

Performance Tradeoffs in Policies for Application Level Fault Tolerance

Theodoros Soldatos Nantia Iakovidou

Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{niakovid, thsoldat}@csd.auth.gr

Abstract

 Object oriented applications and services are
composed of a number of objects with instances, which
interact to accomplish common goals. Fault tolerance is
attained via application transparent replication policies
for masking faults that do not recur after recovery.
Recently, we realized the advent of a number of
middleware infrastructures and services, which allow
customizing the replication characteristics of each one of
the objects that comprise a system. In this paper we
describe the most important performance tradeoffs we
experienced in the frame of a simulation-based study,
with regard to different fault detection conditions,
different loss behavior cases for the faulty objects and
alternative request-retry strategies. We point out the need
for suitable quantitative design techniques, which will
allow taking into account different concerns in a
combined manner (e.g. fault tolerance combined with
load balancing and multithreading). Each such technique
also has to allow trading the gains of a potential change
to the objects’ replication properties against the imposed
overhead, in order to fulfill the set design goal at the
lowest possible cost.

Keywords:

Fault-tolerance, Software replication, Dependable systems

1. Introduction

 Software replication is a well-known technique used to
increase the availability of systems and services. Object
replication has been recently standardized in a plain
specification (OMG FT-CORBA in [8]) that describes
how to apply operations in multiple replicas of an object
in a transparent and consistent manner.

 Systems’ performance is affected not only by the
applied replication policies but is also affected by the
combined effect of a number of design choices such as
what happens when a server object fails (loss scenarios),
the applied request-retry policy which determines the
object behavior when a response arrival is delayed, the
applied request assignment to the available server objects,
the applied multithreading scheduling algorithm etc. The
interaction between all these factors has to be taken into

account in terms of the caused simultaneous resource
possession and the resulted hardware resource contention.

 This difficulty is increased when the system is
comprised of a number of interacting objects and the
applied fault tolerance scheme is composed of
miscellaneous replication policies for the constituent
objects. This work investigates the performance tradeoffs
that appear in this type of systems.

 Object replication lies on the creation and management
of multiple object replicas as a single object group. The
client objects invoke methods on the server object group
and one or more members of the server group execute the
methods and return their responses to the clients, just like
a conventional object.

 In this context, object replication is used in minimizing
loss of computation in the presence of non-recurrent
faults. The role of a system or a service designer is to
propose the architecture and the fault-tolerance policies
for the provision of a possibly agreed level of quality of
service (QoS).

 Failures that do not reoccur after recovery may be
caused by insufficient memory, media failures, power
outages, non-partitioning network faults and the non-
determinism introduced by distributed timers and the use
of multithreading. We consider three distinct possibilities
when a server object fails and two types of behavior for
the period that a server object is unavailable. The three
possibilities regarding the occurrence of an object fault
are:

• all queued object requests are lost,

• only the request in service (if any) is lost and

• no request is lost.

The two types of behavior for the period that a server
object is unavailable are:

• the server object continues to accept the object
requests arriving while it is not available and

• the server object does not accept the incoming
object requests while it is not available.

 According to the OMG FT-CORBA specification we
distinguish between the active (AR) and the passive
replication (PR) styles.

 In this paper, we make evident the performance
tradeoff problems that appear in composite replication
schemes. The experiments were performed by a combined
reliability and system’s traffic simulator and more
precisely by the one described in [6].

 The investigation of the described performance
tradeoffs took place with regard to a case system study,
where we had the chance to apply fault-tolerance schemes
with different fault occurrence behaviors, request-retry
timeout intervals, requests queue buffer sizes etc.

 Section 2 outlines the functionality of the simulator.
Section 3 describes the used case system model and its
parameters. In section 4 we present and comment the
results obtained with regard to the investigated
performance tradeoff problems. Finally, the concluding
section points out the need for suitable quantitative design
techniques, which will

• allow the comparison of fault tolerance schemes
that consist of different replication policies for
the constituent objects and

• determine the optimal (lowest cost) fault
tolerance configurations, with respect to precise
dependability requirements.

2. The simulator and its performance evaluation
approach

 The used hybrid reliability and system’s traffic
simulator allowed us to take into account the interaction
effects regarding:

• the simultaneous resource possession, caused by
synchronous and often nested object invocations,

• the hardware resource contention, as a result of
the replicas placement,

• the load and the blocking costs caused by the
recurrent checkpointing/state transfer activities
for the passively replicated objects (if any),

• the load caused by a replica restart and re-
invocation of the logged requests (if any) and

• the delays due to re-invocation of requests lost,
as a result of a (non-partitioning) network fault
or as a consequence of a server object fault.

 When an actively replicated object receives an
invocation, every replica performs the operations in the
same order and all the replicas receive the responses in
the same order. This ordering of the operations ensures
that the states of the replicas are consistent at the end of
the operation.

 For a passively replicated object there is a single
designated replica, known as the primary that performs all
the operations for the replicated object. The state of the
primary and the sequence of the invoked methods are
recorded in a log, according to the specified checkpoint
properties. All the other object replicas are called backups
and they do not issue or receive invocations and
responses, while the primary replica is operational. Their

sole purpose is to provide a pool of replicas from which a
new primary can be chosen, if the current primary fails. In
cold passive replication (CPR), the backup replicas are
not even loaded into memory (activated) and thus they do
not come into existence until the primary replica fails. In
warm passive replication (WPR), the backup replicas are
already created and initialized and the state of the primary
is retrieved and transferred to all of the backup replicas in
a frequency specified at the system configuration time.

 The modeled fault detection mechanism assumes the
existence of a transparent and fault tolerant fault
monitoring service. Each object is periodically checked
according to a specified time interval. Fault monitoring
has been found to incur an approximate 5% increment, in
the processor utilization, for about 500 milliseconds. This
overhead has been taken into account.

 The simulator supports request re-invocation in the
following contexts:

• As a means utilized by a fault tolerance
infrastructure or a client application to mask
recipient faults and (non-partitioning) network
faults, where the client-side does not detect the
problem and receives no reply. The simulator
allows the use of alternative request-retry
timeouts and evaluates the accompanied
overhead costs.

• Requests re-invocation also takes place in the
course of a log-based recovery in a statefull
object.

 Both cases of requests re-invocation conform to the at-
most-once invocation semantics of the CORBA object
model, which means that each request is executed at most
once. However, in the second case the recipient object
replies with the result of the already invoked method,
which incurs a certain processing cost for the server
object. Duplicate message requests as a consequence of
the employed replication scheme are detected and
suppressed ([1], [2] and [7]).

3. The case system model

 The used case system model is comprised of four (4)
stateless service objects (instances of the class
SrvRequestAccepting) and four (4) state owning
objects (obj1, obj2, obj3, obj4) interacting as shown
in Figure 1. Received class-1 and class-2 requests are
assigned to the available service objects on a round-robin
basis.

:SrvRequestAccepting object1:Class A

object2:Class Bobject3:Class C object4:Class D

[class1 Request] 1.1:

[class1 Request] 1.3:

[class2 Request] 1.2:
[class1 Request] 1.2:

[class2 Request] 1.1:

[class1 Request] 1.2.1:

1:

Figure1. Objects’ collaboration diagram.

 The four (4) stateless service objects as well as obj2,
obj3 and obj4 are replicated according to the warm
passive replication policy - with a single backup –
described in [5]. Obj1 is actively replicated by utilizing
two (2) object replicas.

 The resulted composite fault tolerance scheme allows
testing any combination of

• the scenarios mentioned in section 1 regarding
the occurrence of an object fault and

• the two types of behavior also mentioned in
section 1, for the period that a server object is
unavailable,

• with a request-no-retry policy or

• alternative request-retry timeouts for the
constituent objects.

 Table 1 describes the initial roles and the placement of
the sixteen object instances to the available process nodes.
Collocated object replicas are processed in a processor
sharing discipline and each of them is placed on a separate
object server. Table 2 specifies the system model
parameters used in all test cases.

process node 1 object 0 (backup) object 1 (1st replica) object 5 (primary)
process node 2 object 0 (primary) object 5 (backup)
process node 3 object 2 (backup) object 4 (backup)
process node 4 object 2 (primary) object 4 (primary)
process node 5 object 3 (backup)
process node 6 object 3 (primary)
process node 7 object 6 (primary) object 1 (2nd replica) object 7 (backup)
process node 8 object 6 (backup) object 7 (primary)

Object instances placement:

Table 1. Placement of objects’ replicas.

object
state size
(in K B)

no of invocations
betw een

checkoints/state
transfers

fault process
(exp. w ith

rates)

state transfe r
speed (sec/K B)

class1 service
(exp. w ith

rates)

class2 service
(exp. w ith

rates)

reinvoked
requests (exp.

w ith rates)

0 - no state 2r - 0 .05 0.05 -

1 0.9 AR 2r 0.8 0 .52 - 0.1

2 0.7 60 r 0.6 0 .25 0.25 0.1

3 0.5 30 r 0.6 0.7 0.7 0.1

4 0.6 90 2r 0.8 0.32 - 0.1

5 - no state 2r - 0.05 0.05 -

6 - no state 2r - 0 .05 0.05 -

7 - no state 2r - 0 .05 0.05 -

O bject rep licas restart times are exponential w ith rate 23.0 seconds.

Both class 1 and class 2 requests arrivals are exponential w ith rate 2.5 seconds.

R equest assignment to the available service objects fo llow s the R ound R obin pattern.

r = fault rarity = 21600 seconds

Table 2. Model parameters used in all test cases

objects 0,
5, 6, 7

object 1 object 2 object 3 object 4

1 [2] 1 1 1

- - - - -

1 [2] 2 2 2

12 - 7.0 - -

1 [2] 3 3 3

12.0 - 7.0 - -

1 [2] 1 1 1

12 - 7.0 - -

1 [2] 1 1 1

14.0 - 9.0 - -

1 [2] 1 1 1

16.0 - 11.0 - -request-retry timeouts (in sec)

Fault monitoring intervals (in sec): 2.0, 4.0, 6.0, 8.0, 10.0,12.0

loss scenario

Vrequest-retry timeouts (in sec)

loss scenario

VI

loss scenario

IVrequest-retry timeouts (in sec)

loss scenario

IIIrequest-retry timeouts (in sec)

loss scenario

IIrequest-retry timeouts (in sec)

loss scenario

Irequest-retry timeouts (in sec)

EXPERIMENTS

Table 3. Varied model parameters.

Table 3 summarizes the tested combinations of fault-
occurrence scenarios. The applied combination
characterizes the fault-tolerance infrastructure used for the
provision of the required level of dependability. The
conducted experiments included the following three cases:

• Loss scenario 1: No request is lost on
occurrence of an object fault and the object
continues to accept incoming requests while it is
not available.

• Loss scenario 2: All queued object requests are
lost on occurrence of an object fault and the
object does not accept the incoming object
requests while it is not available. This is the
default loss scenario for the object replicas of an
actively replicated object.

• Loss scenario 3: No queued object requests are
lost on occurrence of an object fault, but the
object does not accept the incoming object
requests while it is not available.

4. Performance tradeoffs and results

 Fault tolerance performance in dependable object
systems is ruled by a set of tradeoffs:

• Excessive checkpointing/state synchronizations
result in performance degradation, since in the
course of a checkpoint placement or a state
transfer incoming requests cannot be processed
before its end. On the other hand, deficient
checkpointing and state synchronizations incur
expensive recovery.

• Frequent request-retry timeouts and tight fault-
monitoring intervals result in increased overhead
costs, as opposed to infrequent ones, which may
cause high requests response times.

 In addition to the forenamed tradeoffs, fault tolerance
performance also depends on the structural dependencies

imposed by the objects’ invocation flows. The used
simulator utilizes appropriately designed performance
measures, which allow trading the gains of a potential
replication properties change, against the imposed
overhead.

 This is achieved by providing separate response time
statistics for

• the service requests that are not affected by the
occurred faults (fault unaffected) from

• the service requests that are affected by the
occurred faults (fault-affected).

 Fault-unaffected requests constitute the vast majority
of the dispatched service requests, but response time
guarantees in a dependable system also include the
response times of the fault-affected requests.

 The checkpoints placement tradeoff in dependable
object systems has been already studied in [5] and [3]. In
present paper, we provide interesting results regarding the
effectiveness and the performance of the composite
request-retry policies and loss scenario combinations
shown in Table 3.

 Figure 2 summarizes the performance results for the
conducted experiments.

 The fault tolerance scheme with a request-no-retry
policy (SYSTEM I) does not exhibit significant overhead
differences for the tested fault monitor intervals.
However, we cannot use the request-no-retry policy for
masking e.g. requests losses or queue buffer overflows in
the server objects and non-partitioning network faults.

 The fault tolerance scheme of SYSTEM IV is
characterized by an extra overhead cost (as expected) and
a steep increase of it, when using more effective fault-
monitoring settings. This higher overhead is due to the
continuously occurring timeouts in the senders, while the
sent requests are queued in the recipients.

Figure2. Fault unaffected response times (sec).

 When the already queued requests are lost at the time a
server object fails and the incoming requests while the
object is down are also lost (SYSTEM II), the overhead
cost for the fault-unaffected requests is significantly
lower. This comes as a consequence of the empty queues
found by the (fault-unaffected) requests arriving in the just
recovered operational primaries of the passively
replicated objects.

 When no queued requests are lost at the time a server
object fails, but only incoming ones are lost (SYSTEM
III), we obtain improved overhead costs compared to the
case of SYSTEM IV and worse than in the case of
SYSTEM II.

 When the applied loss scenario is combined with less
frequent request-retry timeouts (SYSTEM V & SYSTEM
VI), we observe expanded possibilities to take advance of
more effective fault detection settings, without additional
overhead (fault-monitoring intervals from 12.0 to 6.0 sec).
However, fault tolerance performance does not improve
when increasing the used request-retry timeouts more than
an appropriate threshold.

 The selection of a composite request-retry policy with
suitable timeout settings should be the subject of a
systematic quantitative design method like the one
introduced in [5] and [4].

 Fault tolerance effectiveness is quantified by the means
of the fault-affected requests shown in the graphs of
Figure 2. All depicted means were obtained along with
95% confidence intervals with half width no more than
3% of the estimated value. We thus ensured statistically
significant samples for the fault-affected requests (faults
are by definition rare events).

 Regarding the effectiveness of the tested
configurations we draw the following conclusions:

• Excessively frequent request-retry timeouts do
not improve fault-tolerance effectiveness due to

the incurred overhead costs. This is shown when
comparing the graphs of systems I, V and VI to
the graphs of systems II, III, IV.

• The applied loss scenario has a slight impact on
the resulted fault-tolerance effectiveness and this
is obvious, when comparing the graphs of
systems II and IV for the tightest fault
monitoring intervals (from 2.0 and 4.0 sec).

5. Conclusions

 In this paper we described the two most important
performance tradeoffs that have to be taken into account
in the design of dependable object systems. In such
systems, the perceived performance and fault-tolerance
effectiveness is also influenced by the complex structural
dependencies imposed by the objects’ invocation flows.

 We provide interesting results with terms of a case
system study. The experiments were performed by a
combined reliability and system’s traffic simulator and
more precisely by the one described in [6]. The used
simulator utilizes performance measures, fabricated
especially for the support of suitable quantitative design
techniques.

 Such a quantitative design technique should

• make feasible the comparison of schemes, which
consist of possible different replication policies
and fault-tolerance settings,

• allow taking into account different design
concerns in a combined manner (fault tolerance
combined with load balancing and
multithreading),

• be applicable in large-scale systems and

Figure 3.Fault affected response times (sec).

• allow determining optimal replication properties,
with respect to precise response time guarantees.

6. References

[1] P. Felber, R. Guerraoui, A. Schiper, “Replication of
CORBA Objects”, Distributed Systems, Lecture Notes in
Computer Science 1752, Springer Verlag, pp. 254-276,
2000.

[2] R. Guerraoui, P. Eugster, P. Felber, B. Garbinato and
K. Mazouni, “Experiences with object group systems”,
Software: Practice & Experience, vol. 30, no. 12, pp.
1375-1404, 2000.

[3] P. Katsaros, L. Angelis and C. Lazos, “Simulation
metamodeling for the design of reliable object based
systems”, Proceedings of the EUROSIM 2004 Congress,
EUROSIM, Paris, France, 2004.

[4] P. Katsaros, E. Angelis and C. Lazos, Applied
multiresponse metamodeling for queuing network
simulation experiments: problems and perspectives, In
Proceedings of the EUROSIM 2001 Congress,
EUROSIM, Delfts, The Netherlands, 2001

[5] P. Katsaros and C. Lazos, “Optimal object state
transfer - recovery policies for fault tolerant distributed
systems”, Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
04), IEEE Computer Society, Florence, Italy, pp. 762-
771, 2004.

[6] P. Katsaros and C. Lazos, “A simulation test-bed for
the design of dependable e-services”, WSEAS
Transactions on Computers, WSEAS Press, Vol. 4/2, pp.
915-919, 2003.

[7] P. Narasimhan, L. E. Moser and P. M. Melliar Smith,
“Strong replica consistency for fault-tolerant CORBA
applications”, Journal of Computer Systems Science and
Engineering, CRL Publishing, 2002.

[8] Object Management Group, Fault tolerant CORBA,
OMG Technical Committee Document, 2001-09-29,
September 2001.

