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Abstract. We introduce a Colored Petri Net model for simulating and verifying 
information flow in distributed object systems. Access control is specified as 
prescribed by the OMG CORBA security specification. An insecure flow arises 
when information is transferred from one object to another in violation of the 
applied security policy. We provide precise definitions, which determine how 
discretionary access control is related to the secure or insecure transfer of in-
formation between objects. The model can be queried regarding the detected in-
formation flow paths and their dependencies. This is a valuable mean for the 
design of multilevel mandatory access control that addresses the problem of en-
forcing object classification constraints to prevent undesirable leakage and in-
ference of sensitive information. 

1   Introduction 

For a secure application it is not enough to control access to objects, without taking 
into account the information flow paths implied by a given, outstanding collection of 
access rights. The problem is faced by the use of multilevel mandatory policies, where 
users have no control and therefore they cannot be bypassed. Access to objects is 
granted on the basis of classifications (taken from a partially ordered set) assigned to 
objects and subjects requesting access to them.  

The rigidity of these policies implies the need for a systematic design approach. In 
the design of mandatory access control we aim to enforce object classification con-
straints to prevent undesirable leakage and inference of sensitive information, while at 
the same time guaranteeing that objects will not be overclassified (to maximize infor-
mation visibility). The set of constraints is decided based on the restrictions of the 
system’s enterprise environment and on a view of the potential information flow paths. 
Our work aims to provide information regarding the system’s structure, to be used in 
the design of appropriate mandatory access control. 

In distributed object systems, objects interact by synchronous, asynchronous or de-
ferred synchronous messages and detection of information flow is complicated by the 
presence of bi-directional information transfer between the senders and the receivers. 



 

Information transfer from the sender to the receiver is accomplished through message 
parameters, while the opposite, through message reply. An information flow does not 
require direct message exchange between objects (indirect information flow paths). 
An object acquires information only when writing to its attributes and this operation 
results in one or more direct or indirect information flows. 

We assume that access control is specified as prescribed by the OMG CORBA se-
curity specification. An insecure flow arises when information is transferred from one 
object to another in violation of the applied security policy. 

We introduce a Colored Petri Net model to detect information flow paths based on 
system’s object method dependencies and the applied access control. The model was 
implemented in CPN Tools ([7]), an advanced ML-based tool for editing, simulating 
and analyzing Colored Petri Nets. 

To detect the insecure flow paths we implement the definitions we provide to de-
termine how the applied discretionary access control is related to the secure or inse-
cure transfer of information between objects. If there is an insecure flow to an object, 
we are often interested in enforcing an appropriate object classification constraint over 
all (and not only the insecure) sources of information flow to that object. In that case, 
we use the CPN Tools state space analysis functions to make queries regarding the 
detected flow paths.   

Thus, the proposed model is a static analysis tool that provides data for the system-
atic design of multilevel mandatory access control. We preferred to use Colored Petri 
Net model checking and not to use Finite State Machine model checking because: (i) 
Colored Petri Nets possess the expressiveness and the formal analysis capacity of a 
Petri Net modeling language, (ii) they provide an explicit representation of both states 
and actions and at the same time retain the modeling flexibility provided in a pro-
gramming language environment and (iii) Colored Petri Nets is a widespread model-
ing formalism with an easily accessible tool support that allows interactive simulation 
in an advanced graphical environment.    

Section 2 provides a detailed description of the problem under consideration. Sec-
tion 3 introduces the basic components of the information flow security model and 
provides the implemented definitions that determine when an information flow path is 
secure and when it is not secure. Section 4 focuses on the use of the CPN Tools state 
space analysis functions to make queries regarding the detected flows. Section 5 sum-
marizes the latest related work reported in the bibliography and the paper concludes 
with a discussion on the potential impact of our work. 
 

2   Basic definitions and problem statement 

Distributed object systems are composed of a set of objects o1, o2, . . ., on, which inter-
act to accomplish common goals. An object’s methods io

lop , 1 ≤ l ≤ #(methods of oi), 
1 ≤ i ≤ n, are invoked by synchronous, asynchronous or deferred synchronous method 
requests. 

A message msg is defined as a pair (method, type), with 



 

 type ∈  {s | synchronous invocation request}  
  ∪ {drq | deferred synchronous invocation request}  
  ∪ {a | asynchronous invocation request}  
  ∪ {drp | deferred synchronous invocation reply}   

and 

method ∈ { }U
i

i
o
l olop i ) of methods(#1 | ≤≤  ∪ {read, write} 

where read, write correspond to primitive synchronous messages (type = s) that are 
sent by an object to itself to read or respectively update its state. 

A message sequence specification MsgSeq( io
lop ) for method io

lop , 1 ≤ l ≤ 
#(methods of oi) is a total order relation ⇒ over the set 

{msgs | 1 ≤ s ≤ #(messages in MsgSeq( io
lop ))} 

of nested method invocations, as well as read and/or write messages generated by 
io

lop . For every two msgs, msgt ∈ MsgSeq( io
lop ), msgs ⇒ msgt if and only if msgs is 

sent/received before msgt. We note that ⇒ defines an invocation order that does not 
necessarily coincide with the order in which method executions are completed.  

To make it clear, if in MsgSeq( io
lop ) holds that ( jo

kop , drq) ⇒ (write, s), this does 
not mean that jo

kop  is executed before write. However, if 

( jo
kop , drq) ⇒ ( jo

kop , drp) ⇒ (write, s) 

i.e. if the reply of a deferred synchronous request to oj is received before write, then 
jo

kop  is executed before write. In that case, if read ∈ MsgSeq( jo
kop ) and the used 

credentials include the read access right for oj, then there is an information flow from 
oj to oi. Moreover, oj may also be the source of additional indirect flows to other ob-
jects, if for example io

lop  has been synchronously invoked by another object method. 
An information flow is insecure, if the derived information is transferred to the tar-

get, in violation of the applied security policy. An information flow takes place even if 
the information written to the target is not the same as the information read, but is 
derived from it by executing computations. 

We are primarily interested in detecting insecure flow paths and enforcing appro-
priate object classification constraints to prevent undesirable leakage of information. 
However, this is not enough. It is also necessary to ensure compliance with potential 
business constraints regarding undesirable inference of sensitive information. In a 
service-outsourcing environment (e.g. web services) these are key concerns that have 
to be satisfied. Thus, we also need to query the model about the detected “secure” 
information flow paths to an object. 

The design problem under consideration is addressed by the implementation of an 
appropriate multilevel mandatory policy. This policy is based on the assignment of 
access classes to objects and subjects and is used in conjunction with the applied 
discretionary access control. Access classes in a set L are related by a partial order, 
called dominance relation and denoted by ≥. The dominance relation governs the 
visibility of information: a subject has read access only to the objects classified at the 
subject’s level or below and is possible to perform write operations only to the objects 
classified above the subject’s level. The expression x ≥ y is read as “x dominates y”. 



 

The partially ordered set (L, ≥) is assumed to be a lattice. We refer to the maximum 
and minimum elements of a lattice as � (top) and ⊥ (bottom). Figure 1 depicts an 
example classification lattice. 

Public

Financial
Protected
Personal

Admin

Confidential

 

Fig. 1. An example security lattice 
 

In general, the security level to be assigned to an object depends on the sensitivity 
of the data in its state. If an object’s state is related to publicly accessible customer 
data this object might be labeled at a level such as Public. If an object’s state is 
related to customer income data, this object might be labeled at a higher level, such as 
Financial. 

However, the design of multilevel mandatory policies can be done in a systematic 
manner, based on a set of classification constraints. These constraints specify the re-
quirements that the security levels assigned to objects must satisfy. They are con-
straints on a mapping λ: {oi | 1 ≤ i ≤ n} → L that assigns to each object a security level 
l ∈ L, where (L, ≥) is a classification lattice. Object classification constraints, like for 
example when λ(οi) ≥ Financial, are used to ensure that objects are assigned secu-
rity levels high enough to protect their state. 

If our model detects an “insecure” information flow from oj to om, the flow will take 
place only when the subjects clearance level dominates the classification of oj and is 
dominated by the classification of om. In that case, the constraint λ(οm) ≥ λ(οj) prevents 
sensitive information leakage in a low-classified object (the opposite prevents the 
occurrence of the detected information flow in all cases). If there is also an additional 
flow from os to om, both of them take place only when the subjects clearance level 
dominates the least upper bound (lub) of the classifications of os and oj. In that case, 
the constraint 

lub{λ(οs), λ(οj)} ≥ Financial 

will ensure that both flows will take place only when the subjects clearance level 
dominates a given ground level. In this way it is possible to prevent potential inference 
of high-classified data from low-classified objects. 

The proposed model is queried regarding the “insecure” and the “secure” informa-
tion flow paths, in order to direct the specification of constraints, wherever there is a 
need to prevent undesirable information leakage or information inference. This al-



 

lows to avoid overclassification and thus to maximize information visibility. It is then 
possible to implement an appropriate mandatory policy after having solved the de-
rived set of constraints. A recently published algorithm is the one described in [3], but 
it is not the only one published. 

3   The Colored Petri Net based model 

Colored Petri Nets (CP-nets) provide us the primitives for the definition of diverse 
data types (such as privilege attributes, method names, object ids and others) and the 
manipulation of their data values, while retaining the expressiveness and the formal 
analysis capacity of a Petri Net modeling language. 

The formal semantics of CP-nets is outlined in Appendix. Model states are repre-
sented by means of places (which are drawn as ellipses). Each place has an associated 
data type determining the kind of data, which the place may contain (by convention 
the type information is written in italics, next to the place). The type declarations im-
plicitly specify the operations that can be performed on the values of the types. A state 
of a CP-net is called a marking and consists of a number of tokens positioned on the 
individual places. Each token carries a data value, which belongs to the type of the 
corresponding place. 

A marking of a CP-net is a function, which maps each place into a multi-set of to-
kens (see the Appendix) of the correct type. We refer to the token values as token 
colors and to their data types as color sets. The types can be arbitrarily complex, e.g., 
a record where one field is a real, another field is a text string and a third field is a list 
of integers. 

CP-net actions are represented by means of transitions, which are drawn as rectan-
gles. An incoming arc indicates that the transition may remove tokens from the corre-
sponding place while an outgoing arc indicates that the transition may add tokens. The 
exact number of tokens and their data values are determined by arc expressions, 
which are positioned next to the arcs. Arc expressions may contain variables as well as 
constants. To talk about the occurrence of a transition, we need to bind incoming 
expressions to values from their corresponding types. Let us assume that we bind the 
incoming variable v of some transition T to the value d. The pair (T, <v =d >) is called 
binding element and this binding element is enabled in a marking M, when there are 
enough tokens in its input places. In a marking M, it is possible to have enabled more 
than one binding elements of T. If the binding element (T, <v =d >) occurs, it removes 
tokens from its input places and adds tokens to its output places. In addition to the arc 
expressions, it is possible to attach a boolean expression with variables to each transi-
tion. This expression is called guard and specifies that we only accept binding ele-
ments for which the expression evaluates to true. 

The behavior of a CP-net is characterized by a set of dynamic properties: 
• Bounds-related properties characterize the model in terms of the number of 

tokens we may have at the places of interest. 
• Home properties provide information about markings or sets of markings to 

which it is always possible to return.  



 

• Liveness properties examine whether a set of binding elements X remains 
active: “For each reachable marking M΄, is it possible to find a finite se-
quence of markings starting in M΄ that contain an element of X?” 

• Fairness properties provide information about how often the different bind-
ing elements occur. 

CP-nets are analyzed, either by 
• simulation, 
• formal analysis methods such as the construction of occurrence graphs, 

which represent all reachable markings,  
• calculation and interpretation of system invariants (called place and transi-

tion invariants),  
• performance of reductions which shrink the net without changing a certain 

selected set of properties and  
• the check of structural properties, which guarantee certain behavioral 

properties. 
In CPN Tools, CP-nets are developed in a modern GUI-based environment that 

provides interactive feedback for the model’s behavior through simulation. Colors, 
variables, function declarations and net inscriptions are written in CPN ML, which is 
an extension of Standard ML and for this reason employs a functional programming 
style. In CPN Tools we employ simple as well as compound color sets such as prod-
uct, record, list and union color sets.  

The toolset provides the necessary functionality for the analysis of simple and timed 
CP-nets specified in a number of hierarchically related pages. Typical models consist 
of 10-100 pages with varying complexity and programming requirements. The com-
panion state space tool allows the generation of the entire or a portion of the model’s 
state space (occurrence graph) and the performance of standard as well as non-
standard analysis queries. 

In our model, the CP-net structure depends on the system’s object method depend-
encies. These dependencies may be derived from the system’s source code with a 
code-slicing tool ([11]). Taking into account that in CPN Tools the net is stored in an 
XML-based format, we believe that models can be automatically generated using an 
appropriate XML text generator. 

3.1   The CORBA Security model  

Distributed object systems typically support a large number of objects. CORBA Secu-
rity ([13]) provides abstractions to reduce the size of access control information and at 
the same time to allow fine-grained access to individual operations rather than to the 
object as a whole. Access policies are defined based on privilege and control attrib-
utes and access decisions are made via the standard access decision interface that is 
modeled by the CP-net we present here. 

Principals are users or processes accountable for the actions associated with some 
user. In a given security policy, each principal possesses certain privilege attributes 
that are used in access control: such attributes may be access identities, roles, groups, 
security clearance and so on. At any time, a principal may choose to use only a subset 



 

of the privilege attributes it is permitted to use, in order to establish its rights to access 
objects. 

Access control is defined at the level of individual object invocations. The access 
decision function bases its result on the current privilege attributes of the principal, the 
operation to be performed and the access control attributes of the target object. 

A set of objects where we apply common security policies is called security policy 
domain. Security domains provide leverage for dealing with the problem of scale in 
policy management. The CORBA Security specification allows objects to be members 
of multiple domains: the policies that apply to an object are those of all its enclosing 
domains. CORBA Security does not prescribe specific policy composition rules. Such 
rules are the subject of the system’s security design and this allows for potentially 
unlimited flexibility in combining complementary access control policies. 

A domain access policy grants a set of subjects the specified set of rights to perform 
operations on all objects in the domain. In Table 1 we provide a sample domain access 
policy. As subject entries we use the privilege attributes possessed by the principals. 
Thus, user identities can be considered to be a special case of privilege attributes. In 
CORBA Security, rights are qualified into sets of “access control types”, known as 
rights families. There is only one predefined rights family that is called corba and 
contains the three rights g (for get or read), s (for set or write) and m (for manage). 

Table 1. Domain access policy (granted rights) 

Privilege Attribute Domain Granted Rights 
access_id: a1 1 corba: gs- 
access_id: a2 2 corba: g-- 
group: g1 1 corba: g-- 
group: g1 2 corba: gs- 
group: g2 1 corba: gs- 

Rights to privilege attributes are granted by an AccessPolicy object. An opera-
tion of a secure object can be invoked only when the principal possesses the set of 
rights prescribed by the RequiredRights object. Table 2 shows an example Re-
quiredRights object that defines the rights required to gain access to each specific 
method of an object. There is also a mechanism to specify whether a user needs all the 
rights - in a method’s required rights entry - to execute that method (AND semantics) 
or whether it is sufficient to match any right within the entry (OR semantics). 

Table 2. Required rights 

Required Rights Rights Combinator Operation Interface (class) 
corba: g-- all M1 
corba: g-- all M3 

c1 

corba: gs- all M4 
corba: -s- all M0 
corba: -s- all M2 

c2 

corba: gs- any M5 c3 

Table 3. Domain membershiphs and object classes 

Object Domain  Objects Class 
o1 , o2, o5, o12 d1  o1 , o8 c1 
o8, o9 d2  o2 , o5, o9 c2 
   o12 c3 



 

Table 3 specifies the security domain memberships and the object classes, for the 
case access control introduced in Tables 1 and 2. 

The AccessDecision object determines the validity of invocation requests 
based on the privilege and control attributes provided by the AccessPolicy and 
RequiredRights objects. There are no explicit rules on how to calculate the ac-
cess decision: CORBA Security does not prescribe how an AccessPolicy object 
combines rights granted by different privilege attribute entries (when a subject has 
more than one privilege attribute to which the AccessPolicy grants rights). Taking 
into account the absence of policy composition rules for domain hierarchies, all these 
make feasible the implementation of different access decision functions and thus allow 
for potentially unlimited flexibility in security policy specification. 
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Fig. 2. The access decision CP-net submodel 

Figure 2 presents the top-layer of the CP-net submodel implementing the following 
access decision function: “A method m can be executed if the requester’s rights match 
the rights specified in the method’s entry in the RequiredRights table”. The 
shown CP-net is used in the following ways: 

• To obtain privilege attributes and access rights (output place results) to 
proceed to the execution of the method specified in the union typed place 
inPlace (if any). 



 

• To derive the access control list (list of privilege attribute and access right 
pairs in output place results) for the object specified in place inPlace 
(if any). 

The domain access policy (bold place dom_access_policy) is specified as a 
list of triads, which respectively represent privilege attribute, domain number and 
right. The required rights table is given as lists of triads (bold place re-
quired_rights), which respectively represent class number, method name and 
rights combinator and each ML list refers to the corresponding right of the ML list 
shown in the rights_types bold place. The data shown in Table 3 determine the 
initial markings of the bold places obj_domains and obj_classes.  

Due to space limitations we omit the description of the low-level CP-nets imple-
menting the hierarchically related substitution transitions valMethod, findClass, 
findDomain and findRights. 

 

3.2   The information flow security model 

The CP-net of Figure 2 corresponds to the protSys substitution transition of Figure 
3 that mimics a method execution: an object sends the messages of method’s sequence 
specification (given in the bold input/output place obj) to itself or to other objects. 
Access to the object’s state is accomplished by dispatching primitive read and write 
messages to itself: each of them is supposed to be executed synchronously. 

In synchronous and deferred synchronous communication (hierarchically related 
substitution transitions doSynchSend and doDSynchSend) a reply is eventually 
returned, together with a list of all object identifiers (color binfo for the place 
AOsL) where read operations were allowed by the used access control. This list is 
termed as Accessed Objects List (AOsL). AOsL list is transmitted forward (requests) 
and backward (replies) as prescribed by methods’ message sequence specifications, in 
order to record the performed read operations in all accessed objects. 

An information flow to an object takes place only when information is written to it 
(substitution transition doWrite). In that case, there is an information flow from 
each one of the objects contained in the transmitted AOsL list. However, not all of 
them violate the applied access control: 

 
Definition 3.1  

An information flow from an object oi (source) to an object oj (target) is not secure 
(may cause undesirable information leakage), if the privilege attributes that grant read 
access to the target are not a subset of the set of attributes, which grant read access to 
the source. 
 
Definition 3.2  

An information flow to an object oj is secure, if the privilege attributes that grant 
read access to it are also contained in all sets of privilege attributes, which grant read 
access to the objects contained in the transmitted AOsL list. 
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Fig. 3. The top layer of the method execution CP-net 
 
 color mtype   = with SYNCH | ASYNCH | DSYNCH | DREP; 
 color crtype   = with READ | WRITE; 
 color rights_type   = list crtype; 
 color INT   = int; 
 color BOOL  = bool; 
 color STRING   = string; 
 color MSG_SNxSTATUS  = product INT * STRING; 
 color msg_rec   = record NUMBER:INT * METHOD:STRING  
         * TYPE:mtype * OBJECT:INT; 
 color right   = product STRING*crtype; 
 color rights   = list right; 
 color binfo   = list INT; 
 color msg_queue   = list msg_rec; 
 color reply  = product INT * mtype * BOOL * STRING * INT; 
 color strLst  = list STRING; 
 color MethodReply   = union RESPONSE:reply+ 
      METHOD:msg_rec+ 
      CRED:rights+ 
      ACL:strLst+ 
      BINFO:binfo+ 
      OBJ_ONLY:INT; 
 color exec  = union REPLY:reply +  
      MSG_QUEUE:msg_queue +  
      CREDENT:rights; 
 
 var q,p, messages  : msg_queue; 
 var m   : msg_rec; 
 var sn,sm,k  : INT; 
 var mt   : mtype; 
 var rep   : reply; 
 var ie,ic   : binfo; 
 var rgh   : rights; 
 
 fun aux2 k l  = if cf(k,l)>0 then nil else [k]; 
 fun unio (x::xl,yl)  = (aux2 x yl)++unio(xl,yl) 

    | unio (_,yl) = yl; 

Fig. 4. Colors, variables and functions used in CP-net incriptions 



 

Figure 4 summarizes the color, variable and function declarations used for the tran-
sition and arc inscriptions of the CP-nets of Figures 3 and 5. 

Figure 5 reveals the details of the doSynchSend substitution transition of Figure 
3. Method execution is blocked (place RmvMessage) up to the reception of the ex-
pected reply - signaled by the token (sn,“REPLIED”) in place NextSend. AOsL 
list is returned (arc inscription 1’BINFO(ic)) together with the method reply. Then, 
AOsL list is updated as appropriate (function inscription unio(ie,ic) to calculate 
the union of the existing list ie and the received list ic). 

We omit the details of the doAsynchSend and doDSynchSend transitions 
shown in Figure 3, but we stress the fact that AOsL list is never changed as a result of 
an asynchronous method execution. 
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Fig. 5. The CP-net for the doSynchSend substitution transition shown in Figure 3 
 
A system model is composed of a number of interacting instances of the CP-net 

shown in Figure 3 and each instance represents a particular method execution. For all 
method executions their instance input places (obj, methodIn) are initialized as 
imposed by the system’s object method dependencies. Insecure information flow paths 
are detected at the doWrite substitution transition and for each object are separately 
recorded at the il_flows output places. 

Figure 6 reports the simulation results given for the access control of Figure 2 and 
the case system model: 

MsgSeq( 20oM ) = {( 11oM , s) ⇒ ( 92oM , s) ⇒ ( 83oM , s) ⇒ (write, s)} 

MsgSeq( 11oM ) = {(read, s)} 

MsgSeq( 92oM ) = {( 54oM , s) ⇒ (write, s)} 

MsgSeq( 83oM ) = {(read, s)} 

MsgSeq( 54oM ) = {(read, s) ⇒ (write, s)} 
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Fig. 6. A case system model and the detected insecure information flow paths 

 
Insecure information flow paths are detected and recorded in il_flow_obj2 and 

il_flow_obj9 places. We observe the existence of flows from o1 and o5 to o9 and 
from o8 to o2. We note that method execution control flow, like for example condi-
tional execution, is not taken into account. We are interested for the detection of all 
potential information flow paths and we want to take them into account, in order to 
ensure compliance with business constraints regarding undesirable leakage or infer-
ence of sensitive information. 



 

The simulated model reports the verification results regarding the detection of inse-
cure flow paths. However, this is not enough if we want to use it as a mean to guide 
the specification of object classification constraints. 

4   State space analysis 

Analysis of the occurred information flow paths is performed after having generated 
all possible states that the system can reach. This can be done, by exploiting the CPN 
Tools state space analysis facilities ([7]). 

Given the full state space, also known as occurrence or reachability graph, we can 
check the standard properties mentioned in section 3, as well as the existence of an 
occurrence sequence (reachability) to a particular marking (state). Figure 7 summa-
rizes the results for the standard checks mentioned in section 3. The full state space is 
generated in 13 secs and consists of 2029 nodes (states) and 3282 arcs. There are no 
live transition instances and infinite occurrence sequences and the single dead marking 
that reflects the completed execution of method “M0” corresponds to the node number 
2029.  
 

Statistics 
---------------------------------------------- 
  Occurrence Graph   
    Nodes:  2029 
    Arcs:   3282 
    Secs:   13 
    Status: Full 
 
 Boundedness Properties 
---------------------------------------------- 
  Best Integers Bounds    Upper      Lower 
  NewPage'il_flow_obj1 1  1          1 
  NewPage'il_flow_obj2 1  1          1 
  NewPage'il_flow_obj5 1  1          1 
  NewPage'il_flow_obj8 1  1          1 
  NewPage'il_flow_obj9 1  1          1 
  . . . . . . . . . . . . . . . . . . . . . 
  . . . . . . . . . . . . . . . . . . . . . 
 
 Home Properties 
---------------------------------------------- 
  Home Markings:  [2029] 
 
 Liveness Properties 
---------------------------------------------- 
  Dead Markings:  [2029] 
  Live Transitions Instances: None 
 
 Fairness Properties 
---------------------------------------------- 

   No infinite occurrence sequences. 

Fig. 7. The state space analysis standard report for the CP-net of Figure 6 
 
Model querying regarding all detected information flow paths is performed through 

evaluation of simple ML functions. The set of predefined ML functions used to ex-
plore the generated state space is summarized in Table 4. 

Table 5 shows (in the result column) the information flow data derived for the case 
system model. 



 

Table 4. State space querying functions 

function description use 
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned on place <PlaceName> on the 

Nth instance of page <PageName> in the marking M 
ListDeadMarkings () Returns a list with all those nodes that have no enabled binding 

elements. 
hd l Returns the head of l. 
SearchNodes ( 
        <search area>, 
        <predicate function>,
        <search limit>, 
        <evaluation function>, 
        <start value>, 
        <combination function>) 

Traverses the nodes of the part of the occurrence graph specified in 
<search area>. At each node the calculation specified by <evaluation 
function> is performed and the results of these calculations are 
combined as specified by <combination function> to form the final 
result. The <predicate function> maps each node into a boolean value 
and selects only those nodes, which evaluate to true. We use the 
value EntireGraph for <search area> to denote the set of all nodes in 
the occurrence graph and the value 1 for <start value> to continue the 
search until the first node, for which the predicate function evaluates 
to true. 

Table 5. Information flow security queries 

1. Insecure information flow sources: 
object 

id 
function result 

o2 Mark.NewPage’il_flow_obj2 1 (hd (ListDeadMarkings( ))) val it = [[8]]: binfo ms 
o1 Mark.NewPage’il_flow_obj1 1 (hd (ListDeadMarkings( ))) val it = [[]]: binfo ms 
o8 Mark.NewPage’il_flow_obj8 1 (hd (ListDeadMarkings( ))) val it = [[]]: binfo ms 
o9 Mark.NewPage’il_flow_obj9 1 (hd (ListDeadMarkings( ))) val it = [[5,1]]: binfo ms 
o5 Mark.NewPage’il_flow_obj5 1 (hd (ListDeadMarkings( ))) val it = [[]]: binfo ms 

2. All information flow paths to o2 (including the “secure” ones): 
function result 

Mark.doWrite’recBINFO 1 (hd ( SearchNodes ( EntireGraph, 
 fn n =>  
  (Mark.doWrite’recBINFO 1 n <> empty andalso  
  (Mark.doWrite’rstrrights 1 n <> empty andalso  
   Mark.doWrite’torrights 1 n <> empty)), 
 1,  
 fn n => n, 
 [], 
 op::))) 

val it = [[1,5,8]]: binfo ms 

3. Privilege attributes for read access to o2: 
Mark.doWrite’torrights 1 (hd ( SearchNodes ( EntireGraph, 

 fn n =>  
  (Mark.doWrite’recBINFO 1 n <> empty andalso  
  (Mark.doWrite’rstrrights 1 n  <> empty andalso  
  Mark.doWrite’torrights 1 n <> empty)), 
 1,  
 fn n => n, 
 [], 
 op::))) 

val it = [[“A1”, “G1”, “G2”]]: 
strLst ms 

4. Privilege attributes for read access to insecure source o8: 
Mark.doWrite’rstrrights 1 (hd ( SearchNodes ( EntireGraph, 

 fn n =>  
  (Mark.doWrite’recBINFO 1 n  <> empty andalso  
  (Mark.doWrite’rstrrights 1 n <> empty andalso  
  Mark.doWrite’torrights 1 n <> empty)), 
 3,  
 fn n => n, 
 [], 
 op::))) 

val it = [[“A2”, “G1”]]: strLst 
ms 

 



 

The results of query 1 verify the simulation results of Figure 6 regarding the inse-
cure flow paths detected at the found dead marking. The query is based on inspection 
of the marking of il_flow places on the first instance of page NewPage, for the 
head of the list of dead markings, which in fact contains the single dead marking with 
node number 2029. 

In query 2 we use the function SearchNodes to explore the entire state space for 
a marking that yields all flows (including the “secure” ones) to o2. Queries 3 and 4 
reveal the details of the insecure flow (definition 3.1) sourced at o8. 

Function SearchNodes is used as a tool of potentially unlimited flexibility in 
querying the model regarding the “insecure” and the “secure” information flow paths, 
in order to direct the specification of object classification constraints. Alternatively, 
CPN Tools includes a library for defining queries in a CTL-like temporal logic. 

State spaces grow exponentially, with respect to the number of independent proc-
esses. In the proposed model, this problem becomes evident, when using asynchro-
nous and/or deferred synchronous method calls. From the alternative published analy-
ses our model fits to the modular state space analysis described in [2]. The behavior of 
the entire system can be captured by the state spaces of the modules corresponding to 
individual method executions (Figure 6), combined with an appropriate synchroniza-
tion graph. Unfortunately, CPN Tools does not currently support the generation of 
separate state space modules and the required synchronization graph. Thus, the appli-
cation of the forenamed analysis approach remains an open research prospect. 

5   Related work 

Information flow security is an active research problem that was first approached in 
1973 ([10]) and that is still attracting the interest of researchers in a number of re-
cently published works ([12], [1], [6], [4], [5]). 

Recent research works in the context of distributed object systems ([6], [16] and 
[14]) 

• are based on different and often not realistic assumptions on when an in-
formation flow occurs,  

• do not always take into account that in real systems, methods are invoked in 
a nested manner, 

• are bound to specific role-based or purpose-oriented access control models 
and none employs the CORBA Security reference model or 

• aim in the dynamic control of information flow by the use of an appropriate 
run-time support that in most systems is not available. 

Our work (i) takes into account the bi-directional nature in the direct or indirect in-
formation transfer between the senders and the receivers, (ii) allows for modeling 
nested object invocations, (iii) employs the CORBA Security reference model and for 
this reason is not bound to a specific access control model and (iv) aims in the static 
verification of information flow security and for this reason does not assume proprie-
tary run-time support. Moreover, it is based on a widespread modeling formalism with 
an easily accessible advanced tool support. 



 

Other interesting sources of related work are the introduction into lattice-based ac-
cess control that was published in [15] and the mandatory access control that is speci-
fied in [9], by the use of the CORBA Security reference model. 

6   Conclusion 

In modern networked business information systems and in service-based business 
activities, where different customers are concurrently using the provided services, 
compliance with business constraints regarding undesirable inference of sensitive 
information is a central design issue. 

The problem under consideration is addressed by the implementation of an appro-
priate multilevel mandatory policy. However, the rigidity of these policies implies the 
need for a systematic design approach. We introduced a Colored Petri Net model that 
simulates and detects “insecure” information flow paths according to the given defini-
tions determining when a flow path is not secure The model can be queried regarding 
the existing (“insecure” and “secure”) flows, in order to direct the specification of 
object classification constraints, wherever there is a need of them. This allows to 
avoid overclassification and thus to maximize information visibility. 
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Appendix 

In this section, we outline the formal semantics of CP-nets, as they are defined in [8]. 
 

Definition 1  A multi-set m, over a non-empty set S is a function S→ℵ represented 
as a sum 

∑
∈Ss

ssm )`(  

By SMS we denote the set of all multi-sets over S. The non-negative in-
tegers {m(s)|s∈S} are the coefficients of the multi-set. 

 

Definition 2  A Colored Petri Net (CP-net) is a tuple CPN=(Σ, P, T, A, N, C, G, E, 
I) where: 
(i) Σ is a finite set of non-empty types, also called color sets 
(ii) P is a finite set of places (drawn as ellipses) 
(iii) T is a finite set of transitions (drawn as rectangles) 
(iv) A is a finite set of arcs 
(v) N is a node function A → P×T ∪ T×P 
(vi) C is a color function P → Σ 
(vii) G is a guard function that maps each transition t∈T into a 

Boolean expression where all variables have types that be-
long to Σ: 

  ∀t∈T: Type(G(t))=B ∧ Type(Var(G(t)))⊆Σ 



 

(viii) E is an arc expression function that maps each arc a∈A into 
an expression that is evaluated in multi-sets over the type of 
the adjacent place p: 

         ∀a∈A: Type(E(a))=C(p)MS ∧ Type(Var(E(a)))⊆Σ, with p=N(a) 
(ix) I is an initialization function that maps each place p∈P into a 

closed expression of type C(p)MS: 
  ∀p∈P: Type(I(p))=C(p)MS 

When we draw a CP-net we omit initialization expressions, which evaluate to ∅. 
 

The set of arcs of transition t is 
A(t) = {a∈A | N(a) ∈ P×{t} ∪ {t}×P} 

and the variables of transition t is 
Var(t) = {v | v∈Var(G(t)) ∨ ∃a∈A(t): v∈Var(E(a))} 

 

Definition 3  A binding of a transition t is a function b defined on Var(t), such that: 
(i) ∀v∈Var(t): b(v)∈Type(v) 
(ii) The guard expression G(t) is satisfied in binding b, i.e. the 

evaluation of the expression G(t) in binding b - denoted as 
G(t)<b> - results in true. 

By B(t) we denote the set of all bindings for t. 
 

Definition 4  A token element is a pair (p, c) where p∈P and c∈C(p). A binding 
element is a pair (t, b) where t∈T and b∈B(t). The set of all token 
elements is denoted by TE and the set of all binding elements is de-
noted by BE. 
A marking is a multi-set over TE and a step is a non-empty and finite 
multi-set over BE. The initial marking M0 is the marking, which is ob-
tained by evaluating the initialization expressions: 

∀(p,c)∈TE: M0(p,c)=(I(p))(c) 
The set of all markings and the set of all steps are denoted respectively 
by M and Y. 

  

For all t ∈ T and for all pairs of nodes (x1, x2)∈(P×T∪T×P) we define 

A(x1, x2) = {a∈A | N(a) = (x1, x2)} and ∑
∈

=

),(

21

21

)(),(
xxAa

aExxE  

 

Definition 5  A step Y is enabled in a marking M if and only if 

∀p ∈ P: ∑
∈

>≤<

Ybt

pMbtpE
),(

)(),(  

We then say that (t,b) is enabled and we also say that t is enabled. The 
elements of Y are concurrently enabled (if |Y|≥1). 
When a step Y is enabled in a marking M1 it may occur, changing the 
marking M1 to another marking M2, defined by: 

∀p ∈ P: ∑∑
∈∈

><+><−=

YbtYbt

bptEbtpEpMpM
),(),(

12 ),()),()(()(  

M2 is directly reachable from M1. 


