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Abstract. We focus on horizontally scaling NoSQL databases in a cloud envi-
ronment, in order to meet performance requirements while respecting security
constraints. The performance requirements refer to strictlatency limits on the
query response time. The security requirements are derivedfrom the need to
address two specific kinds of threats that exist in cloud databases, namely data
leakage, mainly due to malicious activities of actors hosted on the same physical
machine, and data loss after one or more node failures. We explain that usually
there is a trade-off between performance and security requirements and we derive
a model checking approach to drive runtime decisions that strike a user-defined
balance between them. We evaluate our proposal using real traces to prove the
effectiveness in configuring the trade-offs.

1 Introduction

Cloud computing is an evolving paradigm that has transformed the way organisations
and individuals store, share and access their information.It introduces a number of ad-
vantages and benefits by supporting a computational infrastructure where availability
of resources is dynamic, meaning that hardware and softwareare provided on demand
when users need them at a reasonable monetary cost. On the other hand, the paradigm
also creates challenges and introduces concerns related tosecurity. In fact, many or-
ganisations and individuals are still avoiding cloud services mostly because they are
not sure if the services provided, typically by different providers, are suitable for their
security requirements.

Security concerns related todata leakage anddata loss are of particular importance.
Simply speaking, data leakage is the unauthorised transferof data from one user to
another. Each user should have access to their own data and not be able to access the data
of others unless are authorised to do so. In the cloud, the risk of data leakage is increased
due to the storage of data in a multi-tenant environment. A recent study [6] has shown
that the risk of data leakage is increased for a company when employees use cloud-
based services. On the other hand, data loss refers to a condition where data is destroyed
and becomes unavailable. This could be the result of a malicious act (e.g. an attack to an
organisation’s data), due to human error or due to hardware/software/network failures.
In a cloud environment - and in particular in a multi-tenant environment - the risk of
data loss can be increased due to the multi-tenancy situation.



We deal with a particular feature of cloud databases, namelyelasticity, in light of
security concerns. Elasticity allows cloud users to modifythe amount of resources
used on-the-fly, so that they can always handle the external request load, even when
load changes are unanticipated. It is manifested in three main forms,horizontal scal-
ing, where virtual machines (VMs) are added or removed,vertical scaling, where the
hardware configuration of the existing VMs is modified, andmigration, where existing
VMs are moved between physical hosting machines. More specifically, in this work,
we extend our previous work [14] on performance-oriented horizontal scaling so that
we can reach elasticity decisions that take into account both performance and secu-
rity requirements. Performance requirements are expressed as a threshold regarding the
maximum allowed response time to user requests, while security requirements are ex-
pressed through the probability of data leakage due to multi- tenancy and of data loss
through hardware failure and/or due to multi-tenancy. Ideally, one would aim to attain
zero violations of the performance threshold, no security incidents, while minimizing
the monetary cost associated with the provision of cloud VMs.

Problem Challenges. The main challenge in the setting described above stems from
the fact that the three requirements, that is bounded response times, minimal mone-
tary cost and protection from failures and data leakage, areessentially intertwined and
contradicting to a large extent, as explained below:

– NoSQL databases partition the data across several nodes andcan benefit from
the inherent feature of cloud infrastructures to dynamically provision resources.
The combination of these two characteristics allow cloud databases to horizontally
scale when the external load increases, so that more serversbecome available to
respond to user requests. If horizontal scaling is performed carefully, for exam-
ple, in a load balancing way that avoids over-reacting, the average response time
can be maintained to a certain desired level regardless of any changes in the ex-
ternal load. More specifically, more VMs can be added (scale-out) when the load
increases, but this comes at an increased monetary cost. Analogously, when the
external load decreases, some servers can be released by theuser on the grounds
that over-provisioned servers incur unnecessary monetarycost. In private clouds,
monetary costs are implicit (e.g., through increased energy consumption), whereas,
in public clouds, a fee is actually paid.

– Online services may become unavailable due to failures of both the physical ma-
chines and the network, which can lead to data loss. The main mechanism to ad-
dress this type of threat is through replication (or mirroring) that allows for data
to be copied to several servers. The more the copies, the moreresistant to failures
the system becomes. However, this comes at the expense of higher response times
when updating data, since eventually changes need to be propagated to all copies.
Moreover, the more VMs are employed, e.g., for performance reasons, the higher
the probability a number of VMs equal to or greater than the replication factor to
fail thus leading to data loss.3.

– Despite any efforts from cloud providers, there is always the danger that malicious
cloud users hosted on the same physical machines as the databases get unautho-

3 The volume of lost data decreases with the number of VMs for the same replication factor.



rized access to data. Intuitively the more physical machines are used to host the
database, the higher the danger, whereas, at the same time, public machines are
more vulnerable.

To summarize, scaling out a database may improve the performance, but this may
incur unnecessary monetary costs due to over-provisioning. Mirroring can be combined
with scaling out and may cause performance problems but increases the robustness to
failures. Scaling out may also exacerbate the data leakage and data loss threats. As such,
keeping latency low through scaling-out is in contrast to monetary cost and avoiding the
threat of data leakage and data loss.

Real-world Motivating Example. We take motivation for our work from a real-case
scenario, the Greek National Gazette Infrastructure, involving the sharing and storage of
large number of documents. The Greek National Gazette is responsible for publishing
laws and legal decisions on the Government’s newspaper in order for these laws and
decisions to be active and applicable. Besides legal decisions there are also a number
of decision categories originated from the private and public sector that by law must be
send for publications to the Governments’s newspaper. In such scenario, the dynamic
provision of services with acceptable performance is very important as is the need to
make sure that documents are not leaked before the official publication, and they are
not lost after they are published.

Contributions. The contributions of this work are twofold. First, we present a Markov
Decision Process (MDP) modeling approach to cloud elasticity, coupled with proba-
bilistic model checking and accompanied by a security threat-aware decision mecha-
nism; to this end, we build upon our performance-oriented proposal in [14]. The elas-
ticity decision mechanism can account for user-defined trade-offs between performance
and security requirements, while aiming to avoid over-provisioning in any case. Second,
we present an evaluation that sheds light upon the impact of security requirements on
the elasticity behavior. Our results show that our decisionmaking proposal can effec-
tively strike a configurable balance between the conflictingrequirements mentioned
above.

Structure. The remainder of this paper is structured as follows. In Sec.2, we present
the MDP models and the decision mechanisms developed. In Sec. 3, we evaluate our
proposal for a wide range of security attack and failure probabilities using real cloud
database traces. We discuss the related work in Sec. 4 and conclude in Sec. 5.

2 Model-based security-aware elasticity

This section presents the probabilistic Markov Decision Process (MDP) model, which
serves as the basis of our proposed security-aware elasticity decision making mecha-
nism. We first introduce the basic modeling representation at a conceptual level and
how it is used to drive performance-oriented elasticity (initially proposed in [14]); this
approach is then extended and refined to cover both performance and security issues.



MDPs are specified by their states, actions, transition probabilities and rewards [17].
In our model, each state corresponds to a different cluster size, where the size equals
to the number of active cloud virtual machines (VMs),vms num, running a NoSQL
database, such as HBase and Cassandra. The NoSQL database istypically both sharded
and replicated; i.e., its tables are horizontally fragmented and each fragment is allocated
to multiple VMs. For readability reasons, we denote a state as s[vms num]. There are
three types of possible actions on every state: 1)add for VM additions, 2)rem for
removals, and 3)no op for no operation. For every distinct number of VM additions or
removals (ex.add1, rem2) there is a separate action, and the corresponding transitions
between two states through the same action have aggregate probability 1.
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Fig. 1: MDP model overview.

Fig. 1 (left) illustrates
a simplified instance of the
MDP model, where the
states represent the number
of active VMs. The edges
represent the possible ac-
tions: 1)addx (blue arrow),
2) remx (red arrow), and
3) no op (black arrow);x
is the number of new or re-
moved VMs. In this exam-
ple, the maximum number
of VMs allowed to be added
or removed in every step is
2, while the current num-
ber of active VMs is 3 (s3
state). The action type is labelled on top of every transition ([addx/remx/no op]). The
MDP associates a reward value to each state and action takinginto account the current
external conditions. State and action rewards are calculated based on user-specified util-
ity functions, as discussed later. The external conditionsconsidered in this work are cap-
tured by the user external loadλ, which is measured as the amount of submitted queries
per time unit. When the model is verified at runtime, the reward at states[vms num]

essentially reflects the expected utility of the system whenthere arevms num active
VMs for the current value of external load.

The probabilistic nature of our model can easily capture theuncertainty of the envi-
ronment that follows every elasticity decision; for example, for the same cluster size and
external load, p% times in the past where no performance violations and (1-p)% there
were ones. To mitigate uncertainty, Fig. 1 (right) illustrates an extension to the states
of the model of Fig. 1 (left). Each model state for a specific cluster size is extended to
n states, to better map the behavior of interest (i.e. performance, security). Each new
smaller state corresponds to a different expected system behavior and is derived through
clustering the log entries for the same external load and cluster size, resulting in devi-
ations from expected behavior. The probability of transition to each possible state is
commensurate to the probability of occurrence of the corresponding’s state behavior.



2.1 Model-based elasticity for performance

A common performance requirement is the latencylat of processing user requests, i.e.
the time elapsed from query submission to answer, not to exceed a certain thresholdx,
regardless of the number of concurrent users. However, for the same number of VMs
and the same amount of incoming loadλ, the latency may vary significantly, due to
factors that are both external to our model and hard to model;e.g., a time-consuming
operating system process is initialized. To ameliorate this, as presented in Fig. 1 (right),
there are more than one model states (sx1

, sx
···

, sxn
) for a single sizex.

In [14], several elasticity policies are examined, and the most effective one was
termed asADV+VC+PRE, standing foradvanced+violation-cluster+prediction. More
specifically, the policy is termed as advanced because it computes thecumulative re-
ward after a pre-specified number of transitions in the model, calledsteps; this con-
figurable parameter is set to 3, based on experimentation with different values [14].
TheVC label indicates that one of the extended states in the model of Figure 1 (right)
covers those states that violate the response latency threshold, while the other ex-
tended states correspond to non-violating states with different behavior.PRE indicates
that a prediction mechanism of future incoming load is utilized. Rewards are associ-
ated only to model states and are derived according to the following utility function:

u(vms) =







0, if lat > x

1 + (1/vms), if lat ≤ x
, wherevms is the current number of VMs.

As such, this utility function includes a user-specified constraint and manages to take
into account both performance issues (through thelat threshold) and the monetary costs.
The latter are implicitly considered by decreasing the utility in a way inversely propor-
tional to the number of machines when there is no performanceviolation. Overall, this
utility function penalizes both under-provisioning and over-provisioning. In this policy,
one initial state in Fig. 1(right) is mapped to more than one states to cover (i) the occa-
sion of latency threshold violations and (ii) normal execution. The transition probability
for each state is estimated according to log measurements ofsimilar past conditions; the
similarity is defined in terms of the external load. Finally,the model is equipped with
a prediction module, which allows for predicting the evolution of the external load and
thus computing the expected reward of each model state at each time step in the fu-
ture more accurately. The probabilities and state rewards are instantiated every time
elasticity actions are considered based on the current external load.

Then, a two-phase model verification procedure takes place to decide the optimal
path considering the performance. To this end, the PRISM tool is used [10]. PRISM
property specification language is PCTL probabilistic temporal logics. In the first phase,
we ask for the maximum cumulative reward of the model, generating multiple optimal
paths (sequences of states) that lead to the same optimal reward. Secondly, every first
action of every optimal path is checked with another PCTL property to define its max-
imum probability of performance specific Service-Level Agreement (SLA) violation.
The first action with the minimum maximum performance violation probability is the
one selected from our decision mechanism:

Pmax =?[F (stop)&(lat > x)&(first action = [action]),



where[action] is every first action of every possible path which leads to theoptimal
cumulative reward andstop is a flag that indicates that the verification of a path should
stop if the maximum number ofsteps is reached.

2.2 Model-based elasticity for data leakage

The performance-oriented model aims to avoid performance violations, while avoid-
ing costly over-provisioning. In this section, we describehow our model is enhanced
with capabilities to capture data leakages and consider them during elasticity decision
making. The modifications refer to both the main model and thedecision policy.

More specifically, we further extend the state transformation presented in Fig. 1(right)
introducing two-layer extensions. Hence, everysxi

state is further transformed tosxia

andsxina
states, wherei ∈ [1, n], a stands forattack andna stands forno attack. The

probability of these two new states is computed through the multiplication of theprobi
probability and the probability of attackprobia or no attackprobina

, respectively, i.e.,
probi = (probi · probia) + (probi · probina

), since the data leakage attacks and latency
violations are considered to be independent events. We consider that there is an explicit
mechanism to count and report the number of attacks leading to data leakages in a peri-
odic manner, e.g. [15]. The data leakage probability information is used in our models
to initialize the transition probabilities to states that representsafe or not safe states. A
reasonable assumption is that the probability of attacks per VM is the same and equal
to proba, and the attacks on different VMs are statistically independent; in that case,
probia becomes equal toi · proba

In addition, we apply modifications to the above model verification procedure:

1. The utility function is extended to account for data leakages and performance trade-
offs through a 3-parameter function. The exact formula employed is as follows:

u(vms) =



















0, if attack = true

a, if lat > x

b+ (c/vms), if lat ≤ x ∧ attack = false.

wherea, b andc are user defined values andattack is a flag that indicates a data
leakage. In Sec. 3 we show how setting the 3 parameters, can yield configurable
trade-offs between the different objectives.

2. The second PCTL property (Sec. 2.1) is transformed to seekthe first action with
the minimum maximum probability of both performance specific SLA violation
and data leakage:

Pmax =?[F (stop)&(lat > x ‖ attack)&(first action = [action])

2.3 Model-based elasticity for data loss

As discussed in the introduction, data loss can be caused by malicious co-tenants and
system failures. The attacks due to insecure multi-tenancycan be handled in exactly the



same way as those leading to data leakage. For the data loss threat, the same 3-parameter
utility function can be employed as well. However, the modeltransition probabilities to
states corresponding to failures require a bit more attention and need to be aware of the
degree of replicationr. To suffer from data loss, at leastr machines need to become
unavailable at the same time. If the probability of failure of one machine ispf , then the
probability ofr machines failing simultaneously is

(

n
r

)

prf .

3 Evaluation

Experimental Setup We have used logs from a real Cassandra infrastructure to con-
duct systematic experiments. The collected measurements are used firstly, to populate
the initial logs, and secondly, to emulate a real situation.Through emulation, we have
managed to fairly test each policy or configuration on an equal basis. The workload
consists of asynchronous read requests (req), the volume ofwhich evolves in a sinu-
soidal manner varying from 4000 to 16000 req/sec coupled with with 2 plateau periods
at 13000 req/sec for 1000 time units each. We collected measurements every 30 secs
and, in our emulation, a time unit is equal to this measurement collection period. In each
sine period, there are 360 measurements. We allow an elasticity action to take place ev-
ery 10 time units, to emulate a system that may modify the VMs every 5 mins (or 10
mins is cases of add action, to allow the system to stabilize). As the emulated load is
generated based on the logs, which also act as training set, we consider that the system
is well trained, and as such, the MDP models are instantiatedin an accurate manner. In
every up-scale action, up to 3 VMs can be added, while during down-scaling, up to 2
VMs are allowed to be removed in a single step. The cluster sizes varies from 8 up to
18 VMs. Every experiment runs for 5 iterations. Further details are provided in [14].
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Fig. 2: Latencies for 8 (left) and 18 (right) VMs

Fig. 2 presents the latency distribution in two characteristic states of the collected
dataset, where the dotted line shows the latency threshold of 45 msecs and the solid
line of 50 msecs in both figures. For the minimum cluster size and lowest amounts of
load, there are few latency values that violate the thresholds (mostly caused by the cold
cache of the system at the beginning of the measurement collection) and the system can
handle load up to about 8000 req/sec. However, additional machines need to be added if
the load further increases to avoid performance threshold violations. For the maximum



ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3

45 msecs 12.5 8 12.3 11.7 12.4

50 msecs 12 8 11.8 11 11.9
Table 1: Average number of active VMs (0.1% attack probability)

number of active VMs (18), except from a few outlier measurements, the system can
handle the full amount of the incoming load.

3.1 Experimental Results

Our experiments show the trade-offs between security attacks and latency violations for
a series of utility function configurations and probabilities of attack incidents.

Data Leakage Results The utility function presented in Sec. 2.1 tries to maintain
the lowest number of active VMs, when there is no latency violation applies. In these
cases, as the number of active VMs is placed in the denominator (1 + (1/vms)), over-
provisioning is avoided, which additionally, alleviates the data leakage threat. The util-
ity function presented in Sec. 2.2, aims to control the data leakage probability both more
directly and in cases, where the performance threshold is exceeded, through deriving an
acceptable tradeoff between the increase in the number of latency violations and the
decrease in the number of data leakage attacks.

In the first set of experiments, the latency threshold in the utility function is set to
either 45 msecs or 50 msecs. Initially, we set the probability of data leakage attack per
VM per step to 0.1%; later, we examine data leakage probabilities that differ by an
order of magnitude. We examine four different parameter setups for the utility function
presented in Section 2.2:

– DLeak-0: a = 100, b = 100, c = 1
– DLeak-1: a = 0.5, b = 1, c = 1
– DLeak-2: a = 100, b = 100, c = 160
– DLeak-3: a = 100, b = 1000, c = 1600

Intuitively, DLeak-0 tries to avoid attacks at any performance cost. The other 3 policies
place more importance on latency violations thanDLeak-0. In Fig. 3, we present the
adaptation of the number of VMs to the incoming load for each policy. The red dotted
line represents the incoming load while the solid blue line represents the number of
active VMs. Except few instabilities, due to imminent environment uncertainty infused
in our emulations, all the policies/configurations can broadly follow the load variation.

Fig. 4(left) on the left presents the percentage of time steps where latency viola-
tions (left blue bar) and data leakages (right green bar) occur for theADV+VC+PRE
policy. In this experiment, the latency threshold is 45 msecs, and, for cluster size from
8 to 18 VMs, the attack probability ranges from 0.8% (lower bound) to 1.8% (upper
bound)4. ADV+VC+PRE manages to yield a very low number of performance viola-

4 This implies that the database owner fully accepts the 0.8% probability of attacks. However,
all the numbers can be transferred to a setting, where the cloud is hybrid with 8 private VMs
and up to 10 public VMs. If the attack probability is 0% for theprivate ones, then all attack
percentages become 0.8% less.
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Fig. 3: Variation of the external load and the number of active VMs

50

55

60

65

70

65.63%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3
Decision Policy

0

1

2

3

4

5

6

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 (
%
) 
o
f 
a
tt
a
ck
s 
a
n
d
 v
io
la
ti
o
n
s

0.52%
0.90%

4.48%

0.72%
1.20%

0.83%
1.20% 1.12% 1.26%

Aggregated [Latency Violations|Data Leakage Attacks]

latency violations data leakages

50

55

60

65

70

61.83%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3
Decision Policy

0

1

2

3

4

5

6

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 (
%
) 
o
f 
a
tt
a
ck
s 
a
n
d
 v
io
la
ti
o
n
s

0.30%
0.73%

5.20%

0.59%

1.22%
0.79%

1.16% 1.14% 1.13%

Aggregated [Latency Violations|Data Leakage Attacks]

latency violations data leakages

Fig. 4: Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds and 0.1% data leakage probability per VM.

tions, at the expense of non-negligible secutiry attacks. The second pair of columns in
the same figure presents the results forDLeak-0, where the system is actually penal-
ized (zero reward) only for the attack situations, as the latency violation reward is very
close to the no-attack no-violation case. As expected, the number of VMs is kept at the
minimum possible number, i.e. 8 VMs; see Table 1. Overall, the attacks are reduced
to their minimum, however the latency violations are reaching their highest percentage
(65.63%).
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ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3

45 msecs 12.4 8 12.2 10.9 12.2

50 msecs 12 8 11.4 10.8 11.6
Table 2: Average number of active VMs (1%)

As we also observe in Fig. 4, theDLeak-2 parameterisation achieves a reduction in
the deviation from the lower bound of probability attacks of20% (from 0.4% to 0.32%)
compared to theADV+VC+PRE policy, at the expense of an increase in the latency
violations, since the system is prohibited to scale in several cases to avoid data leakage
attacks.DLeak-1,DLeak-3 parameter setups increase the number of violations without
being able to decrease the number of data leakages. As we observe in Table 1,DLeak-2
keeps the number of active VMs lower than theDLeak-1 andDLeak-3 i.e. 11.7, which
explains the decrease in the number of data leakages. This also is an indication that
different parameter configurations can achieve different trade-offs but this needs to be
performed carefully.

Fig. 4 (right) presents an experiment where latency violation threshold becomes
50 msecs. The data leakages percentage is decreased in all the security enhanced poli-
cies, withDLeak-3 achieving the optimal tradeoff. InDLeak-3, the deviation of data
leakages from their lower bound is reduced by 21% while the latency violations are
slightly increased. In the second line of Table 1, the average number of active VMs
in the DLeak-3, is bigger than the one fromDLeak-2 achieving almost the same data
leakages reduction albeit with a more significant increase in latency violations.

In Fig. 5 the data leakage probability because of multi-tenancy is changed to 1%,
hence the percentage of data leakage throughout the clusterranges from 8% to 18% in
a single step. As we observe, the data leakage percentage is reduced from 12.89% to
11.70% for theDLeak-2 with an increase in the latency violations (i.e. 14.56% from
0.44% achieved by ADV+VC+PRE policy), reaching a significantly better trade-off
thanDLeak-0. The mean number of the active VMs inDLeak-2 is reduced from 12.4 to
10.9, presented in Table 2. The parameter setupsDLeak-1 andDLeak-3 achieve almost
the same reduced percentage of data leakage attacks i.e. 12.2%, whileDLeak-3 achieves
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Fig. 6: Aggregated Latency Violations and Data Losses Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds andrep = 2, pf = 1%

ADV+VC+PRE DLoss-0 DLoss-1 DLoss-2 DLoss-3

45 msecs 12.4 8 12.3 11.7 12.4

50 msecs 12 8 11.8 11 11.9
Table 3: Average number of active VMs (r = 2, pf = 1%)

lower latency violations number. When the latency violation threshold is changed to 50
msecs (see Figure 5 (right)) the same trend applies, with theexception of an increase
in the data leakage attacks of theDLeak-3 compared toDLeak-2 parameter setup. As it
is expected the average number of active VMs is reduced in allthe cases between the
45 msecs and the 50 msecs latency thresholds (presented in Table 2). Finally,DLeak-2
achieves the most fair tradeoff between the data leakage attacks and the latency viola-
tions.

Data Loss Results In this set of experiments, we also try to achieve an acceptable
tradeoff between the latency violations and the occurrences of data losses due to ma-
chine failures. The failure probability of one machine is set to pf = 1%, while we run
experiments for two values of replication factor i.e.r = 2 andr = 3 and two values
of latency threshold, 45 and 50 msecs. The utility function presented in Section 2.2 is
utilized, and similar parameter setups are examined:

– DLoss-0: a = 100, b = 100, c = 1
– DLoss-1: a = 0.5, b = 1, c = 1
– DLoss-2: a = 100, b = 100, c = 160
– DLoss-3: a = 100, b = 1000, c = 1600

Fig. 6 presents the results forpf = 1% andr = 2 for both 45 (left) and 50 (right)
msecs latency thresholds. The data loss probability rangesfrom 0.28% for 8 VMs, up
to 1.5% for 18 VMs. As we observe in the left figure,DLoss-0 achieves the minimum
possible percentage of data losses i.e. 0.28%, with the costof the highest observed
latency violation percentage, i.e. 65.32% as it maintains the minimum number of VMs



ADV+VC+PRE DLoss-0 DLoss-1 DLoss-2 DLoss-3

45 msecs 12.5 10.5 12.3 11.9 12.4

50 msecs 12 10.8 11.9 11 11.9
Table 4: Average number of active VMs (r = 3, pf = 1%)
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Fig. 7: Aggregated Latency Violations and Data Losses Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds andrep = 3, pf = 1%

(see Table 3).DLoss-1 and DLoss-2 obtain a good tradeoff reducing the data losses
percentage up to 8.8% in absolute numbers.DLoss-3 is the less effective approach in
this experiment. As we observe in Table 3, the amount of data loss incidents is correlated
to the mean number of active VMs, as expected. Exactly the same trend is observed in
the 50 msecs latency threshold experiments, shown in Fig. 6 (right). DLoss-2 reduces
the data losses by 13%, while the latency violations are far less (i.e. 5.59%) than the
maximum possible. (i.e. 61.29% seeDLoss-0 in the same figure). As previously noted
the same trend applies for the mean active VMs number, presented in the second line of
Table 3.

Next, we change the replication factor fromr = 2 to r = 3 and repeat all the
experiments. As the replication factor is increased, the data loss probability is reduced
and ranges from 0.0056% for 8 VMs, up to 0.0816% for 18 VMs. Fig. 7 presents the
results. As we observe in this figure, theDLoss-0 parameter setup behaves differently
from all the previous experiments, as it achieves a tradeoffbetween the data losses
and the latency violations, without keeping the amount of VMs to the lowest possible
vale. As it is depicted in Table 4, the mean number of active VMs for theDLoss-0 is
10.5, which explains the results of Fig. 7. The change in the behavior is explained by
the reduction in the probability of the data loss incident. As the probability is too low,
even the small difference (i.e.1/VMs) between the reward for the latency violation
state (i.e.100) and the reward for the no-attack no-violation state (i.e.100 + 1/VMs)
makes the difference and guides the system to avoid latency violations. Taking into
account the highest latency violation percentage, which is65%, DLoss-0 is able to
reduce both the data losses and the latency violations for both 45 and 50 msecs latency
violation thresholds.DLoss-3 in Fig. 7 (left) is not able to reduce the data losses as it
utilizes almost the same mean number of VMs with theADV+VC+PRE policy. In Fig.



7 (right), where the latency threshold is set to 50 msecs, allthe policies reduce the data
losses, while theDloss-2 achieves the best tradeoff with mean number of VMs equal to
11 as depicted in Table 4.

Generic LessonsA more thorough parameter analysis using also additional settings is
left as future work. However, the lesson learnt from the above experiments is that the
elasticity decision making approach along with the 3-parameter utility function in Sec.
2.2 provides a powerful tool for striking a balance between security and performance
requirements. As a rule of thumb to be used by system administrators, we advocate
setting the parametersa andb at the order of hundreds (2 orders of magnitude higher
than the reward for the security incident) and the parameterc an order of magnitude
higher than the maximum cluster size, in order to yield an effective approach in reach-
ing a mid-way balance. Following this rule, our work can be applied in a real-world
example, including the motivating one, given a desired threshold on performance and
understanding of the maximum probability of occurrence of security-related events that
can be tolerated. Our solution comes also with a clear interface with different cloud
providers, various NoSQL databases and data leakage/loss reporting mechanisms [14]
in order to provide a complete system, and, finally, it has very low running overhead.

4 Related Work
The literature is rich with research efforts that consider security issues within the con-
text of cloud computing. Recent initiatives mainly from theindustry and government
organisations such as ENISA and Cloud Security Alliance, have sought to produce a
number of guidelines and methods to help in the selection of cloud providers as well
as addressing some specific security concerns of the cloud. Yet such guidelines appear
often too cumbersome with no clear indications as to when a CSP may be considered
as not being trustworthy. This makes the valuable information detailed within these
documents hard to exploit.

Gong et al. [4] showed that using a side-channel attack, an attacker can instantiate
new VMs of a target virtual machine so that the new VM can potentially monitor the
cache hosted on the same physical machine . [7] identified four possible places where
faults can occur in cloud computing: provider-inner, provider-across, provider user and
user-across. Mulazzani et al. [13] showed that attackers can exploit data duplication
techniques to access customer data by obtaining hash code ofthe stored file. Wenzel et
al. [21] consider security and compliance analysis of outsourcing services in the cloud
computing context.

There are also works that focus on the development of model-based approaches to
security analysis in cloud environments. A goal-drivel approach is introduced to analyse
security risks of cloud based system [8]. Goals, threats andrisks are consider from three
main components: data, service/application, and technical and organisational measure.
We have also contributed to this line of research with the development of a model-
based framework that enables elicitation, analysis of security and privacy requirements
and selection of deployment models [9] and service providers [12] based on such re-
quirements. These works provide important developments inanalysing and modelling
security in cloud computing but they do not take into accountperformance issues.



Our work is also related to proposals that deal with cloud elasticity to maintain spe-
cific performance characteristics. Tan et al. [19] combine cloud elasticity with anomaly
prevention, which refers to the resource contention, software bugs or hardware failures.
This proposal utilizes a prediction technique based on system metrics to vertically scale
the resources of the VMs or to decide for VM migration, i.e. they consider different
forms of elasticity, as is also the case in Shen et al. [18] andGong et al. [5]. A work
that indirectly solves MDP models utilizing reinforcementlearning-based policies to
guide elasticity appears in Tsoumakos et al. [20], which is extended in our previous
performance-oriented work in [14]. Differently to our workwhich considers the same
VM types, Hector et al. [3] and Qi et al. [22] deal with VM type heterogeneity issues. A
significant number of proposals use rule-based techniques to guide the elasticity, e.g.,
Moore et al. [11] and Copil et al. [2]. In Copil et al. [2], a technique is proposed that
addresses the implications of an elastic action across multiple dimensions, providing for
example the cost implication of a horizontal scaling action. None of those techniques is
accompanied by online probabilistic verification of elasticity properties. Finally, model
checking and runtime quantitative verification for cloud solutions other than horizontal
scaling has been proposed in Calinescu et al. [1] and Perez etal. [16]. The former, uti-
lizes PRISM to guide service adaptation, while the latter presents a technique to predict
the minimum cost of cloud deployments using PCTL over MDP models. In summary,
to the best of our knowledge, our proposal is the first one thataddresses the elasticity
problem taking into account both performance and security issues.

5 Conclusions
This work presents a novel approach, to support elasticity decisions for cloud databases,
which considers both performance and security requirements. Since, these requirements
are contradicting, we have developed a probabilistic modelchecking solution that ac-
counts for user-defined trade-offs between them. As demonstrated by the experiments,
our proposal is capable of striking a configurable balance between security-related in-
cidents and performance degradation.

We are working towards improving our approach towards the following directions.
Additional utility functions can be investigated, along with further experimentation un-
der different settings. Also, tackling data leakage and data loss concerns during elas-
ticity solves only a part of the security problems in cloud databases. With a view to
providing more holistic solutions, we aim to investigate model checking based tech-
niques to help database owners decide the initial deployment of their systems on the
cloud.
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