
AN RT-UML MODEL FOR BUILDING
FASTER-THAN-REAL-TIME SIMULATORS

Dimosthenis Anagnostopoulos1, Vassilis Dalakas2,
Georgios-Dimitrios Kapos1, Mara Nikolaidou2

1Harokopio University of Athens, 70 El. Venizelou Str, 17671, Athens, Greece

{dimosthe, gdkapos}@hua.gr
2University of Athens, Panepistimiopolis, 15771, Athens, Greece

{vdalakas, mara}@di.uoa.gr

ABSTRACT

Faster-than-real-time simulation (FRTS) is widely used for training, control and decision making
purposes. FRTS experimentation proves to be rather demanding, requiring a consistent specification for
developing such systems. This paper presents guidelines for an implementation framework, based on an
industry standard, the Unified Modeling Language (UML). In particular, using the OMG UML Profile
for Schedulability, Performance and Time Specification (abbreviated by Real-Time UML or RT-UML),
specific timing attributes can be included in the derived UML model, which makes FRTS independent
of the application examined. Thus, the implementation of relative program modules can be analyzed and
realized, following the guidelines of this model, ensuring the reliability of the results within
predetermined time frames.

KEYWORDS

Faster-than-Real-Time Simulation, RT-UML, Simulation Methodology, Systems Analysis.

1 INTRODUCTION

FRTS is used when attempting to reach conclusions for the behavior of a real system in the near future
[3]. In this type of simulation, model execution is concurrent with the evolution of the real system. Thus,
the advancement of simulation time must occur faster than real world time. Furthermore, FRTS
implementation becomes more demanding, due to the hard requirements real time systems have for
interacting with other agents [4].
 In [1] a conceptual methodology for FRTS was described, aiming at providing a framework for
conducting experiments dealing with the complexity and such requirements. The following simulation
phases have been identified: modeling, experimentation and remodeling. During experimentation, both
the system and the model evolve concurrently and are put under monitoring. Data depicting their
consequent states are obtained and stored after predetermined, real-time intervals of equal length, called
auditing intervals. In the case where the model state deviates from the corresponding system state,
remodeling is invoked. This may occur due to system modifications, which involve its input data,
operation parameters and structure. To deal with system modifications, remodeling adapts the model to
the current system state. When model modifications are completed, experimentation resumes.
Remodeling can also be invoked when deviations (expressed through appropriate statistical measures)
are indicated between the system and the model due to the stochastic nature of simulation, even when
system parameters/components have not been modified.
 Experimentation phase thus comprises monitoring, that is, obtaining and storing system and the
model data during the auditing interval, and auditing, that is, examining a) if the system has been

modified during the last auditing interval (system reformations), b) if the model no longer provides a
valid representation of the system (deviations), and c) if predictions should be used in plan scheduling.
Evidently, if conditions (a) or (b) are fulfilled, remodeling is invoked without examining condition (c).
 Specific measures are monitored to determine whether system reformations have occurred. The
variables used to obtain the corresponding values are referred as monitoring variables. Auditing
examines monitoring variables corresponding to the same real time points (i.e. the current system state
and simulation predictions for this point) and concludes for the validity of the model.
 To achieve a consistent transition from the analysis of FRTS systems to the implementation of the
corresponding program modules, a detailed and multi-facet specification is provided here, using UML
[5, 6]. The descriptive capabilities of distinct types of UML diagrams are utilized to specify different
aspects of FRTS systems: distinct entities and their roles, overall down to detailed logic of FRTS system,
synchronized communication, and data specification. Furthermore, in the proposed specification we use
elements from the RT-UML [7]. This profile, also used in [2], enables the detailed specification of
critical time and synchronization requirements for FRTS components and the overall performance
evaluation. Therefore, a detailed and integrated specification for FRTS systems is given, leading to
standardized implementations of such systems that meet strict time requirements. Implementation may
also be facilitated with the use of tools that support code generation given a UML model. Construction
and execution of FRTS can now be performed assuring the validity of the results.
 In section 2 we review RT-UML used in the specification of FRTS systems. An overview of the
model, emphasizing on the identification of the discrete roles for actors and entities within FRTS, is
presented in section 3. Due to the large extend of the detailed FRTS specification, section 4 provides
only sample diagrams that specify how FRTS components implement their functionality in terms of
events, activities, and actions, all of which have precise time orientation. Finally, in section 5, some
conclusions are drawn.

2 RT-UML OVERVIEW

In UML, system modeling is based on different kinds of diagrams providing views of three main aspects
of the system: structure, dynamic behavior, and management. In this paper, we define the structural and
behavioral characteristics of FRTS with use case, class, activity, and sequence diagrams.
 The UML diagrams just mentioned, do not provide the required degree of precision (regarding
timing issues) for the specification of FRTS. Thus, we propose the use of RT-UML, which enhances
UML diagrams. RT-UML does not propose new model analysis techniques, but it rather enables the
annotation of UML models with properties that are related to modeling of time and time-related aspects.
Therefore, timing and synchronization aspects of FRTS components are defined and explained in terms
of standard modeling elements. RT-UML has a modular structure that allows users to use only the
elements that they need. It is divided into two main parts (General Resource Modeling Framework and
Analysis Models) and is further partitioned in six subprofiles, dedicated to specific aspects and model
analysis techniques. To give emphasis on time and concurrency aspects of FRTS systems, one is able to
use elements only from the General Time Modeling and General Concurrency Modeling subprofiles.
 Each subprofile provides several stereotypes with tags that may be applied to UML models. A
stereotype can be viewed as the way to extend the semantics of existing UML concepts (activity, method,
class, etc.). For example, a stereotype can be applied on an activity, in order to extend its semantics to
include the duration of its execution. This is achieved via a new tag added to the activity, specifying the
execution duration. Stereotypes define such tags and their domains.
 The proposed FRTS model consists of RT-UML-enhanced diagrams, which are annotated according
to the conventions used in the RT-UML profile specification and its examples [7]. Stereotypes applied
to classes in class diagrams are displayed in the class box, above the name of the class (a in Figure 1).
However, when tag values need to be specified for a certain stereotype, a note is also attached (b in
Figure 1). In sequence diagrams, event stereotypes are displayed over the events, while method
invocation and execution stereotypes are displayed in notes (c in Figure 1). In activity diagrams, notes
are also used to indicate the application of a stereotype on an activity, state or transition (d in Figure 1).

ObjectA ObjectB

<<EventStereotype>>

<<MethodInvocationStereotype>> <<MethodExecutionStereotype>>

ClassName ClassName
<<StereotypeName>> <<StereotypeName>>

{tag1=value1,

tag2=value2, ...}

Activity

State1

State2

<<ActivityStereotype>>

<<StateStereotype>>

<<TransitionStereotype>>

(a) (b)

(c) (d)

<<StereotypeName>>

Figure 1. RT-UML notation

 The RT-UML stereotypes used in the proposed FRTS model are briefly discussed here. In class
diagrams of this paper we use the CRconcurrent and RTtimer stereotypes. CRconcurrent is used for
classes of objects that may be executed concurrently. The method invoked when the object moves to
“executing” state is specified with the CRmain tag. RTtimer models timer mechanisms. It defines two
tags: tag RTduration specifies the time period after which the timer produces an event, while RTperiodic
indicates whether the timer is periodic or not. RTaction is used in activity diagrams for methods,
specifying the time instance they start (tag RTstart) and their duration (tag RTduration).

3 FRTS: A HIGH-LEVEL DESCRIPTION

This section is an overview of FRTS systems in terms of UML constructs. The use case diagram
depicted in Figure 2 presents the entities involved in FRTS. Both the system and the model are separate
from the main module of FRTS and can be viewed as distributed systems. System environment (SE)
represents the actual system, as well as a surrounding mechanism which is responsible for performing
monitoring of the real system. We consider it as a separate entity that interacts with the FRTS system.
Model environment (ME) includes the model and its execution environment (MEE), while the FRTS
System process is the software module responsible for controlling FRTS. Finally, the user is the actor
that enables the whole process, defining the case study.
 In particular, the user provides the experiment specifications and manages the FRTS System process
by starting or stopping the experiment. System and model environment entities provide raw system data
and raw model data, respectively. How these values are collected and stored in both environments is not
of our concern. We examine only the interchange of data. The FRTS System process performs Auditing
to identify potential deviations between the model and the system. In case such a deviation is indicated
exceeding a respective remodeling threshold, remodeling is invoked (Remodeling), which results in the
construction of a new model that replaces the one currently used (Model management).
 The sequence diagram in Figure 3 emphasizes the communication between the entities described in
the previous diagrams (User, FRTS System, ME and SE), in terms of message exchange. Initially, the
user provides the experiment specifications (SetExperimentSpecifications) and starts the process. Thus,
the FRTS System starts system monitoring (message to System Environment), initializes and starts the
model, and starts model monitoring (messages to ME). In periodic, predefined time instances Audit (or
state audit) is invoked. The model is then paused and the values of monitoring variables are retrieved
from both the SE and ME (with GetSystemMonitoringInformation and GetModelMonitoring
Information). Depending on the result of auditing the model is resumed (valid audit) or remodeling is
performed and the old model is deleted (invalid audit).

Raw model data provision

Model Environment

System data provision

System Environment

Experiment specifications
provision

User

RemodelingModel management Auditing

FRTS Management

start/stop FRTS

UsesUses Uses

FRTS System

Figure 2. FRTS detailed use case diagram

 : User
 : FRTS Abstract

System : Model Environment : System Environment

Depending on the
audit result, either
the model is
resumed, or
remodelling is
performed and
the current model
is deleted.

SetExperimentSpecifications

Start

Audit

Remodel

InitializeModel

StartModel

StartModelMonitoring

PauseModel

ResumeModel

DeleteModel

StartSystemMonitoring

GetSystemMonitoringInformation

GetModelMonitoringInformation

SystemMonitoringVars

ModelMonitoringVars

Figure 3. Main sequence diagram

4 FRTS System Specification

The FRTS system design is based on a set of classes (Context, Control, Timer, StateAuditor, Auditor,
Remodeler, and UserInterface) and interfaces (IAuditor, Monitor, and SystemMonitor,
ModelExecutionEnvironment), depicted in the class diagram of Figure 4. The Context is used for storing
the experiment specifications, references to the system monitor and the model environment, and
monitoring variable values used for state auditing. The Control initiates the FRTS process and the Timer
is responsible for producing StateAudit and Audit events. StateAuditor, Auditor, and Remodeller are
responsible for performing the homonymous operations. Both StateAuditor and Auditor classes
implement the IAuditor interface. Monitor models the abstract concept of a variable values monitor,
which is extended by interfaces SystemMonitor and ModelExecutionEnvironment. No classes are
specified for the system monitor and the model environment, since they are not part of the FRTS system.
FRTS components require only communication interfaces with the system monitor and the model
environment. Class UserInterface is simply the means for introducing user requests and data.

Auditor

audit()
buildAuditTree ()

<<CRConcurrent>>

Remodeller

remodel()

<<CRConcurrent>>

Control

start()

<<CRConcurrent>>

Monitor

startMonitoring ()
getVals() : MonitoringVars ModelExecutionE

nvironment

initializeModel ()
startModel()
pauseModel()
resumeModel()
deleteModel()

Timer

duration : Time
mult : Integer

<<RTnewTimer>> Timer()
start()

<<RTtimer, CRconcurrent>>

UserInterface

StateAuditor

audit()

<<CRConcurrent>>

<<CRconcurrent>>
{CRmain="start()"}
<<RTtimer>>
{RTduration=d,
RTperiodic=true}

<<CRconcurrent>>
{CRmain="audit()"}

<<CRconcurrent>>
{CRmain="stateAudit()"

<<CRconcurrent>>
{CRmain="remodel()"}

Context

expSpecs : ExperimentSpecs
systemMonitor : Monitor

modelMonitor : ModelExecutionEnvironment
lastStateMonVarsVals : MonitoringVars

setExperimentSpecs ()
setModelInitializationParams ()

getSpecsFor()
getStateVarVal()
setStateVarVal()

IAuditor

audit()

<<CRconcurrent>>
{CRmain="start()"}

SystemMon
itor

getStateVarsVals ()

Figure 4. The main FRTS system classes

 Classes Control, Timer, StateAuditor, Auditor, and Remodeler are intended to run on separate threads
and therefore have the CRconcurrent stereotype. Objects of each of these classes operate independently
and occasionally simultaneously. The CRmain tag of CRconcurrent stereotypes indicates the method
that is executed when objects of each class are activated. Class Timer is a periodic producer of events, as
indicated by the RTtimer stereotype.
 The activity diagram of Figure 5 specifies the functionality of the start() method of Control. Each of
the activities is annotated with the appropriate RTaction stereotype note. These are used to specify the
duration of the activities. The lower part of each activity defines the actions executed (do/) or messages
sent (do/^). Overall duration of method start() may be calculated as an amount of 6*b+c ms, where b is
the time needed for a basic operation to be performed (arithmetic operation, method invocation, etc.)
and c is a parameter that depends on the specific FRTS application and the experiment specification.
Overall duration of start() refers to the duration from the time instance when the user sends a start()
event until everything has been initialized and the Timer has been started.

Start System Monitoring

do/ ^context.systemMonitor .startMonitoring ()

Initialize Model

do/ ^control.modelMonitor .initializeModel (control.expSpecs.modelInitParams)

Start Model

do/ ^context.modelMonitor .startModel()

ModelInitialized

Start Model Monitoring

do/ ^context.modelMonitor .startMonitoring ()

ModelStarted

Create Timer

do/ m=context.expSpecs.auditingInterval /context.expSpecs.stateInterval
do/ ^Timer.new(context.expSpecs.stateInterval ,m)

Start Timer

do/ ^timer.start ()

TimerCreated

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(c,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'c'
depends on
modeling/remodeling
etc.

Figure 5. Activity diagram for method start of class Control

5 CONCLUSIONS

In FRTS model execution is concurrent with the evolution of the real system. Thus, FRTS
implementation becomes more demanding, due to the hard requirements real time systems have for
interacting with other agents. To achieve a consistent transition from the analysis of FRTS systems to
the implementation of the corresponding program modules, a detailed and multi-facet RT-UML is
provided in this paper. The descriptive capabilities of distinct types of diagrams are utilized to specify
different aspects of FRTS systems: distinct entities and their roles, overall down to detailed logic of
FRTS system, synchronized communication, and data specification. A detailed and integrated
specification for FRTS systems is given, leading to standardized implementations of such systems that
meet strict time requirements. Therefore, construction and execution of FRTS can be performed
assuring the validity of the results.

REFERENCES

[1] Anagnostopoulos, D., Nikolaidou, M., & Georgiadis, P. (1999). A Conceptual Methodology for Conducting

Faster Than Real Time Experiments. Transactions of the Society for Computer Simulation International, 16/2,
70–77.

[2] Bertolino, A., Marchetti, E., & Mirandola, R. (2002). Real-Time UML-based Performance Engineering to Aid
Manager’s Decision in Multi-project Planning, in: The Proceedings of the Third International Workshop on
Software and Performance (WOSP), (pp. 251–261), ACM Press, Rome.

[3] Cleveland, J. et al. (1997). Real Time Simulation User’s Guide. NASA, Langley Research Center: Central
Scientific Computing Complex.

[4] Fishwick, P., & Lee, K. (1999). OOPM/RT: A Multimodelling Methodology for Real-Time Simulation. ACM
Transactions on Modelling and Computer Simulation, 9/2, 141–170.

[5] OMG Unified Modeling Language Specification, v1.5, on-line at http://www.omg.org/docs/formal/03-03-01.pdf
[6] Rumbaugh, J., Jacobson, I., & Booch, G. (1998). The Unified Modeling Language Reference Manual, Addison

Wesley.
[7] UML Profile for Schedulability, Performance, and Time Specification, v1.0, on-line at

http://www.omg.org/docs/formal/03-09-01.pdf

