
Probabilistic Model Checking at Runtime for
the Provisioning of Cloud Resources

Athanasios Naskos, Emmanouela Stachtiari, Panagiotis Katsaros, and
Anastasios Gounaris

Aristotle University of Thessaloniki, Greece
{anaskos,emmastac,katsaros,gounaria}@csd.auth.gr

Abstract. We elaborate on the ingredients of a model-driven approach
for the dynamic provisioning of cloud resources in an autonomic man-
ner. Our solution has been experimentally evaluated using a NoSQL
database cluster running on a cloud infrastructure. In contrast to other
techniques, which work on a best-effort basis, we can provide probabilis-
tic guarantees for the provision of sufficient resources. Our approach is
based on the probabilistic model checking of Markov Decision Processes
(MDPs) at runtime. We present: (i) the specification of an appropriate
MDP model for the provisioning of cloud resources, (ii) the generation
of a parametric model with system-specific parameters, (iii) the dynamic
instantiation of MDPs at runtime based on logged and current measure-
ments and (iv) their verification using the PRISM model checker for the
provisioning/deprovisioning of cloud resources to meet the set goals1.

1 Introduction

A practical model-driven approach is presented for the provisioning of resources
to a cloud application, such as a web-enabled NoSQL database on a cluster
of virtual machines (VMs). The load of service requests submitted by end-users
evolves over time. Each request has to be served within a fixed period of time de-
termined by a threshold on acceptable response latency. To achieve this goal, we
rely on horizontal scaling elasticity actions, i.e., new VMs may be added on the
fly to cope with load increases and VMs can be released when the load decreases.
The main challenge is to develop a decision making policy that avoids both re-
source under-provisioning, which leads to violations of the latency threshold, and
over-provisioning, which leads to low infrastructure utilization and unnecessary
economic cost.

Existing decision making policies such as the one implemented in Amazon’s
EC2 manager mainly work on a best-effort basis and there is no way to pro-
vide guarantees for their performance in diverse workload scenarios. Some other
model-driven proposals [6] combine Markov Decision Process (MDP) models
with reinforcement learning-based policies.

1
This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European
Social Fund.”

Our decision making solution is based on the probabilistic model checking
of dynamically instantiated MDPs by using the PRISM tool [1] at runtime. A
decision step is activated periodically, e.g., every 30 seconds or every few minutes.
Each decision (or elasticity) step is split into the following three phases:

1. Appropriate MDP models are dynamically instantiated, which reflect the
predicted system utility and the possibility of latency threshold violations.
These models are constructed based on the monitored incoming load and
past log measurements of response latency, for similar incoming load values.

2. MDPs are verified online using PRISM, in order to find the optimal elasticity
decisions for the solved model instances.

3. The selected elasticity action to be applied is chosen from the set of possible
actions {add, remove, no op} that respectively correspond to adding new
VMs, releasing existing VMs and leaving the cluster unchanged. If any of
the first two actions are decided, then the run of the next elasticity step is
suspended until the system stabilizes.

In [5], we have experimentally evaluated and compared the described approach
with the mentioned alternatives. The presented results are based on traces from
a real NoSQL database cluster under constantly evolving external load and they
are particularly promising: we can support decision policies that improve upon
the state-of-the-art in significantly decreasing under-provisioning, while avoiding
over-provisioning. Here, we focus on our MDP modeling approach for the first
elasticity phase, whereas details for the two other phases are provided in [5].

In Section 2, we elaborate on our approach for the specification of an ap-
propriate MDP model. Section 3 discusses the generation of a parametric model
with system-specific parameters, the dynamic instantiation of MDPs, and their
verification at runtime. Finally, we conclude with a critical review on the prac-
ticality and the prospects of the proposed solution.

2 An MDP for the control of cloud resource provisioning

An MDP allows to capture both the non-deterministic and the probabilistic
aspects of the modeled system and it is formally defined as follows:

Definition 1. [2] An MDP is a tupleM = (S, s0, Act,P, L), where S is a finite
set of states with s0 the initial state, Act a finite set of actions and L : S → 2AP

maps states to a subset of a given set of atomic propositions AP . The transition
probability matrix P is a function P : S ×Act× S → [0, 1]. For all states s ∈ S
and actions α ∈ Act, we require that

∑
s′∈S P(s, α, s′) ∈ {0, 1}. We also require

that for each s ∈ S there is at least one α ∈ Act with
∑

s′∈S P(s, α, s′) = 1.

With Act(s) = {α |
∑

s′∈S P(s, α, s′) = 1} we specify the set of enabled actions
in a state. Fig. 1 introduces a simplified representation of our MDP state space
and the enabled actions in each of the shown states. Every state si corresponds
to the number of VMs that compose the application cluster (e.g. the NoSQL
cluster used in [5]) with i representing the cluster’s size at some time instant.

s3current

s3−4

s2

s3′

s4

s2−3′′

s1

s2′

t t+1 t+2

ad
d

rem

no
op

no op

add

rem
no op

same as s3
moving to t+2

add
remove
no op

Fig. 1. MDP model overview.

This illustration of the state
space is separated in time sec-
tions (t, t + 1, t + 2, ...) with
each one corresponding to a
distinct decision step of the
cloud provisioning policy. We
can thus take into account the
evolution of the conditions
with time, which is particu-
larly important when a de-
cision policy is coupled with
external load prediction2. Af-
ter remove and add VM ac-
tions, the decision maker may
be idle for a pre-specified time period (e.g. one decision step) to allow the system
to stabilize. In Fig. 1, s3−4 at t+1 and all other states identified with si−j rep-
resent transient states, i.e. unstable system states due to a recent change in the
number of active VMs. Thus, based on the enabled actions at t, we have three
states at t + 1 including two stable states s2 and s′3 - if the number of VMs is
not changed - and one transient state. States s3 and s′3 represent a configuration
with 3 VMs, however as the environment evolves, these two states can behave
differently to the incoming load (e.g. they may receive different incoming load
and may be characterized by different response latency). Also, as we observe,
after the s′3 state, the same pattern is repeated with different time sections and
state naming conventions, with s′3 now being the current state.

sicurrent

sib1

sib...

sibn

si−j

sl

si′

t t+1

pr
ob1

prob...
probn

add

remno
op

ad
d

rem

no op

add
remove
no op

Fig. 2. Detailed MDP model states.

The model’s representation in
Fig. 1 is further elaborated
in Fig. 2 to account for the
possible variability in the ap-
plication’s performance for a
given external load and clus-
ter size. In Fig. 2, si can
be any possible stable state
of the previous model view,
where each si is in fact repre-
sented by n states (shown as
sibm, 1 ≤ m ≤ n). In [5], the
most effective decision poli-
cies, for a given number of
VMs, employ one state repre-
senting the possibility of not meeting the latency threshold and other states
representing the possibility to meet it. Transition probabilities are based on the
prediction of the future incoming load and the collected logs (cf. Section 3).

2 An ARIMA-based predictor of future load can be used in decision policies as sug-
gested by [5].

Definition 2. [2] A reward structure for an MDP with state space S and action
set Act is a partial function r : S ×Act ⇀ R≥0 assigning a reward to each state
and enabled action.

In our MDPs, a reward is assigned in states based on measurements of the
system’s latency and throughput, and a user-defined utility function.

3 MDP model instantiation and verification at runtime

The described model representation is encoded into a parametric MDP in PRISM’s
input language. The model is automatically generated using scripts based on: (i)
system-specific parameters such as the minimum/maximum allowed number of
VMs, the allowed numbers of simultaneous VM additions/removals in a single
decision step, the lookahead prediction steps, the duration of the transient states,
the number of states representing each cluster size, and (ii) system measurements
such as the response latency. Our PRISM model’s structure is accessible in [3].
Every model is defined as the parallel composition of three PRISM modules:

1. The decision module, where the actual elasticity is modeled (add, remove
and no op actions between model states).

2. The transient module, which stores measurements for stable states from
which an add action is applied, thus reaching a transient state. These mea-
surements are used to compute the rewards for the transient states.

3. The cluster module, where a possible state representation as in Fig. 2 is
chosen; here the name “cluster” stems from the log measurements clustering
in different groups (states) for the same external load and VM cluster size,
as explained below and detailed in [5].

Appropriate PRISM formulas are also used to: (i) find the current system mea-
surements, (ii) define the utility function for reward computation and (iii) control
the computation of rewards for specific model transitions.
Dynamic MDP instantiation. In each decision step, current and logged mea-
surements are gathered through periodic monitoring (e.g., every 30 secs). Mea-
surements are then fed after preprocessing into the parametric model to create a
new MDP model instance. For the experiments in [5], all model parameters are
derived from clustering log measurements for similar past conditions, where simi-
larity is decided based on the external load, the number of VMs and the response
latency. This extends the approach in [6], in order to capture the inherent uncer-
tainty in the application’s environment. Log measurements are grouped in each
step for a specific number of active VMs by their incoming load λ, and they are
then fed into a k-means clusterer, which returns k center points. The k centers
are mapped to probabilities, proportional to the size of their clusters. Finally,
the state representation of Fig. 2 is used during the MDP model instantiation,
with the computed center points (states) and their respective probabilities.
Model verification and decision making. The elastic decision is based on
the maximum expected reward after a specified number of steps. This prop-
erty is expressed in Probabilistic Computation Tree Logic (PCTL) as follows:

R{“cumulative reward′′}max =? [F (stop)]. The model checking result is the
expected maximum cumulative reward and the set of adversaries which yield
this reward, i.e. functions δ : S → Act that resolve nondeterminism in the MDP
by choosing which action to take in each state.

From the obtained adversaries, we choose the first action of the adversary
with the least maximum expected probability for a system measurement thresh-
old violation. The used PCTL properties for this purpose have the form: Pmax =
? [F (stop) & (meas > meas threshold) & (first action = X)], where meas is
a specific system measurement and X denotes every possible initial action of the
processed adversaries. This result represents the preferred elasticity decision.

4 Conclusions and future work

We introduced a parametric MDP model for the control of cloud resource provi-
sioning. This model is the key-component of various elasticity decision policies
that have been experimentally evaluated [5] using traces from a real NoSQL
database cluster under constantly evolving external load. To the best of our
knowledge, this is the first initiative towards integrating model checking in cloud
elasticity management and the results in [5] show that our model-driven policies
outperform compared to existing alternatives in that they can decrease under-
provisioning, while at the same time avoiding over-provisioning.

Latest results show that the presented model checking approach at runtime
can be also beneficial for the management of trade-offs between the need to meet
performance requirements, while respecting critical constraints in cloud security.
To this end, we have evaluated the effectiveness of a new security-aware elasticity
policy on scaling NoSQL databases in a cloud environment [4].

References

1. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. pp. 585–591 (2011)

2. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Hung, D.V., Ogawa, M. (eds.) ATVA’13. LNCS, vol. 8172,
pp. 5–22. Springer (2013)

3. Naskos, A.: Probabilistic Model Checking at Runtime for the Provision-
ing of Cloud Resources - Appendix. http://anaskos.webpages.auth.gr/wp-
content/uploads/2015/06/parametricMDPmodel.pdf (2015)

4. Naskos, A., Gounaris, A., Mouratidis, H., Katsaros, P.: Security-aware elasticity for
nosql databases. In: MEDI (2015)

5. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou,
I., Sioutas, S.: Dependable horizontal scaling based on probabilistic model checking.
In: CCGrid. IEEE (2015)

6. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, elastic resource provisioning for nosql clusters using tiramola. In: CCGrid.
pp. 34–41 (2013)

