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Abstract 

     Object oriented applications and services are 
composed of a number of objects with instances, which 
interact to accomplish common goals. Fault tolerance is 
attained via application transparent replication policies 
for masking faults that do not recur after recovery. 
Recently, we realized the advent of a number of 
middleware infrastructures and services, which allow 
customizing the replication characteristics of each one of 
the objects that comprise a system. In this paper we 
describe the most important performance tradeoffs we 
experienced in the frame of a simulation-based study, 
with regard to different fault detection conditions, 
different loss behavior cases for the faulty objects and 
alternative request-retry strategies. We point out the need 
for suitable quantitative design techniques, which will 
allow taking into account different concerns in a 
combined manner (e.g. fault tolerance combined with 
load balancing and multithreading). Each such technique 
also has to allow trading the gains of a potential change 
to the objects’ replication properties against the imposed 
overhead, in order to fulfill the set design goal at the 
lowest possible cost. 
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1. Introduction 

     Software replication is a well-known technique used to 
increase the availability of systems and services. Object 
replication has been recently standardized in a plain 
specification (OMG FT-CORBA in [8]) that describes 
how to apply operations in multiple replicas of an object 
in a transparent and consistent manner.  

     Systems’ performance is affected not only by the 
applied replication policies but is also affected by the 
combined effect of a number of design choices such as 
what happens when a server object fails (loss scenarios), 
the applied request-retry policy which determines the 
object behavior when a response arrival is delayed, the 
applied request assignment to the available server objects, 
the applied multithreading scheduling algorithm etc. The 
interaction between all these factors has to be taken into 

account in terms of the caused simultaneous resource 
possession and the resulted hardware resource contention.  

     This difficulty is increased when the system is 
comprised of a number of interacting objects and the 
applied fault tolerance scheme is composed of 
miscellaneous replication policies for the constituent 
objects. This work investigates the performance tradeoffs 
that appear in this type of systems. 

     Object replication lies on the creation and management 
of multiple object replicas as a single object group. The 
client objects invoke methods on the server object group 
and one or more members of the server group execute the 
methods and return their responses to the clients, just like 
a conventional object. 

     In this context, object replication is used in minimizing 
loss of computation in the presence of non-recurrent 
faults. The role of a system or a service designer is to 
propose the architecture and the fault-tolerance policies 
for the provision of a possibly agreed level of quality of 
service (QoS). 

     Failures that do not reoccur after recovery may be 
caused by insufficient memory, media failures, power 
outages, non-partitioning network faults and the non-
determinism introduced by distributed timers and the use 
of multithreading. We consider three distinct possibilities 
when a server object fails and two types of behavior for 
the period that a server object is unavailable. The three 
possibilities regarding the occurrence of an object fault 
are: 

• all queued object requests are lost, 

• only the request in service (if any) is lost and 

• no request is lost. 

The two types of behavior for the period that a server 
object is unavailable are: 

• the server object continues to accept the object 
requests arriving while it is not available and 

• the server object does not accept the incoming 
object requests while it is not available. 

     According to the OMG FT-CORBA specification we 
distinguish between the active (AR) and the passive 
replication (PR) styles. 



 

     In this paper, we make evident the performance 
tradeoff problems that appear in composite replication 
schemes. The experiments were performed by a combined 
reliability and system’s traffic simulator and more 
precisely by the one described in [6]. 

     The investigation of the described performance 
tradeoffs took place with regard to a case system study, 
where we had the chance to apply fault-tolerance schemes 
with different fault occurrence behaviors, request-retry 
timeout intervals, requests queue buffer sizes etc. 

     Section 2 outlines the functionality of the simulator. 
Section 3 describes the used case system model and its 
parameters. In section 4 we present and comment the 
results obtained with regard to the investigated 
performance tradeoff problems. Finally, the concluding 
section points out the need for suitable quantitative design 
techniques, which will  

• allow the comparison of fault tolerance schemes 
that consist of different replication policies for 
the constituent objects and 

• determine the optimal (lowest cost) fault 
tolerance configurations, with respect to precise 
dependability requirements. 

 

2. The simulator and its performance evaluation 
approach 

     The used hybrid reliability and system’s traffic 
simulator allowed us to take into account the interaction 
effects regarding: 

• the simultaneous resource possession, caused by 
synchronous and often nested object invocations,  

• the hardware resource contention, as a result of 
the replicas placement,  

• the load and the blocking costs caused by the 
recurrent checkpointing/state transfer activities 
for the passively replicated objects (if any),  

• the load caused by a replica restart and re-
invocation of the logged requests (if any) and  

• the delays due to re-invocation of requests lost, 
as a result of a (non-partitioning) network fault 
or as a consequence of a server object fault. 

     When an actively replicated object receives an 
invocation, every replica performs the operations in the 
same order and all the replicas receive the responses in 
the same order. This ordering of the operations ensures 
that the states of the replicas are consistent at the end of 
the operation.  

     For a passively replicated object there is a single 
designated replica, known as the primary that performs all 
the operations for the replicated object. The state of the 
primary and the sequence of the invoked methods are 
recorded in a log, according to the specified checkpoint 
properties. All the other object replicas are called backups 
and they do not issue or receive invocations and 
responses, while the primary replica is operational. Their 

sole purpose is to provide a pool of replicas from which a 
new primary can be chosen, if the current primary fails. In 
cold passive replication (CPR), the backup replicas are 
not even loaded into memory (activated) and thus they do 
not come into existence until the primary replica fails. In 
warm passive replication (WPR), the backup replicas are 
already created and initialized and the state of the primary 
is retrieved and transferred to all of the backup replicas in 
a frequency specified at the system configuration time. 

     The modeled fault detection mechanism assumes the 
existence of a transparent and fault tolerant fault 
monitoring service. Each object is periodically checked 
according to a specified time interval. Fault monitoring 
has been found to incur an approximate 5% increment, in 
the processor utilization, for about 500 milliseconds. This 
overhead has been taken into account. 

     The simulator supports request re-invocation in the 
following contexts: 

• As a means utilized by a fault tolerance 
infrastructure or a client application to mask 
recipient faults and (non-partitioning) network 
faults, where the client-side does not detect the 
problem and receives no reply. The simulator 
allows the use of alternative request-retry 
timeouts and evaluates the accompanied 
overhead costs.  

• Requests re-invocation also takes place in the 
course of a log-based recovery in a statefull 
object. 

     Both cases of requests re-invocation conform to the at-
most-once invocation semantics of the CORBA object 
model, which means that each request is executed at most 
once. However, in the second case the recipient object 
replies with the result of the already invoked method, 
which incurs a certain processing cost for the server 
object. Duplicate message requests as a consequence of 
the employed replication scheme are detected and 
suppressed ([1], [2] and [7]). 
 

3. The case system model 

     The used case system model is comprised of four (4) 
stateless service objects (instances of the class 
SrvRequestAccepting) and four (4) state owning 
objects (obj1, obj2, obj3, obj4) interacting as shown 
in Figure 1. Received class-1 and class-2 requests are 
assigned to the available service objects on a round-robin 
basis. 

:SrvRequestAccepting object1:Class A

object2:Class Bobject3:Class C object4:Class D

[class1 Request] 1.1:

[class1 Request] 1.3:

[class2 Request] 1.2:
[class1 Request] 1.2:

[class2 Request] 1.1:

[class1 Request] 1.2.1:

1:

 

Figure1. Objects’ collaboration diagram. 



 

     The four (4) stateless service objects as well as obj2, 
obj3 and obj4 are replicated according to the warm 
passive replication policy - with a single backup – 
described in [5]. Obj1 is actively replicated by utilizing 
two (2) object replicas. 

     The resulted composite fault tolerance scheme allows 
testing any combination of  

• the scenarios mentioned in section 1 regarding 
the occurrence of an object fault and 

• the two types of behavior also mentioned in 
section 1, for the period that a server object is 
unavailable, 

• with a request-no-retry policy or  

• alternative request-retry timeouts for the 
constituent objects. 

     Table 1 describes the initial roles and the placement of 
the sixteen object instances to the available process nodes. 
Collocated object replicas are processed in a processor 
sharing discipline and each of them is placed on a separate 
object server. Table 2 specifies the system model 
parameters used in all test cases. 

process node 1 object 0 (backup) object 1 (1st replica) object 5 (primary)
process node 2 object 0 (primary) object 5 (backup)
process node 3 object 2 (backup) object 4 (backup)
process node 4 object 2 (primary) object 4 (primary)
process node 5 object 3 (backup)
process node 6 object 3 (primary)
process node 7 object 6 (primary) object 1 (2nd replica) object 7 (backup)
process node 8 object 6 (backup) object 7 (primary)

Object instances placement:

 
Table 1. Placement of objects’ replicas. 

object  
state size 
(in K B)

no of invocations 
betw een 

checkoints/state 
transfers

fault process 
(exp. w ith 

rates)

state  transfe r 
speed (sec/K B )

class1 service  
(exp. w ith 

rates)

class2 service 
(exp. w ith 

rates)

reinvoked 
requests (exp. 

w ith rates)

0 - no state 2r -   0 .05 0.05 -

1 0.9 AR 2r 0.8   0 .52 - 0.1

2 0.7 60 r 0.6   0 .25 0.25 0.1

3 0.5 30 r 0.6   0.7 0.7 0.1

4 0.6 90 2r 0.8  0.32 - 0.1

5 - no state 2r -  0.05 0.05 -

6 - no state 2r -   0 .05 0.05 -

7 - no state 2r -   0 .05 0.05 -

O bject rep licas restart times are exponential w ith rate 23.0 seconds.                     

Both class 1 and class 2 requests arrivals are exponential w ith rate 2.5 seconds.

R equest assignment to the available service objects fo llow s the R ound R obin pattern.                                                             

r =  fault rarity =  21600 seconds                                                                          

Table 2. Model parameters used in all test cases

 

objects 0, 
5, 6, 7

object 1 object 2 object 3 object 4

1 [2] 1 1 1

- - - - -

1 [2] 2 2 2

12 - 7.0 - -

1 [2] 3 3 3

12.0 - 7.0 - -

1 [2] 1 1 1

12 - 7.0 - -

1 [2] 1 1 1

14.0 - 9.0 - -

1 [2] 1 1 1

16.0 - 11.0 - -request-retry timeouts (in sec)

Fault monitoring intervals (in sec): 2.0, 4.0, 6.0, 8.0, 10.0,12.0          

loss scenario

Vrequest-retry timeouts (in sec)

loss scenario

VI

loss scenario

IVrequest-retry timeouts (in sec)

loss scenario

IIIrequest-retry timeouts (in sec)

loss scenario

IIrequest-retry timeouts (in sec)

loss scenario

Irequest-retry timeouts (in sec)

EXPERIMENTS

 
Table 3. Varied model parameters.



 
 

Table 3 summarizes the tested combinations of fault-
occurrence scenarios. The applied combination 
characterizes the fault-tolerance infrastructure used for the 
provision of the required level of dependability. The 
conducted experiments included the following three cases:  

• Loss scenario 1: No request is lost on 
occurrence of an object fault and the object 
continues to accept incoming requests while it is 
not available. 

• Loss scenario 2: All queued object requests are 
lost on occurrence of an object fault and the 
object does not accept the incoming object 
requests while it is not available. This is the 
default loss scenario for the object replicas of an 
actively replicated object. 

• Loss scenario 3: No queued object requests are 
lost on occurrence of an object fault, but the 
object does not accept the incoming object 
requests while it is not available. 

 

4. Performance tradeoffs and results 

     Fault tolerance performance in dependable object 
systems is ruled by a set of tradeoffs: 

• Excessive checkpointing/state synchronizations 
result in performance degradation, since in the 
course of a checkpoint placement or a state 
transfer incoming requests cannot be processed 
before its end. On the other hand, deficient 
checkpointing and state synchronizations incur 
expensive recovery.  

• Frequent request-retry timeouts and tight fault-
monitoring intervals result in increased overhead 
costs, as opposed to infrequent ones, which may 
cause high requests response times. 

     In addition to the forenamed tradeoffs, fault tolerance 
performance also depends on the structural dependencies 

imposed by the objects’ invocation flows. The used 
simulator utilizes appropriately designed performance 
measures, which allow trading the gains of a potential 
replication properties change, against the imposed 
overhead. 

     This is achieved by providing separate response time 
statistics for  

• the service requests that are not affected by the 
occurred faults (fault unaffected) from 

• the service requests that are affected by the 
occurred faults (fault-affected). 

     Fault-unaffected requests constitute the vast majority 
of the dispatched service requests, but response time 
guarantees in a dependable system also include the 
response times of the fault-affected requests. 

     The checkpoints placement tradeoff in dependable 
object systems has been already studied in [5] and [3]. In 
present paper, we provide interesting results regarding the 
effectiveness and the performance of the composite 
request-retry policies and loss scenario combinations 
shown in Table 3.   

     Figure 2 summarizes the performance results for the 
conducted experiments. 

     The fault tolerance scheme with a request-no-retry 
policy (SYSTEM I) does not exhibit significant overhead 
differences for the tested fault monitor intervals. 
However, we cannot use the request-no-retry policy for 
masking e.g. requests losses or queue buffer overflows in 
the server objects and non-partitioning network faults. 

     The fault tolerance scheme of SYSTEM IV is 
characterized by an extra overhead cost (as expected) and 
a steep increase of it, when using more effective fault-
monitoring settings. This higher overhead is due to the 
continuously occurring timeouts in the senders, while the 
sent requests are queued in the recipients. 

 

Figure2. Fault unaffected response times (sec). 



 
 

     When the already queued requests are lost at the time a 
server object fails and the incoming requests while the 
object is down are also lost (SYSTEM II), the overhead 
cost for the fault-unaffected requests is significantly 
lower. This comes as a consequence of the empty queues 
found by the (fault-unaffected) requests arriving in the just 
recovered operational primaries of the passively 
replicated objects. 

     When no queued requests are lost at the time a server 
object fails, but only incoming ones are lost (SYSTEM 
III), we obtain improved overhead costs compared to the 
case of SYSTEM IV and worse than in the case of 
SYSTEM II. 

     When the applied loss scenario is combined with less 
frequent request-retry timeouts (SYSTEM V & SYSTEM 
VI), we observe expanded possibilities to take advance of 
more effective fault detection settings, without additional 
overhead (fault-monitoring intervals from 12.0 to 6.0 sec). 
However, fault tolerance performance does not improve 
when increasing the used request-retry timeouts more than 
an appropriate threshold.  

     The selection of a composite request-retry policy with 
suitable timeout settings should be the subject of a 
systematic quantitative design method like the one 
introduced in [5] and [4]. 

     Fault tolerance effectiveness is quantified by the means 
of the fault-affected requests shown in the graphs of 
Figure 2. All depicted means were obtained along with 
95% confidence intervals with half width no more than 
3% of the estimated value. We thus ensured statistically 
significant samples for the fault-affected requests (faults 
are by definition rare events). 

     Regarding the effectiveness of the tested 
configurations we draw the following conclusions: 

• Excessively frequent request-retry timeouts do 
not improve fault-tolerance effectiveness due to 

the incurred overhead costs. This is shown when 
comparing the graphs of systems I, V and VI to 
the graphs of systems II, III, IV.     

• The applied loss scenario has a slight impact on 
the resulted fault-tolerance effectiveness and this 
is obvious, when comparing the graphs of 
systems II and IV for the tightest fault 
monitoring intervals (from 2.0 and 4.0 sec). 

 

5.  Conclusions 

     In this paper we described the two most important 
performance tradeoffs that have to be taken into account 
in the design of dependable object systems. In such 
systems, the perceived performance and fault-tolerance 
effectiveness is also influenced by the complex structural 
dependencies imposed by the objects’ invocation flows. 

     We provide interesting results with terms of a case 
system study. The experiments were performed by a 
combined reliability and system’s traffic simulator and 
more precisely by the one described in [6]. The used 
simulator utilizes performance measures, fabricated 
especially for the support of suitable quantitative design 
techniques. 

    Such a quantitative design technique should  

• make feasible the comparison of schemes, which 
consist of possible different replication policies 
and fault-tolerance settings,     

• allow taking into account different design 
concerns in a combined manner (fault tolerance 
combined with load balancing and 
multithreading), 

• be applicable in large-scale systems and 

Figure 3.Fault affected response times (sec).



 
 

• allow determining optimal replication properties, 
with respect to precise response time guarantees. 
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