
Relational Algebra Exercises

1. Consider a database with the following schema:

Person (name, age, gender) name is a key

Frequents (name, pizzeria) (name, pizzeria) is a key

Eats (name, pizza) (name, pizza) is a key

Serves (pizzeria, pizza, price) (pizzeria, pizza) is a key

Write relational algebra expressions for the following nine queries. (Warning: some of the

later queries are a bit challenging.)

a. Find all pizzerias frequented by at least one person under the age of 18.

b. Find the names of all females who eat either mushroom or pepperoni pizza (or both).

c. Find the names of all females who eat both mushroom and pepperoni pizza.

d. Find all pizzerias that serve at least one pizza that Amy eats for less than $10.00.

e. Find all pizzerias that are frequented by only females or only males.

f. For each person, find all pizzas the person eats that are not served by any pizzeria the

person frequents. Return all such person (name) / pizza pairs.

g. Find the names of all people who frequent only pizzerias serving at least one pizza

they eat.

h. Find the names of all people who frequent every pizzeria serving at least one pizza

they eat.

i. Find the pizzeria serving the cheapest pepperoni pizza. In the case of ties, return all of

the cheapest-pepperoni pizzerias.

2. Consider a schema with two relations, R(A, B) and S(B, C), where all values are integers.

Make no assumptions about keys. Consider the following three relational algebra expressions:

Two of the three expressions are equivalent (i.e., produce the same answer on all databases),

while one of them can produce a different answer. Which query can produce a different

answer? Give the simplest database instance you can think of where a different answer is

produced.

3. Consider a relation R(A, B) that contains r tuples, and a relation S(B, C) that contains s

tuples; assume r,s>0. Make no assumptions about keys. For each of the following relational

algebra expressions, state in terms of r and s the minimum and maximum number of tuples

that could be in the result of the expression.

4. Two more exotic relational algebra operators we didn't cover are the semijoin and antijoin.

Semijoin is the same as natural join, except only attributes of the first relation are returned in

the result. For example, if we have relations Student(ID, name) and Enrolled(ID, course), and

not all students are enrolled in courses, then the query "Student ⋉ Enrolled" returns the ID

and name of all students who are enrolled in at least one course. In the general case, E1 ⋉ E2

returns all tuples in the result of expression E1 such that there is at least one tuple in the result

of E2 with matching values for the shared attributes. Antijoin is the converse: E1 ▷ E2 retuns

all tuples in the result of expression E1 such that there are no tuples in the result of E2 with

matching values for the shared attributes. For example, the query "Student ▷ Enrolled" returns

the ID and name of all students who are not enrolled in any courses.

Like some other relational operators (e.g., intersection, natural join), semijoin and antijoin are

abbreviations - they can be defined in terms of other relational operators. Define E1 ⋉ E2 in

terms of other relational operators. That is, give an equation "E1 ⋉ E2 = ??", where ?? on the

right-hand side is a relational algebra expression that doesn't use semijoin. Similarly, give an

equation "E1 ▷ E2 = ??", where ?? on the right-hand side is a relational algebra expression that

doesn't use antijoin.

5. Consider a relation Temp(regionID, name, high, low) that records historical high and low

temperatures for various regions. Regions have names, but they are identified by regionID,

which is a key. Consider the following query, which uses the linear notation introduced at the

end of the relational algebra videos.

State in English what is computed as the final Result. The answer can be articulated in a

single phrase.

