
Minimal Probing:
Supporting Expensive Predicates for Top-k Queries

Kevin Chen-Chuan Chang, Seung-won Hwang
Computer Science Department, University of Illinois at Urbana-Champaign

{kcchang,shwang5 } @cs.uiuc.edu

ABSTRACT
This paper addresses the problem of evaluating ranked top-k queries
with expensive predicates. As major DBMSs now all support ex-
pensive user-defined predicates for Boolean queries, we believe
such support for ranked queries will be even more important: First,
ranked queries often need to model user-specific concepts of prefer-
ence, relevance, or similarity, which call for dynamic user-defined
functions. Second, middleware systems must incorporate external
predicates for integrating autonomous sources typically accessible
only by per-object queries. Third, fuzzy joins are inherently ex-
pensive, as they are essentially user-defined operations that dynam-
ically associate multiple relations. These predicates, being dynam-
ically defined or externally accessed, cannot rely on index mech-
anisms to provide zero-time sorted output, and must instead re-
quire per-object probe to evaluate. The current standard sort-merge
framework for ranked queries cannot efficiently handle such pred-
icates because it must completely probe all objects, before sorting
and merging them to produce top-k answers. To minimize expen-
sive probes, we thus develop the formal principle of "necessary
probes," which determines if a probe is absolutely required. We
then propose Algorithm MPro which, by implementing the prin-
ciple, is provably optimal with minimal probe cost. Further, we
show that MPro can scale well and can be easily parallelized. Our
experiments using both a real-estate benchmark database and syn-
thetic datasets show that MPro enables significant probe reduction,
which can be orders of magnitude faster than the standard scheme
using complete probing.

1. INTRODUCTION
In the recent years, we have witnessed significant efforts in pro-

cessing ranked queries that return top-k results. Such queries are
crucial in many data retrieval applications that retrieve data by
"fuzzy" (or "soft") conditions that basically model similarity, rele-
vance, or preference: A multimedia database may rank objects by
their "similarity" to an example image. A text search engine orders
documents by their "relevance" to query terms. An e-commerce
service may sort their products according to a user's "preference"
criteria [1] to facilitate purchase decisions. For these applications,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

Boolean queries (e.g., as in SQL) can be too restrictive as they do
not capture partial matching. In contrast, a ranked query computes
the scores of individual Jic~, predicates (typically normalized in
[0:1]), combines them with a scoringfimction, and returns a small
number of top-k answers.

Example 1: Consider a real-estate retrieval system that maintains
a database house(id, price, size, zip, age) with houses listed for
sale. To search for top-5 houses matching her preference criteria, a
user (e.g., a realtor or a buyer) may formulate a ranked query as:

select id from house
where new(age) x, cheap(price, size) pc,

large(size) pt
order by rain(x, pc, p~) stop after 5 (Query 1)

Using some interface support, the user describes her preferences
over attributes age, price, and size by specifying fuzzy predicates
new, cheap, and large (or x, pc, and pt for short). For each ob-
ject, each predicate maps the input attributes to a score in [0:1]. For
example, a house a with age=2 years, price = $150k, and size =
2000 sqft may score new(2)=0.9, cheap(15Ok, 2000) = 0.85, and
large (2000)=0.75. The query specifies a scoring function for com-
bining the predicates, e.g., the overall score for house a is rain(0.9,
0.85, 0.75) = 0.75. The highest-scored 5 objects will be returned. •

This paper studies the problem of supporting expensive pred-
icates for ranked queries. We characterize expensive predicates
as those requiring a call, or a probe, of the corresponding func-
tion to evaluate an object. They generally represent any non-index
predicates: When a predicate is dynamically defined or externally
accessed, a pre-constructcd access path no longer exists to return
matching objects in "zero time." For instance, in Example l, sup-
pose predicate cheap is a user-defined function given at query time,
we must invoke the function to evaluate the score for each object.
We note that, for Boolean queries, similar expensive predicates
have been extensively studied in the context ofextensible databases
[2, 3]. In fact, major DBMSs (e.g., Microsoft SQL Server, IBM
DB2, Oracle, and PostgrcSQL) today all support user defined func-
tions (which arc essentially expensive predicates) allowing uscrs to
implement predicate functions in a general programming language.
We believe it is important for ranked queries to support such pred-
icates, which is the specific contribution of this paper.

In fact, there are many good reasons for supporting expensive
predicates, because many important operations are essentially ex-
pensive. First, supporting expensive predicates will enable function
extensibility, so that a query can employ user or application-specific
prcdicatcs. Second, it will enable data extensibility to incorporate
external data sources (such as a Web service) to answer a query.
Third, it will enable join operations across multiple tables; as we
will sec, a fuzzy join predicate is essentially expensive. As far as

346

we know, we are the first to generally support expensive predicates
in the context of ranked queries, in order to handle these operations:

• Function Extensibility: User-defined functions are expensive
because they are dynamically defined and thus require per-object
evaluation. Note that user-defined functions are critical for func-
tion extensibility of a database system, to allow queries with non-
standard predicates. While user-defined functions are now com-
monly supported in Boolean systems, we believe such functions
will be even more important for ranked queries, because they are
mainly intended for data retrieval based on similarity, relevance,
and preference (e.g., as in [1]). As these concepts are inher-
ently imprecise and user (or application) specific, a practical sys-
tem should support ad-hoc criteria to be specifically defined (by
users or application programmers). Consider our real-estate ex-
ample. Although the system may provide new as built-in, users
will likely have different ideas about cheap and large (say, de-
pending on their budget and family sizes). It is thus desirable to
support these ad-hoc criteria as user-defined functions to express
user preferences.

• Data Extensibility: A middleware system can integrate an "ex-
ternar' predicate that can only be evaluated by probing an au-
tonomous source for each object. Such integration may take
place within a loosely coupled system (e.g., a relational DBMS
and an image search engine). Further, a middleware may inte-
grate Web sources, which is more common than ever in the Inter-
net age. For instance, in Example 1, to look for "safe" areas, the
user may use an external predicate safe(zip) that computes the
"safety" score for a given zip code by querying some Web source
(e.g., www. a p b n e w s , corn) for the crime rate of the area.

• Joins: Join predicates are expensive, because they are inher-
ently user-defined operations: In general, a join operation can
dynamically associate any attributes from multiple tables (as in
the Boolean context such as SQL), and in addition the associat-
ing function can be user-defined. Consequently, since a search
mechanism cannot be pre-computed, fuzzy joins requires expen-
sive probes to evaluate each combined tuple (in the Cartesian
product), as is the case in Boolean queries. To generally support
fuzzy joins, a ranked-query system must support expensive pred-
icates. For instance, continuing Example 1, to find new houses
near a high-rating park, the following query joins another rela-
tion park(name, zip) with the predicate close:

select h.id, s.name from house h, pa rk s
where new(h.age) x, rating(s.name) p~,

close(h.zip, s.zip) pj
order by rain(z, p~, pj) stop after 5 (Query 2)

While widely supported for Boolean queries in major DBMSs,
expensive predicates have not been considered for ranked queries.
These predicates, be they user defined or externally accessed, can
be arbitrarily expensive to probe, potentially requiring complex
computation or access to networked sources. Note that it may ap-
pear straightforward to "transform" an expensive predicate into a
"normal" one: By probing every object for its score, one can build
a search index for the predicate (to access objects scored above a
threshold or in the sorted order), as required by the current pro-
cessing frameworks [4, 5, 6, 7, 8, 9, 10] (Section 3.3). This naive
approach requires a sequential scan, or complete probing, over the
entire database: A database of N objects will need N sequential
probes for each expensive predicate. Such complete probing at
query time is clearly unacceptable in most cases.

This paper addresses probe predicates for ranked queries. When
a ranked query contains expensive predicates, the key challenge is

to minimize the number of probes. As users only ask for some
top-k answers, is complete probing necessary? Our results show
that the vast majority of the probes may be unnecessary, thus mak-
ing expensive predicates practical for ranked queries. For instance,
to retrieve top-lO (i.e., k = 10) from a benchmark database con-
structed with real-life data, the naive scheme can waste 97% of the
complete probes (Section 6). To enable probe minimization, we de-
velop the formal principle of necessary probes, which determines if
a particular probe is absolutely necessary for finding k top answers.
We thus present Algorithm MPro which ensures minimal probing,
i.e., it performs only necessary probes and is provably optimal.

Further, we discuss several useful extensions of the algorithm.
First, we show that the algorithm directly supports incremental pro-
cessing, to return top answers progressively, paying only incremen-
tal cost. Second, it is easily "parallelizable," to enhance perfor-
mance over large datasets. The parallelization can in principle give
linear speedup. Third, we show that the algorithm can scale well;
the cost will scale sublinearly in database size. In addition, MPro
can be immediately generalized for approximate processing. Since
approximate answers are often acceptable in ranked queries (which
are inherently "imprecise"), we extend MPro to enable trading ef-
ficiency with accuracy- which we report in [1 I].

Note that this paper concentrates on the algorithmic framework
for supporting expensive predicates, and not on other related is-
sues. In particular, a practical system must provide a friendly in-
terface for users or application programmers to easily specify user-
defined predicates. To study this issue, we are currently building
a GUI front-end for our prototype testbed, the real-estate retrieval
system. There are also other extensions to our algorithm: It can
easily take advantage of predicate caching, where expensive probes
can be reused, e.g., during query refinement when predicates are re-
peated in subsequent queries. To highlight, we summarize the main
contributions of this paper as follows:

• Expensive predicates for ranked queries: We identify, for-
mulate, and formally study the expensive predicate problem for
ranked queries, which generally abstracts user-defined functions,
external predicates, and fuzzy joins. We are not aware of other
previous work that formulates the general problem of supporting
expensive predicates for top-k queries.

• Necessary-probe principle: We develop a simple yet effective
principle for determining necessary probes, which can be critical
for any algorithms that attempt probe optimization.

• Probe-optimal algorithm: We present Algorithm MPro, which
minimizes probe cost for returning top-k answers.

• Experimental evaluation: We report extensive experiments us-
ing both real-life and synthesized datasets. Our experimental
study indicates the effectiveness and practicality of our approach.

We briefly discuss related work in Section 2, and then start in
Section 3 by defining ranked queries, the cost model, and the base-
line processing scheme. Section 4 presents the necessary-probe
principle for optimization, based on which we develop Algorithm
MPro. Section 5 then discusses several extensions of the basic al-
gorithm. Section 6 reports our experimental evaluation. Due to
space limitations, we leave some additional results (e.g., proof, ap-
proximation, and more experiments) to an extended report [11].

2. RELATED WORK
Expensive predicates have been studied for Boolean queries to

support user-defined functions. Several works (e.g., [2, 3]) address
processing expensive predicates efficiently. As Section 1 discussed,
all current major DBMSs (e.g., Microsoft SQL Server, IBM DB2,

347

Oracle, and PostgreSQL) support such predicates.
Top-k queries have been developed recently in two different con-

texts. First, in a middleware environment, Fagin [7, 8] pioneered
ranked queries and established the well-known .,40 algorithm (with
its improvements in [9, 10]). [12] generalizes to handling arbitrary
0-joins as combining constraints. As Section 3 discusses, these
works assume sorted access of search predicates. This paper thus
studies probe predicates without efficient sorted access.

Secondly, ranked queries were also proposed as a layer on top
of relational databases, by defining new constructs (for returning
"top" answers) and their processing techniques. For instance, [13]
proposes new SQL clauses order by and stop after. Carey et al.
[14, 15] then present optimization techniques for exploiting stop
after, which limits the result cardinalities of queries.

In this relational context, references [4, 5] study more general
ranked queries using scoring functions. In particular, [4] exploits
indices for query search, and [5] maps ranked queries into Boolean
range queries. Recently, PREFER [6] uses materialized "views"
to evaluate preference queries defined as linear sums of attribute
values. These works assume that scoring functions directly com-
bine attributes (which are essentially search predicates). We aim
at supporting expressive user-defined predicates, which we believe
are essential for ranked queries, as Section 1 discussed.

This paper identifies and formulates the general problem of sup-
porting expensive predicates for ranked queries, providing unified
abstraction for user-defined functions, external predicates, and fuzzy
joins. [16] develops an IR-based similarity-join; we study general
fuzzy joins as arbitrary probe predicates. More recently, around the
same time of our work [11], some related efforts emerge, address-
ing the problems of 0-joins [12] (which are Boolean and not fuzzy,
as just explained) and external sources [17]. In contrast, we address
a more general and unified problem of expensive predicates.

Our general framework, in searching for top-k answers, adopts
the branch-and-bound or best-first search techniques [18]. In par-
ticular, Algorithm MPro can be cast as a specialization of A*. Sev-
eral other works [17, 12, 16] also adopt the same basis. Our work
distinguishes itself in several aspects: First, we aim at a different
or more general problem (as contrasted above). Second, our frame-
work separates object search (finding objects to probe) from pred-
icate scheduling (finding predicates to execute). We believe this
"clean" separation allows us to develop the formal notion of neces-
sary probes (Section 4.1) and consequently a probe-optimal algo-
rithm (Section 4.2). The scheduling (Section 4.3) is thus separated
as a sampling-based optimization phase before (or reoptimization
during) execution. Further, based on the simple framework, we de-
velop several useful extensions, e.g., parallelization (Section 5.3)
and approximation [11], as well as analytical study of probe scala-
bility (Section 5.4).

3. RANKED QUERY MODEL
To establish the context of our discussion, this section describes

the semantics (Section 3.1) of ranked queries and a cost model
for expensive predicates (Section 3.2). Section 3.3 then discusses
query processing using the standard sort-merge framework to mo-
tivate and contrast our work.

3.1 Query Semantics
Unlike Boolean queries where results are flat sets, ranked queries

return sorted lists of objects (or tuples) with scores indicating how
well they match the query. A ranked query is specified by a scoring
function .T(tl , • • •, tn) , which combines several fuzzy predicates
t l , • • •, t,~ into an overall query score for each object. Without loss
of generality, we assume that scores (for individual predicates or

OID x Pc Pl lr(x, Pc, Pt)
a 0 . 9 0 0.85 0.75 0.75
b i0.80 0.78 0.90 0.78
c 0.70 0.75 0.20 0.20
d 0.60 0.90 0.90 0.60
e 0.50 0.70 0.80 0.50

Figure 1: Dataset I for query ~ (x , pc, pl) = min(x , pc, pt).

entire queries) are in [0 : 1]. We denote by t[u] the score of predi-
cate t for object u, and .Y'[u] the query score.

We will use Query 1 (of Example 1) as a running example, which
combines predicates x, pc, and pt with .T "= rain(z, pc, pt). We will
illustrate with a toy example (dataset 1) of objects {a, b, e, d, e}.
Figure 1 shows how they score for each predicate (which will not
be known until evaluated) and the query; e.g., object a has scores
x[a] = 0.9, pc[a] = 0.85, pt[u] = 0.75, and overall .T'(z, pc, pt)[a]
= .T(x[a], pc[a], pt[a]) = rain(0.9, 0.85, 0.75) = 0.75.

We can distinguish between selection and join predicates, as in
relational queries, depending on if the operation involves one or
more objects. A selection predicate evaluates some attributes of a
single object, and thus discriminates (or "selects") objects in the
same table by their scores; e.g., in Query 1, x determines how
"new" the age of a house is. In contrast, a join predicate evaluates
(some attributes of) multiple objects from multiple tables. (We can
thus view a join operation as a selection over joined tuples in the
Cartesian product of the joining tables.) For instance, pj in Query 2
evaluates each pair of house and pa rk to score their closeness. Our
framework can generally handle both kinds of predicates- we will
focus on selections for simplicity, and discuss the extensions for
joins in Section 5.2.

In this paper we focus on an important class of scoring functions
that are monotonic, which is typical for ranked queries [7]. Intu-
itively, in a monotonic function, all the predicates influence posi-
tively the overall score. Formally, .T is monotonic i f . T (t l , . . . , tn)

~(81,''" ,Sn) when Vi : ti _> si. Note that this monotonic-
ity is analogous to disallowing negation (e.g., t l A -~t2) in Boolean
queries. Since negation is used only infrequently in practice, we be-
lieve that monotonic functions will similarly dominate for ranked
queries. Note that a scoring function may be given explicitly (in
a query) or implicitly (by the system). For instance, a system that
adopts fiazzy logic [19] will use f f = rain(t1, t2) as the fuzzy con-
junction. An image or text [20] database may combine various fea-
tures with a user-transparent function, such as Euclidean distance
or weighted average.

As results, a ranked query returns the top-k objects with highest
scores, and thus also referred to as a top-k query. More formally,
given retrieval size k and scoring function .T', a ranked query re-
turns a list/C ofk objects (i.e., IX:l = k) with query scores, sorted in
a descending order, such that .~'(tl, • - • , t ,) [u] > .~(t l , - • • , t ,)[v]
for Vu G /C and Vv ¢ /C. For example, the top-2 query over
dataset 1 (Figure 1) will return the list/C = (b:0.78, a:0.75). Note
that, to give deterministic semantics, we assume that there are no
ties - otherwise, a deterministic "tie-breaker" function can be used
to determine an order, e.g., by unique object IDs.

Note that the top-k interface is fundamental in supporting other
interfaces. It is straightforward to extend our top-k algorithm (Sec-
tion 4) to support the incremental access (or iterator) as well as
threshold interface. We discuss these extensions in Section 5.1.

3.2 Cost Model
Given a query, a processing engine must combine predicate scores

to find the top-k answers. We can generally distinguish between
index predicates that provide efficient search and non-index prcd-

348

icates that require per-object probes. First, system built-in pred-
icates (e.g., object attributes or standard functions adopted in [4,
5, 6]) can use pre-computed indexes to provide sorted access of
objects in the descending order of scores. Such search predicates
are essentially of zero cost, because they are not actually evalu-
ated, rather the indexes are used to search "qualified" objects. For
instance, our real-estate example may provide neareity(h, C) for
sorting houses h closest to a given city C (e.g., k-nearest-neighbor
search). For Query 1, we assume z to be a search predicate. Fig-
ure 1 orders objects to stress the sorted output o fz .

In contrast, expensive predicates must rely on per-object probes
to evaluate, because of the lack of search indexes. As Section 1 ex-
plains, such probe predicates generally represent user-defined func-
tions, external predicates, and joins. Unlike search predicates that
are virtually free, such predicates can be arbitrarily expensive to
probe, potentially requiring complex computation (for user-defined
functions), networked access to remote servers (for external predi-
cates), or coping with combinatorial Cartesian products (for joins).
Our goal is thus clear: to minimize probe cost.

This paper thus presents a framework for the evaluation of rank
queries with probe predicates. To stress this focus, we assume
(without loss of generality) queries of the form .T'(x, p l , . . . ,Pn),
with a search predicate z and some probe predicate p,. Note that,
when there are several search predicates (x l , . . . , Xm), the well-
known Fagin's algorithm [7] (Section 3.3 will discuss this standard
"sort-merge" framework) can be compatibly applied to merge them
into a single sorted stream x (thus in the above abstraction), which
also minimizes the search cost.

We want to minimize the cost of probing p ~ , . . . , p , for answer-
ing a top-k query. Let .,4 be an algorithm, we denote its probe
cost by 'PC(A). Assuming that the per-probe cost for pi is Ci
and that .,4 performs Ni probes for pi, we model the probe cost
as 'RC(.A) : ~ = 1 NiCi. In particular, for a database of size
N, a complete probing system (as Section 3.3 will discuss) will
cost ~ = 1 NCi. Such complete probing cost represents an upper
bound of any algorithms; many probes are obviously unnecessary
for finding a small number of top-k answers.

Our goal is to develop a probe-optimal algorithm, which will
sufficiently guarantee minimal probe cost. If ,.4 is probe-optimal, it
does not waste any single probes; every probe it performs is neces-
sary (by any algorithms). Since probe-optimality implies that each
Ni is minimal, "PC(A) overall must be minimal. We will present a
probe-optimal algorithm that performs only necessary probes.

We stress that, for ranked queries, it is important to make the cost
"proportional" to retrieval size k rather than database size N, as k
can often be several orders of magnitude smaller (e.g., k = 5 out of
N = 1000). (Section 6 shows that our algorithm indeed illustrates
this property.) This proportional cost can be critical, since users are
typically only interested in a small number of top results.

3.3 Baseline: the Sort-Merge Framework
There have been significant efforts in processing ranked queries

with "inexpensive" search predicates. The most well-known scheme
(in a middleware system) has been established by Fagin [7] as well
as several later versions [9, 10]. Assuming only search predicates,
these schemes access and merge the sorted-output streams of indi-
vidual predicates, until top-k answers can be determined. We refer
to such processing as a sort-merge framework.

In this paper we consider ranked queries with expensive pred-
icates. Can we simply adopt the sort-merge framework? As the
name suggests, this standard framework will require complete prob-
ing to sort objects for each expensive predicate, before merging the
sorted streams- Referred to as SortMorge, this naive scheme fully

X (search predicate: supports sorted access)
k = 2 ~ a:0.90, b:0.80, c:0.70, d:0.60, e:0.50 [

[,'(e.~ensivepredicate:completeprobingtosort)

[Ip, (expensivepredicate:completeprobingtosort)
F = min(Ix, Pc Pl) L ~ b;0.90, d:0.~, e:0.80, a:0.75, c:0.20 [

Top-k output Merge step Sort step

Figure 2: The baseline scheme SortMerge.

"materializes" probe predicates into search predicates. Figure 2 il-
lustrates Scheme SortMerge for Query 1, where x is a search pred-
icate while Pc and Pl expensive ones. The scheme must perform
complete probing for both pc and pt to provide the sorted access,
and then merge all the three streams to find the top-2 answers.

Note that, rather than the desired "proportional cost," SortMerge
always requires complete probing, regardless of the small k; i.e.,
7~C(S°rtMerg e) = ~i~1 NCi, for a database of size N. Such
"sequential-scan" cost can be prohibitive in most applications, when
the database is of an interesting size. This paper addresses the prob-
lem of minimizing this probe cost. In fact, as we will see, most
probes in complete probing are simply unnecessary- Section 6 will
experimentally compare the baseline scheme to our algorithm.

4. MINIMAL PROBING: ALGORITHM MPro

Given a ranked query characterized by scoring function .T(x, p l ,
• .., Pn) and retrieval size k, with a search predicate x and probe
predicates Pl, .. •, p,~, our goal is to minimize the probe cost for
answering the query. Toward this goal, we must confront two key
issues: l) What is the minimal-possible probe cost? 2) How can
we design an algorithm that minimizes the cost. This section de-
velops a formal principle (the Necessary-Probe Principle) in Sec-
tion 4.1 for answering the former and proposes an algorithm (Al-
gorithm MPro) in Section 4.2 for the latter. Section 4.3 discusses
the scheduling of probe predicates.

4.1 Necessary Probes
In order to minimize probe cost, we must determine if a probe is

necessary for finding top-k answers with respect to scoring func-
tion 5r(x, P l , . . . , pn). This section presents our results on such a
principle (i.e., Theorem 1).

To begin with, for each object, we sequentially execute probes
and incrementally determine if further probes are necessary. (Sec-
tion 5.3 will extend to parallel probing.) We thus need a predicate
schedule as a sequence of p l , . . . , p,~, which defines their execution
order (if probed at all). For our example .T'(z, Pc, Pt), two sched-
ules are possible: (pc, pt) if pc is evaluated before pt or (Pt, pc)
otherwise. In general, each object u may define its own object
schedule 7/~', or all objects may share the same global schedule
7/-/. Our main algorithm (Algorithm MPro) assumes as input such
schedules (object or global) and is thus independent of the schedul-
ing. For simplicity, this section refers only to a single global sched-
ule 7-/; the same results hold when objects have their own sched-
ules. While such scheduling is NP-hard in general [11], Section 4.3
will discuss an online sampling-based scheduler that effectively (al-
most always) finds the best schedules by greedily scheduling more
"cost-effective" predicates.

Given a schedule 7/, starting from the sorted output of x, how
shall we proceed to probe the predicates for each object, in order to
minimize such accesses? On one hand, it is clear that some objects
must be fully probed (for every pi), which include at least the top-k
answers in order to determine their query scores and ranks in the
query results (Section 3.1). On the other hand, since only some

349

top-k answers are requested, is complete probing (for every object)
necessary? To avoid this prohibitive cost, our goal is to stop as early
as possible for each object. In fact, some objects may not need to
be probed at all, if they can never be the top answers.

To enable probe minimization, we must determine if a particu-
lar probe is truly necessary for finding the top-k answers. During
query processing, for any object u, i fp is the next predicate on the
schedule (global or object-specific), we may probe p for u in order
to determine the score p [u]. We want to determine if such a probe,
designated by pr(u, p), is necessary. The following definition for-
malizes our notion of a necessary probe.

Definition 1 (Necessary Probes): Consider a ranked query with
scoring function .T and retrieval size k. A probe pr(u,p), which
probes predicate p for object u, is necessary, if the top-k answers
with respect to .T cannot be determined by any algorithm without
performing the probe, regardless of the results of other probes. •

We stress that this notion of necessary probes is essential for
optimizing probe cost. According to the definition, a probe is nec-
essary only if it is absolutely required- thus it must be performed
by an optimal algorithm: First, the probe is required independent of
algorithms- any algorithm that returns correct top-k answers must
pay the probe. Second, the probe is required independent of the
outcomes of other probes- it may be performed before or after oth-
ers, but the particular order will not change the fact that the probe
is required. While this notion of necessary probes seems intuitively
appealing, how can we determine if a particular probe is absolutely
required? Further, given there are many possible probes (at least
one for each object at any time), how many of them are actually
necessary, and how to effectively find all the necessary probes? We
next develop a simple principle for answering these questions.

Let's start with the first question: how to determine ifa probe
is necessary? To illustrate, consider finding the top-1 object for
.T(x, pc, pl) with dataset 1 (Figure 1), given schedule 7-I = (p~, pt).
Our starting point, before any probes, is the sorted output of search
predicate z (Figure 1 sorts objects by their x scores). We thus can
choose to probe the next predicate pc for any object a, b, c, d, or
e. Let's consider the top object a and determine if pr(a, p¢) is nee-
essary. (We can similarly consider any other object.) The probe
is actually necessary for answering the query, no matter how other
probes turn out: Assume we can somehow determine the top-1 an-
swer to be object u without probing pr(a, pc).

• Suppose u ~ a: Note that .T[u] = min(x[u], pc[u], p,[u])
< x[u], and x[u] _< 0.8 for u ¢ a (see Figure 1). Conse-
quently, .T[u] < 0.8. However, without probing pr(a, pc) and
then pr(a, Pl), u may not be safely concluded as the top-1. For
instance, suppose that the probes would return p,[a] = 1.0 and
pt[a] = 1.0, then .T[a] = min(0.9, 1.0, 1.0) = 0.9. That is, a
instead of u should be the top-l, a contradiction.

• Suppose u = a: In order to output a as the answer, we must have
fully probed a, including pr(a, p~), to determine and return the
query score.

Observe that, we determine if the probe on a is necessary es-
sentially by comparing the upper bound or "ceiling score" of a to
others. That is, while .T[a] can be as high as its ceiling score of
0.9, any other object u cannot score higher than 0.8 (which is the
ceiling score of b). In general, during query processing, before an
object u is fully probed, the evaluated predicates of u can effec-
tively bound its ultimate query score. Consider a scoring function
.T ' (t l , . . . , tn). We define ~T[U], the ceiling score o f u with re-
spect to a set T of evaluated predicate (T C { t l , . . . , t~}), as the
maximal-possible score that u may eventually achieve, given the

predicate scores in T. Since .T is monotonic, the ceiling score
can be generally obtained by Eq. 1 below, which simply substi-
tutes unknown predicate scores with their maximal-possible value
1.0. The monotonicity of .T ensures that the ceiling score give the
upper bound when only T is evaluated, i.e., .T[u] < .T'y[u].

- - (ti = ti[u] if ti E T)
ST(t1 , . . . , t n) [U] = .~" ti 1.0 otherwise. Vi (1)

To further illustrate, after pr(a, pc), what shall we probe next?
Intuitively, at least we have choices of pr(a, pt) (to complete a) or
pr(b, pc) (to start probing b). Similarly to the above, we can reason
that the further probe on a, pr(a, pt), is still necessary. To contrast,
we show that pr(b, pc) is not necessary at this point, according to
Definition I. (However, as more probes are done, at a later point,
pr(b, pc) may become necessary.) With x[b] = 0.8 evaluated, we
compute the ceiling score of b as .T{ ~)[b] = 0.8. Whether we need
to further probe b in fact depends on other probes, namely the re-
maining probe pr(a, pl) ofa . (Note that a already has x[a] = 0.9
and pc [a] -- 0.85 evaluated.)

• Suppose that pr(a, p,) returns pt[a] = 1 and thus .T[a] = 0.85.
For finding the top-1 answer, we do not need to further evaluate
b because ~{~t [b] = 0.8 < .T[a] = 0.85, and thus b cannot make
to the top-1. That is, depending on pt[a] = 1, we can answer the
query without probing pr(b, pc).

• Suppose that pr(a, pt) retums pl[a] = 0 and thus .T[a] = 0.
Now b becomes the "current" top object (with the highest ceiling
score ~{,}[b] = 0.8). That is, depending on pt[a] = 0, we can
reason that pr(b, pc) is necessary, similar to pr(a, pc) above.

Further, we consider the second question: how tofind all the nec-
essary probes? Let u be any object in the database, and p be the
next unevaluated predicate (on the schedule 7-/) for u. Potentially,
any probe pr(u, p) might be necessary. However, it turns out that
at any point during query processing, there will be at most k probes
that are necessary, for finding top-k answers. That is, we can gen-
eralize our analysis (see Theorem 1) to show that only those probes
for objects that are currently ranked at the top-k in terms of their
ceiling scores are necessary. Note that this conclusion enables an
efficient way to "search" necessary probes: by ranking objects in
the order of their current ceiling scores. (As Section 3 discussed,
we assume that a deterministic tie-breaker will determine the order
of ties.) For any object u in the top-k slots, its next probe pr(u, p)
is necessary. Theorem 1 formally states this result (see [11] for a
proof).

Theorem 1 (Necessary-Probe Principle): Consider a ranked
query with scoring function ,T and retrieval size k. Given a predi-
cate schedule 7-/, let u be an object and p be the next unevaluated
predicate for u in 7-/. The probe pr(u, p) is necessary, if there do
not exist k objects e l , . . . , vk such that Vvi : ~T~, [u] < ~Tv , [el]
with respect to the evaluated predicates T~ and T~ of u and vi
respectively. •

We stress that the notion of necessary probes directly defines the
minimal probe cost of any correct algorithm. First, Definition 1
generally isolates a class of (necessary) probes as those required
by any algorithm. Further, Theorem 1 provides an "operational"
definition to actually determine if a given probe is necessary as
well as to effectively search those probes. Putting together, we im-
mediately conclude that an algorithm will be probe-optimal (Sec-
tion 3.2) if it only performs necessary probes, which we formally
state in Lemma 1 (see [11] for a proof). Our goal is thus to design
such an algorithm.

350

A l g o r i t h m M P r o (J z, k , 7-l, D): Min imal -p rob ing a lgor i thm
I n p u t :

• br(x, P l , . . . , P ,) : scoring f u n c t i o n / / w i t h expensive predicates p t pn.
• k: retrieval size, i .e., to r e tu rn top-k answers .
• 7-/: schedule o f p l , . . . ,p,~.
• D: inpu t d a t a b a s e / / a s s u m e selection predicates over single relation If or simplicity.

O u t p u t : /C, the top-k answers wi th respect to .T.
Procedure:
(1) Queue Initialization:

H search x over l) to prepare sorted output queue X .
• X ~ evaluate x over D
• ~ ~ {}; Q '(.- {} / / IC: output; ~: ceiling queue to prioritize by ceiling

/ / initialize Q to buffer objects prioritized by their ceiling scores from x.
f f this "full" initialization is only conceptual; X.topO can be on demand.
• while (X is not empty):

- u ~ ..~.topO / /pop next top object out of X .
- Tu ~ {x}; u.ceiling e- ~Tu[U] //initialize ceiling score with x.

- Q . in se r t (u , u . c e i l i n g) / / insert u into Q prioritized by its ceiling score.
(2) Necessary Probing:

f f set up the stop condition SC for determining if to stop probing.
• SC +- "IEI _> k, i .e . , there are at least k complete objects seen on the top"
• while (SC = F a l s e) : / / keep porlorming necessary probes until 8C becomes true.

- u ~ Q . t o p O / / t h e current top object with the highest ceiling score.
- if u is complete: //u is among the first k objects to be completed.

- u . s core ~ u .ce i l ing; append u to]C/ / add u to be the top-k output.
- else: f f u as the top incomplete object must be probed further.

- p ~ next uneva lua ted predica te of u on schedule 7"t
- p[u] ~.-- probe p r (u , p) / / p r (u , p) must be necessary by Theorem 1.
- T, ~- T,, tJ {p}; u.ceiling ~- 7T.,[U]
f f update the ceiling score of u, as p[u] is just obtained.
- Q . in se r t (u , u . e e i l i n g) / / i n s e r t u back to Q prioritized by u.ceiling.

(3) T o p - k O u t p u t : r e tu rn in order each (u : u . s e o r e) i n /C

Figure 3: Algorithm MPro

Lemma 1 (Probe-Optimal Algorithms): Consider a ranked query
with scoring function .T" and retrieval size k. Given a predicate
schedule 74, an algorithm ,,4 for processing the query is probe-
optimal if .,4 performs only the necessary probes as Theorem 1
specifies. •

4.2 Algorithm MPro

We next develop our Algorithm MPro (for minimal probing),
which finds top-k answers with respect to scoring function .T(x,
p l , • •., pn). To be probe-optimal, based on Lemma 1, MPro opti-
mizes probe cost by ensuring that every probe performed is indeed
necessary (for finding k top answers).

Essentially, during query processing, MPro keeps "searching"
for a necessary probe to perform next. Progressing with more
probes, eventually MPro will have performed all (and only) the
necessary probes, at which point the top-k answers will "surface."
Note that Theorem 1 identifies a probe pr(u, p) as necessary if
u is among the current top-k in terms of ceiling scores. Thus, a
"search mechanism" for finding necessary probes can return top
ceiling-scored objects when requested - i.e., a priority queue [21]
that buffers objects using their ceiling scores as priorities.

We thus design MPro to operate on such a queue, called ceil-
ing queue and denoted Q, of objects pfioritized by their ceiling
scores. As Figure 3 shows, MPro mainly consists of two steps:
First, in the queue initialization step, starting with the sorted out-
put stream X of search predicate x, MPro initializes Q based on
initial ceiling scores ~{x} ['] with x being the only evaluated pred-
icate (see Eq. 1). Note that, although for simplicity our discussion
assumes that Q is fully initialized (by drawing every object from
X), this initialization is only conceptual: It is important to note
that .T'{x} [.] will induce the same order in Q as the A' stream, i.e.,
if x[u] < x[v], then ~{x)[u] < ~{x} [v], since .T is monotonic.
Thus MPro can access X incrementally to move objects into Q
when more are needed for further probing. (It is entirely possible
that some objects will not be accessed from X at all.)

Second, in the necessary probing step, MPro keeps on request-
ing from Q the top-priority object u, which has the highest ceiling

step action
initialize Q and]C
probe pr(a, Pc)
probe pr(a, Pa)
probe pr(b, Pc)
probe pr(b, Pt)
pop top complete
objects from Q into/C
stop condition holds
ou tpu t /C

ceiling queue Q
a:0.90, b:0.80, c:0.70, d:0.60, e:0.50
a:0.85, b:0.80, c:0.70, d:0.60, e:0.50
b:0.80, a:0.75, c:0.70, d:0.60, e:0.50
b:0.78, a:0.75, c:0.70, d:0.60, e:0.50
b:0.78, a:0.75, c:0.70, d:0.60, e:0.50
c:0.70, d:0.60, e:0.50

c:0.70, d:0.60, e:0.50

output(]C)
{} (empty)
{}
{}
{}
{}
b:0.78,
a:0.75
b:0.78,
a:0.75

Figure 4: Illustration of Algorithm MPro.

score. If u is incomplete with the next unevaluated predicate p,
according to Theorem 1, pr(u, p) is necessary. Thus MPro will
perform this probe, update the ceiling score of u, and insert it back
to Q by the new score. On the other hand, i f u is already complete
when it surfaces to the top, u must be among the top-k answers,
because itsfinal score is higher than the ceiling scores of objects
still in Q. That is, u has "surfaced" to the top-k answers, which
MPro will move to an output queue, denoted/C in Figure 3.

Incrementally, more objects will complete and surface to/C, and
MPro will eventually stop when there are k such objects (which
will be the top-k answers). As Figure 3 shows, MPro checks this
stop condition, designated ,SC, to halt further probing. It is inter-
esting to observe the "dual" interpretations of SC: On one hand,
SC tells that there are already k answers in/C, and thus no more
probes are necessary. On the other hand, when SC holds, it follows
from Theorem 1 that no more probes can be necessary, and thus the
top-k answers must have fully surfaced, which is indeed the case.
(We discuss in [11] how the stop condition can be "customized" for
approximate queries.)

Figure 4 illustrates Algorithm MPro for our example of finding
the top 2 object when .T" = min(x , pc ,pl) and 74 = (pc, pt) over
dataset 1 (Figure 1). While we show the ceiling queue Q as a sorted
list, full sorting is not necessary for a priority queue. After initial-
ized from the sorted output of x, we simply keep on probing the top
incomplete object in Q, resulting in the probes pr(a, pc), pr(a, pl),
pr(b, pc), and pr(b, pt). Each probe will update the ceiling score
of the object, and thus changing its priority in ceiling queue. Note
that Figure 4 marks object with an underline (e.g., a:0.75) when it
is fully probed, at which point its ceiling score is actually the final
score. Finally, we can stop when k = 2 objects (in this case, a and
b together) have completed and surfaced to the top.

It is straightforward to show that Algorithm MPro is both correct
and optimal, as we state in Theorem 2. First, it will correctly retum
the top-k answers. MPro stops when all the k objects with highest
ceiling scores are all complete (as they surface to/C). This stop
condition ensures that all these k answers have final scores higher
than the ceiling score of any object u still in Q. Thus, any such
u, complete or not, cannot outperform the returned answers, even
with more probes, which implies the correctness. Second, Algo-
rithm MPro is probe-optimal. Note that MPro always selects the
top ceiling-scored incomplete object to probe. Theorem 1 asserts
that every such probe is necessary before the stop condition SC be-
comes True (and thus MPro halts). It follows from Lemma 1 that
MPro is probe-optimal, because it only performs necessary probes.

Theorem 2 (Correctness and Optimality of MPro): Given scor-
ing function .T" and retrieval size k, Algorithm MPro will correctly
return the top-k answers. With respect to the given schedule 74,
MPro is also probe-optimal. •

4.3 Online Sampling-based Scheduling
Algorithm MPro assumes a given schedule 74, with respect to

which the probe cost is guaranteed optimal. Given probe predicates
P l , . . . ,pn, there are n! possible schedules (each as a permutation

351

O l D x pc pt ~(x , pc, pl)
a 0.8 0.9 0.2 0.2
b 0.7 0.8 0.2 0.2
c 0.6 0.6 0.3 0.3

Figure 5: Dataset 2.

ofpi). Different schedules can incur different probe cost, as Exam-
ple 2 below shows. This section discusses the problem of identi-
fying the best schedule that minimizes the probe cost and proposes
an effective algorithm that provides such schedule to MPro.

Example 2: Consider .T = min(x , pc, pl), using dataset 2 (Fig-
ure 5). For probe predicates {pc, pt }, two schedules 7-t i = (pc, pl)
and 7-/2 = (pt, pc) are possible. To find the top answer, when given
7-/1 and ~2, MPro will perform 6 and 4 probes respectively (as
shown below); 7/2 is thus a better schedule (with 33% less probes).

7-~1: pr(a,pc), pr(a,pl) , pr(b,pc), pr(b, pt), pr(c, pc), pr(c,pl)
77/2: pr(a,pl) , pr(b, pl), pr(c, pt), pr(c, pc) •

As Section 4.1 discussed, Algorithm MPro can generally work
with either global or object-specific schedules. Our framework
chooses to focus on global scheduling. Note that scheduling can be
expensive (it is NP-hard in the number of predicates, as we show in
[1 1]). As we will see, our approach is essentially global, predicate-
by-predicate scheduling, using sampling to acquire predicate se-
lectivities (and costs) for constructing a global schedule online at
query startup. Note such online scheduling will add certain over-
head to query mn time. Per-object scheduling will thus incur N-
fold scheduling cost for a database of N objects (which may far
offset its benefit); in addition, it may complicate the algorithm and
potentially interfere with parallelism (Section 5.3).

As Section 3.2 discussed, the probe cost of Algorithm MPro can
be written as RC(MPro) = ~ i n = l Ni • Ci. Note that Ni (the num-
ber of necessary-probes for pi) depends on the specific schedule
(e.g., in Example 2, for 7--/2, Npt = 3 and Np, = 1). To find the
optimal schedule, we must further quantify how 7-/determines Ni.
In particular, when will an object u necessarily probe pl under 7/?
At various stages of 7/, we denote ~ k for predicates evaluated up
to the k-prefix, i.e., 7-lk = { x , p l , . . . ,pk}. Further, let 0 be the
lowest score of the top-k results (which we will not know a priori
until the query is fully evaluated). According to Theorem 1, after
probing 7ti- 1 = {x, p l , . • •, p i - 1 }, object u will continue to probe
pl if ~7-/~_ ~[u] is among the current top-k scores. Observe that

~ , _ ~ [u] will eventually be on the top-k i f . T ~ _ ~ [u] > 0 (since
eventually only the final answers will surface to and remain on the
top). That is, MPro will only probe pr(u, pi) when . T ~ _ ~ [u] > 0.
We can then determine N~ for Pi as the number of object u that sat-
isfies f f ~ - I [u] > 0.

0 We thus define the aggregate selectivity S~(T) for a set of pred-
icates T as the ratio of database objects u that "pass" fiT[U] _> 0
(and thus will continue to be probed beyond T). (This selectivity
notion, unlike its Boolean-predicate counterpart, depends on the
aggregate "filtering" effect of all the predicates evaluated.) Thus

the necessary probes of pi is Ni = N . $0 (~ i -1) , and

79C(MPro) = ~ N . S~(~ i -a) " Ci = N . ~ S~(~L[i-1) . Ci.
i = 1 i = 1

Our goal is to find a schedule that minimizes 79C(MPro). How-
ever, as our extended report [1 1] shows, this optimal scheduling
problem is NP-hard and thus generally intractable. Since an ex-
haustive method may be too expensive and impractical, we pro-
pose a greedy algorithm that always picks the most "cost-effective"

predicate with a low aggregate selectivity (thus high filtering rate)
and a low cost. We thus use the intuitive rank metric (as simi-
larly used in [2] using single-predicate selectivity) to represent the
cost-effectiveness of executing pl after some T predicates as below
(note the rank depends on the "context" T). Our scheduler thus
greedily selects the highest-ranked predicate to incrementally build
a schedule.

rank(p, [T) = 1 - S~O(T U {pi})
Ci

However, how can we determine the selectivity with respect to a
top-k threshold 0? (The cost Ci can be provided by users or mea-
sured by performing some sample probes of pi.) Although pre-
constructed statistics are often used for query optimization, such
requirement is unlikely to be realistic in our context, because pred-
icates are either "dynamic" or "external" (Section 1). Our schedul-
ing thus performs online sampling to estimate selectivities. The
scheduler will sample a small number of objects and perform com-
plete probing for their scores. While such sampling may add "un-
necessary" probes, finding a good schedule can well justify this
overhead (Section 6). In fact, some of the probes will later be nec-
essary anyway (MPro can easily reuse those sampling probes).

Using the samples, we can estimate the selectivities with respect
to the top-k threshold/9. The uniform sampling will select some k'
top-k objects proportional to the sample size n, i.e., k' = [k . ~] .
That is, the sampling transforms a top-k query on the database into
a top-k' query on the samples. Thus/9 can be estimated as the
lowest .T score of the top-k' sampled objects.

To illustrate, suppose sampling results in the samples in Figure 5
for .T" = min(x , pc ,Pl). Assume that k' = 1 for the sample size,
and thus/9= 0.3 (the top-1 .T score); let the relative costs Cpc = 1
and Cvl = 3. To schedule pc and pt after {x}, we compute their
ranks. Since all sampled objects satisfy .T{=.p& > 0.3, it follows
that S~S({x ,pc}) = ~ = 1, and similarly S~S({x ,p t }) = ½.
Consequently, since rank(pc I {x}) = ~ = 0 and similarly
rank(pl I {x}) = 3, the scheduler will select pt before pc (result-
ing in 7-/2 = (pt,pc) as in Example 2).

Our scheduler thus performs sampling-based online scheduling,
by continuing such greedy scheduling (as just showed) to construct
a complete schedule 7-/for MPro. Note that it is also possible to ac-
tivate the same scheduler to resehedule after MPro performs more
probes and thus acquire more accurate statistics (of selectivities
and costs). Our study (Section 6) shows that the simple scheme
of scheduling once at query startup with a small sample size (e.g.,
0.1%) works very well and the net overhead is negligible.

5. EXTENSIONS AND SCALABILITY
Based on the basic algorithm MPro, we next discuss several use-

ful extensions. First, Section 5.1 discusses iMPro for supporting in-
cremental access by the next interface. While we assume selection
predicates so far, Section 5.2 generalizes to handling joins as well.
Section 5.3 then shows that MPro can be easily parallelized to ex-
ploit available resources with linear speedup. Finally, Section 5.4
analytically develops the scalability of MPro, showing that its cost
growth is sub-linear in database size. (In addition, in [11] we also
extend MPro for approximate queries.)

5.1 Incremental and Threshold Interfaces
Incremental access can be essential for ranked queries, as users

often want to sift through top answers until satisfied. We can im-
mediately extend the top-k interface of Algorithm MPro to support
incremental access by the next interface (or more generally next-k).
In this mode, the system can continue at where it left off, without

352

starting from scratch. This incremental extension, referred to as Al-
gorithm iMF'ro, is essentially the same as MPro in Figure 3, except
now the ceiling queue is "persistent" during incremental access.
Thus iMPro will initialize Q only at the very first next call. For any
subsequent call, iMPro will continue to populate/C with the next
top answer just like MPro.

Further, it is also desirable to support threshold queries, where
users specify a threshold 0 to retrieve objects u such that .T'[u] > 0.
We can support this interface simply by extending iMPro to output
incrementally until all objects that score above 0 are returned.

5.2 Fuzzy Joins
Join predicates are inherently expensive, as they generally re-

quire a probe for each combination of objects from participating
relations. Having studied Algorithm MPro for selection predicates
over a single table, we show that essentially the same algorithm can
handle join predicates over multiple tables as well. We thus have a
unified framework for both selection and join predicates, under the
abstraction of expensive predicates.

Intuitively, to unify both selections and joins, we consider them
as operations over the "entire" input of the query. When a query
involves multiple relations, we consider the Cartesian product of
all the relations as the input. With this conceptual modeling, all
predicates are simply selections over the Cartesian table. Thus, at
least conceptually, Algorithm MPro can be applied for all expen-
sive predicates- selections or joins alike.

To illustrate this conceptual unification, consider Query 2 (Sec-
tion 1), which involves two relations house and park . The query
uses a join predicate pj = elose(h.zip, s. address) over pairs of h
from house and s from park . For instance, suppose the relations,
as sets of objects, are house = {a, b} and p a r k = {e, f} . The
Cartesian product is thus {(a, e), (a, f) , (b, e), (b, f)} . Note we
use (d l , . . . , din) to denote a Cartesian object that joins object di
from relation r i , and we refer to di as the r i dimension; e.g., (a, e)
joins a and e as the house and p a r k dimensions respectively. As
example data, Figure 6 shows the predicate scores for each Carte-
sian object. For instance, since x is a selection over house (and
similarly p , over park) , it only depends on the corresponding di-
mension; e.g., x[(a, e)] = x[(a, f)] = 0.9. In contrast, as a join pred-
icate over both relations, pj depends on both dimensions. With all
Cartesian objects fully materialized, Algorithm MPro can directly
apply as if all predicates are selections.

However, while conceptually operating on Cartesian objects, Al-
gorithm MPro can incrementally materialize them. To incorporate
such lazy materialization, we use a wildcard " . " for an unmaterial-
ized dimension in a Cartesian object. For instance, in Figure 7, u =
(a, *) has the first but not the second dimension materialized. We
then explode unmaterialized dimensions on demand. Recall that
MPro will need an object u only when it surfaces to the top of the
ceiling queue Q (Figure 3)- i.e., u has the highest ceiling score, and
thus pr(u, p) is necessary (by Theorem 1) for the next predicate p.
MPro can thus wait until this point to materialize the required di-
mensions (if not yet) for p. Consider u = (a, .) and assume p , is
to be probed next, which depends on the unmaterialized p a r k di-
mension. Since the wildcard represents p a r k = {e, f } , MPro will
explode u on this newly needed dimension to materialize u into
{(a, e), (a, f)} .

Figure 7 illustrates Algorithm MPro for evaluating Query 2, with
search predicate x and expensive predicates when 7-/= (p, , pj) . Al-
gorithm MPro begins by initializing Q with the x output stream (of
house objects), leaving the p a r k dimension unmaterialized. MPro
then explodes the top object u = (a, *) for pr , in order to perform
necessary probe pr(u, p ,) . The resulting objects (a, e) and (a, f)

I OID x Pr PJ .T(z, Pr, Pj)
I (a,e) 0.90 0.50 0.70~ 0.50

(a , f) 0.90 ~ 0.80 0.80 0.80
(b,e) 0.70 0.50 0.90 0.50
(b,f) 0.70 0.80 0.30 0.30

Figure 6: Dataset 3 for join query .T'= min(x , p,, pj).

step action
1. initialize Q and K
2. explode (a, *) for Pr

into (a, e), (a, f)
probe pr((a, e), Pr)
probe pr((a, f) , p~)
probe pr((a, f) , pj)
pop top complete
objects from Q into/U
stop condition holds
output K

ceiling queue Q
(a,*):0.90, (b,*):0.70
(a,e):0.90, (a,f):0.90, (b,*):0.70

(a,f):0.90, (b,*):0.70, (a,e):0.50
(a,f):0.80, (b,*):0.70, (a,e):0.50
(a,f):0.80, (b,*):0.70, (a,e):0.50
(b,.):o.70, (~,e):0.50

(b, *):0.70, (a, e) :0.50

output(K)
{} (empty)
{}

{}
{}
{}
(a, f):0.80

(a,y):0s0

Figure 7: Illustration of Algorithm M P r o for a join query.

will be inserted back to (the top of) Q. Since they share the same
top ceiling score (as u), MPro will order them with the determinis-
tic tie-breaker as Section 3 discussed. Suppose that (a, e) becomes
the new top object; pr((a, e), p ,) will then be the next necessary
probe. Algorithm MPro will continue as usual and eventually out-
put (a, f) :0.80 (for house a and p a r k f) as the top-1 answer.

5.3 Parallel Processing
We discussed sequential MPro which performs necessary probes

one after another. It may appear that such sequential probing (as or-
dered by the ceiling queue Q) cannot allow parallelization. To the
contrary, we can extend MF'ro to execute multiple probes concur-
rently or to process multiple chunks of data independently.

Probe-Parallel MPro: Given a top-k query, Section 4.1 observed
that there are generally multiple necessary probes at any time dur-
ing query processing. For Algorithm MPro, as Theorem 1 implies,
every incomplete object among the current top-k (highest ceiling-
scored in K~ and Q) needs further probing. Thus the number of
necessary probes will be k initially when all the objects are incom-
plete and decrease progressively to 0 until all top-k are completed.

Note that necessary probes must be performed sooner or later,
as they are required independent of other probes (Definition 1)-
We can thus parallelize MPro to execute many necessary probes
concurrently to speedup performance while still maintaining probe
minimality. That is, if the predicate subsystems (for evaluating
probes) support concurrent probes (such as a multi-threaded local
subsystem or Web server), the probe-parallel MPro can perform
some or all the necessary probes (depending on the available con-
currency level), update Q with all such probes, and continue to
perform next batch of necessary probes. For instance, consider par-
allelizing our example in Figure 4 when k = 2. At line 1, MPro
will execute both pr(a, pc) and pr(b, pc). Updating Q accordingly,
MPro will still find a and b as the top-2 incomplete objects, and
thus perform pr(a, Pl) and pr(b, pl). MPro will then output a and
b as the top-2 answers. Note that this probe-parallel algorithm per-
forms the same set of necessary probes (as in Figure 4), although
in a different order. When the probe time dominates, paralleling k
probes concurrently will result in a k-fold speedup.

Data-Parallel MPro: Alternatively, we can also parallelize MPro
by partitioning the database and processing all chunks concurrently.
As Figure 8 shows, Algorithm dpMPro consists of two main steps:
First, in data distribution, dpMPro will uniformly distribute the in-
put database/) into s data chunks, each of which is of size 1Is of

353

Algori thm dpMPro(.T, k, 7/, "D, s): Data-parallel MPro
Input: .T', k, 7-/, D: same as Algorithm MPro.

• s: chunking factor, i.e., number of data chunks
Output: K:, the top-k answers with respect to ~.
Procedure:
(I) Data Distribution: distribute objects in "D uniformly

into s chunks 791, . . . , "Ds
(2) Incremental Merging:

• ~ ~ {};M ~ {}
/ / IC: output; A4: merging queue which buffers the top object of every chunk.
• let Ii be the iterator for iMPro(.T,7-l,Z)i) //access Di incrementally.
• for i = 1 to s in parallel: // initialize A4 with top objects.

- topi ~- Ii.neztO; .,~f.insert(topi, topi.score)
• while (IlCl < k): // until have generated enough top

- u .~-- JL~.toPO ff u outperforms any other objects still in A4.
- i f (Vtopi : u . s core _> tapi . score):
f f implies that u indeed outperforms any objects in all Di.

- append u to K~
- else: H unseen objects may be better; bring new top objects into AA.

- for i = 1 to s in parallel:
- topi ~ Ii.nextO; .M.insert(topi, topi.score)

(3) Top-k Output: return in order each (u:u.score) in/C

Figure 8: Algori thm dpMPro.

79, for a given chunking factor s. (Of course, this partitioning can
be done off-line as it is query independent.) To maximize work dis-
tribution (or concurrency), we wish that top answers will uniformly
come from different chunks. That is, the data distributor must en-
sure that the chunks be as "similar" to each other as possible, by
identifying and distributing similar objects (that will perform simi-
larly in queries) in 79 to different chunks.

Second, during incremental merging, dpMPro will access and
merge top answers from each 79i provided by an incremental MPro
iterator Ii (as Section 5.1 discussed), dpMPro uses a merging
queue .A4 to sort top objects from all li by their query scores. If
u is the top of M , it has outperformed those still in M . dpMPro
checks i f u also outperforms all unseen objects by comparing it to
the last top scores of every Ii. (These top scores may have been
output to /C and not present in .A4 any more.) I f so, u must be
the overall top (of entire 79). Otherwise, some unseen objects may
be better, and dpMPro will request parallel access to load new top
objects from all 79i. Note that parallel loading will bring in more
objects to .h4 in just one access time, saving some accesses that
might be needed later.

Observe that dpMPro speeds up by distributing work to s par-
allel MPro "processors": Consider a top-sk query over a database
of size sN, denoted 79B(sN). First, as the database is chunked
uniformly, the answers should distribute uniformly among the s
chunks- thus each MPro processor only needs to find (around) k
instead of sk answers. Further, the chunking reduces the database
from 79B(sN) to 79B(N) for each processor. Putting together,
dpMProparallelizes the time of finding top-sk over 79B(sN) into
that oftop-k over 79B(N), reducing both the database and retrieval
sizes by s times for each processor. As Section 5.4 will quantify,
this reduction results in an overall s-times speedup.

5 .4 M i n i m a l - P r o b e S c a l a b i l i t y
Since necessary probes (Definition I) are algorithm-independent

cost for expensive predicates, we want to understand how much this
required cost will be, and how it scales for larger databases. Note
that Algorithm MPro, as a probe-optimal algorithm (Lemma 1), ex-
ecutes exactly only necessary probes. Therefore, MPro can be an
effective vehicle for understanding minimal-probing costs. To this
end, Section 6 will experimentally evaluate minimal-probing cost
with respect to different queries (i.e., k and .T') and databases (i.e.,
how objects score under .T). This section seeks to understand an-
alytically how the minimal-cost scales, by addressing an important

question: Given a top-k query . T ' (x , p l , . . . , p ~) , i f it requires 79i
probes for each predicate pi over a database of size N , or 79B(N),
how will the required necessary-probes increase when the database
is scaled up s times, i.e., DB(sN) . As explained, we specifically
study the scalability of MPro to generally answer this question.

To focus on scalability, we assume uniform scaling, such that
79B(sN) will perform "statistically" similar to 79B(N)- i.e., the
two databases differ in size but not nature, so that we can isolate
data size to study its effect. To allow analytical study, we approxi-
mate uniform scaling by simply replicating 79B(N) s times to gen-
erate 79B(sN). We thus obtain an interesting result: If a database
is uniformly scaled up s times, MPro can retrieve s times more top
answers, with s times more probe cost. While we leave a formal
proof to [1 1], Section 6 experimentally verifies this result- over
datasets that are only similar but not identical.

Theorem 3 (Probe Sealability): Consider aranked q u e r y ~ (x , p l ,
. . . . p~) and a schedule 7-/. Suppose that 79B(N) is a database of
size N; let 79B(sN) be the database containing the s N objects
generated by replicating 79B(N) s times. 7)C(MPro(.F, sk, 7-l,
79B(sN))) = s . 79C(MPro(Y r, k, 7-l, 79B(N))). •

Theorem 3 gives the scalability of necessary-probes in general
as well as Algorithm MPro in particular. This result enables sev-
eral interesting observations. First, it shows that MPro has good
data scalability, in which cost increase is sublinear in database
size: The probes required for finding k answers from DB(sN)
will be less than s times that for finding the same number of an-
swers from 79B(N): As the stop condition (SC in Figure 3) en-
sures, Algorithm MPro will stop earlier and pay less probe cost for
a smaller retrieval size, and thus 7)C(MPro(.T, k, ~ , 79B(sN))) <
PC(MPro(~, sk, 7-l, DB(sN))) . (Section 6 shows how necessary-
probes increase over retrieval sizes.) With Theorem 3, we de-
rive the sublinear growth of cost: PC(MPro(~, k, 7-l, DB(sN)))
< s • PC(MPro(.T', k, 7-l, DB(N))) . Since complete probing (of
the standard sort-merge framework) requires linear increase, MPro
will scale better and reduce more probes for larger databases.

Second, MPro will enjoy good resource utility: I f the comput-
ing resource scales up s times, our framework can receive lin-
ear speedup by using s concurrent MPro processors in parallel in
dpMPro. As Section 5.3 discusses, by reducing both the retrieval
and database size for each processor, dpMPro can reduce the probe
cost for each processor from PC(MPro(.T, sk, 7-l, DB(sN))) to
7)C(MPro(.T ", k, 7-l, DB(N))) . As Theorem 3 asserts, the latter is
1- of the former, which means a s-times speedup or linear to the
8

resource increase.
Finally, it is important to note that these observations together

indicate that our framework can take advantage of increasing com-
puting resource to better scale to larger databases: If the database
scales up s times (resulting in sublinear cost-growth), dpMPro with
s-times resource (resulting in linear speedup) can fully offset the
potential slowdown to achieve even faster processing.

6. E X P E R I M E N T S
This section reports our extensive experiments for studying the

effectiveness and practicality of Algorithm MPro. Our experiments
in fact have a two-fold interpretation. On one hand, the results
specifically quantify the practical performance of Algorithm MPro.
On the other hand, since MPro is provably probe-optimal, this em-
pirical study also generally contributes to understanding the "lower
bound" for supporting probe predicates. In fact, as Section 3.3 ex-
plains, we adopt the $ortMerge scheme as our baseline for com-
parison - which requires complete probing and thus symmetrically
defines the "upper bound."

354

QI: select id from house
where nearcity(zip, Chicago) z,

roomy(bedroom) Pt, cheap(price) p~, large(size) ps
order by min(x, Pt, pc, ps) stop after k

Q2: select h.id, u.name from house h, park s
where nearcity(h.zip, Chicago) x,

roomy(bedroom) Pt, cheap(price) Pc, close(h.zip, s.zip) Ps
order by min(x, Pl, Pc, Ps) stop after k

Q3: select id from house
where neareity(zip, Chicago) x,

roomy(bedroom) Pt, cheap(price) Pc, safe(zip) Ps
order by rain(x, Pt, P2, Ps) stop after k

User-defined selections:
large (size):
if (size<lSO0 or size>3500): return 0
else: return (size-1500)/2000

Fuzzy joins:
elose(zipl , zipe):

f f dist is a builtin function for computing distance.
d = dist(zipl, zip2)
if d>20: return 0
else: return (20-d)/20

External predicates:
safe(zip):
crime = query_apb (zip) //query apbnews.com.
return 1-(crime-I)/9.0

Figure 9: Benchmark queries and the expensive predicates.

We measured two different performance metrics. Consider query
Q = Y (x , p l , . . . ,pn). First, to quantify the relative probe perfor-
mance, we measure how MPro saves unnecessary probes with the
probe ratio metric. Suppose that MPro performs Ni probes for
each p~. In contrast, SortMergo will require N probes (where N
is the database size) for every probe predicate. The overall probe

ratio (in %) is thus pratio(Q) = ~?=~ N~ In addition, to under- n g
stand the saving of each predicate, we also measured the predicate
probe ratio as pratio(pi) = ~ . Note that pratio(Q) = pratio(pl)
+ . . . + pratio(p,).

Further, to quantify the "absolute" performance, our second met-
ric measured the elapsed time (in seconds) as the total time to pro-
cess the query. This metric helps us to gauge how the framework
can be practically applied with reasonable response time. It also
more realistically quantifies the performance when predicates are
of different costs, because we measure the actual time, which can-
not be shown by counting the number of probes as in probe ratios.

Our experiments used both a "benchmark" database (with real-
life data) as well as synthetic data. To understand the performance
of MPro in real-world scenarios, Section 6.1 experiments with a
benchmark real-estate database (essentially the same as our exam-
pies). To extensively isolate and study various parameters (e.g.,
database size and scoring functions), Section 6.2 reports "simula-
tions" over data synthesized with standard distributions.

Our experience found it straightforward to implement Algorithm
MPro. As Figure 3 shows, MPro essentially operates on a priority
queue (the ceiling queue Q), which we use a standard heap imple-
mentation. We build the queue on top of a DBMS, namely Post-
greSQL 7.1.3, to take care of data storage. Our implementation
adopts the Python programming language for defining expensive
predicates, since it is interpreted and open-source. In principle, any
languages or, more preferably, graphic user interfaces can be used
to define user functions. Finally, all experiments were conducted
with a Pentium III 933Mhz PC with 256MB RAM.

6.1 Benchmarks over Real-Life Database
We first report our experiments of benchmark queries access-

ing a real-estate system (as Example 1 introduced). To establish
a practical scenario, we extracted real data from realtor, corn
(an authoritative real-estate source). In particular, we collected (by
querying) all the for-sale houses in Illinois, resulting in N = 20990
objects for relation house, each with attributes id, price, size,
bedroom, bath, zip, and city. In addition, we constructed a second
relation park of about 110 Illinois state parks, each with attributes
name and zip.

Our experiments considered a benchmark scenario of finding top
houses around Chicago for a small family of four members. We
thus created three benchmark queries, as Figure 9 (upper) shows.
The queries use a search predicate nearcity (zip, C) which returns
houses closest to C (e.g., C = C h i c a g o) in order. All the others
(roomy, cheap, large, close, and safe) are probe predicates; Fig-
ure 9 (lower) also shows some of them. Note that the three queries
only differ in predicate ps. In particular, large, close, and safe rep-
resent increasingly more complex and expensive operations- i.e.,
simple user-defined functions, joins, and external predicates.

For each query, we measured the probe ratios and the elapsed
time. Figures 10(a)-(c) plot the probe ratios (the y-axis) with re-
sPect to different retrieval size k (the z-axis), both logarithmically
scaled. Each graph shows four curves for pratio (pl), pratio (pc),
and pratio(ps), and their sum as the overall probe ratio. For in-
stance, for Q1 in Figure 10(a), when k = 10 (to retrieve top-lO),
Pl requires 3% probes, p2 0.4%, and P3 0.1%, which sum up to
3.5%. In other words, since N = 20990 and n = 3, the ratios
translate to 1889, 252, and 63 probes (with a total of 2204) out of
the n N = 62970 complete probes. Observe that the vast majority
of complete probes are simply unnecessary and wasted- in this case
96.5% or 60766 probes. As also expected, the probe ratio (relative
cost) is smaller for smaller k; e.g., for k = 1, the overall probe ratio
is only 1.4%. As Section 3 discussed, such "proportional cost" is
crucial for top-k queries, as users are typically interested in only a
small number of top answers. In fact, Figure 10(b)-(c) only show
the top range k < 0.1% • N to stress this critical range of interest.

Figures 10(d)-(f) compare the elapsed times (for gauging the
"absolute" performance) of the baseline SortMerge scheme and
MPro. Note that we implemented SortMerge by completely prob-
ing all objects and at the same time computing the .T scores to
create a functional index [22]. (Thus the comparison in fact fa-
vors SortMergo, whose separate "merge" phase combining mul-
tiple predicate streams was not included.) The SortMerge cost
thus consists of the startup probing and incremental index access
costs. (The latter is not observable in Q2 and Qa as the probing
costs dominate.) Referring to Figure 10ft), when k = 10, MPro
responded in 408 seconds, while SortMerge takes 21009 seconds.
That is, we observe that, when probe predicates are truly expen-
sive as in Q3 (with external predicate safe), our framework can be
orders of magnitude faster than the standard SortMerge scheme.
Such speedup can potentially turn an overnight query into an in-
teractive one. The fuzzy join of Q2 demonstrates similar speedup,
from 1368 seconds to 26 seconds or 1.9% time (for k = 10).

Finally, we note that our scheduler (Section 4.3) effectively iden-
tified the best schedule with 0,1% sampling, which corresponds to
less than a second overhead at query startup. We will report more
extensive scheduling results later with simulations.

6.2 Simulations over Synthetic Datasets
We next perform extensive experiments to study various perfor-

mance factors. To isolate and control different parameters, our ex-
periments in this section used synthetic datasets. Our configura-
tions are characterized by the following parameters. (1) Database
size N: lk, 10k, and 100k. (2) Score distribution D: the distil-

355

1 0 0

1 0

1

0 . 1

1 0 0

1 0

to ' ! ~

" ~ . ;..

1 0 1 0 0 1 0 ~ 1 0 4 k

(a) Probe ratio for Q1

J

11111

10

0.1

10 k

I1~) Q2

lO F

100 I"

. . . : . . . : 10}-

B, "~ ~t~o~ ~ B~,o
I0 i00 103 104 k . iO k

(d) Elapsed time for Qi (e) Q2

Figure 10: Results for benchmark queries.

lOO ./V = lk .2. ! : . !
V = l O k : . :

80 =~ =i,Tu~ ~ ~ . / ".:~

0

1 0 I00 I(P I0 a I0 a k

Figure 11: Different database sizes N with (D=norm, 3==rain).

butions of individual predicate scores, including the standard unif
(uniform) and norm (normal) distributions as well as funif, a home-
brew "filtered-uniform" distribution (see below). (3) Scoring func-
tion 3=: rain, avg (average), and gavg (geometric average).

We isolate each parameter to study its impact on MPro. All
queries are of the form 3=(x ,p l ,p2 ,p3) (as in Section 6.1). We
conclude with quantifying the effectiveness of our scheduling al-
gorithm (Section 4.3).
N : Database Size. Figure 11 presents the performance evalua-
tion for N = lk, 10k, and 100k. when 3==rain and D=norm.
It is interesting to observe that, the probe ratios are approximately
the same if the relative retrieval size is the same, regardless of the
database size. For instance, for k = N • 1% (i.e., k = 10, 100, and
1000 for N = 1 k, 10k, and "100k respectively), the probe-ratios are
all about 8%. Similarly, the probe-ratios for k = N - 0.1% are
about 3%. This observation is critical in evaluating the scalability
of MPro over N: As Section 3 explained, it is presumable that the
retrieval size will be independent of the database size N; i.e., users
will probably interested in only the very top hits. MPro will thus
be relatively (compared to the baseline scheme) more efficient for
larger databases, which shows its scalability over N.

Note that this "constant-ratio" observation also verifies Theo-
rem 3. For (k = 10, N = i k), the probe cost is 8% - n - N (where
n is the number of predicates). Now let s = 10; we observed that
(sk = 100, s N = '10k) costs 8 % . n • s N , i.e., s times more. That
is, when the database is scaled up s times, MPro retrieves s times
more top answers, with s times more probe cost.

D: Score Distribution. Figure 12(a) present the results with dif-
ferent score distributions, which characterize predicates. The left
figure presents the results for normal distribution (with mean 0.5
and variance 0.16), which show similar proportional-cost behavior
over k (as in the benchmark queries). The second distribution funif

100

0.1

. : ; ' . ; ; , . ; ; . ; :

• , Z

io s

lip

lOS ' ~ f 2 . _ _

100

1 0 .

(8 Q3

10 k

(c) Q 3

simulates "filtering" predicates. As we observed in our benchmark
queries, real-life predicates are likely to "filter out" a certain portion
of data; e.g., the large predicate (Figure 9) disqualifies 78% objects
with zero scores (as their sizes are out of the desired range). We
define funif(f) (for f i l tered uniform) to simulate such predicates,
where f % objects score 0 and the rest are uniformly distributed.
The right figure (Figure 12a) plots the cost for funif(75). Observe
that such filtering makes MPro more effective- MPro can leverage
the filtering to lower the ceiling scores of disqualified objects early
and thus focus on the promising ones.

.T: Scoring Function. To understand the impact of scoring func-
tions (which can form the basis of how a practical system may
choose particular functions to support), we compare some common
scoring functions: ra in (Figure 12a) and some representative aver-
age functions (Figure 12b), namely arithmetic average avg : (x +
pt +p2 + p a) / 4 and geometric average gavg := (x "pl ' p 2 'p3) 1/4.

We found that rain is naturally the least expensive, as it allows
low scores to effectively decrease the ceiling scores and thus "filter"
further probes. (In contrast, m a x will be the worst case, requiring
complete probing.) The average functions perform similarly, with
3= = gavg being about 5% to 10% cheaper than avg.

Scheduling Effectiveness. We quantify the average scheduling
performance over different predicate configurations (pl , pc, p3)
characterized by costs (Cx, C~, C3) and distributions (funif(ft) ,
funif(f2), funif(f3)). We randomly generated 100 configurations of
(Ct, C2, C3) and (f l , f2, .f~), with Ci in [0:I00] and fi in [25:75].
For each schedule of a configuration, we measure the cost ratio

(relative to complete probing), i.e., E?=x c, Ni
" ~ - C i N "

For k = 1, 10, and 100, our scheduler determines a schedule for
each configuration, with 0.1% and 1% sampling (over N = 20k
objects). Figure 13 compares the average cost ratios of our sched-
uler with those of the best and worst schedules (which were found
by exhaustive enumeration). Note that the net scheduling overhead
(the extra probe costs incurred by sampling) is show in dark at the
top of the 0.1% and 1% bars. Observe that our scheduler generates
the best schedules in most cases with a very small sample size of
0.1% (and thus the average probe cost closely approximates that
of the best schedule)• It is interesting to contrast with 1% sam-
piing: First, while 1%, with more sampling, gives exactly the best
schedule (as their light bars are of the same heights in Figure 13),
its higher sampling overhead makes it overall less attractive than

356

100

~. I 0 ~

0.1

i I0 100 i0 3

100

i0
[i

0.1

100

10

['
0.1

(a) D = norm (left) and funif(75), with ,T'= min

Figure 12: Different score distributions (a) and

1 O0

| W

1
I0 I00

Figure 13: Scheduling for random configurations.

0.1%. Second, for larger k (e.g., k = I00), the net overhead of 1%
becomes less significant, because of the increasing probe reusing
by MPro- thus larger sampling size can be justified by larger k.

7. CONCLUSION
We have presented our framework and algorithms for evaluating

ranked queries with expensive probe predicate. We identified that
supporting probe predicates are essential, in order to incorporate
user-defined functions, external predicates, and fuzzy joins. Unlike
the existing work which assumes only search predicates that pro-
vide sorted access, our work addresses generally supporting expen-
sive predicates for ranked queries. In particular, we proposed Algo-
rithm MPro which minimizes probe accesses as much as possible.
As a basis, we developed the principle of necessary probes for de-
termining ifa probe is truly necessary in answering a top-k query.
Our algorithm is thus provably optimal, based on the necessary-
probe principle. Further, we show that MPro can scale well and
can be easily parallelized (and it supports approximation [11]).

We have implemented the mechanism described in this paper,
based on which we performed extensive experiments with both
real-life databases and synthetic datasets. The results are very en-
couraging. Our experiments show that the probe cost of Algo-
rithm MPro is desirably proportional to the retrieval size. It can
eliminate as much as 97% probes for our benchmark queries when
k = 10, which can be orders of magnitude faster than the standard
scheme with complete probing. We believe that our framework can
enable practical support for expensive predicates in ranked queries.

Acknowledgements: We thank Divyakant Agrawal and Wen-Syan
Li for their fruitful discusions during one of the authors' summer
visit at NEC USA CCRL, which inspired us to pursue this work.

8. REFERENCES
[1] R. Agrawal and E. Wimmers. A framework for expressing

and combining preferences. SIGMOD 2000, pages 297-306,
2000.

[2] J. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. SIGMOD
1993, pages 267-276, 1993.

[3] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn.
Optimizing disjunctive queries with expensive predicates.
SIGMOD 1994, pages 336-347, 1994.

! •

i

l i e

10

[1
0.1

....... !.-

I0 100 103

(b) .T "= av 9 (left) and 9avg, with D = norm

scoring functions (b) with N = I k.

[4] S. Chaudhuri and L. Gravano. Optimizing Queries over
Multimedia Repositories. SIGMOD 1996, pages 91-102,
1996.

[5] S. Chaudhufi and L. Gravano. Evaluating top-k selection
queries. VLDB 1999, pages 397-410, 1999.

[6] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. SIGMOD 2001, 2001.

[7] R. Fagin. Combining fuzzy information from muttiple
systems. PODS 1996, 1996

[8] E. Wimmers, L. Haas, M. Roth, and C. Braendli. Using
Fagin's algorithm for merging ranked results in multimedia
middleware. International Conference on Cooperative
Information Systems, pages 267-278, 1999.

[9] S. Nepal and M. Ramakrishna. Query processing issues in
image(multimedia) databases. ICDE 1999, pages 22-29,
1999.

[10] R. Fagin, A. Lote, and M. Naor. Optimal aggregation
algorithms for middleware. PODS 2001, 2001

I11] K. Chang and S. Hwang. Minimal probing: Supporting
expensive predicates for top-k queries. Technical Report
UIUCDCS-R-2001-2258, University of Illinois, December
2001.

[12] A. Natsev, Y. Chang, J. Smith, C. Li, and J. Vitter.
Supporting incremental join queries on ranked inputs. VLDB
2001, pages 281-290, 2001.

[13] R. Kimball and K. Strehlo. Why decision support fails and
how to fix it. SIGMOD Record, 24(3):92-97, 1995.

[14] M. Carey and D. Kossmann. On saying "enough already!" in
SQL. SIGMOD 1997, pages 219-230, 1997.

[15] M. Carey and D. Kossmann. Reducing the braking distance
of an SQL query engine. VLDB 1998, pages 158-169, 1998.

[16] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
SIGMOD 1998, pages 201-212, 1998.

[17] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k
queries over web-accessible databases. ICDE 2002, 2002

[18] S. Russell and P. Norvig. Artificiallntelligence: A Modern
Approach. Prentice Hall, 1994.

[19] L. Zadeh. Fuzzy sets. Information and Control, 8:338-353,
1965.

[20] G. Salton. Automatic Text Processing. Addison-Wesley,
1989.

[21] T. Cormen, C. Leiserson, and R. Rivest. Introduetion to
Algorithms. MIT Press, 2001.

[22] The PostgreSQL Global Development Group. The
PostgreSQL 7.1. Reference Manual.

357

