
Regression-based Statistical Bounds on Software
Execution Time ?

Peter Poplavko1, Ayoub Nouri1, Lefteris Angelis2,3, Alexandros Zerzelidis2,
Saddek Bensalem1, and Panagiotis Katsaros2,3

1 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

2 Information Technologies Institute, Centre of Research & Technology - Hellas
6th km Xarilaou - Thermi, 57001, Thessaloniki, Greece

3 Department of Informatics, Aristotle University of Thessaloniki, Greece
ayoub.nouri@univ-grenoble-alpes.fr

Abstract. Our work aims at facilitating the schedulability analysis of
non-critical systems, in particular those that have soft real-time con-
straints, where WCETs can be replaced by less stringent probabilistic
bounds, which we call Maximal Execution Times (METs). In our ap-
proach, we can obtain adequate probabilistic execution time models by
separating the non-random input data dependency from a modeling er-
ror that is purely random. To achieve this, we propose to take advantage
of the rich set of available statistical model-fitting techniques, in partic-
ular linear regression. Although certainly the proposed technique cannot
directly achieve extreme probability levels that are usually expected for
WCETs, it is an attractive alternative for MET analysis, since it can ar-
guably guarantee safe probabilistic bounds. We demonstrate our method
on a JPEG decoder running on an industrial SPARC V8 processor.

1 Introduction

We propose a new statistical measurement-based method, for the timing analy-
sis of software programs. Such methods aim at highly-probable execution time
overestimations, as opposed to the 100% certain upper bounds given by common
worst-case execution times (WCET) techniques. This option can be justified in
many practical situations. For systems that do not have safety requirements
(e.g., car infotainment) that are characterized by weak, soft or firm real-time
constraints, we can rely on statistical (over-)estimations based on extensive mea-
surements that we call probabilistic maximal execution times (MET).

The methods used to estimate arguably reliable METs are referred to as
measurement-based timing analysis (MBTA) techniques. In the recent research
literature, the reliability of MBTA techniques has been improved, even to the
level of considering them eligible for WCET estimates for hard real-time sys-
tems, under some restrictive hardware assumptions (e.g., cache randomization).

? The research leading to these results has received funding from the European Space
Agency project MoSaTT-CMP, Contract No. 4000111814/14/NL/MH

Such estimates are the so-called probabilistic WCETs, i.e., METs that hold
at an extremely high probability (1 − α) with α = 10−15 per program exe-
cution [CSH+12] or 10−9 per hour, which corresponds to the most stringent
requirements in safety-critical standards.

Analyses aiming to ‘true’ WCET (with α = 0) are costly to adapt to new ap-
plication domains and processor architectures, as they require the construction
of complex exact models that have to be verified. The techniques based on ex-
treme value theory (EVT) can ensure the levels of probability that render them
suitable for WCET. However, these techniques assume that the execution times
are random and identically distributed, a strong assumption that does not gener-
ally hold in practice. Execution times typically show significant autocorrelations
and their probability distribution varies due to the input data dependencies.

For non safety-critical systems, one can settle for METs characterized by α
a few orders of magnitude larger than that claimed by EVT methods (10−15).
In this case, it is possible to rely on a rich set of mature statistical model fitting
tools, such as linear regression, which can handle the input data dependencies.
In this paper, we propose a novel probabilistic MET analysis technique that
builds upon linear regression and the associated statistical analyses.

The contributions of the paper are the following. In Section 2, we discuss
MBTA and recall linear regression basics. In Section 3, we introduce a regres-
sion model, called Maximal Regression Model, that yields probabilistic upper
bounds for METs estimation, using confidence intervals. A great challenge for
building a regression model is to come up with the most influential explanatory
variables of the execution time. For this, we propose, in the same section, step-
wise regression, an iterative method for building a compact model including the
most relevant variables. Since the proposed method is measurement-based, we
also propose a statistical technique for assessing the input data in order to obtain
pertinent measurements. In Section 4, we rely on all these techniques to propose
a complete design flow for METs estimation. In Section 5, we demonstrate our
flow using a JPEG decoder case study with a significant input data dependency,
which runs on a state-of the art industrial SPARC V8 architecture with caches,
reset at every execution start. The related work is further discussed along with
the conclusions, in Section 6.

In [LS09], it was proposed to use linear regression for conservative execu-
tion time analysis, but without profiting from the rich statistics associated with
it. More specifically, that work aims at 100% conservative estimates (without
probabilities) and for this reason it focuses on non-statistical linear model fit-
ting techniques. However, targeting 100% conservative estimates may result in
a costly analysis, losing the advantage of regression. Moreover, their technique
for calculating the regression parameters is rather ad hoc and is not described
in detail. On the other hand, in [LS09], an important connection is established
between linear regression and WCET analysis methodologies, which is based on
implicit path enumeration.

In that work, some interesting possibilities are also shown for the explicit
modeling of hardware effects, e.g., pipelining, which could be used in our work.

However, for simplicity, in the present paper we do not address the hardware
modeling issue directly, but undoubtedly this is an important future work matter.
Nevertheless, since our analysis is based on measurements on real hardware and
since the variability attributed to hardware is consequence of the variability of
input data, we believe that hardware effects are covered indirectly up to a level
of accuracy that may be appropriate for non safety-critical applications.

2 Common Probabilistic Techniques

In this section, we first review the general MBTA setting, and we recall the basics
of linear regression while providing an interpretation in the context of MBTA.

2.1 Probabilistic Measurement-based Timing Analysis

MBTA consists of initially performing multiple measurements of the program
execution times and/or the execution times for its blocks of code, and a subse-
quent analysis to combine the results and thereafter to calculate the MET bound.
The probabilistic variant of MBTA utilizes statistical methods [CSH+12] for the
analysis phase.

We denote by Y the execution time, which in general depends on some other
variables, Xi. An MET bound with probability (1−α) can be obtained by finding
the minimal y such that Pr{Y < y} ≥ (1− α). Suppose that Y is random with
a known continuous distribution f , denoted Y ∼ f . A possible solution is given
through the quantile function of that distribution: y = Qf (1−α), such that, by
definition, Pr{Y < y} = (1− α).

In the case when Y is normally distributed, i.e., Y ∼ N (µY , σY), we have
y = µY +σY Φ

−1(1−α), where Φ−1 is the quantile function for N (0, 1). In order
to calculate METs using this formula, the ‘mean’ µY and the ‘standard devia-
tion’ σY have to be estimated from measurements with enough precision, which
requires a large enough number of measured Y samples. The normal distribution
can describe many random physical variables, especially noise and measurement
errors in model parameters. Furthermore, it provides access to a rich set of ma-
ture statistical tools for reliably estimating parameters from measurements.

Unfortunately, neither normal nor any other distribution law can be justified
to describe execution times directly. Therefore probabilistic MBTA techniques
do not consider execution time itself as a random variable, but only some of
its characteristics. For example, the normal distribution can be adequate if we
suppose that we dispose of an ‘oracle model’ that for each program run can
predict its execution time Y almost perfectly, but still makes a small error due
to various independent factors ignored by the ‘oracle’. Then it is reasonable to
apply the normal distribution law to characterize the error of the ‘oracle’. This
is, in fact, the underlying idea of our method. It should be mentioned, though,
that normal distribution is only adequate for the values of α that are not too
small, and thus this idea can be applied only for soft real-time systems.

To sustain very small α, MBTA analyses use EVT [CSH+12]. They apply
EVT probability distribution laws, again, not to the execution times directly
but to their upper bounds. However, as noted in [CSH+12], to justify the EVT-
based techniques an important requirement is that the execution times should
be independent and identically distributed (iid) random variables. However, this
requirement is typically violated due to the dependency on input data via mul-
tiple conditional branches and loops in the program. The input data parameters
are not iid and in a certain sense they are even ‘non-random’ (no practically
adequate distribution law can characterize them). Therefore for programs with
complex control flow the applicability of EVT-based techniques is difficult to jus-
tify. By contrast, using linear regression, our method separates the non-random
factors from the modeling error. The regression is our ‘oracle model’.

2.2 Linear Regression in the Nutshell

Linear regression is mostly used to predict average execution times [EFH04,HJY+10].
Though our goal is to produce upper bounds, we use the same approach as the
starting point. The main goal of linear regression is to model a variable of in-
terest Y , called dependent variable, with explanatory variables (or predictors)
Xi. The fundamental requirements for the validity of such an analysis is that
(i) Xi should have approximately linear contribution to Y and (ii) the approx-
imation error should be normally distributed. The first requirement is realistic
since one can always decompose execution time as a linear combination of code
block contributions. The second requirement validity is motivated in the previous
subsection and is further confirmed by experiments (see Section 5).

The concrete values of Xi represent the possibility to ‘explain’ (or ‘predict’),
with some precision, the concrete value of Y . For MET, an important implication
is that if we can obtain bounds for Xi this helps us to derive a bound on Y as
well. In linear regression [DS81], the dependence of Y on Xi is given by

Y (n) = β0 + β1X1(n) + . . .+ βp−1Xp−1(n) + ε(n) (1)

In the context of MBTA, the dependent variable Y is the program execution
time, and Y (n) is its nth observation in a series of measurements. Coefficients βi
are parameters that have to be fitted to measurements Y (n) to minimize the re-
gression error ε(n). The dependent variable Y , the error ε, and the parameters βi
are components of the execution time and therefore they can be modeled as real
numbers. Their probability distributions are assumed to be continuous, as it is
usually the case for timing metrics in statistical MET methods [CSH+12,BCP02].
On the contrary, the predictors Xi are discrete; they are in fact non-negative
integers that count the number of times that some important branch or loop it-
eration in the program is taken or skipped. The corresponding parameter βi can
be either positive, to reflect the processor time spent per unit of Xi, or negative,
to reflect the economized time.

From a probabilistic MBTA perspective, equation (1) has a concrete meaning.
It captures the ‘non-randomness’ of Y by building a model

∑
i βiXi(n) which

‘explains’ its dependence on some factors Xi, with different weights βi, reflect-
ing the complexity of the program. Ideally, the remaining ‘non-explained’ part
is a random variable β0 + ε(n) with β0 representing the mean value and ε(n)
the random deviation, whereby ε(n) are hopefully independent and normally
distributed, by N (0, σε).

The probability bounds proposed in this work are accurate only if this as-
sumption is valid. However, they are generally believed to be robust with respect
to deviations from the normal distribution. We can justify the ‘randomness’ of ε
by the hypotheses that all non-random factors have been captured by Xi. Also,
the normality of ε can be justified using the central limit theorem based on
the intuitive observation that the sources of execution time variation, e.g., non-
linearity of Xi, are additive in nature and independent.

The parameters βi are ‘ideal’ abstractions whose exact values are unknown.
They can only be estimated based on measurement data, e.g., with the least-
squares method. We denote by bi the estimate of βi and by Ŷ the estimate of Y .
Hence, when ε is 0, we get an unbiased regression model

Ŷ (n) = b0 + b1X1(n) + . . .+ bp−1Xp−1(n) (2)

whereas the difference eres(n) = Y (n)− Ŷ (n), called residual, serves as an esti-
mation of the error ε(n): ε(n) ≈ eres(n).

For more convenience, we use a vector notation. Let x = (Xi | i = 0 . . . (p−
1)), where X0 = 1 is an artificial constant predictor that corresponds to b0, and
b the vector of parameters estimators. The regression model can thus be seen
as the product of b and x.

The model parameters are obtained from a set of measurements - the so-
called training set - through a process known as model training (or fitting). In
our case, the training set consists of N measurements of Y (n) and x(n), with
N recommended in practice to be N � p, i.e. at least N > 5p [LS09]. We
consider a training-set with predictors measurements organized into a p × N
matrix Xtrain = [x(1) . . .x(N)], and the corresponding N -dimensional vector of
execution time measurements ytrain = (Y (n) | n = 1 . . . N).

3 Linear Regression for MET

In this section, we introduce the maximal regression model for conservative es-
timation of MET. Then, we propose a technique to identify the most relevant
predictors for the model. Since we rely on measurements, we also present a tech-
nique for collecting enough input data to ensure a good coverage.

3.1 The Maximal Regression Model

The least-squares method provides a closed form formula to compute the vector b
from Xtrain and ytrain (see [DS81]). However, each least-square model parameter
bi is itself a random variable, because it is obtained from a training-set ytrain

‘perturbed’ with a random error ε. It turns out from theoretical studies that
each estimate bi can be seen itself as a sample from a normal distribution, since
different training sets would lead to distinct samples bi from the distribution
shown in Fig. 1. This distribution has as mean value the unknown parameter βi
and therefore, the estimator samples bi are likely to be close to βi.

ββββ b
+

b
-̶-

∆∆∆∆b

b

Fig. 1: Parameter Confidence Interval

For the estimation of METs, the
model parameters b that are simply
‘close’ to β are not adequate. We pre-
fer a conservative model consisting of
parameters b+ that are likely to be
larger than β. Such parameters can
be obtained using the notion of con-
fidence interval, which is an interval
∆b = [b−, b+] that likely contains β
(see Fig. 1), such that

Pr{β ∈ ∆b} = (1− α) (3)

where α is some small value, usually specified in percents, e.g., α = 5 %. By
symmetry with the distribution of b, if we use b+, the upper bound of ∆b,
as coefficient estimator, then our model in the above example is conservative,
i.e., with probability (1− α/2). Therefore, our maximal regression model is not
the usual unbiased regression model of equation (2), but

Ŷ +(n) = b+0 + b+1 X1(n) + . . .+ b+p−1Xp−1(n) + ε+ (4)

where we assume that ε+ is the (probabilistic) maximal error. By analogy to b+,
we set it to a value, such that Pr{ε(n) < ε+} ≥ (1−α/2). Because ε ∼ N (0, σε)
we could use σε ·Φ−1(1−α/2). However, just as the case where we did not know
the exact value of βi and had to obtain an estimate bi instead, we do not know
the value of σε and have to use ε+ = σ̂+

ε · Φ−1(1 − α). The estimate σ̂+
ε should

be pessimistic, i.e., it should be biased to be larger than the value of σε with a
high probability. When obtaining its unbiased estimate, σ̂ε, the sum of squares
of regression ‘residual’ is involved, e2res(n) = (Y (n)− Ŷ (n))2, which is calculated
from the training set. Based on the properties of the residual [DS81], we can

show that for σ̂+
ε =

√
N∑
n=1

(Y (n)− Ŷ (n))2/Qχ2(N−p)(α/2), we have Pr{σε <

σ̂+
ε } = (1 − α/2), where Qχ2(N−p) is the quantile function of a χ2 distribution

with (N − p) degrees of freedom.
By comparison of equations (1) and (4) we can see that all the terms of

the first are likely to be inferior to the corresponding terms of the second, and
therefore Ŷ +(n) is a probabilistic bound of Y (n). Moreover, we have

Pr{Y (n) < Ŷ +(n)} ≥
(

1− (p+ 2)α

2

)
(5)

since we have (p+ 2) parameter estimates.

3.2 Identifying the Predictors: Stepwise Regression

When modeling execution times using a regression model, the simplest way to
construct the set of predictors is to create a predictor for every block of code
of the program that counts the number of block’s executions, see e.g., [LS09].
In this case, every program operator that introduces branching, e.g., loop, ‘if’
operator, would contribute at least with one predictor. This results in a relatively
large set of predictors, that we denote P and we call it the set of potential
predictors. In our method, we would like to identify only a small sufficient subset
of P for our regression model. By abuse of notation, we call it p (i.e., the same
notation for the set and the number of predictors).

By simple rule of thumb N > 5p, we see that by ignoring one predictor we can
save 5 measurements. However, the rationale is not merely a less costly model,
but also the so-called principle of parsimony : a model should not contain redun-
dant variables. Many predictors are interdependent, as, for example, in nested
loops, where the (total) number of inner-loop iterations is likely to have a strong
dependence on the number of outer-loop iterations. From a pair of dependent
variables we can try to keep only one, while attributing the small additional
effect of the other variable to random error ε. If we keep too many variables in
P , we will have overfitting, which means that our model will perfectly fit the
training set, but it will not be able to reliably predict any program execution
outside this set. The reason for this is that an overfitted model would exactly
fit not only the ‘true’ linear dependence βiXi, but also the particular sample
of non-linear random noise ‘ε’ encountered in the training set, but not in other
samples.

In most of the previous literature on execution time modeling, the identifi-
cation of predictors is either manual or ad hoc. Here we point to a practical and
mathematically sound algorithm for identifying the subset p of P . In applied
mathematical studies, the identification of a subset of useful predictors in a set
of candidates is an important problem to solve (see Ch. 15 of [DS81]).

An overall strategy of most such methods is based on starting with one predic-
tor and observing the reduction of the model error when adding new predictors.
It is thus expected that at a certain number of predictors, the error reaches satu-
ration and new variables do not reduce it significantly anymore. At this point, we
stop by adopting the hypothesis that the remaining error represents a ‘random
noise’. One of the most well-established methods is stepwise regression, which
we propose for use in the MET analysis. This algorithm is outlined here by the
following simple procedure (see [DS81] for details). A tentative set p of identi-
fied predictors is maintained, containing initially (for p = 1) only the constant
predictor X0 = 1, which is always kept in the set. The algorithm first tries to
add a variable that is ‘worthwhile’ to add and then to remove a variable that
is not worthwhile to keep; the same step is repeated until no progress can be
made. A variable is added when it is moved from P to p and it is removed when
moving it backwards. When there is no variable that can be added or removed,
the algorithm stops.

The criterion for considering a predictor ‘worth’ to be included depends on
the other variables that are already in p; the decision is based on evaluating the
least-squares regression Ŷ with and without the candidate predictor. Intuitively,
a predictor is ‘worth’ if its ‘signal to noise ratio’ is significantly large. The ‘noise’
here is the total model error, which is evaluated based on the residual sum of
squares and the ‘signal’ is the contribution of the variable to the variance of Ŷ .
If the variance does not change significantly (compared to the total error) when
the predictor is kept, then the predictor is not ‘worth’. The whole procedure
is controlled by a parameter αsw that sets a threshold for variable acceptance
and rejection, and is based on statistical hypothesis-testing procedures under
the assumption that modeling error is normally distributed.

3.3 Quality of Input Data: Cook’s Distance

The set of measurements should represent all important scenarios that may occur
at runtime. To ensure this, the engineer should discover the most influential
algorithmic complexity parameters of the program that may vary at run time.
Then, it is essential to obtain an input data set, where every combination of
these factors is represented fairly.

For the linear regression, a useful mathematical metric of input-data quality
is Cook’s distance. Given a set of measurements, this metric ranks every measure-
ment n by a numeric ‘distance’ value D(n) that indicates the amount to which
the measurement influences the whole regression model. The regression model
should not be dominated by ‘odd’ measurements; it is generally recommended
to have D(n) < 1 or even D(n) < 4/N . For convenience, let us refer to the
measurements with D(n) > θ as the bad samples, for some threshold θ. These
samples should be examined, and one should either add more similar samples
(so that they are not exceptional anymore) or remove them from the training
set (keep them for testing).

4 A Design Flow for MET

We build upon the techniques presented in the previous section to present a
complete design flow for MET estimation4. In this section, we give a simplified
view of the flow and we discuss its steps (see Figure 2). The first phase of the flow
is the instrumentation of the input program in order to obtain measurements.
Then, the most relevant predictors p are identified. Finally, the model to estimate
MET is produced in the model construction phase.

4.1 Instrumentation and Measurements

In some MBTA approaches, multiple blocks of code may have to be instrumented
and measured [BCP02]. Such instrumentation can be intrusive, whereas it is

4 Sources (Octave) can be found at www-verimag.imag.fr/~nouri/exec-time-lra

www-verimag.imag.fr/~nouri/exec-time-lra

& Mesurements

Instrumentation Predictors

Identification
Model ConstructionProgram

P p MET

Fig. 2: A simplified view of the MET design flow

likely to obtain inaccurate results when adding the block contributions, due to
various hardware effects (e.g. pipelining).

However, the instrumentation is not intrusive in a regression-based approach,
where measurements are end-to-end, i.e., they include the entire program. For
the end-to-end measurements, Y (n), the program has to be instrumented only
at the start and the end. As for the measurements needed to construct the set of
potential predictors P and to obtain their values Xi(n), i ∈ P the instrumented
program does not have to run on the target platform; a workstation can be used
instead, but it is essential to run the program with the same input data, as those
used for the Y (n) measurements. We refer to these measurements as functional
simulations5.

Fig. 3: Instrumentation and predictors

The instrumentation for func-
tional simulations consists of inserting
instrumentation points (i-points) into
the source code of the program. The
i-points are inserted at every point,
where the control flow diverges or
converges, e.g., at the start/end of
the conditional and loop blocks, at
the branches of the conditional state-
ments et cetera. An i-point is a sub-
routine call passing the i-point identi-
fier ‘q’, e.g., in Fig. 3 we have points
with q = 1, 2, . . . , 5. The goal is to get
a measurement record about the path
followed in an simulation run. This in-
formation consists of the sequence of
i-points visited during the simulation
run, which is called i-point trace and it
is denoted as Tr(n) = (q1, q2, q3, . . .).
Examples of traces for Fig. 3 are
(1,2,4), (1,2,3,4,5), and (1,2,4,5,5,5).

From the traces we automatically
detect the set of basic blocks, which
correspond one-to-one to predictors in P . We count the number of their occur-
rences in the trace, denoted f(q1, q2), where q1 and q2 are the i-point boundaries

5 For a higher precision, instead of instrumenting the source code one could instru-
ment the binary code for the target platform and run it on an ISS simulator for
construction of P , while still using non-instrumented version for the end-to-end ex-
ecution time measurements on the target platform.

of the block. We have ∀k,Xk = f(qi, qj) for some i, j. For the example in Fig. 3
we would detect a predictor f(2, 3), which corresponds to the ‘if’ operator body,
and predictor f(5, 5), which corresponds to one loop iteration. For a general
procedure, we refer the reader to [PAN+16].

4.2 Final Flow Steps

As sketched in Fig. 2, having done the measurements and detected the set of
potential predictors P , we identify the final set of predictors p ⊆ P , as described
in Section 3.2. It is worth mentioning that measurements are separated into two
sets, a training set (Xtrain,ytrain) and a test set (Xtest,ytest)6, and that only
the former is used to construct the model, whereas the latter is used to evaluate
its quality. The next step of the flow is the construction of the maximal regres-
sion model, as described in Section 3.1. This phase will instantiate the model,
i.e., given the set of predictors and their associated measurements Xtrain,ytrain,
it will estimate their coefficients, et cetera. In this phase, we also evaluate the
quality of input data as described in Section 3.3. Finally, we calculate a MET
bound.

Pragmatic MET. Our maximal regression model could be used within the
context of the implicit path enumeration technique (IPET) [LS09]. In this case,

the MET would be computed by ε+ + maxx∈X

(∑p−1
i=0 b

+
i Xi

)
, with X the set of

all vectors x that can result from feasible program paths. This is achieved by
solving the integer linear programming (ILP) problem with a set of constraints
on the variables Xi. The constraints are derived from a static program analysis,
which requires sophisticated tools, as well as from user provided hints, such
as loop bounds. We have not yet implemented the IPET method in our flow.
Currently, we assume that for each predictor we have (either from measurements
or user hint) its minimal and maximal bound, X− and X+ and we calculate the

pessimistic estimate: ε+ + b+0 +
∑p−1
i=1 (bX)+i , where (bX)+ is b+X+ if b+ > 0 or

b+X− otherwise. We refer to this estimate as the pragmatic MET.
It is true that the pragmatic MET can be very pessimistic; for example, in

switch-case branching it may associate with every case a separate predictor and
then assume that they all take the maximal value simultaneously. Nevertheless,
the pragmatic MET is safe with the probability bound (5) if the regression model
itself is safe with this bound.

5 A JPEG Decoder on a SPARC Platform

We use a JPEG decoder program written in C7 to illustrate our method. The
JPEG decoder processes the header and the main body of a JPEG file. Basically,

6 A common practice is to consider 70% for the training set and 30% for the test set.
7 Downloaded from Internet, presumably authored by P. Guerrier and G. Janssen 1998

the main body consists of a sequence of compressed MCUs (Minimum Coded
Units) of 16 × 16 or 8 × 8 pixels. An MCU contains pixel blocks also referred
to as ‘color components’, as they encode different color ingredients. In the color
format ‘4:1:1’ an MCU contains six blocks. For monochromatic images, the MCU
contains only one pixel block. The pixel blocks are represented by a matrix of
Discrete Cosine Transform (DCT) coefficients, which are encoded efficiently over
few bits, so that a whole pixel block can fit in only a few bytes.

The hardware for the execution time measurements was an FPGA board
featuring a SPARC V8 processor with a 7-stage pipeline, a double-precision
FPU, a 4 KB instruction cache, a 4 KB data cache, a 256 KB Level-2 cache, and
an SDRAM. The data caches were reset at every new program run (i.e., after
loading a new JPEG image), so that the data caches are always empty at the
beginning.

5.1 Instrumentation and Measurements

We used 99 different JPEG images of different sizes and color formats, which
yields 99 execution traces including the predictors Xi and the execution time
Y .8 From the generated traces we detected 103 potential predictors. We then
randomly split the complete set of 99 measurements into N = 70 for the training
set, and 29 for the test set used to verify the regression model. In the training
set, 8 predictors showed up as constants and they were therefore eliminated, thus
ending up with P = 95 potential predictors, plus one constant X0 = 1 added
by default. Since we had a training set size N = 70, by the rule of thumb, we
should not exceed N/5 = 14 variables, to avoid overfitting.

It is worth mentioning that the maximal observed execution time (over the
whole set of measurements) corresponds to an image of a particularly large size,
yielding maximal measured time of 23643 Mcycles, while the mean time was
only 1000 MCycles. In the remaining discussion, all timing values (e.g., errors)
are reported in Megacycle units. We use α = 0.05 for the maximal regression
parameters and MET, but we also present the final estimate for α = 0.00005.

5.2 Predictors Identification and Model Construction

Basic Model. The simplest model to build is when p = 1, i.e., when the execu-
tion time is modeled as a purely random variable β0 + ε(n) without non-random
contributors. This case corresponds to a näıve measurement-based method where
the execution time does not capture the non-random factors. In this case, we
cannot expect good results with such a strong input data dependency as in JPEG
decoders. Indeed, we carried out a normality test for Y using the Kolmogorov-
Smirnov test that reported only a mere 2% likelihood, which was not surprising
as the histogram for Y was considerably skewed and had a few extreme values
due to images of exceptionally large size.

8 We could not obtain more measurements because the FPGA card was available for
a limited period of time, and loading data into it required some manual work.

The obtained error in this case is large (compared to the mean) ε+ = 6650
and the pragmatic MET is ≈ 8000, which underestimates the maximal measured
time; this adversity is the consequence of the relatively large model error whose
distribution was essentially not normal and which was actually not random (it
could be easily controlled, e.g., made large by using large JPEG images).

In line with our methodology, these observations point to a need of adding
more predictors into the model (e.g., those characterizing the image size) in
order to ensure a smaller, random and normally distributed error, so that the
computation of MET is more accurate.

Our Method. We first tune the αsw (≈ 20%) to obtain p = 6, i.e., to have 5
predictors. Table 1 shows the identified variables – in the order of their identifica-
tion – and the corresponding MET calculation on the training set. The meaning
of the identified variables is the following. The first predictor f(271, 244) corre-
sponds to the byte count in the ‘main body’ of JPEG. The second basic-block
counter f(90, 30) gives the pixel block count specifically for those blocks that
had correct prediction of the 0-th DCT coefficient. Typically, such blocks are
not costly in terms of needed bytes for encoding. At the same time, the contri-
bution of the costly blocks can be captured by the first predictor. Hence, the
f(90, 30) as second predictor can account for the additional computations that
were not accounted for by the first predictor; a similar variable in P , the total
pixel block count, f(406, 26), would give less additional information and hence
was not identified by our method.

The remaining predictors have less impact on the execution time. The third
predictor, f(101, 101), corresponds to the number of elements in the color format
minus one, e.g., 5 = 6− 1 for the 4:1:1 format and 0 for monochromatic images.
Equivalently, it gives the number of pixel blocks per MCU block minus one. We
note that this predictor has a negative regression coefficient. The JPEG decoding
is characterized by two related cost components: a cost per pixel block (reflected
by the first two predictors) and a highly correlated cost per MCU block. The
more pixel blocks fit into one MCU, the less overhead per pixel block has the
MCU processing and this presumably explains why the found coefficient is neg-
ative. The fourth identified predictor, f(80, 81), counts the number of ‘padded’
image dimensions, X and Y, i.e., the dimensions which are not exactly propor-
tional to the MCU size (16 or 8 pixels). When an image has such dimensions, less
processing is required and less data copying for ‘partial’ MCU blocks, which pre-
sumably explains the negative coefficient for this predictor. Finally, the predictor
f(409, 410) is zero for colored images. This predictor counts the total number of
MCUs in monochromatic images and its impact is presumably complementary
to that of f(101, 101).

The obtained pragmatic MET is 26696, which, as we expected, exceeds 23643,
the observed maximal time. For the MET, we used the X+ and X− observed in
the measurements. We recall that the pragmatic MET is likely to incur extra
overestimation by including unfeasible paths. In fact, this is presumably the case
for the presented model, as the calculation in Table 1 may combine a relatively

p b− b+ X− X+ (bX)+

(Constant) 409.660 637.29 1 1 637

f(271, 244) 0.010 0.011 3688 1818500 19752

f(90, 30) 0.055 0.070 28 27215 1917

f(101, 101) −49.506 −11.530 0 5 0

f(80, 81) −113.010 −26.009 0 2 0

f(409, 410) 0.013 0.022 0 192280 4150

ε+ − − − − 240

Pragmatic MET − − − − 26696

Table 1: Stepwise Regression Results in the Training Set

large byte and block count that is typically required for colored images with
pessimistic contributions of the predictors representing monochromatic images.
With the IPET approach this possibility would be excluded and a more realistic
worst-case vector x would have been obtained. A lower bound on hypothetical
IPET results with the given model is 25764, which is calculated as the observed
maximum value of Ŷ +(n). Compared to p = 1, we see a significantly smaller error

ε+ = 240. In the test set, we saw reasonably tight overestimations from Ŷ +(n),
however, two underestimations were detected. Analyzing these two samples, we
saw that they had Cook’s distance significantly larger than all other samples.

Our quality of input data assurance procedure has moved the two samples
from the training to the test set and we re-constructed the model for p = 6.
The obtained error was ε+ = 52 and we observed a tight overestimation for all
samples. The normality test of the residual returned 26% likelihood on the train-
ing set. The MET has become less accurate, reaching 28048. This is presumably
explained by the degraded stability of regression accuracy for the bad samples;
the sample that provided X+ and maximal Y was among such samples. This
corresponded to a monochromatic image of exceptionally large size, whereas a
vast majority of other samples were color images of much smaller size. In prac-
tice, such a situation should be avoided by well prepared measurement data.
For technical reasons we could not repair the situation by adding more mea-
surements but we decided to keep the bad samples for illustrative purposes. An
observation that should be made, though, is that the instability did not result
in unsafe underestimation, but instead in a safe overestimation.

By experimenting with larger values of p, we found that the model with
p = 8 was optimal. The error ε+ was reduced to 35 and stopped improving,
thus showing saturation. With more variables, a degradation of model tightness
was observed, probably because the new parameters b started getting ‘blurred’,
showing a ∆b much larger than b. The optimal p = 8 yielded 97% error normality
likelihood, with tight overestimations for all measured samples except for the bad
ones; the resulting MET was 56538, not particularly tight due to bad samples,
but safe. By (5) this estimate corresponded to Pr > 0.725 – for α = 0.05. The
MET estimations using the same model at Pr > 0.999725 amounts to 58859. As
it is shown in Figure 4a, the corresponding maximal regression model showed
tight overestimations over the measurements not only for α = 0.05 but also for

α = 0.00005. In Figure 4b, the histogram of residual error is shown that is close
to the normal distribution. This is in line with the 97% estimate of normality test
and it justifies the use of statistical formulas associated with linear regression.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

test set

E
xe

cu
tio

n
T

im
es

 (
M

cy
cl

es
)

Actual and Predicted Execution Times

Actual
alpha=0.050000
alpha=0.000050

(a) Obtained execution times (on test set)

-30 -20 -10 0 10 20 30 40
0

5

10

15

20

Residual in training set (Mcycles)

(b) residuals (on training set)

Fig. 4: Maximal regression model results for p = 8

6 Related Work

Historically, linear regression and other model fitting techniques have been mostly
used to predict average, not conservative, software performance in terms of exe-
cution time, e.g., [EFH04], and energy consumption. A regression for maximal
execution time was proposed in [LS09], but, unlike our work, their regression
model is not based on statistical techniques. Instead, the authors sketch an ad hoc
linear programming based approach and they admit that additional future work
is still required. In contrast to our work, all potential predictors are included in
the model, instead of a small subset of the significant ones, and therefore their
techniques presumably require many more measurements to avoid overfitting,
and more costly calculations to estimate all parameters. The coverage criteria
are based on existence of an hypothetical exact model with a large enough num-
ber of variables, which should be known, whereas we tolerate presence of error
and estimate the coverage probabilistically. On the other hand, they have showed
how a maximal regression model, such as ours, could be combined with existing
complementary WCET techniques for calculating tighter execution time bounds
than our pragmatic MET formula.

In [HJY+10], regression analysis is used in the context execution time pre-
diction. The proposed method, called SPORE, considers polynomial regression
models, as opposed to our work. Although it fundamentally differs from our
work, the SPORE method is faced with similar challenges, namely, identifying a
relevant compact set of predictors. Two ways are proposed in [HJY+10], which
are both variants of the LASSO (least absolute shrinkage and selection operator)

[HTF09] statistical technique. However, since used for prediction, the selection
method seems to give an important weight to the cost of computing each pre-
dictor. This potentially results in eliminating relevant predictors. Furthermore,
no clear indication is given regarding the choice of the input data sample and
its impact on the accuracy of the obtained model.

Among the works on statistical WCET analysis, we only consider those that
take into account non-random input data parameters. One of the methods pro-
posed in [CSH+12] is to enumerate execution paths of the program and treat
them separately, however this approach is appropriate only for programs with
simple control flow structure. Another approach is proposed in [BCP02]. In that
work, program paths are modeled using ‘timing schema’, which split the pro-
gram into code blocks. The WCET distributions of each block are measured
separately and then the results for the different blocks are combined. However,
this approach requires executing instrumentation points together with timing
measurements, which introduces the unwanted probe effect.

7 Conclusions

In this paper, we have presented a new regression-based technique for the estima-
tion of probabilistic execution time bounds. Unlike WCET analysis techniques, it
cannot ensure safe estimates at very high probability levels, but it can be utilized
for preliminary WCET estimates and in the context of non safety-critical sys-
tems. We have described a complete methodology for model construction, which
includes an algorithm for identifying the proper model variables and an algorithm
for finding conservative model parameters. So far, this technique was tested with
only one program, a JPEG decoder, through a limited set of measurements. Nev-
ertheless, it has shown promising results, by giving tight overestimations in the
tests.

In future work, it would be interesting to combine the presented regression
technique with a complete WCET analysis flow using implicit path enumeration
techniques and to study how to model hardware effects using specially defined
predictors, similarly to [LS09]. An investigation of possible connections between
regression and extreme value theory is also needed, in order to produce high-
probability bounds, as in [CSH+12]. Finally, we observed that by putting too
many variables into the multi-variate regression analysis the estimation of model
parameters is weakened, which manifests in ‘blurred’ parameter confidence inter-
vals. Therefore, it is interesting to investigate splitting the program into blocks
characterized by a smaller set of variables and combining the results by their
joint distributions, as in [BCP02].

References

BCP02. G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard
real-time system. In Proc. RTSS’02, pages 279–288. IEEE, 2002.

CSH+12. L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kos-
midis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-
based probabilistic timing analysis for multi-path programs. In Proc.
ECRTS’12, pages 91–101. IEEE, 2012.

DS81. Norman R. Draper and Harry Smith. Applied regression analysis (2nd edi-
tion). Wiley, 1981.

EFH04. E. M. Eskenazi, A. V. Fioukov, and D. K. Hammer. Performance prediction
for component compositions. In CBSE’04, pages 280–293. Springer, 2004.

HJY+10. L. Huang, J. Jia, B. Yu, B-G. Chun, P. Maniatis, and M. Naik. Predicting
execution time of computer programs using sparse polynomial regression. In
Proc. NIPS’10, pages 883–891, USA, 2010. Curran Associates Inc.

HTF09. T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing: data mining, inference and prediction (2nd edition). Springer, 2009.

LS09. Björn Lisper and Marcelo Santos. Model identification for WCET analysis.
In Proc. RTAS’09, pages 55–64. IEEE, 2009.

PAN+16. P. Poplavko, L. Angelis, A. Nouri, A. Zerzelidis, S. Bensalem, and P. Kat-
saros. Regression-based statistical bounds on software execution time. Tech-
nical Report TR-2016-7, Verimag Research Report, 2016.

	Regression-based Statistical Bounds on Software Execution Time

