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Abstract—The DNS Bandwidth Amplification Attack (BAA)
is a distributed denial-of-service attack in which a network of
computers flood a DNS server with responses to requests that
have never been made. Amplification enters into the attack by
virtue of the fact that a small 60-byte request can be answered by
a substantially larger response of 4,000 bytes or more in size. We
use the PRISM probabilistic model checker to introduce a Con-
tinuous Time Markov Chain model of the DNS BAA and three
recently proposed countermeasures, and to perform an extensive
cost-benefit analysis of the countermeasures. Our analysis, which
is applicable to both DNS and DNSSec (a security extension of
DNS), is based on objective metrics that weigh the benefits for
a server in terms of the percentage increase in the processing
of legitimate packets against the cost incurred by incorrectly
dropping legitimate traffic. The results we obtain, gleaned from
more than 450 PRISM runs, demonstrate significant differences
between the countermeasures as reflected by their respective net
benefits. Our results also reveal that DNSSec is more vulnerable
than DNS to a BAA attack, and, relatedly, DNSSec derives
significantly less benefit from the countermeasures.
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I. INTRODUCTION

DNS (Domain Name System) is a hierarchical naming
system used to identify network hosts, so that a url (Uniform
Resource Locator) can be used to address a machine in the
internet. It is implemented using DNS name servers, which
resolve resources (domains) into numeric IP addresses. DNS
forms the logical backbone of the world wide web, and the
service it provides is used on the order of a trillion times
a day [11]. Any attack targeting DNS would thus seriously
impact the security and basic operational status of the web
and other services such as e-mail.

A Bandwidth Amplification Attack (BAA) is a distributed
denial of service (DDoS) attack where a network of computers
(zombies) is used to flood a DNS server—the victim of the
attack—with excessively large DNS responses to requests that
have never been made [14]. A small 60-byte request can be
answered by a substantially larger response of 4,000 bytes or
more in size and this may be used to further imperil the victim.

A number of incidents involving BAA have been reported
since 2002. An understanding of BAA countermeasures [8],

[19], [30] and an assessment of their relative effectiveness are
necessary for configuring today’s DNS servers. Unfortunately,
such an assessment has to date largely been lacking.

In this paper, we use the probabilistic model checker
PRISM [13] to formally model and analyze the DNS BAA,
along with three recently proposed countermeasures: packet
filtering, random packet drops, and aggressive retries of le-
gitimate packets. Moreover, we perform this analysis in the
context of both DNS and DNSSec [5], a recently proposed
security extension of DNS that uses digital signatures to
authenticate the source of DNS data. DNSSec eliminates the
possibility of DNS cache-poisoning attacks [11], [3], but has
been criticized for potentially increasing the probability of
DNS DDoS attacks [9].

Our approach is based on a Continuous Time Markov Chain
(CTMC) model of the DNS BAA. CTMCs are widely used
to model queuing systems with jobs having exponential size
distribution and a Poisson arrival rate. Our model represents
the bandwidth contention experienced by a victim server,
while serving legitimate requests in the presence of the bogus
traffic due to a BAA. The attack succeeds when a model
state is reached where the available bandwidth (for processing
legitimate DNS traffic) has been exhausted. As such, the attack
probability can be computed by a probabilistic reachability
property expressed in Continuous Stochastic Logic (CSL). For
both DNS and DNSSec, model parameter values are estab-
lished using data from recent DDoS incidents or measurements
of amplification effects reported in the literature.

The CTMC model we develop possesses the fundamental
Markov property, which is presumed in [10] and elsewhere:
bandwidth sharing, under the common assumption of Poisson
session arrivals, is insensitive to the flow size and the packet
arrival process. Consequently, we can reasonably consider that
the conditional probability distribution of future states depends
only upon the present state.

Collectively, our results, gleaned from more than 450 runs
of the PRISM model checker, formally validate the existence
of the DNS BAA, and demonstrate a nonlinearly increasing
attack probability with an increasing number of zombies.



Our results also clearly show the effects of the proposed
BAA countermeasures in terms of a reduction in the attack
probability. They also reveal that DNSSec is more vulnerable
than DNS to a BAA attack, and, relatedly, DNSSec derives
significantly less benefit from the countermeasures.

To better understand their relative strengths and weaknesses,
we develop a number of CTMC reward-based properties in
support of an extensive cost-benefit analysis of the BAA coun-
termeasures. The analysis is conducted from the perspective
of bandwidth usage by a victim server. Benefits include an
increase in the percentage of legitimate packets processed by
the server, and an increase in the period of time during which
bandwidth is available. Cost measures include the percentage
of legitimate traffic dropped as false positives, and percentage
deviation from a target attack probability. We also consider
the computational cost of a countermeasure.

The CTMC analysis we choose to perform is transient
because the impact of a BAA in the steady-state is independent
of the available bandwidth. Also, it is imperative to mitigate
BAA effects within as short a period of time as possible [2].
Countermeasure parameters are set to the minimal values that
result in a zero attack probability, while avoiding unnecessary
countermeasure costs [6]. This allows for a fair comparison,
demonstrating significant differences between the countermea-
sures, as reflected by their respective net benefits.

To the best of our knowledge, our CTMC model is the
first probabilistic model for the DNS BAA and associated
countermeasures. Moreover, our model-checking results and
associated cost-benefit analysis may be viewed as a frame-
work for comparing security threat levels and countermeasure
effectiveness. Such a comparison may be useful in making an
informed choice of countermeasure or in developing a defense
policy that selects the optimal countermeasure for a BAA or
related attacks of varying strength.

The rest of this paper develops along the following lines.
Section II outlines the principles of CTMC model checking.
Section III describes the DNS BAA and associated counter-
measures. Section IV introduces our PRISM CTMC model,
and Section V presents our model-checking results and the
results of our cost-benefit analysis. Section VI considers
related work, while Section VII offers our concluding remarks.

II. PROBABILISTIC MODEL CHECKING USING CTMCS

Probabilistic model checking is an automated formal verifi-
cation technique for modeling and analyzing systems or pro-
cesses with probabilistic behavior, e.g. the CTMC of a queuing
system. Model checking tools like PRISM [13] involve a
combination of graph-theoretic algorithms for reachability
analysis and iterative numerical solvers. Thus, it is possible
to evaluate properties of the form P=?(φ) that compute the
probability of some path that satisfies φ. Path formula φ is
interpreted over the paths of the probabilistic model, which
in our case is a CTMC. We define properties of the form F
prop, where F is the “eventually” linear temporal operator
and prop is a state assertion that evaluates to true or false
for a single model state.

For our cost-benefit analysis, we take advantage of the
CTMC rewards. CTMC allows us to attach rewards to states
and transitions such that they get accumulated over time [21].
If at time t the CTMC has reached the n th state of some path,
the reward is the sum of rewards accumulated in the preceding
states (or transitions). Reward can be also interpreted as
cost. In PRISM, the R operator is used for the analysis
of reward-based properties. Four different types of reward-
based properties are supported, but for our analysis we use
only cumulative reward properties of the form (C ≤ t),
since they are appropriate for evaluating the effects of BAA
countermeasures, in the small time period during which the
attack has to be mitigated.

A model in PRISM is constructed as the parallel composi-
tion of its modules. A module is described by a collection of
commands, each of which comprises a guard and one or more
update actions:

[] g ⇒ λ1 : u1 + ... + λn : un ;

The guard g is a predicate over model variables, whereas each
update ui describes by assigning new values to the variables,
a transition that the module can make. For CTMCs, λi is
the transition’s rate, the parameter of a negative exponential
distribution that governs the waiting time of the transition. If
the guard is true, the updates are executed according to their
rates. Commands can be labeled and this allows modules to in-
teract with each other by synchronizing on identically labeled
commands. In this case, the rate of the resulting transition is
the product of the rates of the individual transitions.

III. THE DNS BAA AND PROPOSED COUNTERMEASURES

The DNS includes two types of servers, name servers and
resolvers. DNS resolvers dispatch queries to name servers on
behalf of clients that generate name-resolution requests. Once
the resolver receives an answer it is forwarded to the client
that originally generated the name-resolution request.

A. The DNS BAA

Let us assume that an attacker decides to attack the DNS
resolver for the domain cs.stonybrook.edu, henceforth
referred as the victim server.

1) The attacker prepares for the BAA by
• Creating a query that would generate a substantially

larger response called as amplification record.
• Acquiring control of a large number of compro-

mised hosts (zombies) to be used as attack sources.
• Acquiring a list of resolvers.

2) The attacker drives the zombies to send requests for
the amplification record to the previously found DNS
resolvers. In these requests the zombies replace the
source-address field with the victim’s IP address.

3) The resolvers direct a very large numbers of excessively
large DNS responses to the victim server, thereby ex-
hausting victim’s available bandwidth.
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B. Why DNS and DNSSec are vulnerable to BAA?

DNS requests and responses are sent as UDP packets, and
are thus vulnerable to source-address spoofing. Also, a request
can generate a substantially larger response, such that the ratio
of the response size divided by the size of the request, termed
as amplification factor (AF) can be as high as 73 [19], [29].

DNSSec prevents cache-poisoning attacks, but it does not
provide protection against IP spoofing [25]. Some additional
records are used in order to authenticate responses and this
increases bandwidth consumption. For each DNSSec request
a chain of responses [9] may be returned. For a full imple-
mentation of DNSSec and a chain of eight responses for each
request, it is possible to have an AF of 271.2.

C. Countermeasures against DNS BAA

In the DNS, typical BAAs have been found to scale up to
2.8 Gbps. Some massive-scale attacks have also been reported
that exploited around 140000 name servers resulting in a
volume of 10 Gbps [19]. Any attempt to add more resources
(server, bandwidth etc.), in order to handle the increased BAA
load [15] has therefore a limited scope for improvement and
this necessitates the study of countermeasures that mitigate
the attack actively. We study three different countermeasures
that either aim to reduce the attack traffic or alternatively to
generate redundant legitimate traffic [30].
• Filtering (FTR) Filtering tries to identify the attack

sources and block the traffic originating from them. A
relatively high packet arrival rate or the detection of
unusually large packets can indicate the presence of a
BAA [15]. From the algorithms described in [27], [24],
[18], [16], [32], we conclude that filtering offers relatively
high accuracy with a false-positive rate as low as 10%.
The computational cost of FTR depends on the filtering
mechanism and the attack strength.

• Random Drops (RND): RND regulates incoming traffic
by randomly dropping UDP packets [22], [17]. During a
BAA, the traffic arriving at the victim mainly comprises
bogus packets, and a randomly dropped packet is there-
fore likely to be bogus. RND thus succeeds to mitigate
the attack with negligible computational costs.

• Aggressive Retries (AGR): Legitimate clients are en-
couraged to generate traffic at a higher rate. In AGR, in-
creasing the number of retries by one doubles the amount
of legitimate traffic generated during each retry [30],
[20]. The downside is increased server workload and
bandwidth consumption.

IV. THE PRISM MODEL FOR THE BAA

Our PRISM model for the BAA comes in four versions, one
without any countermeasure in place (henceforth referred as
the no-fix case), and one for each countermeasure.

A. The PRISM model for the DNS BAA

Our model defines two primary modules.
• Client Server (CS): CS represents the victim server.

A finite capacity queue emulates the bandwidth of the

CS. This bandwidth is shared by legitimate DNS queries
and responses, and the BAA traffic. When the queue
becomes full, the available bandwidth is exhausted and
all subsequently arriving packets are dropped.

• Net: Net provides an abstracted representation of all DNS
resolvers and clients that generate legitimate and attack
traffic for the CS.

Two additional modules are used for modeling FTR and
RND. Module Filter emulates a packet-filtering mechanism
and module RandomDropper provides a random packet-
dropping mechanism.

The model parameters are as follows:
• bogus_rate: the rate at which each zombie generates

spoofed bogus UDP requests. Since, the attack strength
mainly depends on the number of zombies, we use a
moderate bogus_rate of 10 requests per sec.

• zombies: the number of zombies used in the attack.
• UDP_rate: the rate at which legitimate UDP request and

reply packets arrive at the CS. Since bandwidth sharing
mainly depends on the attack strength, we consider a fixed
arrival rate of 100 packets per second.

• BandwidthQueueUpperLimit (BQUL): the capac-
ity of the bandwidth queue in terms of number of packets.
The maximum dedicated bandwidth required for a typical
DNS server can be approximated to 1 Mbps [33]. The
average packet size for DNS is 286 bytes (with request
size of 60 bytes and response size of 512 bytes [29]).
The BQUL for DNS is 1Mb

286 = 458 packets.
• effective_amplification_factor (EAF):

the ratio of bogus response packet size to the average
packet size of the incoming legitimate traffic. For any
DNS server the legitimate traffic contains not only
requests but also responses. To account for the responses
included in the legitimate traffic, we use EAF instead
of AF. E.g. the maximum packet size of a bogus DNS
response can be 60 · 73 = 4380 bytes, where 73 is the
AF for DNS [29]. The EAF for DNS is then computed
as 4380

286 = 15.31.
• serve_rate: the rate at which the CS serves the

queued UDP packets. Using data from case study [28],
we set serve_rate to 12666, but as discussed later
this parameter does not affect the ranking of the three
countermeasures in terms of their performance.

The countermeasure parameters are:
• detection_percentage (dp): the percentage of

attack traffic identified and filtered by FTR
• false_positive_percentage (fpp): the per-

centage of legitimate traffic incorrectly identified as bogus
by FTR

• random_drop_percentage (rdp): the percentage
of incoming UDP packets randomly dropped by RND

• retries: the number of times the requests are resent
during AGR, to increase the share of legitimate traffic.

Each module defines certain actions, which synchronize
with actions in the other modules that share the same label.
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Fig. 1. Effect of BAA on DNS and DNSSec: No-fix

Each action has an associated rate. Actions also have associ-
ated preconditions that need to be satisfied for their execution
to take place. For synchronized actions, the effective rate is
the product of rates of the individual actions. We now describe
some of the important actions for each module.
• Receive UDP Packet: A legitimate UDP packet is re-

ceived by the CS and a position in CS’s bandwidth
queue is occupied. This action is defined in modules
CS and Net and occurs at the rate: (i) UDP_rate
for the no-fix case, (ii) UDP_rate · (1 − fpp/100)
for FTR, (iii) UDP_rate · (1 − rdp/100) for RND,
(iii) (UDP_rate/2) · (1 + 2retries) for AGR.

• UDP Packet Lost: A UDP packet is dropped, because
CS’s bandwidth is full. This action is defined in modules
CS and Net and it occurs at the same rates that are defined
for the action Receive UDP Packet.

• Receive Bogus Packet: Action defined in modules CS
and Net representing receipt of bogus packets by the CS
and corresponding reduction of the available bandwidth.
For the no-fix case this action occurs at an overall rate of
bogus_rate ·zombies ·EAF. For the countermeasure
models, rates are adjusted (except AGR) as in Receive
UDP Packet by using parameters dp and rdp.

• Bogus Packet Lost: Action defined in modules CS and
Net. It is the analogue of action UDP Packet Lost for
the bogus UDP packets.

• Serve UDP Packet: CS action representing service of
packets in bandwidth queue at rate serve_rate.

• Client Request: Action defined in modules CS and
Net for dispatching a client request to the CS with
rate UDP_rate. This action can be executed if the
bandwidth is available. After having been executed once,
this action is permanently disabled. It is used as a handle
for computing the attack probability.

B. The PRISM model for the DNSSec BAA

The PRISM model for the DNSSec BAA differs from the
DNS model only in the parameter values assigned to BQUL
and EAF. BQUL affects the size of the model’s state space,
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Fig. 2. Countermeasure Effect on Attack Probability for DNS

and as long it is not too large, model execution will complete
in reasonable time.

A typical 70 bytes request in DNSSec can generate a re-
sponse of 2257 bytes [9] and a reasonable value for the average
size of legal packets is therefore 70+2257

2 = 1163.5 bytes. For
a server with equal bandwidth to the server considered in the
DNS case, we derive the value for the parameter BQUL in
DNSSec as 1Mb

1163.5 = 112 packets. If we assume a BAA with
bogus DNSSec response chains of length 8 and size 18984
bytes [9], i.e. a not particularly strong BAA, we get an EAF
= 18984

1163.5 = 16.32, comparable to the one used for the DNS.

V. EXPERIMENTAL RESULTS

A. Impact of BAA on DNS and DNSSec

We compute the attack probability using the CSL formula
P=? [F DenialOfService] with DenialOfService
becoming true, when the Client Request action is not com-
pleted by the CS under attack. Fig. 1 shows the impact of BAA
on DNS and DNSSec in the absence of any countermeasure.
The attack probability for DNSSec is consistently higher than
that for DNS and this result formally validates the claim of [9]
that DNSSec is more vulnerable to the BAA. The same figure
also shows the results of curve fitting to the computed attack
probabilities. We observe that, with an increasing number of
zombies x, the attack probability F (x) increases nonlinearly
according to the function A

1+(B/x) +C, where A,B and C are
constants estimated by curve fitting.

Fig. 2 shows the countermeasure effects on the BAA prob-
ability for DNS. All countermeasures, if configured with the
shown parameters reduce the BAA probability, with a more
important improvement for FTR, followed by AGR and RND.

B. Cost-benefit analysis for BAA countermeasures

1) Need for cost-benefit analysis: Fig. 2 indicates signifi-
cant reductions in the BAA probability for the particular coun-
termeasure parameters. However, these results alone cannot
be the basis for a formal comparison between the counter-
measures, since they follow different approaches to mitigate
BAAs and depend on different parameters. Comparison of
countermeasures cannot be based on the BAA probability for
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a client, because by selecting proper countermeasure settings,
this probability can be made arbitrarily small or even zero.
All benefits and costs associated with a countermeasure are
experienced by the victim server and this is the reason for
evaluating the countermeasures from the server’s perspective.

To establish grounds for comparison, we run our model
with the minimal values of countermeasure parameters needed
to obtain a zero BAA probability, thus avoiding unnecessary
countermeasure costs. This is a typical application of our
method in [6] for repairing probabilistic models. Our analysis
is limited to costs and benefits that refer to bandwidth usage
and does not take into account other important aspects like
computational or economic cost; these are considered in
Section V-C. To ensure the validity of the results, we chose the
cost-benefit metrics such that they do not compute the same
quantity twice while at the same time they address the full
set of effects of a countermeasure on bandwidth usage. For
the cost-benefit analysis to be meaningful, the metrics should
allow for a uniform interpretation of costs and benefits, thus
making it possible to aggregate the results into a single net-
benefit value.

2) Defining benefit and cost metrics: All metrics are evalu-
ated as percentage values (no units), so as to compute the net
benefit of a countermeasure [31].
• Percentage B1 of legitimate packets in total packets

processed: An ideal countermeasure attempts to increase
B1 and it is therefore considered a benefit metric.

• Percentage time B2 spent in states where bandwidth is
available: A server is benefited if bandwidth availability
is conserved for longer time periods.

• Percentage C1 of legitimate packets dropped: False
positive-based costs are observed for FTR and RND, but
not for AGR.

• Percentage deviation C2 from desired attack proba-
bility: Every FTR algorithm [27], [24], [18], [16], [32]
is characterized by specific values for the dp and fpp
and it is not possible to achieve a zero attack probability
for high-volume BAAs. Such a countermeasure can still
be a cost-efficient solution if the attack probability is
within an acceptable range. We capture this situation in
our analysis by introducing another cost which is defined
as the deviation of the observed attack probability from
the desired value.

Net Benefit: For a countermeasure, net benefit = (B1 +
B2−C1−C2) [31]. The countermeasure offering the highest
net benefit is the most cost-effective.

3) Computing benefits and costs: A BAA that is sustained
for a relatively long duration is easy to detect and thus,
attackers prefer to launch attacks in bursts [2]. It is therefore
imperative to mitigate the effects of a BAA within a short
period of time. This is the main reason for using cumulative
reward properties that quantify accumulated rewards in the
short-term up to a given time-bound, as opposed to the steady-
state alternative [21]. From our experiments we also realized
that, the impact of the BAA in the steady-state becomes inde-
pendent of the available bandwidth, and the relative differences

zombies
RND AGR
rdp retries

DNS DNSSec DNS DNSSec

100 24 3

500 82 86 4 7

900 90.5 92.1 5 8

4000 98 98.26 8 10

8000 99 99.17 9 11

TABLE I
COUNTERMEASURE PARAMETERS FOR RND AND AGR TO ACHIEVE ZERO

ATTACK PROBABILITY

in the countermeasure effects are flattened. We define three
reward properties P1, P2 and P3 of the form R{"<reward
definition>"}=? [C<=t], that evaluate the accumu-
lated quantities for rewards R1, R2, R3 as follows.
R1 is a transition reward that assigns a unit yield to actions

Receive UDP Packet and Client Request. So, property P1

counts the total number of legitimate packets received, say
PK1. R2 is another transition reward with unit yield attached
to the action Receive Bogus Packet. The property P2 counts
the total number of bogus packets received, say PK2. Then,
B1 = PK1

PK1+PK2
· 100.

Reward R3 is a state reward that assigns a unit yield per
unit of time spent in the states where the victim’s bandwidth is
not full. Therefore, property P3 yields the total time T1 spent
in states where bandwidth is available. Then, B2 = T1

t · 100,
where t is the time duration for which the countermeasure
effects are evaluated which is same as the time-bound used
for evaluating P3.

Due to false positives, FTR drops fpp% of the incoming
legitimate traffic. So, the cost C1 for FTR is fpp. The
percentage of incoming traffic dropped by RND is given
by rdp. Since incoming traffic includes bogus as well as
legitimate traffic, RND drops rdp% of incoming legitimate
traffic, thereby producing false positives. Thus, the cost C1

for RND is equal to rdp. For AGR, C1 is zero.
The cost C2 is zero for RND and AGR, for which param-

eters rdp and retries can be in theory adjusted so that
any desired attack probability can be achieved. For FTR, we
compute C2 by recording the percentage deviation from the
desired attack probability, if any.

4) Determining countermeasure parameters: Studies of dif-
ferent filtering algorithms show that on average FTR has a
dp of 90% and fpp of 10%. While these values depend
on the accuracy of the algorithm, they remain unchanged for
different rates of incoming traffic. Since FTR has fixed dp
and fpp, we cannot always achieve zero attack probability
for it. The parameters of AGR and RND, however, can in
theory be adjusted so that the attack probability becomes zero.
In practice, upper bounds should be defined for rdp and
retries.

Table I shows the countermeasure parameters required to
achieve zero attack probability for RND and AGR with the
number of zombies varied from 10 to 10000 so that we obtain
28 distinct values. For brevity, only 5 representative values for
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zombies
FTR RND AGR

DNS DNSSec DNS DNSSec DNS DNSSec
B1 B2 C1 C2 B1 B2 C1 C2 B1 B2 C1 B1 B2 C1 B1 B2 B1 B2

100 5.8 100 10 0 0.7 100 24 2.8 81.8

500 1.3 100 10 0 1.2 100 10 0 0.2 100 82 0.2 100 86 1.2 22.3 7.4 15.6

900 0.7 100 10 0 0.7 92.4 10 2.4 0.1 100 90.5 0.1 100 92.1 1.2 12.4 8.1 8.6

4000 0.2 28.1 10 42.9 0.2 21.1 10 82.6 0 100 98 0 100 98.3 2.1 2.8 7.3 2.0

8000 0.1 14.1 10 68.7 0.1 10.5 10 91.8 0 100 99 0 100 99.2 2.1 1.4 7.3 1

TABLE II
COST AND BENEFIT VALUES FOR FTR, RND AND AGR
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Fig. 3. Net benefit for DNS with zombies varied from 200 to 1000

-80

-60

-40

-20

 0

 20

 40

 2000  4000  6000  8000  10000

N
e

t 
B

e
n

e
fi
t

zombies

FTR

RND

AGR
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zombies are shown in Table I. For both DNS and DNSSec,
a countermeasure was enabled only when a non-zero attack
probability was observed for the no-fix case. In the DNS case,
this happened for zombies ≥ 200 whereas for DNSSec, the
countermeasures were enabled when zombies ≥ 100. The
empty cells indicate that a countermeasure was not enabled
for the corresponding number of zombies. We report rdp for
RND and retries for AGR.

From Table I, we see that as the attack strength increases,
the required countermeasure strength increases too. We also
observe that higher countermeasure parameter values are re-
quired for DNSSec when compared with the parameter values
for DNS. This validates our result from Fig. 1 that DNSSec
is more vulnerable than DNS to a BAA.

5) Performing cost-benefit analysis: Using the countermea-
sure parameter values from Table I and the PRISM reward
properties that were previously discussed, we compute B1,
B2, C1 and C2 for FTR, RND and AGR.

The time-bound t for the cumulative reward properties is
selected such that it allows the model dynamics to reasonably
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Fig. 5. Net benefit for DNSSec with zombies varied from 100 to 1000
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Fig. 6. Net benefit for DNSSec with zombies varied from 2000 to 10000

evolve, while at the same time prevents it from attaining
steady-state (where effects on bandwidth usage are indepen-
dent of the available bandwidth). An appropriate time-bound
t = 0.1 was found by experimentation.

Table II reports the costs and benefits for FTR, RND and
AGR. Empty cells indicate that a countermeasure was not
enabled for the corresponding number of zombies.

Figs. 3-6 show the net benefit for FTR, RND and AGR
computed using results from Table II. We observe that,
• For DNS and DNSSec, the net benefits of FTR, RND and

AGR decrease as more zombies participate in the attack.
• From Figs. 3-4, we observe that for DNS, FTR is the most

cost-effective countermeasure when zombies ≤ 2000.
Thereafter, AGR offers the highest net benefit. The net
benefit of FTR rapidly drops for zombies > 2000, since,
as seen from Table II, FTR’s C2 increases to cancel out
the benefits. A similar behavior is observed for DNSSec
from Figs. 5-6, where FTR is the best countermeasure
when zombies ≤ 1000. Thereafter, AGR becomes the
countermeasure offering the highest net benefit.
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• From Figs. 3, 5 and Figs. 4, 6, we observe that FTR and
RND offer higher net benefit for DNS than the net benefit
they offer for DNSSec. Similarly, for zombies ≤ 500,
AGR’s net benefit is higher for DNS than DNSSec. This
once again highlights that compared to DNS, DNSSec is
more vulnerable to a BAA.

• When zombies > 500, AGR is more beneficial for
DNSSec than it is for DNS, suggesting that compared
to FTR and RND, AGR scales well for increasing attack
strengths. AGR works by resending the legitimate packets
at a doubled rate for each retry. The average size of a
legal DNSSec packet is 1163.5 bytes as compared to
an average DNS legal packet with size 286 bytes. So,
AGR increases volume of legitimate traffic for DNSSec
far more rapidly as compared to DNS.

• The relative performance of AGR and RND depends
on the desired attack probability. As we decrease this
probability, AGR gradually exhibits better net benefit.
For our experiments, the desired attack probability was
set to the minimum possible value, i.e. zero, and the
countermeasure parameters were adjusted accordingly.
Consequently, we observed that the AGR always per-
forms better than the RND.

C. Computational cost of a countermeasure

The computational cost of a countermeasure is reflected in
the amount of computing resources (e.g. processors) required
by the countermeasure. While the computational cost increases
infrastructure cost, it does not affect the DNS server’s per-
formance, since typically a countermeasure is supported on
a separate piece of hardware; e.g. FTR can be implemented
by firewalls. However, computational cost must be considered
while deploying a countermeasure since this cost can offset
any gains obtained in bandwidth usage. We now estimate
computational cost for FTR, which can be potentially high
compared to the cost for the two other countermeasures.

The computational cost for FTR is calculated based on the
aggregate incoming traffic that has to be filtered and can thus
be determined without using our PRISM model. By applying
curve-fitting to the data reported in [16], we find that for the
xPF filtering algorithm, the number of instructions executed
per packet is (4.95·108)

par
+ 6123.14, where par is the rate at

which IP packets arrive at the server. For a generic four-stage
instruction pipeline, four instructions execute in seven cycles.
Thus, FTR needs (8.7·108)

par
+10715 processor cycles per packet.

For a 733 MHz processor [28], this translates to (1.2 + 1.4 ·
10−5·par) processors required to sustain FTR performance for
packets arriving at rate par. The processor utilization by FTR
is thus directly proportional to par and in turn to the number
of zombies, leading to potentially very high computational cost
if a large number of zombies participate in the attack.

D. Significance and limitations of cost-benefit analysis

Although, we performed experiments with a single value
of serve_rate, the conclusions of our cost-benefit analysis

remain valid even if the serve_rate changes. As an exam-
ple, our results show that the AGR offers higher net benefit
than RND. If we increase serve_rate, then for both RND
and AGR B1 tends to zero, B2 tends to 100 and for RND C1

tends to zero. This causes the net benefit of AGR to remain
always higher than the net benefit of RND.

In general, we expect computational costs for RND and
AGR to be lower than the computational cost for FTR.
However, to increase our confidence for the countermeasure
cost-effectiveness in BAAs of very high volume, we need to
precisely measure the computational costs since a high compu-
tational cost may hinder one from deploying a countermeasure
solution with zero attack probability for high volume BAAs.

Our cost-benefit analysis can be potentially applied to other
network security problems, which can be efficiently analyzed
by probabilistic model checking. Any similar approach should
use valid and meaningful cost and benefit metrics, according
to the principles mentioned in section V-B.

VI. RELATED WORK

We presented a CTMC-based analysis of the DNS BAA
and its countermeasures by probabilistic model checking. Our
analysis formally validates the existence of the DNS BAA
and defines CTMC reward properties that allow a comparison
between the costs and the benefits of the proposed counter-
measures, in terms of bandwidth usage by a DNS server.

In related work, there are some proposals for the formal
analysis of DoS attacks by model checking, which differ from
our analysis in several ways. However, there is no formal
analysis for the DNS BAA. In [1], the authors use probabilistic
rewriting logic to model a DoS-resistant 3-way handshaking
in the Transmission Control Protocol. Instead of using a
formal stochastic model like a CTMC, they generate a timed
probabilistic model from the developed algebraic specification,
which is then analyzed by statistical model checking. This
is a simulation-based analysis and consequently it cannot be
as accurate as the probabilistic model checking approach.
Statistical model checking is also used in [4], in order to
analyze the ASV protocol as a DoS countermeasure. Cost and
benefit metrics based on rewards attached to the underlying
formal model are not supported.

Another related work is [7], which presents a Discrete Time
Markov Chain model for a DoS threat against an authenti-
cation protocol. The cost-based analysis framework of [23]
is instantiated in a probabilistic model checking framework
that compares the cost incurred to the attacker against the
cost incurred to the honest participants during a DoS. CTMC
based analysis with reward properties is proposed in [12],
as a mean to analyze a DDoS attack against the Mobile
IP and Seamless IP diversity based Generalized Mobility
Architecture. In both [7], [12] no analysis and comparison
of related countermeasures is provided.

Finally, in [26] a characterization of an amplification at-
tack is introduced by means of states where some measure
comparisons hold true. This is called measure checking and is
implemented with rewriting logic, an executable specification
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that is model checked in the Maude tool. This approach
focuses on automatically finding known attacks and verifying
that a patch for an attack achieves its aim, but no comparison
between alternative solutions is supported.

VII. CONCLUSIONS

We used the PRISM probabilistic model checker to formally
model and analyze the DNS BAA and its countermeasures.
Since BAA is aimed at DNS servers, it was natural and
beneficial to model it in PRISM as a CTMC, with corre-
sponding arrival rates for benign and malicious DNS traffic.
The model-checking results we thus obtain clearly demonstrate
that DNSSec, which protects against DNS cache-poisoning
attacks, is more vulnerable to a BAA than DNS. They also
show, with the aid of curve-fitting, a nonlinear increase in
the attack probability with an increasing number of zombies.
We also presented a flexible cost-benefit analysis of BAA
countermeasures that allows one to identify the most cost-
effective countermeasure for attacks of varying strengths.

As future work, we intend to extend our BAA counter-
measure cost-benefit analysis to BAA countermeasures that
combine FTR, RND and AGR. The challenge here is to
determine the optimum values for countermeasure parameters
(dp, fpp, rdp and retries) to achieve the desired attack
probability while maximizing benefit and minimizing cost.
The source files for our PRISM models of the DNS BAA
are available from http://www.cs.stonybrook.edu/∼sas/baa/.
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