
Petri Net modeling language, (ii) they provide an explicit representation of both states
and actions and at the same time retain the modeling flexibility provided in a pro-
gramming language environment and (iii) Colored Petri Nets is a widespread model-
ing formalism with an easily accessible tool support that allows interactive simulation
in an advanced graphical environment.

Section 2 provides a detailed description of the problem under consideration. Sec-
tion 3 introduces the basic components of the information flow security model and
provides the implemented definitions that determine when an information flow path is
secure and when it is not secure. Section 4 focuses on the use of the CPN Tools state
space analysis functions to make queries regarding the detected flows. Section 5 sum-
marizes the latest related work reported in the bibliography and the paper concludes
with a discussion on the potential impact of our work.

2 Basic definitions and problem statement

Distributed object systems are composed of a set of objects o1, o2, . . ., on, which inter-
act to accomplish common goals. An object’s methods io

lop , 1 ≤ l ≤ #(methods of oi),
1 ≤ i ≤ n, are invoked by synchronous, asynchronous or deferred synchronous method
requests.

A message msg is defined as a pair (method, type), with

 type ∈ {s | synchronous invocation request}
 ∪ {drq | deferred synchronous invocation request}
 ∪ {a | asynchronous invocation request}
 ∪ {drp | deferred synchronous invocation reply}

and

method ∈ { }U
i

i
o
l olop i) of methods(#1 | ≤≤ ∪ {read, write}

where read, write correspond to primitive synchronous messages (type = s) that are
sent by an object to itself to read or respectively update its state.

A message sequence specification MsgSeq(io
lop) for method io

lop , 1 ≤ l ≤
#(methods of oi) is a total order relation ⇒ over the set

{msgs | 1 ≤ s ≤ #(messages in MsgSeq(io
lop))}

of nested method invocations, as well as read and/or write messages generated by
io

lop . For every two msgs, msgt ∈ MsgSeq(io
lop), msgs ⇒ msgt if and only if msgs is

sent/received before msgt. We note that ⇒ defines an invocation order that does not
necessarily coincide with the order in which method executions are completed.

To make it clear, if in MsgSeq(io
lop) holds that (jo

kop , drq) ⇒ (write, s), this does
not mean that jo

kop is executed before write. However, if

(jo
kop , drq) ⇒ (jo

kop , drp) ⇒ (write, s)

i.e. if the reply of a deferred synchronous request to oj is received before write, then
jo

kop is executed before write. In that case, if read ∈ MsgSeq(jo
kop) and the used

credentials include the read access right for oj, then there is an information flow from
oj to oi. Moreover, oj may also be the source of additional indirect flows to other ob-
jects, if for example io

lop has been synchronously invoked by another object method.
An information flow is insecure, if the derived information is transferred to the tar-

get, in violation of the applied security policy. An information flow takes place even if
the information written to the target is not the same as the information read, but is
derived from it by executing computations.

We are primarily interested in detecting insecure flow paths and enforcing appro-
priate object classification constraints to prevent undesirable leakage of information.
However, this is not enough. It is also necessary to ensure compliance with potential
business constraints regarding undesirable inference of sensitive information. In a
service-outsourcing environment (e.g. web services) these are key concerns that have
to be satisfied. Thus, we also need to query the model about the detected “secure”
information flow paths to an object.

The design problem under consideration is addressed by the implementation of an
appropriate multilevel mandatory policy. This policy is based on the assignment of
access classes to objects and subjects and is used in conjunction with the applied
discretionary access control. Access classes in a set L are related by a partial order,
called dominance relation and denoted by ≥. The dominance relation governs the
visibility of information: a subject has read access only to the objects classified at the
subject’s level or below and is possible to perform write operations only to the objects
classified above the subject’s level. The expression x ≥ y is read as “x dominates y”.

The partially ordered set (L, ≥) is assumed to be a lattice. We refer to the maximum
and minimum elements of a lattice as � (top) and ⊥ (bottom). Figure 1 depicts an
example classification lattice.

Public

Financial
Protected
Personal

Admin

Confidential

Fig. 1. An example security lattice

In general, the security level to be assigned to an object depends on the sensitivity
of the data in its state. If an object’s state is related to publicly accessible customer
data this object might be labeled at a level such as Public. If an object’s state is
related to customer income data, this object might be labeled at a higher level, such as
Financial.

However, the design of multilevel mandatory policies can be done in a systematic
manner, based on a set of classification constraints. These constraints specify the re-
quirements that the security levels assigned to objects must satisfy. They are con-
straints on a mapping λ: {oi | 1 ≤ i ≤ n} → L that assigns to each object a security level
l ∈ L, where (L, ≥) is a classification lattice. Object classification constraints, like for
example when λ(οi) ≥ Financial, are used to ensure that objects are assigned secu-
rity levels high enough to protect their state.

If our model detects an “insecure” information flow from oj to om, the flow will take
place only when the subjects clearance level dominates the classification of oj and is
dominated by the classification of om. In that case, the constraint λ(οm) ≥ λ(οj) prevents
sensitive information leakage in a low-classified object (the opposite prevents the
occurrence of the detected information flow in all cases). If there is also an additional
flow from os to om, both of them take place only when the subjects clearance level
dominates the least upper bound (lub) of the classifications of os and oj. In that case,
the constraint

lub{λ(οs), λ(οj)} ≥ Financial

will ensure that both flows will take place only when the subjects clearance level
dominates a given ground level. In this way it is possible to prevent potential inference
of high-classified data from low-classified objects.

The proposed model is queried regarding the “insecure” and the “secure” informa-
tion flow paths, in order to direct the specification of constraints, wherever there is a
need to prevent undesirable information leakage or information inference. This al-

lows to avoid overclassification and thus to maximize information visibility. It is then
possible to implement an appropriate mandatory policy after having solved the de-
rived set of constraints. A recently published algorithm is the one described in [3], but
it is not the only one published.

3 The Colored Petri Net based model

Colored Petri Nets (CP-nets) provide us the primitives for the definition of diverse
data types (such as privilege attributes, method names, object ids and others) and the
manipulation of their data values, while retaining the expressiveness and the formal
analysis capacity of a Petri Net modeling language.

The formal semantics of CP-nets is outlined in Appendix. Model states are repre-
sented by means of places (which are drawn as ellipses). Each place has an associated
data type determining the kind of data, which the place may contain (by convention
the type information is written in italics, next to the place). The type declarations im-
plicitly specify the operations that can be performed on the values of the types. A state
of a CP-net is called a marking and consists of a number of tokens positioned on the
individual places. Each token carries a data value, which belongs to the type of the
corresponding place.

A marking of a CP-net is a function, which maps each place into a multi-set of to-
kens (see the Appendix) of the correct type. We refer to the token values as token
colors and to their data types as color sets. The types can be arbitrarily complex, e.g.,
a record where one field is a real, another field is a text string and a third field is a list
of integers.

CP-net actions are represented by means of transitions, which are drawn as rectan-
gles. An incoming arc indicates that the transition may remove tokens from the corre-
sponding place while an outgoing arc indicates that the transition may add tokens. The
exact number of tokens and their data values are determined by arc expressions,
which are positioned next to the arcs. Arc expressions may contain variables as well as
constants. To talk about the occurrence of a transition, we need to bind incoming
expressions to values from their corresponding types. Let us assume that we bind the
incoming variable v of some transition T to the value d. The pair (T, <v =d >) is called
binding element and this binding element is enabled in a marking M, when there are
enough tokens in its input places. In a marking M, it is possible to have enabled more
than one binding elements of T. If the binding element (T, <v =d >) occurs, it removes
tokens from its input places and adds tokens to its output places. In addition to the arc
expressions, it is possible to attach a boolean expression with variables to each transi-
tion. This expression is called guard and specifies that we only accept binding ele-
ments for which the expression evaluates to true.

The behavior of a CP-net is characterized by a set of dynamic properties:
• Bounds-related properties characterize the model in terms of the number of

tokens we may have at the places of interest.
• Home properties provide information about markings or sets of markings to

which it is always possible to return.

• Liveness properties examine whether a set of binding elements X remains
active: “For each reachable marking M΄, is it possible to find a finite se-
quence of markings starting in M΄ that contain an element of X?”

• Fairness properties provide information about how often the different bind-
ing elements occur.

CP-nets are analyzed, either by
• simulation,
• formal analysis methods such as the construction of occurrence graphs,

which represent all reachable markings,
• calculation and interpretation of system invariants (called place and transi-

tion invariants),
• performance of reductions which shrink the net without changing a certain

selected set of properties and
• the check of structural properties, which guarantee certain behavioral

properties.
In CPN Tools, CP-nets are developed in a modern GUI-based environment that

provides interactive feedback for the model’s behavior through simulation. Colors,
variables, function declarations and net inscriptions are written in CPN ML, which is
an extension of Standard ML and for this reason employs a functional programming
style. In CPN Tools we employ simple as well as compound color sets such as prod-
uct, record, list and union color sets.

The toolset provides the necessary functionality for the analysis of simple and timed
CP-nets specified in a number of hierarchically related pages. Typical models consist
of 10-100 pages with varying complexity and programming requirements. The com-
panion state space tool allows the generation of the entire or a portion of the model’s
state space (occurrence graph) and the performance of standard as well as non-
standard analysis queries.

In our model, the CP-net structure depends on the system’s object method depend-
encies. These dependencies may be derived from the system’s source code with a
code-slicing tool ([11]). Taking into account that in CPN Tools the net is stored in an
XML-based format, we believe that models can be automatically generated using an
appropriate XML text generator.

3.1 The CORBA Security model

Distributed object systems typically support a large number of objects. CORBA Secu-
rity ([13]) provides abstractions to reduce the size of access control information and at
the same time to allow fine-grained access to individual operations rather than to the
object as a whole. Access policies are defined based on privilege and control attrib-
utes and access decisions are made via the standard access decision interface that is
modeled by the CP-net we present here.

Principals are users or processes accountable for the actions associated with some
user. In a given security policy, each principal possesses certain privilege attributes
that are used in access control: such attributes may be access identities, roles, groups,
security clearance and so on. At any time, a principal may choose to use only a subset

of the privilege attributes it is permitted to use, in order to establish its rights to access
objects.

Access control is defined at the level of individual object invocations. The access
decision function bases its result on the current privilege attributes of the principal, the
operation to be performed and the access control attributes of the target object.

A set of objects where we apply common security policies is called security policy
domain. Security domains provide leverage for dealing with the problem of scale in
policy management. The CORBA Security specification allows objects to be members
of multiple domains: the policies that apply to an object are those of all its enclosing
domains. CORBA Security does not prescribe specific policy composition rules. Such
rules are the subject of the system’s security design and this allows for potentially
unlimited flexibility in combining complementary access control policies.

A domain access policy grants a set of subjects the specified set of rights to perform
operations on all objects in the domain. In Table 1 we provide a sample domain access
policy. As subject entries we use the privilege attributes possessed by the principals.
Thus, user identities can be considered to be a special case of privilege attributes. In
CORBA Security, rights are qualified into sets of “access control types”, known as
rights families. There is only one predefined rights family that is called corba and
contains the three rights g (for get or read), s (for set or write) and m (for manage).

Table 1. Domain access policy (granted rights)

Privilege Attribute Domain Granted Rights
access_id: a1 1 corba: gs-
access_id: a2 2 corba: g--
group: g1 1 corba: g--
group: g1 2 corba: gs-
group: g2 1 corba: gs-

Rights to privilege attributes are granted by an AccessPolicy object. An opera-
tion of a secure object can be invoked only when the principal possesses the set of
rights prescribed by the RequiredRights object. Table 2 shows an example Re-
quiredRights object that defines the rights required to gain access to each specific
method of an object. There is also a mechanism to specify whether a user needs all the
rights - in a method’s required rights entry - to execute that method (AND semantics)
or whether it is sufficient to match any right within the entry (OR semantics).

Table 2. Required rights

Required Rights Rights Combinator Operation Interface (class)
corba: g-- all M1
corba: g-- all M3

c1

corba: gs- all M4
corba: -s- all M0
corba: -s- all M2

c2

corba: gs- any M5 c3

Table 3. Domain membershiphs and object classes

Object Domain Objects Class
o1 , o2, o5, o12 d1 o1 , o8 c1
o8, o9 d2 o2 , o5, o9 c2
 o12 c3

Table 3 specifies the security domain memberships and the object classes, for the
case access control introduced in Tables 1 and 2.

The AccessDecision object determines the validity of invocation requests
based on the privilege and control attributes provided by the AccessPolicy and
RequiredRights objects. There are no explicit rules on how to calculate the ac-
cess decision: CORBA Security does not prescribe how an AccessPolicy object
combines rights granted by different privilege attribute entries (when a subject has
more than one privilege attribute to which the AccessPolicy grants rights). Taking
into account the absence of policy composition rules for domain hierarchies, all these
make feasible the implementation of different access decision functions and thus allow
for potentially unlimited flexibility in security policy specification.

dom_access_policy

att_cdentials

[("A1",1,READ),
 ("A1",1,WRITE),
 ("A2",2,READ),
 ("G1",1,READ),
 ("G1",2,READ),
 ("G1",2,WRITE),
 ("G2",1,READ),
 ("G2",1,WRITE)]

obj_domains

obj_domains

[(1,1),(2,1),
(5,1),(8,2),
(9,2),(12,1)]

obj_classes

obj_classes

[(1,1),(2,2),(5,2),(8,1),(9,2),(12,3)]

objRef
INT

fclass

INT

required_rights

rights_methods

[[(1,"M1","&"),(1,"M3","&"),(2,"M4","&"),(3,"M5","|")],
 [(2,"M0","&"),(2,"M2","&"),(2,"M4","&"),(3,"M5","|")]]

rights_types

rights_type

[READ,WRITE]

findClass

findClass

tobj INT

findDomain

findDomain

domains

binfo

findRights

findRights

obtained_rights

rights

dispatchResultM

[mstring<>""]

method

STRING

""

valMethod

valMethod

resultM
rights

rgh

mstring

inPlace

MethodReply
In

recMethod

1‘METHOD(m)

""

#METHOD m

#OBJECT m

recObjRef
sn

""

dispatchResultO

[mstring=""]

rgh

mstring

sn

1‘OBJ_ONLY(sn)

results

rights
Out

rgh
rgh

synchFlag
INT0

1
0

1
0

1

0
1

0

Fig. 2. The access decision CP-net submodel

Figure 2 presents the top-layer of the CP-net submodel implementing the following
access decision function: “A method m can be executed if the requester’s rights match
the rights specified in the method’s entry in the RequiredRights table”. The
shown CP-net is used in the following ways:

• To obtain privilege attributes and access rights (output place results) to
proceed to the execution of the method specified in the union typed place
inPlace (if any).

• To derive the access control list (list of privilege attribute and access right
pairs in output place results) for the object specified in place inPlace
(if any).

The domain access policy (bold place dom_access_policy) is specified as a
list of triads, which respectively represent privilege attribute, domain number and
right. The required rights table is given as lists of triads (bold place re-
quired_rights), which respectively represent class number, method name and
rights combinator and each ML list refers to the corresponding right of the ML list
shown in the rights_types bold place. The data shown in Table 3 determine the
initial markings of the bold places obj_domains and obj_classes.

Due to space limitations we omit the description of the low-level CP-nets imple-
menting the hierarchically related substitution transitions valMethod, findClass,
findDomain and findRights.

3.2 The information flow security model

The CP-net of Figure 2 corresponds to the protSys substitution transition of Figure
3 that mimics a method execution: an object sends the messages of method’s sequence
specification (given in the bold input/output place obj) to itself or to other objects.
Access to the object’s state is accomplished by dispatching primitive read and write
messages to itself: each of them is supposed to be executed synchronously.

In synchronous and deferred synchronous communication (hierarchically related
substitution transitions doSynchSend and doDSynchSend) a reply is eventually
returned, together with a list of all object identifiers (color binfo for the place
AOsL) where read operations were allowed by the used access control. This list is
termed as Accessed Objects List (AOsL). AOsL list is transmitted forward (requests)
and backward (replies) as prescribed by methods’ message sequence specifications, in
order to record the performed read operations in all accessed objects.

An information flow to an object takes place only when information is written to it
(substitution transition doWrite). In that case, there is an information flow from
each one of the objects contained in the transmitted AOsL list. However, not all of
them violate the applied access control:

Definition 3.1

An information flow from an object oi (source) to an object oj (target) is not secure
(may cause undesirable information leakage), if the privilege attributes that grant read
access to the target are not a subset of the set of attributes, which grant read access to
the source.

Definition 3.2

An information flow to an object oj is secure, if the privilege attributes that grant
read access to it are also contained in all sets of privilege attributes, which grant read
access to the objects contained in the transmitted AOsL list.

sender
exec

doSynchSend
doSynchSend

receiver

MethodReply

doRead

doRead

methodIn
MethodReply

I/O
doExec
doExec

obj

msg_queue
I/O

return
REPLY rep

methodType

mtype

mt

methodOut

MethodReply
I/O

doMethod

doMethod

doAsynchSend
doAsynchSend

doWrite

doWrite

if (mt=SYNCH)
then 1‘RESPONSE(#1 rep,mt,true,"",0)
++1‘BINFO(ie)
else empty

doDSynchSend
doDSynchSend

doOutpFail[#3 rep = false] RESPONSE rep

RESPONSE rep
1‘RESPONSE (#1 rep,
#2 rep,true,#4 rep,#5 rep)

AOsLbinfo

ie

in

1‘METHOD(m)
++1‘CRED[]

1‘METHOD(m)

protSys
protSys

IOPlace
MethodReply

1‘METHOD(m)

Out
results

rights
rgh

1‘CRED(rgh)
flagINT

1

1

il_flows
binfo

I/O

Fig. 3. The top layer of the method execution CP-net

 color mtype = with SYNCH | ASYNCH | DSYNCH | DREP;
 color crtype = with READ | WRITE;
 color rights_type = list crtype;
 color INT = int;
 color BOOL = bool;
 color STRING = string;
 color MSG_SNxSTATUS = product INT * STRING;
 color msg_rec = record NUMBER:INT * METHOD:STRING
 * TYPE:mtype * OBJECT:INT;
 color right = product STRING*crtype;
 color rights = list right;
 color binfo = list INT;
 color msg_queue = list msg_rec;
 color reply = product INT * mtype * BOOL * STRING * INT;
 color strLst = list STRING;
 color MethodReply = union RESPONSE:reply+
 METHOD:msg_rec+
 CRED:rights+
 ACL:strLst+
 BINFO:binfo+
 OBJ_ONLY:INT;
 color exec = union REPLY:reply +
 MSG_QUEUE:msg_queue +
 CREDENT:rights;

 var q,p, messages : msg_queue;
 var m : msg_rec;
 var sn,sm,k : INT;
 var mt : mtype;
 var rep : reply;
 var ie,ic : binfo;
 var rgh : rights;

 fun aux2 k l = if cf(k,l)>0 then nil else [k];
 fun unio (x::xl,yl) = (aux2 x yl)++unio(xl,yl)

 | unio (_,yl) = yl;

Fig. 4. Colors, variables and functions used in CP-net incriptions

Figure 4 summarizes the color, variable and function declarations used for the tran-
sition and arc inscriptions of the CP-nets of Figures 3 and 5.

Figure 5 reveals the details of the doSynchSend substitution transition of Figure
3. Method execution is blocked (place RmvMessage) up to the reception of the ex-
pected reply - signaled by the token (sn,“REPLIED”) in place NextSend. AOsL
list is returned (arc inscription 1’BINFO(ic)) together with the method reply. Then,
AOsL list is updated as appropriate (function inscription unio(ie,ic) to calculate
the union of the existing list ie and the received list ic).

We omit the details of the doAsynchSend and doDSynchSend transitions
shown in Figure 3, but we stress the fact that AOsL list is never changed as a result of
an asynchronous method execution.

sender

exec
I/O

RmvMessage

msg_queue

NextSend

MSG_SNxSTATUS

Sending

msg_rec

receiver

MethodReply
I/O

BINFO
binfo

I/O

SynchSend

[#TYPE (hd messages)=SYNCH]

ReturnMSG_QUEUE

UpdateStatus

Reply

[sn=(#1 rep)
andalso (#3 rep=true)]

1‘MSG_QUEUE(messages)
++1‘CREDENT(rgh)

tl messages

q

if (length q>0)
then 1‘MSG_QUEUE(q)++1‘CREDENT(rgh)
else 1‘REPLY(sn,SYNCH,true,"",0)

(sn,"REPLIED")

hd messages

m

(#NUMBER m,"NOT_REPLIED")

(sn,"REPLIED")

(sn,"NOT_REPLIED")

1‘RESPONSE (rep)
++1‘BINFO (ic)

METHOD m

1‘CRED(rgh)

1‘CREDENT(rgh)

1‘CREDENT(rgh)
unio(ie,ic)

ie

ie

if (#METHOD (hd messages)<>"READ")
then 1‘BINFO(ie)
else empty

ie

Fig. 5. The CP-net for the doSynchSend substitution transition shown in Figure 3

A system model is composed of a number of interacting instances of the CP-net

shown in Figure 3 and each instance represents a particular method execution. For all
method executions their instance input places (obj, methodIn) are initialized as
imposed by the system’s object method dependencies. Insecure information flow paths
are detected at the doWrite substitution transition and for each object are separately
recorded at the il_flows output places.

Figure 6 reports the simulation results given for the access control of Figure 2 and
the case system model:

MsgSeq(20oM) = {(11oM , s) ⇒ (92oM , s) ⇒ (83oM , s) ⇒ (write, s)}

MsgSeq(11oM) = {(read, s)}

MsgSeq(92oM) = {(54oM , s) ⇒ (write, s)}

MsgSeq(83oM) = {(read, s)}

MsgSeq(54oM) = {(read, s) ⇒ (write, s)}

inM0

MethodReply

1‘METHOD({NUMBER=1,
METHOD="M0",
TYPE=SYNCH,
OBJECT=2})
++1‘CRED[]++1‘BINFO[]

obj2

msg_queue

1‘[{NUMBER=0,METHOD="M1",TYPE=SYNCH,OBJECT=1},
{NUMBER=0,METHOD="M2",TYPE=SYNCH,OBJECT=9},
{NUMBER=0,METHOD="M3",TYPE=SYNCH,OBJECT=8},
{NUMBER=0,METHOD="WRITE",TYPE=SYNCH,OBJECT=2}]

outM0 MethodReply

doMethodM0
doMethodExec

il_flow_obj2 1 1‘[8]
binfo[]

M1request

[#METHOD m="M1"]

M1reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh) 1‘RESPONSE(rep)

++1‘BINFO(ic)

inM1

MethodReply

1‘RESPONSE(rep)
++1‘BINFO(ic)1‘METHOD(m)

++1‘BINFO(ic)
++1‘CRED(rgh)

obj1

msg_queue

1‘[{NUMBER=0,
METHOD="READ",
TYPE=SYNCH,
OBJECT=1}]

doMethodM1
doMethodExec

il_flow_obj1

1 1‘[]
binfo

[]
outM1

MethodReply

M2request

[#METHOD m="M2"]

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

inM2

MethodReply obj9

msg_queue

1‘[{NUMBER=0,METHOD="M4",
 TYPE=SYNCH,OBJECT=5},
{NUMBER=0,METHOD="WRITE",
TYPE=SYNCH,OBJECT=9}]

doMethodM2
doMethodExec

il_flow_obj9 1 1‘[5,1]

binfo

[]
outM2

MethodReply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

M4request[#METHOD m="M4"] M4reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

inM4

MethodReply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘RESPONSE(rep)
++1‘BINFO(ic)

obj5

msg_queue

1‘[{NUMBER=0,METHOD="READ",
TYPE=SYNCH,OBJECT=5},
{NUMBER=0,METHOD="WRITE",
TYPE=SYNCH,OBJECT=5}]

il_flow_obj5 1 1‘[]

binfo

[]
outM4

MethodReply

doMethodM4
doMethodExec

M3request

[#METHOD m="M3"]

M3reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

1‘RESPONSE(rep)
++1‘BINFO(ic)

inM3

MethodReply

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

obj8
msg_queue 1‘[{NUMBER=0,METHOD="READ",

TYPE=SYNCH,OBJECT=8}]

doMethodM3
doMethodExec

il_flow_obj8

1 1‘[]

binfo[]

outM3

MethodReply

M2reply

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘RESPONSE(rep)
++1‘BINFO(ic)

Fig. 6. A case system model and the detected insecure information flow paths

Insecure information flow paths are detected and recorded in il_flow_obj2 and

il_flow_obj9 places. We observe the existence of flows from o1 and o5 to o9 and
from o8 to o2. We note that method execution control flow, like for example condi-
tional execution, is not taken into account. We are interested for the detection of all
potential information flow paths and we want to take them into account, in order to
ensure compliance with business constraints regarding undesirable leakage or infer-
ence of sensitive information.

The simulated model reports the verification results regarding the detection of inse-
cure flow paths. However, this is not enough if we want to use it as a mean to guide
the specification of object classification constraints.

4 State space analysis

Analysis of the occurred information flow paths is performed after having generated
all possible states that the system can reach. This can be done, by exploiting the CPN
Tools state space analysis facilities ([7]).

Given the full state space, also known as occurrence or reachability graph, we can
check the standard properties mentioned in section 3, as well as the existence of an
occurrence sequence (reachability) to a particular marking (state). Figure 7 summa-
rizes the results for the standard checks mentioned in section 3. The full state space is
generated in 13 secs and consists of 2029 nodes (states) and 3282 arcs. There are no
live transition instances and infinite occurrence sequences and the single dead marking
that reflects the completed execution of method “M0” corresponds to the node number
2029.

Statistics
--
 Occurrence Graph
 Nodes: 2029
 Arcs: 3282
 Secs: 13
 Status: Full

 Boundedness Properties
--
 Best Integers Bounds Upper Lower
 NewPage'il_flow_obj1 1 1 1
 NewPage'il_flow_obj2 1 1 1
 NewPage'il_flow_obj5 1 1 1
 NewPage'il_flow_obj8 1 1 1
 NewPage'il_flow_obj9 1 1 1
 .
 .

 Home Properties
--
 Home Markings: [2029]

 Liveness Properties
--
 Dead Markings: [2029]
 Live Transitions Instances: None

 Fairness Properties
--

 No infinite occurrence sequences.

Fig. 7. The state space analysis standard report for the CP-net of Figure 6

Model querying regarding all detected information flow paths is performed through

evaluation of simple ML functions. The set of predefined ML functions used to ex-
plore the generated state space is summarized in Table 4.

Table 5 shows (in the result column) the information flow data derived for the case
system model.

Table 4. State space querying functions

function description use
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned on place <PlaceName> on the

Nth instance of page <PageName> in the marking M
ListDeadMarkings () Returns a list with all those nodes that have no enabled binding

elements.
hd l Returns the head of l.
SearchNodes (
 <search area>,
 <predicate function>,
 <search limit>,
 <evaluation function>,
 <start value>,
 <combination function>)

Traverses the nodes of the part of the occurrence graph specified in
<search area>. At each node the calculation specified by <evaluation
function> is performed and the results of these calculations are
combined as specified by <combination function> to form the final
result. The <predicate function> maps each node into a boolean value
and selects only those nodes, which evaluate to true. We use the
value EntireGraph for <search area> to denote the set of all nodes in
the occurrence graph and the value 1 for <start value> to continue the
search until the first node, for which the predicate function evaluates
to true.

Table 5. Information flow security queries

1. Insecure information flow sources:
object

id
function result

o2 Mark.NewPage’il_flow_obj2 1 (hd (ListDeadMarkings())) val it = [[8]]: binfo ms
o1 Mark.NewPage’il_flow_obj1 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms
o8 Mark.NewPage’il_flow_obj8 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms
o9 Mark.NewPage’il_flow_obj9 1 (hd (ListDeadMarkings())) val it = [[5,1]]: binfo ms
o5 Mark.NewPage’il_flow_obj5 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms

2. All information flow paths to o2 (including the “secure” ones):
function result

Mark.doWrite’recBINFO 1 (hd (SearchNodes (EntireGraph,
 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 1,
 fn n => n,
 [],
 op::)))

val it = [[1,5,8]]: binfo ms

3. Privilege attributes for read access to o2:
Mark.doWrite’torrights 1 (hd (SearchNodes (EntireGraph,

 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 1,
 fn n => n,
 [],
 op::)))

val it = [[“A1”, “G1”, “G2”]]:
strLst ms

4. Privilege attributes for read access to insecure source o8:
Mark.doWrite’rstrrights 1 (hd (SearchNodes (EntireGraph,

 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 3,
 fn n => n,
 [],
 op::)))

val it = [[“A2”, “G1”]]: strLst
ms

The results of query 1 verify the simulation results of Figure 6 regarding the inse-
cure flow paths detected at the found dead marking. The query is based on inspection
of the marking of il_flow places on the first instance of page NewPage, for the
head of the list of dead markings, which in fact contains the single dead marking with
node number 2029.

In query 2 we use the function SearchNodes to explore the entire state space for
a marking that yields all flows (including the “secure” ones) to o2. Queries 3 and 4
reveal the details of the insecure flow (definition 3.1) sourced at o8.

Function SearchNodes is used as a tool of potentially unlimited flexibility in
querying the model regarding the “insecure” and the “secure” information flow paths,
in order to direct the specification of object classification constraints. Alternatively,
CPN Tools includes a library for defining queries in a CTL-like temporal logic.

State spaces grow exponentially, with respect to the number of independent proc-
esses. In the proposed model, this problem becomes evident, when using asynchro-
nous and/or deferred synchronous method calls. From the alternative published analy-
ses our model fits to the modular state space analysis described in [2]. The behavior of
the entire system can be captured by the state spaces of the modules corresponding to
individual method executions (Figure 6), combined with an appropriate synchroniza-
tion graph. Unfortunately, CPN Tools does not currently support the generation of
separate state space modules and the required synchronization graph. Thus, the appli-
cation of the forenamed analysis approach remains an open research prospect.

5 Related work

Information flow security is an active research problem that was first approached in
1973 ([10]) and that is still attracting the interest of researchers in a number of re-
cently published works ([12], [1], [6], [4], [5]).

Recent research works in the context of distributed object systems ([6], [16] and
[14])

• are based on different and often not realistic assumptions on when an in-
formation flow occurs,

• do not always take into account that in real systems, methods are invoked in
a nested manner,

• are bound to specific role-based or purpose-oriented access control models
and none employs the CORBA Security reference model or

• aim in the dynamic control of information flow by the use of an appropriate
run-time support that in most systems is not available.

Our work (i) takes into account the bi-directional nature in the direct or indirect in-
formation transfer between the senders and the receivers, (ii) allows for modeling
nested object invocations, (iii) employs the CORBA Security reference model and for
this reason is not bound to a specific access control model and (iv) aims in the static
verification of information flow security and for this reason does not assume proprie-
tary run-time support. Moreover, it is based on a widespread modeling formalism with
an easily accessible advanced tool support.

Other interesting sources of related work are the introduction into lattice-based ac-
cess control that was published in [15] and the mandatory access control that is speci-
fied in [9], by the use of the CORBA Security reference model.

6 Conclusion

In modern networked business information systems and in service-based business
activities, where different customers are concurrently using the provided services,
compliance with business constraints regarding undesirable inference of sensitive
information is a central design issue.

The problem under consideration is addressed by the implementation of an appro-
priate multilevel mandatory policy. However, the rigidity of these policies implies the
need for a systematic design approach. We introduced a Colored Petri Net model that
simulates and detects “insecure” information flow paths according to the given defini-
tions determining when a flow path is not secure The model can be queried regarding
the existing (“insecure” and “secure”) flows, in order to direct the specification of
object classification constraints, wherever there is a need of them. This allows to
avoid overclassification and thus to maximize information visibility.

Acknowledgments

We acknowledge the CPN Tools team at Aarhus University, Denmark for kindly providing us
the license of use of the valuable CP-net toolset.

References

1. Chou, S.-C.: Information flow control among objects: Taking foreign objects into control,
In: Proceedings of the 36th Hawaii International Conference on Systems Sciences
(HICSS’03), IEEE Computer Society (2003) 335a-344a

2. Christensen, S., Petrucci, L.: Modular state space analysis of Coloured Petri Nets, In:
Proceedings of the 16th International Conference on Application and Theory of Petri
Nets, Turin, Italy (1995) 201-217

3. Dawson, S., Vimercati, S., Lincoln, P., Samarati, P.: Maximizing sharing of protected
information, Journal of Computer and System Sciences 64 (3), (2002) 496-541

4. Georgiadis, C., Mavridis, I., Pangalos, G.: Healthcare teams over the Internet: Program-
ming a certificate-based approach, International Journal of Medical Informatics 70 (2003)
161-171

5. Halkidis, S. T., Chatzigeorgiou, A., Stephanides, G.: A qualitative evaluation of security
patterns, In: Proceedings of ICICS 2004, LNCS 3269, Springer-Verlag (2004) 132-144

6. Izaki, K., Tanaka, K., Takizawa, M.: Information flow control in role-based model for
distributed objects, In: Proceedings of the 8th International Conference on Parallel and
Distributed Systems (ICPADS’01), Kyongju City, Korea, IEEE Computer Society (2001)
363-370

7. Jensen, K.: An introduction to the practical use of colored Petri Nets, In: Lectures on
Petri Nets II: Applications, LNCS, Vol. 1492 (1998) 237-292

8. Jensen, K.: An introduction to the theoretical aspects of colored Petri Nets, In: A Decade
of Concurrency, LNCS, Vol. 803 (1994) 230-272

9. Karjoth, G.: Authorization in CORBA security, In: ESORICS’98, LNCS, Vol. 1485
(1998) 143-158

10. Lampson, B. W.: A note on the confinement problem, Communication of the ACM 16
(10), (1973) 613-615

11. Larsen, L., Harrold, M.: Slicing object oriented software, In: Proceedings of the 18th
International Conference on Software Engineering (1996) 495–505

12. Masri, W., Podgurski, A., Leon, D.: Detecting and debugging insecure information flows,
In: Proceedings of the 15th International Symposium on Software Reliability Engineering
(ISSRE’04), Saint-Malo, Bretagne, France, IEEE Computer Society (2004) 198-209

13. Object Management Group: Security service specification, version 1.7, OMG Document
99-12-02 (1999)

14. Samarati, P., Bertino, E., Ciampichetti, A., Jajodia, S.: Information flow control in ob-
ject-oriented systems, IEEE Transactions on Knowledge and Data Engineering 9 (4),
(1997) 524-538

15. Sandhu, R. S.: Lattice-based access control models, IEEE Computer 26 (11), (1993) 9-19
16. Yasuda, M., Tachikawa, T., Takizawa, M.: Information flow in a purpose-oriented access

control model, In: Proceedings of the 1997 International Conference on Parallel and Dis-
tributed Systems (ICPADS’97), Seoul, Korea, IEEE Computer Society (1997) 244-249

Appendix

In this section, we outline the formal semantics of CP-nets, as they are defined in [8].

Definition 1 A multi-set m, over a non-empty set S is a function S→ℵ represented
as a sum

∑
∈Ss

ssm)`(

By SMS we denote the set of all multi-sets over S. The non-negative in-
tegers {m(s)|s∈S} are the coefficients of the multi-set.

Definition 2 A Colored Petri Net (CP-net) is a tuple CPN=(Σ, P, T, A, N, C, G, E,
I) where:
(i) Σ is a finite set of non-empty types, also called color sets
(ii) P is a finite set of places (drawn as ellipses)
(iii) T is a finite set of transitions (drawn as rectangles)
(iv) A is a finite set of arcs
(v) N is a node function A → P×T ∪ T×P
(vi) C is a color function P → Σ
(vii) G is a guard function that maps each transition t∈T into a

Boolean expression where all variables have types that be-
long to Σ:

 ∀t∈T: Type(G(t))=B ∧ Type(Var(G(t)))⊆Σ

(viii) E is an arc expression function that maps each arc a∈A into
an expression that is evaluated in multi-sets over the type of
the adjacent place p:

 ∀a∈A: Type(E(a))=C(p)MS ∧ Type(Var(E(a)))⊆Σ, with p=N(a)
(ix) I is an initialization function that maps each place p∈P into a

closed expression of type C(p)MS:
 ∀p∈P: Type(I(p))=C(p)MS

When we draw a CP-net we omit initialization expressions, which evaluate to ∅.

The set of arcs of transition t is
A(t) = {a∈A | N(a) ∈ P×{t} ∪ {t}×P}

and the variables of transition t is
Var(t) = {v | v∈Var(G(t)) ∨ ∃a∈A(t): v∈Var(E(a))}

Definition 3 A binding of a transition t is a function b defined on Var(t), such that:
(i) ∀v∈Var(t): b(v)∈Type(v)
(ii) The guard expression G(t) is satisfied in binding b, i.e. the

evaluation of the expression G(t) in binding b - denoted as
G(t) - results in true.

By B(t) we denote the set of all bindings for t.

Definition 4 A token element is a pair (p, c) where p∈P and c∈C(p). A binding
element is a pair (t, b) where t∈T and b∈B(t). The set of all token
elements is denoted by TE and the set of all binding elements is de-
noted by BE.
A marking is a multi-set over TE and a step is a non-empty and finite
multi-set over BE. The initial marking M0 is the marking, which is ob-
tained by evaluating the initialization expressions:

∀(p,c)∈TE: M0(p,c)=(I(p))(c)
The set of all markings and the set of all steps are denoted respectively
by M and Y.

For all t ∈ T and for all pairs of nodes (x1, x2)∈(P×T∪T×P) we define

A(x1, x2) = {a∈A | N(a) = (x1, x2)} and ∑
∈

=

),(

21

21

)(),(
xxAa

aExxE

Definition 5 A step Y is enabled in a marking M if and only if

∀p ∈ P: ∑
∈

>≤<

Ybt

pMbtpE
),(

)(),(

We then say that (t,b) is enabled and we also say that t is enabled. The
elements of Y are concurrently enabled (if |Y|≥1).
When a step Y is enabled in a marking M1 it may occur, changing the
marking M1 to another marking M2, defined by:

∀p ∈ P: ∑∑
∈∈

><+><−=

YbtYbt

bptEbtpEpMpM
),(),(

12),()),()(()(

M2 is directly reachable from M1.

