DESIGN AND VALIDATION OF OBJECT-ORIENTED SOFTWARE
VIA MODEL INTEGRATION

A.Rasse, J-M.Perronne, B.Thirion

MIPS Laboratory, LSI Group, UHA
ESSAIM, 12 rue des fréres Lumiére, 68093 Mulhouse Cedex, France
{a.rasse, jm.perronne, b.thirion} @uha.fr

ABSTRACT

Due to their increasing complexity, software development and maintenance have become a difficult
task. It is therefore necessary to consider a rigorous process for software design which integrates the
different design phases in a unified manner. This is the aim of the present paper which proposes a
coherent approach based on models that guarantee the development of validated applications. From
analysis models, the approach helps to obtain both validation models which can be exploited with
existing model checking tools and specific implementation models which conform to the validated
models.

KEYWORDS

Object Oriented Modeling, UML, Model Transformation, Model Checking, Design Patterns

1 INTRODUCTION

Modeling control software systems has become more and more difficult due to their increasing
complexity. To allow the development of reliable applications, such complexity must be controlled
and design accuracy must be ensured at all levels. The bottom up Object Oriented methods based on
reusable entities help to understand this complexity and to make the design process easier [4]. Despite
the undeniable advantage in terms of productivity and intelligibility, the occurrence of emerging
behaviors makes reliable software production complicated. It then becomes necessary to check and
validate the software systems modeled in this way, since their failures may have economic, material or
human consequences. A series of approaches try to introduce more formal aspects and semantics into
the Unified Modeling Language (UML) [10] specification of systems [7,8,1] to allow their validation.
Since Object Oriented concepts and model checking techniques have matured, it is becoming possible
to establish a design approach based on model driven engineering. The planned approach depends on
the composition and transformation of models to make checking and reliable implementation possible.

(figure 1).
Analysis model .
Transformation

Validation model Implementation model
Process = Local_Processo, public static void main (String args[])
Local_ Processo= (action: = Local_ Processn), {
Local_Processn = (actionn=> Local_ Processo). 3
Coherent
l approach l
Model checker Specific platform

Checking Execution

Transformation

figure 1: Conceptual representation of the approach proposed

The present approach consists of five parts:

- an object oriented analysis in which the structural aspect is divided into two conceptual levels: the
resource objects and the behavioral objects. This provides a simple means to identify, then isolate -
in distinct classes - the entities of a domain and the behaviors applied to these entities. The
abstraction and organisation of the behaviors obtained through this modeling process make them
easier to understand and specify.

- amodel of the dynamic aspect. In UML [10], Statecharts are commonly used to model the reactive
behaviour of models. However, the organisation obtained through structural modeling allows the
use of simpler, more precise formalism. Here, finite state machines present an appropriate notation
to capture, formally the behaviors associated with each behavioural class.

- aparticular configuration of the system in order to obtain the specific behaviors required.

- the validation of the behavioral model obtained earlier. The finite state machines are translated
into process algebra called Finite State Processes (FSP) [7]. This leads to a validation model
which can be exploited with the Labeled Transition System Analyzer (LTSA) model checking tool
[7].

- implementation which agrees with the specifications. To this aim, this paper proposes a translation
of the validated model based on the recurring use of design patterns [5] to ensure reliable
implementation.

This paper is divided into four parts. The first part presents the running example of a legged robot
which will be used for the present approach. The next sections describe the analysis, validation and
implementation models respectively.

2 RUNNING EXAMPLE

The system used to illustrate the present approach is an omnidirectional hexapod robot called Bunny
[11] (figure 2.a). This mobile platform requires an efficient appropriate control architecture for the
integration of a number of coordinated functions. Only the locomotion function will be considered
here: a leg moves in a cyclic way between two positions aep (anterior extreme position) and pep
(posterior extreme position) (figure 2.b). A leg is in retraction when it rests on the ground and pushes
the platform forward. It is in protraction when it resumes its aep. The control architecture is based on
decentralised control; the local behaviors obtained with local controllers (LC) are applied to a leg (L)
and a global controller (GC) coordinates the local behaviors.

a) b)

=

Protraction aep

2 Retraction
pep

figure 2 : a) Bunny b) cycle of a leg

This system is the source of a number of problems concerning concurrence, synchronization, or
decentralized control. So, to ensure robustness and flexibility in locomotion, Bunny must satisfy a set
of progress and safety rules. According to the progress rules, all the legs must continue to move,
whatever the possible execution traces of the system. Bunny's control software is representative of a
class of software systems which must be validated to avoid any problems in their exploitation.

3 ANALYSIS MODEL

The analysis model consists in finding a robust and adapted structure that fits the system to be
modelled. Based on simple, key entities, this structure must be easy to handle and organized in such a
way that a complex macroscopic behavior can be created. Since it was standardized by the Object
Management Group (OMG) [9], the UML has become a standard for the description of software
systems [6]. In the present approach, the analysis model consists of three parts (figure 3): a structural,
a behavioral and a configuration part. The structural aspect helps to organize the abstractions (classes)
of the model. The behavioral one describes the behaviors associated with the structure and the
configuration part establishes the links between the instances from the abstractions. The specification
of these links is necessary for the description of a particular application.

3.1 Structural aspects

Through different levels of abstraction, the specification of the structural aspects helps to better
understand the organization and the interactions within a system. The UML class diagram is the
representation which is best adapted to the structural organization of the abstractions. The structural
aspect of the present models is based on a two-level conceptual model [12], where so-called
behavioral objects control objects considered as resources (figure 3.a). The classes describing the
resources represent the elements necessary for the description of a system. The classes describing the
behaviors control the resources in their state space. This separation helps to isolate and abstract the
behaviors of the objects to which they apply and so, to simplify their specification. The concept can
also be generalized insofar as a behavior/resource association can be considered as a new resource
which is, itself, controlled by another behavior.

a) Structure / Classes b) Behavior / FSM C) Configuration / Instances
behavior LC \ /
space (local behavior) ac :1C
\ iLeg|— :LC— :GC| | :LCL :Leg
target / \
space Leg :LC :LC
RETRACTION / \

figure 3: analysis model

3.2 Behavioral aspects

Each behavioral class is associated with a finite state machine. These finite state machines specify the
dynamic aspect of each elementary entity of the system in the form of event/action sequences. Figure
3.b shows the discrete behavior of a leg equipped with its local controller. To coordinate the legs and
so keep the platform stable, the global controller supervises each local controller by allowing (or not)
its walking cycle. It is the synchronization of the start actions and the concurrent execution of all the
local controllers and of the global controller which provide the global behavior of the system. The
specification of the global controller will not be detailed here. The locomotion algorithm which has
been obtained must be validated to guarantee the above mentioned properties (§ 2). Only the
behavioral aspects which have been specified in this way will be validated, as will be seen in the next
section.

3.3 Configuration aspects

From the structural and behavioral aspects, the specification of a configuration helps to define a
particular application. The instances from the abstractions (classes) are composed in such a way that
they provide the specific behavior defined by the requirements. During this composition, the behaviors
(finite state machines) are combined and synchronized. The UML object diagram in figure 3.c
illustrates the object configuration used for the locomotion function.

4 VALIDATION MODEL

The aim of all validation tools is to make software design reliable and to assure the designers that their
specifications actually correspond to the requirements [3]. Among the checking methods, two major
categories can be distinguished: simulation and model checking. These methods are not competitive
but complementary. It is sensible to associate them within UML design so as to bring an effective
answer to the numerous checking problems. Model checking methods require the use of formal
methods which provide a mathematical context for the rigorous description of some aspects of
software systems. In the present approach, the validation model will be expressed with a process
algebra notation called Finite State Processes (FSP) [7] based on the semantics of the labeled
transition system (LTS). So, a system is structured by a set of components whose behaviors are
defined as finite state machines. This formalism which is commonly used in the field of checking
provides a clear and non ambiguous means to describe and analyse most aspects of finite state process
systems [2,3]; it allows the use of the LTS4 model checker [7]. The behaviors of the present analysis
model, described in the form of finite state machines, immediately find a correspondence (figure 4.a)
with the FSP notation and their translation then becomes obvious. The local behaviors of the
validation model result from all the behavioral classes and all the associated finite state machines.
Figure 4.b represents the FSP translation of the behavior of the local controller (LC) class graphically
described by its finite state machine in figure 3.a.

Analysis model Validation model
X parallel composition
configuration . K
instance_l || instance 2 LC = WAIT,
classes processes WAIT =(start -> PROTRACTION),
instances process labeling PROTRACTION =(aep -> RETRACTION),
instance_name : type_name RETRACTION =(pep -> WAIT).
action
FSM event PN
local process
FSM state P=(a D P).
a) mapping from analysis model concepts to b) behavioral description of a LC in FSP

validation model

figure 4: FSP translation

The global behavior is obtained from all the instances of these elementary components and all their
interactions within a particular configuration (§ 3.3). In FSP, a process labeling (Ic;:LC) provides
multiple instances of elementary components, which agree with the instances of the behavioral classes
of the present analysis model. A set of six local controllers processes (Ic;) is thus created, in which the
labels of the actions (start, aep, pep) will be prefixed with the label of the particular local controller.
The ROBOT global behavior (figure 5) is expressed as a parallel composition (||) of the local (/c;) and
global (gc) controllers. These are executed concurrently and synchronized on the start action using the
FSP relabeling operator (/).

[|[ROBOT = (lcl:LC|| lc2:LC || ...|| gc:GC) / {gc.start_Icl /Icl.start,.....}.

figure 5: global behavior in FSP

This ROBOT behavioral model will be validated by the LTSA model checker. This tool allows the
interactive simulation of the different possible execution scenarios of the model specified. To do so,
the user selects the different actions he wishes to control. This interactive exploration allows him to
improve his confidence in the coherence between the expected behaviors and the models which
describe them. This first non exhaustive type of validation, can be complemented by a search for
properties violation. In the validation model proposed, great attention will be given to the progress
properties which asserts that "something good eventually happens". Indeed, adapted locomotion
requires above all, the recurrent motion of each leg. It must then be checked that each local controller
will always be able to carry out its walking cycle. To do so, it is necessary to check the occurrence of
the start actions for each local controller and their infinitely repeated execution. This property is called
progress Cycle Icl = {lcl.start } in LTSA. If this property is violated by the model, the analyzer
produces the sequence of actions that leads to the violation. The designer can then modify his model
according to the results obtained.

5 IMPLEMENTATION MODEL

The formal specification techniques and the use of model checking tools do not prevent model
mismatch during the development cycle. The Design Patterns [5] representing generic implementation
models have been proposed to bring an explicit, proven solution to some recurring design problems.
Among these design patterns, the State pattern gives a solution which is commonly used for the
implementation of finite state machines. In the present analysis model, the behavior of each
component is described as a finite state machine. It is therefore pertinent to associate each component
with the implementation which corresponds to the State design pattern. Because it is similar to finite
state machines, this pattern helps to obtain a code which conforms to the behaviors specified in the
analysis model and checked by the validation model. The implementation of the State design pattern
for the behavior of a leg and of its local controller is shown in figure 6.

Abstraction <::"::> Execution
| [resource
<< interface >> I LC Tos
LC Interface |
- . start ()
<< implemenks >> | |4ep ()
st |€7TTTT 4'“‘< pep)
aep() | changeState(State)
pep() | contoxt WAIT
I Tstate start
| N
| {abstract} PROTRACTION
| LC_State
| aep ()
| aep()
o | 2ep 0 RETRACTION
RETRACTION | pep ()
|

figure 6: implementation of a LC using the State design pattern

This implementation diagram consists of a number of elements including:

- An LC Interface which defines all the possible actions of a component (alphabet of its finite state
machine).

- The Local Controller class (LC) which exploits the abstraction of the leg as a resource by giving it
a behavior described as a succession of states. It implements the LC interface and lets a local
object called state perform the specific behaviors. This local object represents the current state of
the local controller and changes according to the transitions inherent in its behaviour (aep, pep, or
start).

- The LC State class which implements, in an abstract way, the behavioral LC Interface and
represents the parent class of all the states of a local behavior. Each particular state (Wait,
Protraction, Retraction) implements the specific behavior associated with the state of the
component. Each of these subclasses only defines the actions/transitions that are associated with
them and the call of the corresponding methods causes the adaptation of the state of the local
controller.

In this way, the State design pattern provides a safe means to produce a translation of an abstraction
(the analysis model) into its implementation (the implementation model).

6 CONCLUSION AND PERSPECTIVES

This paper has shown the feasibility of a rational method for software design by proposing a model
based approach (analysis, validation and implementation models). It depends on an object oriented
architecture with two conceptual levels and formal specifications based on finite state machines. From
the information (object configuration and behavior) contained in the present analysis model, a
validation model is obtained which fits the specified behavior. An implementation model adapted to
this specification is obtained using the State design pattern, while conforming to the validation
performed previously. Each model corresponds to the semantics of finite state machines which reduces
the gaps between the different models. The present approach thus allows the coherent transition
between heterogeneous models, ensuring the rational integration of the different phases in software
development. The current work will be followed by the implementation of transformation models
aiming at a systematic, or even automatic translation, between the different models proposed. The
concepts of model transformation will eventually make the development process easier and even more
reliable.

REFERENCES

[1] L.Apvrille, P. de Saqui-Sannes, C.Lohr, P.Sénac, J-P.Courtiat (2001). A new UML Profile for Real-time
System Formal Design and Validation, UML'2001, Toronto, Canada.

[2] A. Arnold (1994), Finite Transition System, Prentice Hall, Prentice Hall.

[3] B.Bérard, M.Bidoit, A.Finkele, F.Laroussinie, A.Petit, L.Petrucci, and P.Schnoebelen (2001). Systems and
Software Verification. Model-Checking Techniques and Tools. Springer

[4] G.Booch (1994). Object-oriented Analysis and Design with Applications, Second Edition, The
Benjamin/Cummings Publishing Company Inc, Redwood City, California.

[5] E.Gamma, R.Helm, R.Johnson, J.Vlissides (1995). Design Patterns — Elements of Reusable Object Oriented
Software, Addison Wesley, Reading, Massachusetts.

[6] H. Gomaa (2000). Designing Concurrent, Distributed and Real Time Application with UML. Addison
Wesley, Reading Massachusetts.

[7] J. Magee, J. Kramer (1999). Concurrency. State Models & Java Programs. John Wiley & Sons, Chichester,
UK.

[8] E.Mikk, Y.Lakhnech, M.Siegel, G.J.Holzmann (1998). Implementing statecharts in PROMELA/SPIN, in
proceedings of 2nd IEEE workshop on Industrial-Strength Formal Specification Techniques, 1EEE
Computer Society Press, p 90-101.

[9] Object Management Group, http://www.omg.org/

[10]Object Management Group. (2003). OMG Unified Modeling Language Specification, Version 1.5,
http://www.omg.org/docs/formal/03-03-01.pdf

[11]B.Thirion, L.Thiry (2002). Concurrent programming for the Control of Hexapode Walking, ACM Ada
letters, vol. 21, N°1, pp.12-36.

[12]1L.Thiry, J.M.Perronne, B.Thirion. Patterns for Behavior Modeling and Integration, Computer in Industry,
Elserier Ed, to appear.

