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Abstract. We focus on horizontally scaling NoSQL databases in a clowd e

ronment, in order to meet performance requirements whpagting security

constraints. The performance requirements refer to datency limits on the

query response time. The security requirements are defresd the need to

address two specific kinds of threats that exist in cloudldetas, namely data
leakage, mainly due to malicious activities of actors htvste the same physical
machine, and data loss after one or more node failures. Waimxhat usually

there is a trade-off between performance and security rexpaints and we derive
a model checking approach to drive runtime decisions thikiesa user-defined
balance between them. We evaluate our proposal using es@stito prove the
effectiveness in configuring the trade-offs.

1 Introduction

Cloud computing is an evolving paradigm that has transfarthe way organisations
and individuals store, share and access their informaltigmroduces a number of ad-
vantages and benefits by supporting a computational infietstre where availability
of resources is dynamic, meaning that hardware and softavarprovided on demand
when users need them at a reasonable monetary cost. On #réhatid, the paradigm
also creates challenges and introduces concerns relatsttoity. In fact, many or-
ganisations and individuals are still avoiding cloud seegi mostly because they are
not sure if the services provided, typically by differenbyiders, are suitable for their
security requirements.

Security concerns related data |eakage anddata loss are of particularimportance.
Simply speaking, data leakage is the unauthorised tran$fdata from one user to
another. Each user should have access to their own data tinel able to access the data
of others unless are authorised to do so. In the cloud, tkefidata leakage is increased
due to the storage of data in a multi-tenant environment.cemestudy([6] has shown
that the risk of data leakage is increased for a company whegslogees use cloud-
based services. On the other hand, data loss refers to aiconghere data is destroyed
and becomes unavailable. This could be the result of a mabact (e.g. an attack to an
organisation’s data), due to human error or due to hardeafte/are/network failures.
In a cloud environment - and in particular in a multi-tenamtieonment - the risk of
data loss can be increased due to the multi-tenancy situatio



We deal with a particular feature of cloud databases, naelabticity, in light of
security concerns. Elasticity allows cloud users to modify amount of resources
used on-the-fly, so that they can always handle the exteegalest load, even when
load changes are unanticipated. It is manifested in thréa foems, horizontal scal-
ing, where virtual machines (VMs) are added or remowedtical scaling, where the
hardware configuration of the existing VMs is modified, andration, where existing
VMs are moved between physical hosting machines. More fpalty, in this work,
we extend our previous work [14] on performance-orientetiZioatal scaling so that
we can reach elasticity decisions that take into accourtt petformance and secu-
rity requirements. Performance requirements are expiessa threshold regarding the
maximum allowed response time to user requests, while gcaquirements are ex-
pressed through the probability of data leakage due to #taliancy and of data loss
through hardware failure and/or due to multi-tenancy. lgeane would aim to attain
zero violations of the performance threshold, no secunitydients, while minimizing
the monetary cost associated with the provision of cloud VMs

Problem Challenges. The main challenge in the setting described above stems from

the fact that the three requirements, that is bounded regptimes, minimal mone-
tary cost and protection from failures and data leakagegssentially intertwined and
contradicting to a large extent, as explained below:

— NoSQL databases partition the data across several nhodesaandenefit from
the inherent feature of cloud infrastructures to dynarhjcatovision resources.
The combination of these two characteristics allow cloudblases to horizontally
scale when the external load increases, so that more sdrgeosne available to
respond to user requests. If horizontal scaling is perfdregrefully, for exam-
ple, in a load balancing way that avoids over-reacting, trexage response time
can be maintained to a certain desired level regardlessyo€laanges in the ex-
ternal load. More specifically, more VMs can be added (soal-when the load
increases, but this comes at an increased monetary cosbginesly, when the
external load decreases, some servers can be released isethen the grounds
that over-provisioned servers incur unnecessary monetsty In private clouds,
monetary costs are implicit (e.g., through increased gnesgsumption), whereas,
in public clouds, a fee is actually paid.

— Online services may become unavailable due to failures tf tte physical ma-
chines and the network, which can lead to data loss. The maahamism to ad-
dress this type of threat is through replication (or mimgpi that allows for data
to be copied to several servers. The more the copies, the mesistant to failures
the system becomes. However, this comes at the expensehefr iEsponse times
when updating data, since eventually changes need to bagmtgal to all copies.
Moreover, the more VMs are employed, e.g., for performaresans, the higher
the probability a number of VMs equal to or greater than thication factor to
fail thus leading to data logk.

— Despite any efforts from cloud providers, there is alwaysdhnger that malicious
cloud users hosted on the same physical machines as thesiasadpet unautho-

% The volume of lost data decreases with the number of VMs festtme replication factor.



rized access to data. Intuitively the more physical machare used to host the
database, the higher the danger, whereas, at the same tibvle&, machines are
more vulnerable.

To summarize, scaling out a database may improve the peafare; but this may
incur unnecessary monetary costs due to over-provisioMirgoring can be combined
with scaling out and may cause performance problems butases the robustness to
failures. Scaling out may also exacerbate the data leakaydaa loss threats. As such,
keeping latency low through scaling-out is in contrast towetary cost and avoiding the
threat of data leakage and data loss.

Real-world Motivating Example. We take motivation for our work from a real-case
scenario, the Greek National Gazette Infrastructure Juing the sharing and storage of
large number of documents. The Greek National Gazette nsible for publishing
laws and legal decisions on the Government’s newspapetrdier dor these laws and
decisions to be active and applicable. Besides legal decighere are also a number
of decision categories originated from the private and ipidaictor that by law must be
send for publications to the Governments’s newspaper. ¢h saenario, the dynamic
provision of services with acceptable performance is vergdrtant as is the need to
make sure that documents are not leaked before the officidication, and they are
not lost after they are published.

Contributions. The contributions of this work are twofold. First, we presemMarkov
Decision Process (MDP) modeling approach to cloud el#égticoupled with proba-
bilistic model checking and accompanied by a security thagare decision mecha-
nism; to this end, we build upon our performance-orienteghpsal in [14]. The elas-
ticity decision mechanism can account for user-definecttatts between performance
and security requirements, while aiming to avoid over-giowning in any case. Second,
we present an evaluation that sheds light upon the impaaaifrgy requirements on
the elasticity behavior. Our results show that our decisi@king proposal can effec-
tively strike a configurable balance between the conflictieguirements mentioned
above.

Sructure. The remainder of this paper is structured as follows. In Bewe present
the MDP models and the decision mechanisms developed. li3Sa@ evaluate our
proposal for a wide range of security attack and failure philities using real cloud
database traces. We discuss the related work ill$ec. 4 antliderin Sed. 5.

2 Model-based security-aware elasticity

This section presents the probabilistic Markov Decisioncess (MDP) model, which
serves as the basis of our proposed security-aware etastetision making mecha-
nism. We first introduce the basic modeling representaticem @onceptual level and
how it is used to drive performance-oriented elasticitytigifly proposed in[[14]); this
approach is then extended and refined to cover both perfarerd security issues.



MDPs are specified by their states, actions, transitiongdviities and reward$s [17].
In our model, each state corresponds to a different clugter where the size equals
to the number of active cloud virtual machines (VMsjys_num, running a NoSQL
database, such as HBase and Cassandra. The NoSQL databppsmll both sharded
and replicated; i.e., its tables are horizontally fragredraind each fragment is allocated
to multiple VMs. For readability reasons, we denote a statea,,_n.m]- 1here are
three types of possible actions on every stateadd for VM additions, 2)rem for
removals, and 3)o_op for no operation. For every distinct number of VM additioms o
removals (exadd;, rems) there is a separate action, and the corresponding tramsiti
between two states through the same action have aggregatiity 1.

Fig. @ (left) illustrates < basic
. g . <
a simplified instance of the <
MDP model, where the =
states represent the number a
of active VMs. The edges "4
extended

represent the possible ac-
tions: 1)add, (blue arrow),

2) rem, (red arrow), and

3) no_op (black arrow);x

is the number of new or re-
moved VMs. In this exam-
ple, the maximum number&
of VMs allowed to be added
or removed in every step is
2, while the current num- Fig. 1: MDP model overview.

ber of active VMs is 3 {3

state). The action type is labelled on top of every transifiedd,. /rem,. /no_op]). The
MDP associates a reward value to each state and action tatingccount the current
external conditions. State and action rewards are catlilzased on user-specified util-
ity functions, as discussed later. The external condittmmsidered in this work are cap-
tured by the user external loadwhich is measured as the amount of submitted queries
per time unit. When the model is verified at runtime, the relatr states, ,;,s_num|
essentially reflects the expected utility of the system wihene arevms_num active
VMs for the current value of external load.

remove

do-ou

no-op

The probabilistic nature of our model can easily capturaitieertainty of the envi-
ronment that follows every elasticity decision; for exambr the same cluster size and
external load, p% times in the past where no performancatois and (1-p)% there
were ones. To mitigate uncertainty, Fig. 1 (right) illusgsan extension to the states
of the model of Figl1L (left). Each model state for a specificstér size is extended to
n states, to better map the behavior of interest (i.e. peioiga, security). Each new
smaller state corresponds to a different expected systbaviie and is derived through
clustering the log entries for the same external load anstetsize, resulting in devi-
ations from expected behavior. The probability of trapsitto each possible state is
commensurate to the probability of occurrence of the cpeding’s state behavior.



2.1 Model-based elasticity for performance

A common performance requirement is the latehayof processing user requests, i.e.
the time elapsed from query submission to answer, not tosekaeertain threshold,
regardless of the number of concurrent users. Howeverhtosame number of VMs
and the same amount of incoming loadthe latency may vary significantly, due to
factors that are both external to our model and hard to medgl; a time-consuming
operating system process is initialized. To ameliorat® té presented in Figl. 1 (right),
there are more than one model states (s... , s»,,) for a single sizer.

In [14], several elasticity policies are examined, and thesineffective one was
termed aADV+VC+PRE, standing foradvanced+ violation-cluster+ prediction. More
specifically, the policy is termed as advanced because ipotes thecumulative re-
ward after a pre-specified number of transitions in the mozidled steps; this con-
figurable parameter is set to 3, based on experimentatidn diffterent values[[14].
The VC label indicates that one of the extended states in the mddegore[q (right)
covers those states that violate the response latencyhtiideswhile the other ex-
tended states correspond to non-violating states witkerdifft behaviolPRE indicates
that a prediction mechanism of future incoming load is zeifl. Rewards are associ-
ated only to model states and are derived according to th@nfiolg utility function:
u(vms) = 0 it lat > ¥ wherevmsis the current number of VMs.

1+ (1/vms), iflat <z
As such, this utility function includes a user-specified sto@int and manages to take
into account both performance issues (throughahtihreshold) and the monetary costs.
The latter are implicitly considered by decreasing thétytih a way inversely propor-
tional to the number of machines when there is no performaiatation. Overall, this
utility function penalizes both under-provisioning angeoyrovisioning. In this policy,
one initial state in Fid.J1(right) is mapped to more than aages to cover (i) the occa-
sion of latency threshold violations and (ii) normal exéaoit The transition probability
for each state is estimated according to log measuremesitsibdir past conditions; the
similarity is defined in terms of the external load. Finathye model is equipped with
a prediction module, which allows for predicting the evalatof the external load and
thus computing the expected reward of each model state htteae step in the fu-
ture more accurately. The probabilities and state rewarelsSrstantiated every time
elasticity actions are considered based on the currentexttead.

Then, a two-phase model verification procedure takes padetide the optimal
path considering the performance. To this end, the PRISMisoased [10]. PRISM
property specification language is PCTL probabilistic tenaplogics. In the first phase,
we ask for the maximum cumulative reward of the model, gdireganultiple optimal
paths (sequences of states) that lead to the same optimaicde8econdly, every first
action of every optimal path is checked with another PCTLpprty to define its max-
imum probability of performance specific Service-Level égment (SLA) violation.
The first action with the minimum maximum performance vimatprobability is the
one selected from our decision mechanism:

Pmaz =?[F(stop)&(lat > x)&(first_action = [action]),



where[action] is every first action of every possible path which leads toapgmal
cumulative reward anstop is a flag that indicates that the verification of a path should
stop if the maximum number cfeps is reached.

2.2 Model-based elasticity for data leakage

The performance-oriented model aims to avoid performamnaations, while avoid-
ing costly over-provisioning. In this section, we descritzev our model is enhanced
with capabilities to capture data leakages and considen theing elasticity decision
making. The modifications refer to both the main model andigrsion policy.

More specifically, we further extend the state transforamgpiresented in Fig] 1(right)
introducing two-layer extensions. Hence, eveyy state is further transformed tq.,
ands,, = states, where c [1,n], a stands forttack andna stands fomo attack. The
probability of these two new states is computed through thkiplication of theprob;
probability and the probability of attagk-ob;, or no attackprob;, ,, respectively, i.e.,
prob; = (prob; - prob;, ) + (prob; - prob;, ), since the data leakage attacks and latency
violations are considered to be independent events. Wedmarthat there is an explicit
mechanism to count and report the number of attacks leadidgta leakages in a peri-
odic manner, e.gl[15]. The data leakage probability infation is used in our models
to initialize the transition probabilities to states thepresensafe or not safe states. A
reasonable assumption is that the probability of attackd/peis the same and equal
to prob,, and the attacks on different VMs are statistically indejsan; in that case,
prob;, becomes equal to- prob,

In addition, we apply modifications to the above model veatitun procedure:

1. The utility function is extended to account for data legdsand performance trade-
offs through a 3-parameter function. The exact formula eygyd is as follows:

0, if attack = true
a, if lat >z
b+ (¢/vms), if lat <z A attack = false.

wherea, b andc are user defined values anttack is a flag that indicates a data
leakage. In Se¢.]3 we show how setting the 3 parameters, eithgonfigurable
trade-offs between the different objectives.

2. The second PCTL property (S€c.]2.1) is transformed to #eekirst action with
the minimum maximum probability of both performance spec8LA violation
and data leakage:

Pmazx =?[F(stop)&(lat > z || attack)&( first_action = [action])

2.3 Model-based elasticity for data loss

As discussed in the introduction, data loss can be causedaligious co-tenants and
system failures. The attacks due to insecure multi-teneanye handled in exactly the



same way as those leading to data leakage. For the dataleat the same 3-parameter
utility function can be employed as well. However, the mddmhsition probabilities to
states corresponding to failures require a bit more atier@nd need to be aware of the
degree of replicatiom. To suffer from data loss, at leastmachines need to become
unavailable at the same time. If the probability of failuf@ne machine ip s, then the
probability ofr machines failing simultaneously (é;)p’}‘.

3 Evaluation

Experimental Setup We have used logs from a real Cassandra infrastructure to con
duct systematic experiments. The collected measurementssad firstly, to populate
the initial logs, and secondly, to emulate a real situatidirough emulation, we have
managed to fairly test each policy or configuration on an Ehasis. The workload
consists of asynchronous read requests (req), the volumioh evolves in a sinu-
soidal manner varying from 4000 to 16000 reqg/sec couplekl with 2 plateau periods
at 13000 reqg/sec for 1000 time units each. We collected meamants every 30 secs
and, in our emulation, a time unit is equal to this measuree@tection period. In each
sine period, there are 360 measurements. We allow an é@hasiition to take place ev-
ery 10 time units, to emulate a system that may modify the Visye5 mins (or 10
mins is cases of add action, to allow the system to stabilie)the emulated load is
generated based on the logs, which also act as training setpmsider that the system
is well trained, and as such, the MDP models are instantiatad accurate manner. In
every up-scale action, up to 3 VMs can be added, while durovgndscaling, up to 2
VMs are allowed to be removed in a single step. The clustesssiaries from 8 up to
18 VMs. Every experiment runs for 5 iterations. Further detre provided in[[14].

Dataset Latency Distribution (8 VMs) Dataset Latency Distribution (18 VMs)
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Fig. 2: Latencies for 8 (left) and 18 (right) VMs

Fig.[2 presents the latency distribution in two charactieristates of the collected
dataset, where the dotted line shows the latency threslal8 ensecs and the solid
line of 50 msecs in both figures. For the minimum cluster simk lawest amounts of
load, there are few latency values that violate the threshhostly caused by the cold
cache of the system at the beginning of the measurementtiofifand the system can
handle load up to about 8000 reqg/sec. However, additionehinas need to be added if
the load further increases to avoid performance threshioldtions. For the maximum



| || ADV+Ve+ PRE| DLeak-0|DLeak-1|DLeak-2| DLeak-3|

45 msec§ 12.5 8 12.3 11.7 12.4

50 msecs 12 8 11.8 11 11.9
Table 1: Average number of active VMs (0.1% attack probspili

number of active VMs (18), except from a few outlier measwgety, the system can
handle the full amount of the incoming load.

3.1 Experimental Results

Our experiments show the trade-offs between securitylettaed latency violations for
a series of utility function configurations and probalektiof attack incidents.

Data Leakage Results The utility function presented in Selc. P.1 tries to maintain
the lowest number of active VMs, when there is no latencyatioh applies. In these
cases, as the number of active VMs is placed in the denonmifiate (1/vms)), over-
provisioning is avoided, which additionally, alleviatbetdata leakage threat. The util-
ity function presented in Sdc. 2.2, aims to control the dealidge probability both more
directly and in cases, where the performance thresholdisegled, through deriving an
acceptable tradeoff between the increase in the numbetesfda violations and the
decrease in the number of data leakage attacks.

In the first set of experiments, the latency threshold in tiléyufunction is set to
either 45 msecs or 50 msecs. Initially, we set the probghifidata leakage attack per
VM per step to 0.1%; later, we examine data leakage probiakilihat differ by an
order of magnitude. We examine four different parameterpsetor the utility function
presented in Sectidn 2.2:

— DLeak-0: @ = 100,b = 100,c =1

— DLeak-1:a =0.5,b=1,c=1

— DLeak-2: a = 100, b = 100, ¢ = 160

— DLeak-3: a = 100, b = 1000, ¢ = 1600

Intuitively, DLeak-0 tries to avoid attacks at any performance cost. The otheliGig®
place more importance on latency violations tiizireak-0. In Fig.[3, we present the
adaptation of the number of VMs to the incoming load for eaalicp. The red dotted
line represents the incoming load while the solid blue liepresents the number of
active VMs. Except few instabilities, due to imminent eviment uncertainty infused
in our emulations, all the policies/configurations can digdollow the load variation.
Fig.[4(left) on the left presents the percentage of timesstepere latency viola-
tions (left blue bar) and data leakages (right green baniofar the ADV+VC+PRE
policy. In this experiment, the latency threshold is 45 nssand, for cluster size from
8 to 18 VMs, the attack probability ranges from 0.8% (loweuiad) to 1.8% (upper
boundﬁ. ADV+VC+PRE manages to yield a very low number of performance viola-

4 This implies that the database owner fully accepts the 0.886ability of attacks. However,
all the numbers can be transferred to a setting, where thu éohybrid with 8 private VMs
and up to 10 public VMs. If the attack probability is 0% for thevate ones, then all attack
percentages become 0.8% less.
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Fig. 3: Variation of the external load and the number of a&ctiMs
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Fig. 4: Aggregated Latency Violations and Data Leakagedtaage for 45 msecs (left)
and 50 msecs (right) latency thresholds and 0.1% data legkadpability per VM.

tions, at the expense of non-negligible secutiry attacke §econd pair of columns in
the same figure presents the resultsBieak-0, where the system is actually penal-
ized (zero reward) only for the attack situations, as thenley violation reward is very
close to the no-attack no-violation case. As expected, tineber of VMs is kept at the
minimum possible number, i.e. 8 VMs; see Tdble 1. Overad, dttacks are reduced
to their minimum, however the latency violations are reaghheir highest percentage
(65.63%).
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Fig. 5: Aggregated Latency Violations and Data Leakagedtgage for 45 msecs (left)
and 50 msecs (right) latency thresholds and 1% data leakabealpility per VM

ADV+VC+PRE|DLeak-0|DLeak-1|DLeak-2|DLeak-3
45 msecs 12.4 8 12.2 10.9 12.2

50 msecs 12 8 11.4 10.8 11.6
Table 2: Average number of active VMs (1%)

As we also observe in Fif] 4, tiizl eak-2 parameterisation achieves a reduction in
the deviation from the lower bound of probability attack20%6 (from 0.4% to 0.32%)
compared to théADV+VC+PRE policy, at the expense of an increase in the latency
violations, since the system is prohibited to scale in sgwaases to avoid data leakage
attacks DLeak-1,DLeak-3 parameter setups increase the number of violations without
being able to decrease the number of data leakages. As wevelisdabld 1 DLeak-2
keeps the number of active VMs lower than fleeak-1 andDLeak-3i.e. 11.7, which
explains the decrease in the number of data leakages. ®ussahn indication that
different parameter configurations can achieve diffenetd-offs but this needs to be
performed carefully.

Fig.[4 (right) presents an experiment where latency viotathreshold becomes
50 msecs. The data leakages percentage is decreased i sdlcilrity enhanced poli-
cies, withDLeak-3 achieving the optimal tradeoff. IDLeak-3, the deviation of data
leakages from their lower bound is reduced by 21% while thenlkzy violations are
slightly increased. In the second line of Table 1, the avemagmber of active VMs
in the DLeak-3, is bigger than the one fromLeak-2 achieving almost the same data
leakages reduction albeit with a more significant increadatency violations.

In Fig.[H the data leakage probability because of multifegds changed to 1%,
hence the percentage of data leakage throughout the ctastges from 8% to 18% in
a single step. As we observe, the data leakage percentaggtised from 12.89% to
11.70% for theDLeak-2 with an increase in the latency violations (i.e. 14.56% from
0.44% achieved by ADV+VC+PRE policy), reaching a signifitatetter trade-off
thanDLeak-0. The mean number of the active VMsIin_eak-2 is reduced from 12.4 to
10.9, presented in Tallé 2. The parameter seDliEsk-1 andDLeak-3 achieve almost
the same reduced percentage of data leakage attacks 2&,MhileDLeak-3 achieves



70 Aggregated [Latency Violations|Data Loss Attacks] 270 Aggregated [Latency Violations|Data Loss Attacks]

65.32%

61.29%
60 q 60

o
v}
«
Ivl}

w
°©
\
w
°
y
Y

(%) of attacks and violations
(%) of attacks and violations

BN oW s on e

[0.37%

DLoss-2 DLoss-3

0
DLoss-2 DLoss-3 ADV+VC+PRE DLoss-0

ADV+VC+PRE DLoss-0

DLoss-1 DLoss-1
Decision Policy Decision Policy

[- latency violations EEE data Iosses] [- latency violations WM data \osses]

Fig. 6: Aggregated Latency Violations and Data Losses Péage for 45 msecs (left)
and 50 msecs (right) latency thresholds appl= 2, py = 1%

ADV+VC+PRE|DLo0ss-0|DLoss-1|DLoss-2{DLoss-3
45 msecs 12.4 8 12.3 11.7 12.4

50 msecg 12 8 11.8 11 11.9
Table 3: Average number of active VMs € 2, py = 1%)

lower latency violations number. When the latency violatioreshold is changed to 50
msecs (see Figufé 5 (right)) the same trend applies, witlestheption of an increase
in the data leakage attacks of theeak-3 compared tdLeak-2 parameter setup. As it
is expected the average number of active VMs is reduced thaltases between the
45 msecs and the 50 msecs latency thresholds (presentebl@d)aFinally,DLeak-2
achieves the most fair tradeoff between the data leakagekatand the latency viola-
tions.

Data Loss Results In this set of experiments, we also try to achieve an accéptab
tradeoff between the latency violations and the occurrentelata losses due to ma-
chine failures. The failure probability of one machine istsep; = 1%, while we run
experiments for two values of replication factor ire= 2 andr = 3 and two values
of latency threshold, 45 and 50 msecs. The utility functioespnted in Sectidn 2.2 is
utilized, and similar parameter setups are examined:

— DLoss0: a = 100,b = 100,c =1

— DLoss1l:a=05,b=1,¢c=1

— DLoss2: a = 100, b = 100, ¢ = 160
— DLoss-3: a = 100, b = 1000, ¢ = 1600

Fig.[d presents the results fof = 1% andr = 2 for both 45 (left) and 50 (right)
msecs latency thresholds. The data loss probability rafiges0.28% for 8 VMs, up
to 1.5% for 18 VMs. As we observe in the left figui2l.oss-0 achieves the minimum
possible percentage of data losses i.e. 0.28%, with theafdsie highest observed
latency violation percentage, i.e. 65.32% as it maintdiesiinimum number of VMs



ADV+VC+PRE|DL0ss-0|DLoss-1|DLoss-2{DLoss-3
45 msecs 12.5 10.5 12.3 11.9 12.4

50 msecsg 12 10.8 11.9 11 11.9
Table 4: Average number of active VMs € 3, py = 1%)

Aggregated [Latency Violations|Data Loss Attacks] 10 Aggregated [Latency Violations|Data Loss Attacks]

0.27%
19.5] 10.31%

IS
o
{
\
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Fig. 7: Aggregated Latency Violations and Data Losses Péage for 45 msecs (left)
and 50 msecs (right) latency thresholds app = 3, py = 1%

(see Tablé13)DLoss-1 and DLoss-2 obtain a good tradeoff reducing the data losses
percentage up to 8.8% in absolute numbBisoss-3 is the less effective approach in
this experiment. As we observe in Table 3, the amount of daihcidents is correlated
to the mean number of active VMs, as expected. Exactly thedeand is observed in
the 50 msecs latency threshold experiments, shown i Fidght). DLoss-2 reduces
the data losses by 13%, while the latency violations aredfss (i.e. 5.59%) than the
maximum possible. (i.e. 61.29% sBé&oss-0 in the same figure). As previously noted
the same trend applies for the mean active VMs number, piesénthe second line of
Table[3.

Next, we change the replication factor from= 2 to » = 3 and repeat all the
experiments. As the replication factor is increased, tha ks probability is reduced
and ranges from 0.0056% for 8 VMs, up to 0.0816% for 18 VMs. [Rigresents the
results. As we observe in this figure, thkoss-0 parameter setup behaves differently
from all the previous experiments, as it achieves a tradeeffveen the data losses
and the latency violations, without keeping the amount ofsvil the lowest possible
vale. As it is depicted in Tablg 4, the mean number of actives\bt theDLoss-0 is
10.5, which explains the results of Fig. 7. The change in gtgabior is explained by
the reduction in the probability of the data loss inciderd.tAe probability is too low,
even the small difference (i.e¢/V M s) between the reward for the latency violation
state (i.e100) and the reward for the no-attack no-violation state (i08. + 1/V M s)
makes the difference and guides the system to avoid lateiotgtions. Taking into
account the highest latency violation percentage, whicl6%86, DLoss-0 is able to
reduce both the data losses and the latency violations thr4Hand 50 msecs latency
violation thresholdsDLoss-3 in Fig.[7 (left) is not able to reduce the data losses as it
utilizes almost the same mean number of VMs with Afid/+VC+PRE policy. In Fig.



[7 (right), where the latency threshold is set to 50 msecshalpolicies reduce the data
losses, while th®loss-2 achieves the best tradeoff with mean number of VMs equal to
11 as depicted in Tablé 4.

Generic LessonsA more thorough parameter analysis using also additiorthgs is
left as future work. However, the lesson learnt from the a&bexperiments is that the
elasticity decision making approach along with the 3-patamutility function in Sec.
[2.2 provides a powerful tool for striking a balance betweecusity and performance
requirements. As a rule of thumb to be used by system admidtoss, we advocate
setting the parametersandb at the order of hundreds (2 orders of magnitude higher
than the reward for the security incident) and the parametar order of magnitude
higher than the maximum cluster size, in order to yield aactife approach in reach-
ing a mid-way balance. Following this rule, our work can beleagu in a real-world
example, including the motivating one, given a desiredshoéd on performance and
understanding of the maximum probability of occurrencesaisity-related events that
can be tolerated. Our solution comes also with a clear imterfvith different cloud
providers, various NoSQL databases and data leakagedpeging mechanism5 [114]
in order to provide a complete system, and, finally, it hag \@w running overhead.

4 Related Work

The literature is rich with research efforts that considamsity issues within the con-
text of cloud computing. Recent initiatives mainly from tinelustry and government
organisations such as ENISA and Cloud Security Allianceetspught to produce a
number of guidelines and methods to help in the selectiodafdcproviders as well
as addressing some specific security concerns of the claidu¢h guidelines appear
often too cumbersome with no clear indications as to whenR @8y be considered
as not being trustworthy. This makes the valuable inforamatietailed within these
documents hard to exploit.

Gong et al.[[4] showed that using a side-channel attack,tankar can instantiate
new VMs of a target virtual machine so that the new VM can piidiy monitor the
cache hosted on the same physical maching . [7] identifieddossible places where
faults can occur in cloud computing: provider-inner, pd®riacross, provider user and
user-across. Mulazzani et al. [13] showed that attackensexaloit data duplication
techniques to access customer data by obtaining hash cdlde stbred file. Wenzel et
al. [21] consider security and compliance analysis of autsing services in the cloud
computing context.

There are also works that focus on the development of moaketdapproaches to
security analysis in cloud environments. A goal-driveli@aeh is introduced to analyse
security risks of cloud based system [8]. Goals, threatsiakd are consider from three
main components: data, service/application, and techaichorganisational measure.
We have also contributed to this line of research with theetbgpment of a model-
based framework that enables elicitation, analysis ofri#igcand privacy requirements
and selection of deployment models [9] and service progiftEZ] based on such re-
quirements. These works provide important developmengsalysing and modelling
security in cloud computing but they do not take into accerformance issues.



Our work is also related to proposals that deal with cloudt&ldy to maintain spe-
cific performance characteristics. Tan etlall[19] combioead elasticity with anomaly
prevention, which refers to the resource contention, sovibugs or hardware failures.
This proposal utilizes a prediction technique based oresystetrics to vertically scale
the resources of the VMs or to decide for VM migration, i.eeytltonsider different
forms of elasticity, as is also the case in Shen et al. [18]@adg et al.[[5]. A work
that indirectly solves MDP models utilizing reinforcemégarning-based policies to
guide elasticity appears in Tsoumakos et [all [20], whichxterded in our previous
performance-oriented work in_[lL4]. Differently to our wonkhich considers the same
VM types, Hector et al[[3] and Qi et al. [22] deal with VM typetlerogeneity issues. A
significant number of proposals use rule-based techniqugsitie the elasticity, e.g.,
Moore et al.[[11] and Copil et al._[2]. In Copil et al.|[2], a tedque is proposed that
addresses the implications of an elastic action acrosspteudimensions, providing for
example the cost implication of a horizontal scaling actane of those techniques is
accompanied by online probabilistic verification of eleityi properties. Finally, model
checking and runtime quantitative verification for cloutlgions other than horizontal
scaling has been proposed in Calinescu et al. [1] and Peedz|&6]. The former, uti-
lizes PRISM to guide service adaptation, while the lattespnts a technique to predict
the minimum cost of cloud deployments using PCTL over MDP etedn summary,
to the best of our knowledge, our proposal is the first onedbdtesses the elasticity
problem taking into account both performance and seclgsyas.

5 Conclusions

This work presents a novel approach, to support elastieitysibns for cloud databases,
which considers both performance and security requiresn8irice, these requirements
are contradicting, we have developed a probabilistic modetking solution that ac-
counts for user-defined trade-offs between them. As demairstby the experiments,
our proposal is capable of striking a configurable balanteden security-related in-
cidents and performance degradation.

We are working towards improving our approach towards tieiing directions.
Additional utility functions can be investigated, alongmviurther experimentation un-
der different settings. Also, tackling data leakage ana dtags concerns during elas-
ticity solves only a part of the security problems in cloudatieses. With a view to
providing more holistic solutions, we aim to investigatedabchecking based tech-
niques to help database owners decide the initial deployofaheir systems on the
cloud.
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