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ABSTRACT 
This paper addresses the problem of evaluating ranked top-k queries 
with expensive predicates. As major DBMSs now all support ex- 
pensive user-defined predicates for Boolean queries, we believe 
such support for ranked queries will be even more important: First, 
ranked queries often need to model user-specific concepts of prefer- 
ence, relevance, or similarity, which call for dynamic user-defined 
functions. Second, middleware systems must incorporate external 
predicates for integrating autonomous sources typically accessible 
only by per-object queries. Third, fuzzy joins are inherently ex- 
pensive, as they are essentially user-defined operations that dynam- 
ically associate multiple relations. These predicates, being dynam- 
ically defined or externally accessed, cannot rely on index mech- 
anisms to provide zero-time sorted output, and must instead re- 
quire per-object probe to evaluate. The current standard sort-merge 
framework for ranked queries cannot efficiently handle such pred- 
icates because it must completely probe all objects, before sorting 
and merging them to produce top-k answers. To minimize expen- 
sive probes, we thus develop the formal principle of "necessary 
probes," which determines if a probe is absolutely required. We 
then propose Algorithm MPro which, by implementing the prin- 
ciple, is provably optimal with minimal probe cost. Further, we 
show that MPro can scale well and can be easily parallelized. Our 
experiments using both a real-estate benchmark database and syn- 
thetic datasets show that MPro enables significant probe reduction, 
which can be orders of magnitude faster than the standard scheme 
using complete probing. 

1. INTRODUCTION 
In the recent years, we have witnessed significant efforts in pro- 

cessing ranked queries that return top-k results. Such queries are 
crucial in many data retrieval applications that retrieve data by 
"fuzzy" (or "soft") conditions that basically model similarity, rele- 
vance, or preference: A multimedia database may rank objects by 
their "similarity" to an example image. A text search engine orders 
documents by their "relevance" to query terms. An e-commerce 
service may sort their products according to a user's "preference" 
criteria [1] to facilitate purchase decisions. For these applications, 
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Boolean queries (e.g., as in SQL) can be too restrictive as they do 
not capture partial matching. In contrast, a ranked query computes 
the scores of individual Jic~, predicates (typically normalized in 
[0:1]), combines them with a scoringfimction, and returns a small 
number of top-k answers. 

Example 1: Consider a real-estate retrieval system that maintains 
a database house(id,  price, size, zip, age) with houses listed for 
sale. To search for top-5 houses matching her preference criteria, a 
user (e.g., a realtor or a buyer) may formulate a ranked query as: 

select id from house 
where new(age) x, cheap(price, size) pc, 

large(size) pt 
order  by rain(x, pc, p~) stop after 5 (Query 1) 

Using some interface support, the user describes her preferences 
over attributes age, price, and size by specifying fuzzy predicates 
new, cheap, and large (or x, pc, and pt for short). For each ob- 
ject, each predicate maps the input attributes to a score in [0:1 ]. For 
example, a house a with age=2 years, price = $150k, and size = 
2000 sqft may score new(2)=0.9, cheap(15Ok, 2000) = 0.85, and 
large (2000)=0.75. The query specifies a scoring function for com- 
bining the predicates, e.g., the overall score for house a is rain(0.9, 
0.85, 0.75) = 0.75. The highest-scored 5 objects will be returned. • 

This paper studies the problem of supporting expensive pred- 
icates for ranked queries. We characterize expensive predicates 
as those requiring a call, or a probe, of the corresponding func- 
tion to evaluate an object. They generally represent any non-index 
predicates: When a predicate is dynamically defined or externally 
accessed, a pre-constructcd access path no longer exists to return 
matching objects in "zero time." For instance, in Example l, sup- 
pose predicate cheap is a user-defined function given at query time, 
we must invoke the function to evaluate the score for each object. 
We note that, for Boolean queries, similar expensive predicates 
have been extensively studied in the context ofextensible databases 
[2, 3]. In fact, major DBMSs (e.g., Microsoft SQL Server, IBM 
DB2, Oracle, and PostgrcSQL) today all support user defined func- 
tions (which arc essentially expensive predicates) allowing uscrs to 
implement predicate functions in a general programming language. 
We believe it is important for ranked queries to support such pred- 
icates, which is the specific contribution of this paper. 

In fact, there are many good reasons for supporting expensive 
predicates, because many important operations are essentially ex- 
pensive. First, supporting expensive predicates will enable function 
extensibility, so that a query can employ user or application-specific 
prcdicatcs. Second, it will enable data extensibility to incorporate 
external data sources (such as a Web service) to answer a query. 
Third, it will enable join operations across multiple tables; as we 
will sec, a fuzzy join predicate is essentially expensive. As far as 

346 



we know, we are the first to generally support expensive predicates 
in the context of ranked queries, in order to handle these operations: 

• Function Extensibility: User-defined functions are expensive 
because they are dynamically defined and thus require per-object 
evaluation. Note that user-defined functions are critical for func- 
tion extensibility of a database system, to allow queries with non- 
standard predicates. While user-defined functions are now com- 
monly supported in Boolean systems, we believe such functions 
will be even more important for ranked queries, because they are 
mainly intended for data retrieval based on similarity, relevance, 
and preference (e.g., as in [1]). As these concepts are inher- 
ently imprecise and user (or application) specific, a practical sys- 
tem should support ad-hoc criteria to be specifically defined (by 
users or application programmers). Consider our real-estate ex- 
ample. Although the system may provide new as built-in, users 
will likely have different ideas about cheap and large (say, de- 
pending on their budget and family sizes). It is thus desirable to 
support these ad-hoc criteria as user-defined functions to express 
user preferences. 

• Data Extensibility: A middleware system can integrate an "ex- 
ternar' predicate that can only be evaluated by probing an au- 
tonomous source for each object. Such integration may take 
place within a loosely coupled system (e.g., a relational DBMS 
and an image search engine). Further, a middleware may inte- 
grate Web sources, which is more common than ever in the Inter- 
net age. For instance, in Example 1, to look for "safe" areas, the 
user may use an external predicate safe(zip) that computes the 
"safety" score for a given zip code by querying some Web source 
(e.g., www. a p b n e w s ,  corn) for the crime rate of the area. 

• Joins: Join predicates are expensive, because they are inher- 
ently user-defined operations: In general, a join operation can 
dynamically associate any attributes from multiple tables (as in 
the Boolean context such as SQL), and in addition the associat- 
ing function can be user-defined. Consequently, since a search 
mechanism cannot be pre-computed, fuzzy joins requires expen- 
sive probes to evaluate each combined tuple (in the Cartesian 
product), as is the case in Boolean queries. To generally support 
fuzzy joins, a ranked-query system must support expensive pred- 
icates. For instance, continuing Example 1, to find new houses 
near a high-rating park, the following query joins another rela- 
tion park(name, zip) with the predicate close: 

select h.id, s.name from house h, pa rk  s 
where new(h.age) x, rating(s.name) p~, 

close(h.zip, s.zip) pj 
order by rain(z, p~, pj) stop after 5 (Query 2) 

While widely supported for Boolean queries in major DBMSs, 
expensive predicates have not been considered for ranked queries. 
These predicates, be they user defined or externally accessed, can 
be arbitrarily expensive to probe, potentially requiring complex 
computation or access to networked sources. Note that it may ap- 
pear straightforward to "transform" an expensive predicate into a 
"normal" one: By probing every object for its score, one can build 
a search index for the predicate (to access objects scored above a 
threshold or in the sorted order), as required by the current pro- 
cessing frameworks [4, 5, 6, 7, 8, 9, 10] (Section 3.3). This naive 
approach requires a sequential scan, or complete probing, over the 
entire database: A database of N objects will need N sequential 
probes for each expensive predicate. Such complete probing at 
query time is clearly unacceptable in most cases. 

This paper addresses probe predicates for ranked queries. When 
a ranked query contains expensive predicates, the key challenge is 

to minimize the number of probes. As users only ask for some 
top-k answers, is complete probing necessary? Our results show 
that the vast majority of the probes may be unnecessary, thus mak- 
ing expensive predicates practical for ranked queries. For instance, 
to retrieve top-lO (i.e., k = 10) from a benchmark database con- 
structed with real-life data, the naive scheme can waste 97% of the 
complete probes (Section 6). To enable probe minimization, we de- 
velop the formal principle of necessary probes, which determines if 
a particular probe is absolutely necessary for finding k top answers. 
We thus present Algorithm MPro which ensures minimal probing, 
i.e., it performs only necessary probes and is provably optimal. 

Further, we discuss several useful extensions of the algorithm. 
First, we show that the algorithm directly supports incremental pro- 
cessing, to return top answers progressively, paying only incremen- 
tal cost. Second, it is easily "parallelizable," to enhance perfor- 
mance over large datasets. The parallelization can in principle give 
linear speedup. Third, we show that the algorithm can scale well; 
the cost will scale sublinearly in database size. In addition, MPro 
can be immediately generalized for approximate processing. Since 
approximate answers are often acceptable in ranked queries (which 
are inherently "imprecise"), we extend MPro to enable trading ef- 
ficiency with accuracy- which we report in [1 I]. 

Note that this paper concentrates on the algorithmic framework 
for supporting expensive predicates, and not on other related is- 
sues. In particular, a practical system must provide a friendly in- 
terface for users or application programmers to easily specify user- 
defined predicates. To study this issue, we are currently building 
a GUI front-end for our prototype testbed, the real-estate retrieval 
system. There are also other extensions to our algorithm: It can 
easily take advantage of predicate caching, where expensive probes 
can be reused, e.g., during query refinement when predicates are re- 
peated in subsequent queries. To highlight, we summarize the main 
contributions of this paper as follows: 

• Expensive predicates for ranked queries: We identify, for- 
mulate, and formally study the expensive predicate problem for 
ranked queries, which generally abstracts user-defined functions, 
external predicates, and fuzzy joins. We are not aware of other 
previous work that formulates the general problem of supporting 
expensive predicates for top-k queries. 

• Necessary-probe principle: We develop a simple yet effective 
principle for determining necessary probes, which can be critical 
for any algorithms that attempt probe optimization. 

• Probe-optimal algorithm: We present Algorithm MPro, which 
minimizes probe cost for returning top-k answers. 

• Experimental evaluation: We report extensive experiments us- 
ing both real-life and synthesized datasets. Our experimental 
study indicates the effectiveness and practicality of our approach. 

We briefly discuss related work in Section 2, and then start in 
Section 3 by defining ranked queries, the cost model, and the base- 
line processing scheme. Section 4 presents the necessary-probe 
principle for optimization, based on which we develop Algorithm 
MPro. Section 5 then discusses several extensions of the basic al- 
gorithm. Section 6 reports our experimental evaluation. Due to 
space limitations, we leave some additional results (e.g., proof, ap- 
proximation, and more experiments) to an extended report [11]. 

2. RELATED WORK 
Expensive predicates have been studied for Boolean queries to 

support user-defined functions. Several works (e.g., [2, 3]) address 
processing expensive predicates efficiently. As Section 1 discussed, 
all current major DBMSs (e.g., Microsoft SQL Server, IBM DB2, 
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Oracle, and PostgreSQL) support such predicates. 
Top-k queries have been developed recently in two different con- 

texts. First, in a middleware environment, Fagin [7, 8] pioneered 
ranked queries and established the well-known .,40 algorithm (with 
its improvements in [9, 10]). [12] generalizes to handling arbitrary 
0-joins as combining constraints. As Section 3 discusses, these 
works assume sorted access of search predicates. This paper thus 
studies probe predicates without efficient sorted access. 

Secondly, ranked queries were also proposed as a layer on top 
of relational databases, by defining new constructs (for returning 
"top" answers) and their processing techniques. For instance, [13] 
proposes new SQL clauses order by and stop after. Carey et al. 
[14, 15] then present optimization techniques for exploiting stop 
after, which limits the result cardinalities of queries. 

In this relational context, references [4, 5] study more general 
ranked queries using scoring functions. In particular, [4] exploits 
indices for query search, and [5] maps ranked queries into Boolean 
range queries. Recently, PREFER [6] uses materialized "views" 
to evaluate preference queries defined as linear sums of attribute 
values. These works assume that scoring functions directly com- 
bine attributes (which are essentially search predicates). We aim 
at supporting expressive user-defined predicates, which we believe 
are essential for ranked queries, as Section 1 discussed. 

This paper identifies and formulates the general problem of sup- 
porting expensive predicates for ranked queries, providing unified 
abstraction for user-defined functions, external predicates, and fuzzy 
joins. [16] develops an IR-based similarity-join; we study general 
fuzzy joins as arbitrary probe predicates. More recently, around the 
same time of our work [ 11 ], some related efforts emerge, address- 
ing the problems of 0-joins [ 12] (which are Boolean and not fuzzy, 
as just explained) and external sources [ 17]. In contrast, we address 
a more general and unified problem of expensive predicates. 

Our general framework, in searching for top-k answers, adopts 
the branch-and-bound or best-first search techniques [18]. In par- 
ticular, Algorithm MPro can be cast as a specialization of A*. Sev- 
eral other works [17, 12, 16] also adopt the same basis. Our work 
distinguishes itself in several aspects: First, we aim at a different 
or more general problem (as contrasted above). Second, our frame- 
work separates object search (finding objects to probe) from pred- 
icate scheduling (finding predicates to execute). We believe this 
"clean" separation allows us to develop the formal notion of neces- 
sary probes (Section 4.1) and consequently a probe-optimal algo- 
rithm (Section 4.2). The scheduling (Section 4.3) is thus separated 
as a sampling-based optimization phase before (or reoptimization 
during) execution. Further, based on the simple framework, we de- 
velop several useful extensions, e.g., parallelization (Section 5.3) 
and approximation [ 11], as well as analytical study of probe scala- 
bility (Section 5.4). 

3. RANKED QUERY MODEL 
To establish the context of our discussion, this section describes 

the semantics (Section 3.1) of ranked queries and a cost model 
for expensive predicates (Section 3.2). Section 3.3 then discusses 
query processing using the standard sort-merge framework to mo- 
tivate and contrast our work. 

3.1 Query Semantics 
Unlike Boolean queries where results are flat sets, ranked queries 

return sorted lists of objects (or tuples) with scores indicating how 
well they match the query. A ranked query is specified by a scoring 
function .T(tl ,  • • •, tn) ,  which combines several fuzzy predicates 
t l ,  • • •, t,~ into an overall query score for each object. Without loss 
of generality, we assume that scores (for individual predicates or 

OID x Pc Pl lr(x, Pc, Pt) 
a 0 . 9 0  0.85 0.75 0.75 
b i0.80 0.78 0.90 0.78 
c 0.70 0.75 0.20 0.20 
d 0.60 0.90 0.90 0.60 
e 0.50 0.70 0.80 0.50 

Figure 1: Dataset I for query ~ ( x ,  pc, pl) = min(x ,  pc, pt). 

entire queries) are in [0 : 1]. We denote by t[u] the score of predi- 
cate t for object u, and .Y'[u] the query score. 

We will use Query 1 (of Example 1) as a running example, which 
combines predicates x, pc, and pt with .T "= rain(z, pc, pt). We will 
illustrate with a toy example (dataset 1) of objects {a, b, e, d, e}. 
Figure 1 shows how they score for each predicate (which will not 
be known until evaluated) and the query; e.g., object a has scores 
x[a] = 0.9, pc[a] = 0.85, pt[u] = 0.75, and overall .T'(z, pc, pt)[a] 
= .T(x[a], pc[a], pt[a]) = rain(0.9, 0.85, 0.75) = 0.75. 

We can distinguish between selection and join predicates, as in 
relational queries, depending on if  the operation involves one or 
more objects. A selection predicate evaluates some attributes of a 
single object, and thus discriminates (or "selects") objects in the 
same table by their scores; e.g., in Query 1, x determines how 
"new" the age of a house is. In contrast, a join predicate evaluates 
(some attributes of) multiple objects from multiple tables. (We can 
thus view a join operation as a selection over joined tuples in the 
Cartesian product of the joining tables.) For instance, pj in Query 2 
evaluates each pair of house and pa rk  to score their closeness. Our 
framework can generally handle both kinds of predicates- we will 
focus on selections for simplicity, and discuss the extensions for 
joins in Section 5.2. 

In this paper we focus on an important class of scoring functions 
that are monotonic, which is typical for ranked queries [7]. Intu- 
itively, in a monotonic function, all the predicates influence posi- 
tively the overall score. Formally, .T is monotonic i f . T ( t l , . . . ,  tn)  

~(81,''" ,Sn) when Vi : ti _> si. Note that this monotonic- 
ity is analogous to disallowing negation (e.g., t l  A -~t2) in Boolean 
queries. Since negation is used only infrequently in practice, we be- 
lieve that monotonic functions will similarly dominate for ranked 
queries. Note that a scoring function may be given explicitly (in 
a query) or implicitly (by the system). For instance, a system that 
adopts fiazzy logic [19] will use f f  = rain(t1, t2) as the fuzzy con- 
junction. An image or text [20] database may combine various fea- 
tures with a user-transparent function, such as Euclidean distance 
or weighted average. 

As results, a ranked query returns the top-k objects with highest 
scores, and thus also referred to as a top-k query. More formally, 
given retrieval size k and scoring function .T', a ranked query re- 
turns a list/C ofk  objects (i.e., IX:l = k)  with query scores, sorted in 
a descending order, such that .~'(tl,  • - • , t , ) [u]  > .~( t l ,  - • • , t ,)[v] 
for Vu G /C and Vv ¢ /C. For example, the top-2 query over 
dataset 1 (Figure 1) will return the list/C = (b:0.78, a:0.75). Note 
that, to give deterministic semantics, we assume that there are no 
ties - otherwise, a deterministic "tie-breaker" function can be used 
to determine an order, e.g., by unique object IDs. 

Note that the top-k interface is fundamental in supporting other 
interfaces. It is straightforward to extend our top-k algorithm (Sec- 
tion 4) to support the incremental access (or iterator) as well as 
threshold interface. We discuss these extensions in Section 5.1. 

3.2 Cost Model 
Given a query, a processing engine must combine predicate scores 

to find the top-k answers. We can generally distinguish between 
index predicates that provide efficient search and non-index prcd- 
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icates that require per-object probes. First, system built-in pred- 
icates (e.g., object attributes or standard functions adopted in [4, 
5, 6]) can use pre-computed indexes to provide sorted access of 
objects in the descending order of scores. Such search predicates 
are essentially of zero cost, because they are not actually evalu- 
ated, rather the indexes are used to search "qualified" objects. For 
instance, our real-estate example may provide neareity(h, C) for 
sorting houses h closest to a given city C (e.g., k-nearest-neighbor 
search). For Query 1, we assume z to be a search predicate. Fig- 
ure 1 orders objects to stress the sorted output o fz .  

In contrast, expensive predicates must rely on per-object probes 
to evaluate, because of the lack of search indexes. As Section 1 ex- 
plains, such probe predicates generally represent user-defined func- 
tions, external predicates, and joins. Unlike search predicates that 
are virtually free, such predicates can be arbitrarily expensive to 
probe, potentially requiring complex computation (for user-defined 
functions), networked access to remote servers (for external predi- 
cates), or coping with combinatorial Cartesian products (for joins). 
Our goal is thus clear: to minimize probe cost. 

This paper thus presents a framework for the evaluation of rank 
queries with probe predicates. To stress this focus, we assume 
(without loss of generality) queries of the form .T'(x, p l , . . .  ,Pn), 
with a search predicate z and some probe predicate p,. Note that, 
when there are several search predicates ( x l , . . . ,  Xm), the well- 
known Fagin's algorithm [7] (Section 3.3 will discuss this standard 
"sort-merge" framework) can be compatibly applied to merge them 
into a single sorted stream x (thus in the above abstraction), which 
also minimizes the search cost. 

We want to minimize the cost of probing p ~ , . . . ,  p ,  for answer- 
ing a top-k query. Let .,4 be an algorithm, we denote its probe 
cost by 'PC(A). Assuming that the per-probe cost for pi is Ci 
and that .,4 performs Ni probes for pi, we model the probe cost 
as 'RC(.A) : ~ = 1  NiCi. In particular, for a database of size 
N,  a complete probing system (as Section 3.3 will discuss) will 
cost ~ = 1  NCi. Such complete probing cost represents an upper 
bound of any algorithms; many probes are obviously unnecessary 
for finding a small number of top-k answers. 

Our goal is to develop a probe-optimal algorithm, which will 
sufficiently guarantee minimal probe cost. If ,.4 is probe-optimal, it 
does not waste any single probes; every probe it performs is neces- 
sary (by any algorithms). Since probe-optimality implies that each 
Ni is minimal, "PC(A) overall must be minimal. We will present a 
probe-optimal algorithm that performs only necessary probes. 

We stress that, for ranked queries, it is important to make the cost 
"proportional" to retrieval size k rather than database size N,  as k 
can often be several orders of magnitude smaller (e.g., k = 5 out of 
N = 1000). (Section 6 shows that our algorithm indeed illustrates 
this property.) This proportional cost can be critical, since users are 
typically only interested in a small number of top results. 

3.3 Baseline: the Sort-Merge Framework 
There have been significant efforts in processing ranked queries 

with "inexpensive" search predicates. The most well-known scheme 
(in a middleware system) has been established by Fagin [7] as well 
as several later versions [9, 10]. Assuming only search predicates, 
these schemes access and merge the sorted-output streams of indi- 
vidual predicates, until top-k answers can be determined. We refer 
to such processing as a sort-merge framework. 

In this paper we consider ranked queries with expensive pred- 
icates. Can we simply adopt the sort-merge framework? As the 
name suggests, this standard framework will require complete prob- 
ing to sort objects for each expensive predicate, before merging the 
sorted streams- Referred to as SortMorge, this naive scheme fully 

X (search predicate: supports sorted access) 
k = 2 ~ a:0.90, b:0.80, c:0.70, d:0.60, e:0.50 [ 

[,'(e.~ensivepredicate:completeprobingtosort) 

[ Ip, (expensivepredicate:completeprobingtosort) 
F = min(Ix, Pc Pl) L ~  b;0.90, d:0.~, e:0.80, a:0.75, c:0.20 [ 

Top-k output Merge step Sort step 

Figure 2: The baseline scheme SortMerge. 

"materializes" probe predicates into search predicates. Figure 2 il- 
lustrates Scheme SortMerge for Query 1, where x is a search pred- 
icate while Pc and Pl expensive ones. The scheme must perform 
complete probing for both pc and pt to provide the sorted access, 
and then merge all the three streams to find the top-2 answers. 

Note that, rather than the desired "proportional cost," SortMerge 
always requires complete probing, regardless of the small k; i.e., 
7~C(S°rtMerg e) = ~i~1 NCi, for a database of size N.  Such 
"sequential-scan" cost can be prohibitive in most applications, when 
the database is of an interesting size. This paper addresses the prob- 
lem of minimizing this probe cost. In fact, as we will see, most 
probes in complete probing are simply unnecessary- Section 6 will 
experimentally compare the baseline scheme to our algorithm. 

4. MINIMAL PROBING: ALGORITHM MPro 

Given a ranked query characterized by scoring function .T(x, p l ,  
• .., Pn) and retrieval size k, with a search predicate x and probe 
predicates Pl,  .. •, p,~, our goal is to minimize the probe cost for 
answering the query. Toward this goal, we must confront two key 
issues: l) What is the minimal-possible probe cost? 2) How can 
we design an algorithm that minimizes the cost. This section de- 
velops a formal principle (the Necessary-Probe Principle) in Sec- 
tion 4.1 for answering the former and proposes an algorithm (Al- 
gorithm MPro) in Section 4.2 for the latter. Section 4.3 discusses 
the scheduling of probe predicates. 

4.1 Necessary Probes 
In order to minimize probe cost, we must determine if a probe is 

necessary for finding top-k answers with respect to scoring func- 
tion 5r(x, P l , . . . ,  pn). This section presents our results on such a 
principle (i.e., Theorem 1). 

To begin with, for each object, we sequentially execute probes 
and incrementally determine if further probes are necessary. (Sec- 
tion 5.3 will extend to parallel probing.) We thus need a predicate 
schedule as a sequence of p l ,  . . . ,  p,~, which defines their execution 
order (if probed at all). For our example .T'(z, Pc, Pt), two sched- 
ules are possible: (pc, pt) if pc is evaluated before pt or (Pt, pc) 
otherwise. In general, each object u may define its own object 
schedule 7/~', or all objects may share the same global schedule 
7/-/. Our main algorithm (Algorithm MPro) assumes as input such 
schedules (object or global) and is thus independent of the schedul- 
ing. For simplicity, this section refers only to a single global sched- 
ule 7-/; the same results hold when objects have their own sched- 
ules. While such scheduling is NP-hard in general [11], Section 4.3 
will discuss an online sampling-based scheduler that effectively (al- 
most always) finds the best schedules by greedily scheduling more 
"cost-effective" predicates. 

Given a schedule 7/, starting from the sorted output of x, how 
shall we proceed to probe the predicates for each object, in order to 
minimize such accesses? On one hand, it is clear that some objects 
must be fully probed (for every pi), which include at least the top-k 
answers in order to determine their query scores and ranks in the 
query results (Section 3.1). On the other hand, since only some 
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top-k answers are requested, is complete probing (for every object) 
necessary? To avoid this prohibitive cost, our goal is to stop as early 
as possible for each object. In fact, some objects may not need to 
be probed at all, if  they can never be the top answers. 

To enable probe minimization, we must determine if a particu- 
lar probe is truly necessary for finding the top-k answers. During 
query processing, for any object u, i fp  is the next predicate on the 
schedule (global or object-specific), we may probe p for u in order 
to determine the score p [u]. We want to determine if such a probe, 
designated by pr(u, p), is necessary. The following definition for- 
malizes our notion of a necessary probe. 

Definition 1 (Necessary Probes): Consider a ranked query with 
scoring function .T and retrieval size k. A probe pr(u,p),  which 
probes predicate p for object u, is necessary, if  the top-k answers 
with respect to .T cannot be determined by any algorithm without 
performing the probe, regardless of the results of other probes. • 

We stress that this notion of necessary probes is essential for 
optimizing probe cost. According to the definition, a probe is nec- 
essary only if it is absolutely required- thus it must be performed 
by an optimal algorithm: First, the probe is required independent of 
algorithms- any algorithm that returns correct top-k answers must 
pay the probe. Second, the probe is required independent of the 
outcomes of other probes- it may be performed before or after oth- 
ers, but the particular order will not change the fact that the probe 
is required. While this notion of necessary probes seems intuitively 
appealing, how can we determine if a particular probe is absolutely 
required? Further, given there are many possible probes (at least 
one for each object at any time), how many of them are actually 
necessary, and how to effectively find all the necessary probes? We 
next develop a simple principle for answering these questions. 

Let's start with the first question: how to determine ifa probe 
is necessary? To illustrate, consider finding the top-1 object for 
.T(x, pc, pl) with dataset 1 (Figure 1), given schedule 7-I = (p~, pt). 
Our starting point, before any probes, is the sorted output of search 
predicate z (Figure 1 sorts objects by their x scores). We thus can 
choose to probe the next predicate pc for any object a, b, c, d, or 
e. Let's consider the top object a and determine if pr(a, p¢) is nee- 
essary. (We can similarly consider any other object.) The probe 
is actually necessary for answering the query, no matter how other 
probes turn out: Assume we can somehow determine the top-1 an- 
swer to be object u without probing pr(a, pc). 

• Suppose u ~ a: Note that .T[u] = min(x[u], pc[u], p,[u]) 
< x[u], and x[u] _< 0.8 for u ¢ a (see Figure 1). Conse- 
quently, .T[u] < 0.8. However, without probing pr(a, pc) and 
then pr(a, Pl), u may not be safely concluded as the top-1. For 
instance, suppose that the probes would return p,[a] = 1.0 and 
pt[a] = 1.0, then .T[a] = min(0.9, 1.0, 1.0) = 0.9. That is, a 
instead of u should be the top-l, a contradiction. 

• Suppose u = a: In order to output a as the answer, we must have 
fully probed a, including pr(a, p~), to determine and return the 
query score. 

Observe that, we determine if the probe on a is necessary es- 
sentially by comparing the upper bound or "ceiling score" of a to 
others. That is, while .T[a] can be as high as its ceiling score of 
0.9, any other object u cannot score higher than 0.8 (which is the 
ceiling score of b). In general, during query processing, before an 
object u is fully probed, the evaluated predicates of u can effec- 
tively bound its ultimate query score. Consider a scoring function 
.T ' ( t l , . . . ,  tn).  We define ~T[U], the ceiling score o f u  with re- 
spect to a set T of evaluated predicate (T C { t l , . . . ,  t~}), as the 
maximal-possible score that u may eventually achieve, given the 

predicate scores in T. Since .T is monotonic, the ceiling score 
can be generally obtained by Eq. 1 below, which simply substi- 
tutes unknown predicate scores with their maximal-possible value 
1.0. The monotonicity of .T ensures that the ceiling score give the 
upper bound when only T is evaluated, i.e., .T[u] < .T'y[u]. 

- -  ( ti = ti[u] if ti E T ) 
ST( t1 , . . . ,  t n ) [ U ]  = .~" ti 1.0 otherwise. Vi (1) 

To further illustrate, after pr(a, pc), what shall we probe next? 
Intuitively, at least we have choices of pr(a, pt) (to complete a) or 
pr(b, pc) (to start probing b). Similarly to the above, we can reason 
that the further probe on a, pr(a, pt), is still necessary. To contrast, 
we show that pr(b, pc) is not necessary at this point, according to 
Definition I. (However, as more probes are done, at a later point, 
pr(b, pc) may become necessary.) With x[b] = 0.8 evaluated, we 
compute the ceiling score of b as .T{ ~ )[b] = 0.8. Whether we need 
to further probe b in fact depends on other probes, namely the re- 
maining probe pr(a, pl) ofa .  (Note that a already has x[a] = 0.9 
and pc [a] -- 0.85 evaluated.) 

• Suppose that pr(a, p,) returns pt[a] = 1 and thus .T[a] = 0.85. 
For finding the top-1 answer, we do not need to further evaluate 
b because ~{~t  [b] = 0.8 < .T[a] = 0.85, and thus b cannot make 
to the top-1. That is, depending on pt[a] = 1, we can answer the 
query without probing pr(b, pc). 

• Suppose that pr(a, pt) retums pl[a] = 0 and thus .T[a] = 0. 
Now b becomes the "current" top object (with the highest ceiling 
score ~{,}[b] = 0.8). That is, depending on pt[a] = 0, we can 
reason that pr(b, pc) is necessary, similar to pr(a, pc) above. 

Further, we consider the second question: how tofind all the nec- 
essary probes? Let u be any object in the database, and p be the 
next unevaluated predicate (on the schedule 7-/) for u. Potentially, 
any probe pr(u, p) might be necessary. However, it turns out that 
at any point during query processing, there will be at most k probes 
that are necessary, for finding top-k answers. That is, we can gen- 
eralize our analysis (see Theorem 1) to show that only those probes 
for objects that are currently ranked at the top-k in terms of their 
ceiling scores are necessary. Note that this conclusion enables an 
efficient way to "search" necessary probes: by ranking objects in 
the order of their current ceiling scores. (As Section 3 discussed, 
we assume that a deterministic tie-breaker will determine the order 
of ties.) For any object u in the top-k slots, its next probe pr(u, p) 
is necessary. Theorem 1 formally states this result (see [11] for a 
proof). 

Theorem 1 (Necessary-Probe Principle): Consider a ranked 
query with scoring function ,T and retrieval size k. Given a predi- 
cate schedule 7-/, let u be an object and p be the next unevaluated 
predicate for u in 7-/. The probe pr(u, p) is necessary, if there do 
not exist k objects e l , . . . ,  vk such that Vvi : ~T~, [u] < ~Tv ,  [el] 
with respect to the evaluated predicates T~ and T~ of u and vi 
respectively. • 

We stress that the notion of necessary probes directly defines the 
minimal probe cost of any correct algorithm. First, Definition 1 
generally isolates a class of (necessary) probes as those required 
by any algorithm. Further, Theorem 1 provides an "operational" 
definition to actually determine if a given probe is necessary as 
well as to effectively search those probes. Putting together, we im- 
mediately conclude that an algorithm will be probe-optimal (Sec- 
tion 3.2) if it only performs necessary probes, which we formally 
state in Lemma 1 (see [11] for a proof). Our goal is thus to design 
such an algorithm. 
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A l g o r i t h m  M P r o ( J  z, k ,  7-l, D): Min imal -p rob ing  a lgor i thm 
I n p u t :  

• br(x,  P l , . . . ,  P , ) :  scoring f u n c t i o n / / w i t h  expensive predicates p t . . . . .  pn. 
• k: retrieval size, i .e.,  to r e tu rn  top-k  answers .  
• 7-/: schedule o f p l , . . .  ,p,~. 
• D: inpu t  d a t a b a s e / / a s s u m e  selection predicates over single relation If or simplicity. 

O u t p u t :  /C, the  top-k  answers  wi th  respect  to  .T. 
Procedure: 
(1) Queue Initialization: 

H search x over l )  to prepare sorted output queue X .  
• X ~ evaluate x over D 
• ~ ~ {}; Q '(.- {} / /  IC: output; ~:  ceiling queue to prioritize by ceiling . . . .  

/ /  initialize Q to buffer objects prioritized by their ceiling scores from x. 
f f  this "full" initialization is only conceptual; X.topO can be on demand. 
• while (X is not  empty): 

- u ~ ..~.topO / /pop  next top object out of X .  
- Tu ~ {x}; u.ceiling e- ~Tu[U] //initialize ceiling score with x. 

- Q . in se r t (u ,  u . c e i l i n g ) / /  insert u into Q prioritized by its ceiling score. 
(2) Necessary Probing: 

f f  set up the stop condition SC for determining if to stop probing. 
• SC +- "IEI _> k, i .e . ,  there are at  least k complete objects seen on the top" 
• while (SC = F a l s e ) : / /  keep porlorming necessary probes until 8C becomes true. 

- u ~ Q . t o p O / / t h e  current top object with the highest ceiling score. 
- if u is complete:  //u is among the first k objects to be completed. 

- u . s core  ~ u .ce i l ing;  append  u to  ]C/ /  add u to be the top-k output. 
- else: f f  u as the top incomplete object must be probed further. 

- p ~ next  uneva lua ted  predica te  of u on schedule 7"t 
- p[u] ~.-- probe p r ( u , p ) / / p r ( u , p )  must be necessary by Theorem 1. 
- T, ~- T,, tJ {p}; u.ceiling ~- 7T.,[U] 
f f  update the ceiling score of u, as p[u] is just obtained. 
- Q . in se r t (u ,  u . e e i l i n g ) / / i n s e r t  u back to Q prioritized by u.ceiling. 

(3) T o p - k  O u t p u t :  r e tu rn  in order  each ( u : u . s e o r e )  i n /C  

Figure 3: Algorithm MPro 

Lemma 1 (Probe-Optimal Algorithms): Consider a ranked query 
with scoring function .T" and retrieval size k. Given a predicate 
schedule 74, an algorithm ,,4 for processing the query is probe- 
optimal if  .,4 performs only the necessary probes as Theorem 1 
specifies. • 

4.2 Algorithm MPro 

We next develop our Algorithm MPro (for minimal probing), 
which finds top-k answers with respect to scoring function .T(x, 
p l ,  • •., pn).  To be probe-optimal, based on Lemma 1, MPro opti- 
mizes probe cost by ensuring that every probe performed is indeed 
necessary (for finding k top answers). 

Essentially, during query processing, MPro keeps "searching" 
for a necessary probe to perform next. Progressing with more 
probes, eventually MPro will have performed all (and only) the 
necessary probes, at which point the top-k answers will "surface." 
Note that Theorem 1 identifies a probe pr(u, p) as necessary if 
u is among the current top-k in terms of ceiling scores. Thus, a 
"search mechanism" for finding necessary probes can return top 
ceiling-scored objects when requested - i.e., a priority queue [21] 
that buffers objects using their ceiling scores as priorities. 

We thus design MPro to operate on such a queue, called ceil- 
ing queue and denoted Q, of objects pfioritized by their ceiling 
scores. As Figure 3 shows, MPro mainly consists of two steps: 
First, in the queue initialization step, starting with the sorted out- 
put stream X of search predicate x, MPro initializes Q based on 
initial ceiling scores ~{x} ['] with x being the only evaluated pred- 
icate (see Eq. 1). Note that, although for simplicity our discussion 
assumes that Q is fully initialized (by drawing every object from 
X), this initialization is only conceptual: It is important to note 
that .T'{x} [.] will induce the same order in Q as the A' stream, i.e., 
if  x[u] < x[v], then ~{x)[u]  < ~{x} [v], since .T is monotonic. 
Thus MPro can access X incrementally to move objects into Q 
when more are needed for further probing. (It is entirely possible 
that some objects will not be accessed from X at all.) 

Second, in the necessary probing step, MPro keeps on request- 
ing from Q the top-priority object u, which has the highest ceiling 

step action 
initialize Q and ]C 
probe pr(a, Pc) 
probe pr(a, Pa) 
probe pr(b, Pc) 
probe pr(b, Pt) 
pop top complete 
objects from Q into/C 
stop condition holds 
ou tpu t /C  

ceiling queue Q 
a:0.90, b:0.80, c:0.70, d:0.60, e:0.50 
a:0.85, b:0.80, c:0.70, d:0.60, e:0.50 
b:0.80, a:0.75, c:0.70, d:0.60, e:0.50 
b:0.78, a:0.75, c:0.70, d:0.60, e:0.50 
b:0.78, a:0.75, c:0.70, d:0.60, e:0.50 
c:0.70, d:0.60, e:0.50 

c:0.70, d:0.60, e:0.50 

output(]C) 
{} (empty) 
{} 
{} 
{} 
{} 
b:0.78, 
a:0.75 
b:0.78, 
a:0.75 

Figure 4: Illustration of Algorithm MPro. 

score. If u is incomplete with the next unevaluated predicate p, 
according to Theorem 1, pr(u, p) is necessary. Thus MPro will 
perform this probe, update the ceiling score of u, and insert it back 
to Q by the new score. On the other hand, i f u  is already complete 
when it surfaces to the top, u must be among the top-k answers, 
because itsfinal score is higher than the ceiling scores of objects 
still in Q. That is, u has "surfaced" to the top-k answers, which 
MPro will move to an output queue, denoted/C in Figure 3. 

Incrementally, more objects will complete and surface to/C, and 
MPro will eventually stop when there are k such objects (which 
will be the top-k answers). As Figure 3 shows, MPro checks this 
stop condition, designated ,SC, to halt further probing. It is inter- 
esting to observe the "dual" interpretations of SC: On one hand, 
SC tells that there are already k answers in/C, and thus no more 
probes are necessary. On the other hand, when SC holds, it follows 
from Theorem 1 that no more probes can be necessary, and thus the 
top-k answers must have fully surfaced, which is indeed the case. 
(We discuss in [ 11 ] how the stop condition can be "customized" for 
approximate queries.) 

Figure 4 illustrates Algorithm MPro for our example of finding 
the top 2 object when .T" = min(x ,  pc ,pl) and 74 = (pc, pt) over 
dataset 1 (Figure 1). While we show the ceiling queue Q as a sorted 
list, full sorting is not necessary for a priority queue. After initial- 
ized from the sorted output of x, we simply keep on probing the top 
incomplete object in Q, resulting in the probes pr(a, pc), pr(a, pl), 
pr(b, pc), and pr(b, pt). Each probe will update the ceiling score 
of the object, and thus changing its priority in ceiling queue. Note 
that Figure 4 marks object with an underline (e.g., a:0.75) when it 
is fully probed, at which point its ceiling score is actually the final 
score. Finally, we can stop when k = 2 objects (in this case, a and 
b together) have completed and surfaced to the top. 

It is straightforward to show that Algorithm MPro is both correct 
and optimal, as we state in Theorem 2. First, it will correctly retum 
the top-k answers. MPro stops when all the k objects with highest 
ceiling scores are all complete (as they surface to/C). This stop 
condition ensures that all these k answers have final scores higher 
than the ceiling score of any object u still in Q. Thus, any such 
u, complete or not, cannot outperform the returned answers, even 
with more probes, which implies the correctness. Second, Algo- 
rithm MPro is probe-optimal. Note that MPro always selects the 
top ceiling-scored incomplete object to probe. Theorem 1 asserts 
that every such probe is necessary before the stop condition SC be- 
comes True (and thus MPro halts). It follows from Lemma 1 that 
MPro is probe-optimal, because it only performs necessary probes. 

Theorem 2 (Correctness and Optimality of MPro): Given scor- 
ing function .T" and retrieval size k, Algorithm MPro will correctly 
return the top-k answers. With respect to the given schedule 74, 
MPro is also probe-optimal. • 

4.3 Online Sampling-based Scheduling 
Algorithm MPro assumes a given schedule 74, with respect to 

which the probe cost is guaranteed optimal. Given probe predicates 
P l , . . .  ,pn,  there are n! possible schedules (each as a permutation 
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O l D  x pc pt ~(x ,  pc, pl) 
a 0.8 0.9 0.2 0.2 
b 0.7 0.8 0.2 0.2 
c 0.6 0.6 0.3 0.3 

Figure 5: Dataset 2. 

ofpi). Different schedules can incur different probe cost, as Exam- 
ple 2 below shows. This section discusses the problem of identi- 
fying the best schedule that minimizes the probe cost and proposes 
an effective algorithm that provides such schedule to MPro. 

Example 2: Consider .T = min(x ,  pc, pl), using dataset 2 (Fig- 
ure 5). For probe predicates {pc, pt }, two schedules 7-t i = (pc, pl) 
and 7-/2 = (pt, pc) are possible. To find the top answer, when given 
7-/1 and ~2,  MPro will perform 6 and 4 probes respectively (as 
shown below); 7/2 is thus a better schedule (with 33% less probes). 

7-~1: pr(a,pc),  pr(a,pl) ,  pr(b,pc), pr(b, pt), pr(c, pc), pr(c,pl) 
77/2: pr(a,pl) ,  pr(b, pl), pr(c, pt), pr(c, pc) • 

As Section 4.1 discussed, Algorithm MPro can generally work 
with either global or object-specific schedules. Our framework 
chooses to focus on global scheduling. Note that scheduling can be 
expensive (it is NP-hard in the number of predicates, as we show in 
[ 1 1 ]). As we will see, our approach is essentially global, predicate- 
by-predicate scheduling, using sampling to acquire predicate se- 
lectivities (and costs) for constructing a global schedule online at 
query startup. Note such online scheduling will add certain over- 
head to query mn time. Per-object scheduling will thus incur N-  
fold scheduling cost for a database of N objects (which may far 
offset its benefit); in addition, it may complicate the algorithm and 
potentially interfere with parallelism (Section 5.3). 

As Section 3.2 discussed, the probe cost of Algorithm MPro can 
be written as RC(MPro) = ~ i n = l  Ni • Ci. Note that Ni (the num- 
ber of necessary-probes for pi) depends on the specific schedule 
(e.g., in Example 2, for 7--/2, Npt = 3 and Np, = 1). To find the 
optimal schedule, we must further quantify how 7-/determines Ni. 
In particular, when will an object u necessarily probe pl under 7/? 
At various stages of 7/, we denote ~ k  for predicates evaluated up 
to the k-prefix, i.e., 7-lk = { x , p l , . . .  ,pk}. Further, let 0 be the 
lowest score of the top-k results (which we will not know a priori 
until the query is fully evaluated). According to Theorem 1, after 
probing 7ti-  1 = {x, p l , .  • •, p i -  1 }, object u will continue to probe 
pl if ~7-/~_ ~[u] is among the current top-k scores. Observe that 

~ , _ ~  [u] will eventually be on the top-k i f . T ~ _ ~  [u] > 0 (since 
eventually only the final answers will surface to and remain on the 
top). That is, MPro will only probe pr(u, pi) when . T ~ _  ~ [u] > 0. 
We can then determine N~ for Pi as the number of object u that sat- 
isfies f f ~ - I  [u] > 0. 

0 We thus define the aggregate selectivity S~(T)  for a set of pred- 
icates T as the ratio of database objects u that "pass" fiT[U] _> 0 
(and thus will continue to be probed beyond T). (This selectivity 
notion, unlike its Boolean-predicate counterpart, depends on the 
aggregate "filtering" effect of all the predicates evaluated.) Thus 

the necessary probes of pi is Ni = N . $0 (~ i -1 ) ,  and 

79C(MPro) = ~ N .  S~(~ i -a )  " Ci = N . ~ S~(~L[i-1) . Ci. 
i = 1  i = 1  

Our goal is to find a schedule that minimizes 79C(MPro). How- 
ever, as our extended report [1 1] shows, this optimal scheduling 
problem is NP-hard and thus generally intractable. Since an ex- 
haustive method may be too expensive and impractical, we pro- 
pose a greedy algorithm that always picks the most "cost-effective" 

predicate with a low aggregate selectivity (thus high filtering rate) 
and a low cost. We thus use the intuitive rank metric (as simi- 
larly used in [2] using single-predicate selectivity) to represent the 
cost-effectiveness of executing pl after some T predicates as below 
(note the rank depends on the "context" T). Our scheduler thus 
greedily selects the highest-ranked predicate to incrementally build 
a schedule. 

rank(p,  [ T) = 1 - S~O(T U {pi}) 
Ci 

However, how can we determine the selectivity with respect to a 
top-k threshold 0? (The cost Ci can be provided by users or mea- 
sured by performing some sample probes of pi.) Although pre- 
constructed statistics are often used for query optimization, such 
requirement is unlikely to be realistic in our context, because pred- 
icates are either "dynamic" or "external" (Section 1). Our schedul- 
ing thus performs online sampling to estimate selectivities. The 
scheduler will sample a small number of objects and perform com- 
plete probing for their scores. While such sampling may add "un- 
necessary" probes, finding a good schedule can well justify this 
overhead (Section 6). In fact, some of the probes will later be nec- 
essary anyway (MPro can easily reuse those sampling probes). 

Using the samples, we can estimate the selectivities with respect 
to the top-k threshold/9. The uniform sampling will select some k' 
top-k objects proportional to the sample size n, i.e., k' = [k .  ~ ] .  
That is, the sampling transforms a top-k query on the database into 
a top-k' query on the samples. Thus/9 can be estimated as the 
lowest .T score of the top-k' sampled objects. 

To illustrate, suppose sampling results in the samples in Figure 5 
for .T" = min(x ,  pc ,Pl). Assume that k' = 1 for the sample size, 
and thus/9= 0.3 (the top-1 .T score); let the relative costs Cpc = 1 
and Cvl = 3. To schedule pc and pt after {x}, we compute their 
ranks. Since all sampled objects satisfy .T{=.p& > 0.3, it follows 
that S~S({x ,pc} )  = ~ = 1, and similarly S~S({x ,p t } )  = ½. 
Consequently, since rank(pc I {x}) = ~ = 0 and similarly 
rank(pl I {x}) = 3, the scheduler will select pt before pc (result- 
ing in 7-/2 = (pt,pc) as in Example 2). 

Our scheduler thus performs sampling-based online scheduling, 
by continuing such greedy scheduling (as just showed) to construct 
a complete schedule 7-/for MPro. Note that it is also possible to ac- 
tivate the same scheduler to resehedule after MPro performs more 
probes and thus acquire more accurate statistics (of selectivities 
and costs). Our study (Section 6) shows that the simple scheme 
of scheduling once at query startup with a small sample size (e.g., 
0.1%) works very well and the net overhead is negligible. 

5. EXTENSIONS AND SCALABILITY 
Based on the basic algorithm MPro, we next discuss several use- 

ful extensions. First, Section 5.1 discusses iMPro for supporting in- 
cremental access by the next interface. While we assume selection 
predicates so far, Section 5.2 generalizes to handling joins as well. 
Section 5.3 then shows that MPro can be easily parallelized to ex- 
ploit available resources with linear speedup. Finally, Section 5.4 
analytically develops the scalability of MPro, showing that its cost 
growth is sub-linear in database size. (In addition, in [11] we also 
extend MPro for approximate queries.) 

5.1 Incremental and Threshold Interfaces 
Incremental access can be essential for ranked queries, as users 

often want to sift through top answers until satisfied. We can im- 
mediately extend the top-k interface of Algorithm MPro to support 
incremental access by the next interface (or more generally next-k). 
In this mode, the system can continue at where it left off, without 
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starting from scratch. This incremental extension, referred to as Al- 
gorithm iMF'ro, is essentially the same as MPro in Figure 3, except 
now the ceiling queue is "persistent" during incremental access. 
Thus iMPro will initialize Q only at the very first next call. For any 
subsequent call, iMPro will continue to populate/C with the next 
top answer just like MPro. 

Further, it is also desirable to support threshold queries, where 
users specify a threshold 0 to retrieve objects u such that .T'[u] > 0. 
We can support this interface simply by extending iMPro to output 
incrementally until all objects that score above 0 are returned. 

5.2 Fuzzy Joins 
Join predicates are inherently expensive, as they generally re- 

quire a probe for each combination of objects from participating 
relations. Having studied Algorithm MPro for selection predicates 
over a single table, we show that essentially the same algorithm can 
handle join predicates over multiple tables as well. We thus have a 
unified framework for both selection and join predicates, under the 
abstraction of  expensive predicates. 

Intuitively, to unify both selections and joins, we consider them 
as operations over the "entire" input of the query. When a query 
involves multiple relations, we consider the Cartesian product of 
all the relations as the input. With this conceptual modeling, all 
predicates are simply selections over the Cartesian table. Thus, at 
least conceptually, Algorithm MPro can be applied for all expen- 
sive predicates- selections or joins alike. 

To illustrate this conceptual unification, consider Query 2 (Sec- 
tion 1), which involves two relations house  and park .  The query 
uses a join predicate pj = elose(h.zip, s. address) over pairs of  h 
from house and s from park .  For instance, suppose the relations, 
as sets of objects, are house  = {a, b} and p a r k  = {e, f} .  The 
Cartesian product is thus {(a, e), (a, f ) ,  (b, e), (b, f )} .  Note we 
use (d l , . . .  , din) to denote a Cartesian object that joins object di 
from relation r i ,  and we refer to di as the r i  dimension; e.g., (a, e) 
joins a and e as the house  and p a r k  dimensions respectively. As 
example data, Figure 6 shows the predicate scores for each Carte- 
sian object. For instance, since x is a selection over house  (and 
similarly p ,  over park) ,  it only depends on the corresponding di- 
mension; e.g., x[(a, e)] = x[(a, f)]  = 0.9. In contrast, as a join pred- 
icate over both relations, pj depends on both dimensions. With all 
Cartesian objects fully materialized, Algorithm MPro can directly 
apply as if  all predicates are selections. 

However, while conceptually operating on Cartesian objects, Al- 
gorithm MPro can incrementally materialize them. To incorporate 
such lazy materialization, we use a wildcard " . "  for an unmaterial- 
ized dimension in a Cartesian object. For instance, in Figure 7, u = 
(a, *) has the first but not the second dimension materialized. We 
then explode unmaterialized dimensions on demand. Recall that 
MPro will need an object u only when it surfaces to the top of the 
ceiling queue Q (Figure 3)-  i.e., u has the highest ceiling score, and 
thus pr(u, p) is necessary (by Theorem 1) for the next predicate p. 
MPro can thus wait until this point to materialize the required di- 
mensions (if not yet) for p. Consider u = (a, .)  and assume p ,  is 
to be probed next, which depends on the unmaterialized p a r k  di- 
mension. Since the wildcard represents p a r k  = {e, f } ,  MPro will 
explode u on this newly needed dimension to materialize u into 
{(a, e), (a, f )} .  

Figure 7 illustrates Algorithm MPro for evaluating Query 2, with 
search predicate x and expensive predicates when 7-/= (p, ,  pj) .  Al- 
gorithm MPro begins by initializing Q with the x output stream (of 
house objects), leaving the p a r k  dimension unmaterialized. MPro 
then explodes the top object u = (a, *) for pr ,  in order to perform 
necessary probe pr(u, p , ) .  The resulting objects (a, e) and (a, f )  

I OID x Pr PJ .T(z,  Pr, Pj) 
I (a,e) 0.90 0.50 0.70~ 0.50 

(a , f )  0.90 ~ 0.80 0.80 0.80 
(b,e) 0.70 0.50 0.90 0.50 
(b,f) 0.70 0.80 0.30 0.30 

Figure 6: Dataset 3 for join query .T'= min(x ,  p,, pj). 

step action 
1. initialize Q and K 
2. explode (a, *) for Pr 

into (a, e), (a, f) 
probe pr((a, e), Pr) 
probe pr((a, f) ,  p~ ) 
probe pr((a, f) ,  pj) 
pop top complete 
objects from Q into/U 
stop condition holds 
output K 

ceiling queue Q 
(a,*):0.90, (b,*):0.70 
(a,e):0.90, (a,f):0.90, (b,*):0.70 

(a,f):0.90, (b,*):0.70, (a,e):0.50 
(a,f):0.80, (b,*):0.70, (a,e):0.50 
(a,f):0.80, (b,*):0.70, (a,e):0.50 
(b,.):o.70, (~,e):0.50 

(b, *):0.70, (a, e) :0.50 

output(K) 
{} (empty) 
{} 

{} 
{} 
{} 
(a, f):0.80 

(a,y):0s0 

Figure 7: Illustration of Algorithm M P r o  for a join query. 

will be inserted back to (the top of) Q. Since they share the same 
top ceiling score (as u), MPro will order them with the determinis- 
tic tie-breaker as Section 3 discussed. Suppose that (a, e) becomes 
the new top object; pr((a,  e), p , )  will then be the next necessary 
probe. Algorithm MPro will continue as usual and eventually out- 
put (a, f) :0.80 (for house  a and p a r k  f )  as the top-1 answer. 

5.3 Parallel Processing 
We discussed sequential MPro which performs necessary probes 

one after another. It may appear that such sequential probing (as or- 
dered by the ceiling queue Q) cannot allow parallelization. To the 
contrary, we can extend MF'ro to execute multiple probes concur- 
rently or to process multiple chunks of  data independently. 

Probe-Parallel MPro: Given a top-k query, Section 4.1 observed 
that there are generally multiple necessary probes at any time dur- 
ing query processing. For Algorithm MPro, as Theorem 1 implies, 
every incomplete object among the current top-k (highest ceiling- 
scored in K~ and Q) needs further probing. Thus the number of  
necessary probes will be k initially when all the objects are incom- 
plete and decrease progressively to 0 until all top-k are completed. 

Note that necessary probes must be performed sooner or later, 
as they are required independent of other probes (Definition 1)- 
We can thus parallelize MPro to execute many necessary probes 
concurrently to speedup performance while still maintaining probe 
minimality. That is, if  the predicate subsystems (for evaluating 
probes) support concurrent probes (such as a multi-threaded local 
subsystem or Web server), the probe-parallel MPro can perform 
some or all the necessary probes (depending on the available con- 
currency level), update Q with all such probes, and continue to 
perform next batch of necessary probes. For instance, consider par- 
allelizing our example in Figure 4 when k = 2. At line 1, MPro 
will execute both pr(a, pc) and pr(b, pc). Updating Q accordingly, 
MPro will still find a and b as the top-2 incomplete objects, and 
thus perform pr(a, Pl) and pr(b, pl). MPro will then output a and 
b as the top-2 answers. Note that this probe-parallel algorithm per- 
forms the same set of necessary probes (as in Figure 4), although 
in a different order. When the probe time dominates, paralleling k 
probes concurrently will result in a k-fold speedup. 

Data-Parallel MPro: Alternatively, we can also parallelize MPro 
by partitioning the database and processing all chunks concurrently. 
As Figure 8 shows, Algorithm dpMPro consists of two main steps: 
First, in data distribution, dpMPro will uniformly distribute the in- 
put database/)  into s data chunks, each of  which is of  size 1Is of 
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Algori thm dpMPro(.T, k, 7/, "D, s): Data-parallel MPro 
Input: .T', k, 7-/, D: same as Algorithm MPro. 

• s: chunking factor, i.e., number of data chunks 
Output:  K:, the top-k answers with respect to ~. 
Procedure: 
(I) Data Distribution: distribute objects in "D uniformly 

into s chunks 791, . . . ,  "Ds 
(2) Incremental Merging: 

• ~ ~ {};M ~ {} 
/ /  IC: output; A4: merging queue which buffers the top object of every chunk. 
• let Ii be the iterator for iMPro(.T,7-l,Z)i) //access Di incrementally. 
• for i = 1 to s in parallel: // initialize A4 with top objects. 

- topi ~- Ii.neztO; .,~f.insert(topi, topi.score) 
• while (IlCl < k): // until have generated enough top ........ 

- u .~-- JL~.toPO ff  u outperforms any other objects still in A4. 
- i f  (Vtopi  : u . s core  _> tapi . score):  
f f  implies that u indeed outperforms any objects in all Di. 

- append u to K~ 
- else: H unseen objects may be better; bring new top objects into AA. 

- for i = 1 to s in parallel: 
- topi ~ Ii.nextO; .M.insert(topi, topi.score) 

(3) Top-k Output: return in order each (u:u.score) in/C 

Figure 8: Algori thm dpMPro. 

79, for a given chunking factor s. (Of course, this partitioning can 
be done off-line as it is query independent.) To maximize work dis- 
tribution (or concurrency), we wish that top answers will uniformly 
come from different chunks. That is, the data distributor must en- 
sure that the chunks be as "similar" to each other as possible, by 
identifying and distributing similar objects (that will perform simi- 
larly in queries) in 79 to different chunks. 

Second, during incremental merging, dpMPro will access and 
merge top answers from each 79i provided by an incremental MPro 
iterator Ii (as Section 5.1 discussed), dpMPro uses a merging 
queue .A4 to sort top objects from all li by their query scores. If  
u is the top of  M ,  it has outperformed those still in M .  dpMPro 
checks i f  u also outperforms all unseen objects by comparing it to 
the last top scores of  every Ii. (These top scores may have been 
output to /C and not present in .A4 any more.) I f  so, u must be 
the overall top (of entire 79). Otherwise, some unseen objects may 
be better, and dpMPro will request parallel access to load new top 
objects from all 79i. Note that parallel loading will bring in more 
objects to .h4 in just one access time, saving some accesses that 
might be needed later. 

Observe that dpMPro speeds up by distributing work to s par- 
allel MPro "processors": Consider a top-sk query over a database 
of  size sN,  denoted 79B(sN). First, as the database is chunked 
uniformly, the answers should distribute uniformly among the s 
chunks- thus each MPro processor only needs to find (around) k 
instead of  sk answers. Further, the chunking reduces the database 
from 79B(sN) to 79B(N) for each processor. Putting together, 
dpMProparallelizes the time of  finding top-sk over 79B(sN) into 
that oftop-k over 79B(N), reducing both the database and retrieval 
sizes by s times for each processor. As Section 5.4 will quantify, 
this reduction results in an overall s-times speedup. 

5 .4  M i n i m a l - P r o b e  S c a l a b i l i t y  
Since necessary probes (Definition I) are algorithm-independent 

cost for expensive predicates, we want to understand how much this 
required cost will be, and how it scales for larger databases. Note 
that Algorithm MPro, as a probe-optimal algorithm (Lemma 1), ex- 
ecutes exactly only necessary probes. Therefore, MPro can be an 
effective vehicle for understanding minimal-probing costs. To this 
end, Section 6 will experimentally evaluate minimal-probing cost 
with respect to different queries (i.e., k and .T') and databases (i.e., 
how objects score under .T). This section seeks to understand an- 
alytically how the minimal-cost scales, by addressing an important 

question: Given a top-k query . T ' ( x , p l , . . . , p ~ ) ,  i f  it requires 79i 
probes for each predicate pi over a database of  size N ,  or 79B(N), 
how will the required necessary-probes increase when the database 
is scaled up s times, i.e., DB(sN) .  As explained, we specifically 
study the scalability of  MPro to generally answer this question. 

To focus on scalability, we assume uniform scaling, such that 
79B(sN) will perform "statistically" similar to 79B(N)- i.e., the 
two databases differ in size but not nature, so that we can isolate 
data size to study its effect. To allow analytical study, we approxi- 
mate uniform scaling by simply replicating 79B(N) s times to gen- 
erate 79B(sN). We thus obtain an interesting result: If  a database 
is uniformly scaled up s times, MPro can retrieve s times more top 
answers, with s times more probe cost. While we leave a formal 
proof to [1 1], Section 6 experimentally verifies this result- over 
datasets that are only similar but not identical. 

Theorem 3 (Probe Sealability): Consider aranked q u e r y ~ ( x , p l ,  
. . . .  p~) and a schedule 7-/. Suppose that 79B(N) is a database of  
size N;  let 79B(sN) be the database containing the s N  objects 
generated by replicating 79B(N) s times. 7)C(MPro(.F, sk, 7-l, 
79B(sN))) = s . 79C(MPro(Y r, k, 7-l, 79B(N))). • 

Theorem 3 gives the scalability of  necessary-probes in general 
as well as Algorithm MPro in particular. This result enables sev- 
eral interesting observations. First, it shows that MPro has good 
data scalability, in which cost increase is sublinear in database 
size: The probes required for finding k answers from DB(sN)  
will be less than s times that for finding the same number of  an- 
swers from 79B(N): As the stop condition (SC in Figure 3) en- 
sures, Algorithm MPro will stop earlier and pay less probe cost for 
a smaller retrieval size, and thus 7)C(MPro(.T, k, ~ ,  79B(sN))) < 
PC(MPro(~, sk, 7-l, DB(sN)) ) .  (Section 6 shows how necessary- 
probes increase over retrieval sizes.) With Theorem 3, we de- 
rive the sublinear growth of  cost: PC(MPro(~, k, 7-l, DB(sN) ) )  
< s • PC(MPro(.T', k, 7-l, DB(N)) ) .  Since complete probing (of 
the standard sort-merge framework) requires linear increase, MPro 
will scale better and reduce more probes for larger databases. 

Second, MPro will enjoy good resource utility: I f  the comput- 
ing resource scales up s times, our framework can receive lin- 
ear speedup by using s concurrent MPro processors in parallel in 
dpMPro. As Section 5.3 discusses, by reducing both the retrieval 
and database size for each processor, dpMPro can reduce the probe 
cost for each processor from PC(MPro(.T, sk, 7-l, DB(sN) ) )  to 
7)C(MPro(.T ", k, 7-l, DB(N)) ) .  As Theorem 3 asserts, the latter is 
1- of  the former, which means a s-times speedup or linear to the 
8 

resource increase. 
Finally, it is important to note that these observations together 

indicate that our framework can take advantage of  increasing com- 
puting resource to better scale to larger databases: If  the database 
scales up s times (resulting in sublinear cost-growth), dpMPro with 
s-times resource (resulting in linear speedup) can fully offset the 
potential slowdown to achieve even faster processing. 

6. E X P E R I M E N T S  
This section reports our extensive experiments for studying the 

effectiveness and practicality of  Algorithm MPro. Our experiments 
in fact have a two-fold interpretation. On one hand, the results 
specifically quantify the practical performance of  Algorithm MPro. 
On the other hand, since MPro is provably probe-optimal, this em- 
pirical study also generally contributes to understanding the "lower 
bound" for supporting probe predicates. In fact, as Section 3.3 ex- 
plains, we adopt the $ortMerge scheme as our baseline for com- 
parison - which requires complete probing and thus symmetrically 
defines the "upper bound." 

354 



QI: select id from house 
where nearcity(zip, Chicago) z, 

roomy(bedroom) Pt, cheap(price) p~, large(size) ps 
order by min(x, Pt, pc, ps) stop after k 

Q2: select h.id, u.name from house h, park s 
where nearcity(h.zip, Chicago) x, 

roomy(bedroom) Pt, cheap(price) Pc, close(h.zip, s.zip) Ps 
order by min(x, Pl, Pc, Ps) stop after k 

Q3: select id from house 
where neareity(zip, Chicago) x, 

roomy(bedroom) Pt, cheap(price) Pc, safe(zip) Ps 
order by rain(x, Pt, P2, Ps) stop after k 

User-defined selections: 
large (size): 
if (size<lSO0 or size>3500): return 0 
else: return (size-1500)/2000 

Fuzzy joins: 
elose( zipl , zipe ): 

f f  dist is a builtin function for computing distance. 
d = dist(zipl, zip2) 
if d>20: return 0 
else: return (20-d)/20 

External predicates: 
safe(zip): 
crime = query_apb ( zip) //query apbnews.com. 
return 1-(crime-I)/9.0 

Figure 9: Benchmark queries and the expensive predicates. 

We measured two different performance metrics. Consider query 
Q = Y ( x , p l , . . .  ,pn). First, to quantify the relative probe perfor- 
mance, we measure how MPro saves unnecessary probes with the 
probe ratio metric. Suppose that MPro performs Ni probes for 
each p~. In contrast, SortMergo will require N probes (where N 
is the database size) for every probe predicate. The overall probe 

ratio (in %) is thus pratio(Q) = ~?=~ N~ In addition, to under- n g  
stand the saving of each predicate, we also measured the predicate 
probe ratio as pratio(pi) = ~ .  Note that pratio(Q) = pratio(pl ) 
+ . . .  + pratio(p,). 

Further, to quantify the "absolute" performance, our second met- 
ric measured the elapsed time (in seconds) as the total time to pro- 
cess the query. This metric helps us to gauge how the framework 
can be practically applied with reasonable response time. It also 
more realistically quantifies the performance when predicates are 
of different costs, because we measure the actual time, which can- 
not be shown by counting the number of probes as in probe ratios. 

Our experiments used both a "benchmark" database (with real- 
life data) as well as synthetic data. To understand the performance 
of MPro in real-world scenarios, Section 6.1 experiments with a 
benchmark real-estate database (essentially the same as our exam- 
pies). To extensively isolate and study various parameters (e.g., 
database size and scoring functions), Section 6.2 reports "simula- 
tions" over data synthesized with standard distributions. 

Our experience found it straightforward to implement Algorithm 
MPro. As Figure 3 shows, MPro essentially operates on a priority 
queue (the ceiling queue Q), which we use a standard heap imple- 
mentation. We build the queue on top of a DBMS, namely Post- 
greSQL 7.1.3, to take care of data storage. Our implementation 
adopts the Python programming language for defining expensive 
predicates, since it is interpreted and open-source. In principle, any 
languages or, more preferably, graphic user interfaces can be used 
to define user functions. Finally, all experiments were conducted 
with a Pentium III 933Mhz PC with 256MB RAM. 

6.1 Benchmarks over Real-Life Database 
We first report our experiments of benchmark queries access- 

ing a real-estate system (as Example 1 introduced). To establish 
a practical scenario, we extracted real data from realtor, corn 
(an authoritative real-estate source). In particular, we collected (by 
querying) all the for-sale houses in Illinois, resulting in N = 20990 
objects for relation house, each with attributes id, price, size, 
bedroom, bath, zip, and city. In addition, we constructed a second 
relation park of about 110 Illinois state parks, each with attributes 
name and zip. 

Our experiments considered a benchmark scenario of finding top 
houses around Chicago for a small family of four members. We 
thus created three benchmark queries, as Figure 9 (upper) shows. 
The queries use a search predicate nearcity (zip, C) which returns 
houses closest to C (e.g., C = C h i c a g o )  in order. All the others 
(roomy, cheap, large, close, and safe) are probe predicates; Fig- 
ure 9 (lower) also shows some of them. Note that the three queries 
only differ in predicate ps. In particular, large, close, and safe rep- 
resent increasingly more complex and expensive operations- i.e., 
simple user-defined functions, joins, and external predicates. 

For each query, we measured the probe ratios and the elapsed 
time. Figures 10(a)-(c) plot the probe ratios (the y-axis) with re- 
sPect to different retrieval size k (the z-axis), both logarithmically 
scaled. Each graph shows four curves for pratio (pl), pratio (pc), 
and pratio(ps), and their sum as the overall probe ratio. For in- 
stance, for Q1 in Figure 10(a), when k = 10 (to retrieve top-lO), 
Pl requires 3% probes, p2 0.4%, and P3 0.1%, which sum up to 
3.5%. In other words, since N = 20990 and n = 3, the ratios 
translate to 1889, 252, and 63 probes (with a total of 2204) out of 
the n N  = 62970 complete probes. Observe that the vast majority 
of complete probes are simply unnecessary and wasted- in this case 
96.5% or 60766 probes. As also expected, the probe ratio (relative 
cost) is smaller for smaller k; e.g., for k = 1, the overall probe ratio 
is only 1.4%. As Section 3 discussed, such "proportional cost" is 
crucial for top-k queries, as users are typically interested in only a 
small number of top answers. In fact, Figure 10(b)-(c) only show 
the top range k < 0.1% • N to stress this critical range of interest. 

Figures 10(d)-(f) compare the elapsed times (for gauging the 
"absolute" performance) of the baseline SortMerge scheme and 
MPro. Note that we implemented SortMerge by completely prob- 
ing all objects and at the same time computing the .T scores to 
create a functional index [22]. (Thus the comparison in fact fa- 
vors SortMergo, whose separate "merge" phase combining mul- 
tiple predicate streams was not included.) The SortMerge cost 
thus consists of the startup probing and incremental index access 
costs. (The latter is not observable in Q2 and Qa as the probing 
costs dominate.) Referring to Figure 10ft), when k = 10, MPro 
responded in 408 seconds, while SortMerge takes 21009 seconds. 
That is, we observe that, when probe predicates are truly expen- 
sive as in Q3 (with external predicate safe), our framework can be 
orders of magnitude faster than the standard SortMerge scheme. 
Such speedup can potentially turn an overnight query into an in- 
teractive one. The fuzzy join of Q2 demonstrates similar speedup, 
from 1368 seconds to 26 seconds or 1.9% time (for k = 10). 

Finally, we note that our scheduler (Section 4.3) effectively iden- 
tified the best schedule with 0,1% sampling, which corresponds to 
less than a second overhead at query startup. We will report more 
extensive scheduling results later with simulations. 

6.2 Simulations over Synthetic Datasets 
We next perform extensive experiments to study various perfor- 

mance factors. To isolate and control different parameters, our ex- 
periments in this section used synthetic datasets. Our configura- 
tions are characterized by the following parameters. (1) Database 
size N: lk, 10k, and 100k. (2) Score distribution D: the distil- 
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Figure 10: Results for benchmark queries. 
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Figure 11: Different database sizes N with (D=norm,  3==rain). 

butions of individual predicate scores, including the standard unif 
(uniform) and norm (normal) distributions as well as funif, a home- 
brew "filtered-uniform" distribution (see below). (3) Scoring func- 
tion 3=: rain,  avg  (average), and gavg  (geometric average). 

We isolate each parameter to study its impact on MPro. All 
queries are of the form 3=(x ,p l ,p2 ,p3)  (as in Section 6.1). We 
conclude with quantifying the effectiveness of our scheduling al- 
gorithm (Section 4.3). 
N :  Database Size. Figure 11 presents the performance evalua- 
tion for N = lk,  10k, and 100k. when 3==rain and D=norm. 
It is interesting to observe that, the probe ratios are approximately 
the same if the relative retrieval size is the same, regardless of the 
database size. For instance, for k = N • 1% (i.e., k = 10, 100, and 
1000 for N = 1 k, 10k, and "100k respectively), the probe-ratios are 
all about 8%. Similarly, the probe-ratios for k = N - 0.1% are 
about 3%. This observation is critical in evaluating the scalability 
of MPro over N: As Section 3 explained, it is presumable that the 
retrieval size will be independent of the database size N;  i.e., users 
will probably interested in only the very top hits. MPro will thus 
be relatively (compared to the baseline scheme) more efficient for 
larger databases, which shows its scalability over N. 

Note that this "constant-ratio" observation also verifies Theo- 
rem 3. For (k = 10, N = i k), the probe cost is 8% - n -  N (where 
n is the number of predicates). Now let s = 10; we observed that 
(sk  = 100, s N  = '10k) costs 8 % .  n • s N ,  i.e., s times more. That 
is, when the database is scaled up s times, MPro retrieves s times 
more top answers, with s times more probe cost. 

D:  Score Distribution. Figure 12(a) present the results with dif- 
ferent score distributions, which characterize predicates. The left 
figure presents the results for normal distribution (with mean 0.5 
and variance 0.16), which show similar proportional-cost behavior 
over k (as in the benchmark queries). The second distribution funif 
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simulates "filtering" predicates. As we observed in our benchmark 
queries, real-life predicates are likely to "filter out" a certain portion 
of data; e.g., the large predicate (Figure 9) disqualifies 78% objects 
with zero scores (as their sizes  are out of the desired range). We 
define funif(f)  (for f i l tered uniform) to simulate such predicates, 
where f %  objects score 0 and the rest are uniformly distributed. 
The right figure (Figure 12a) plots the cost for funif(75). Observe 
that such filtering makes MPro more effective- MPro  can leverage 
the filtering to lower the ceiling scores of disqualified objects early 
and thus focus on the promising ones. 

.T: Scoring Function. To understand the impact of scoring func- 
tions (which can form the basis of how a practical system may 
choose particular functions to support), we compare some common 
scoring functions: ra in  (Figure 12a) and some representative aver- 
age functions (Figure 12b), namely arithmetic average avg  : (x  + 
pt +p2 + p a ) / 4  and geometric average gavg  :=  (x "pl ' p 2  'p3) 1/4. 

We found that rain  is naturally the least expensive, as it allows 
low scores to effectively decrease the ceiling scores and thus "filter" 
further probes. (In contrast, m a x  will be the worst case, requiring 
complete probing.) The average functions perform similarly, with 
3= = gavg  being about 5% to 10% cheaper than avg.  

Scheduling Effectiveness. We quantify the average scheduling 
performance over different predicate configurations (pl ,  pc, p3) 
characterized by costs (Cx, C~, C3) and distributions (funif(ft) ,  
funif(f2), funif(f3)). We randomly generated 100 configurations of 
(Ct,  C2, C3) and ( f l ,  f2, .f~), with Ci in [0:I00] and fi in [25:75]. 
For each schedule of a configuration, we measure the cost ratio 

(relative to complete probing), i.e., E?=x c, Ni 
" ~ - C i  N " 

For k = 1, 10, and 100, our scheduler determines a schedule for 
each configuration, with 0.1% and 1% sampling (over N = 20k 
objects). Figure 13 compares the average cost ratios of our sched- 
uler with those of the best and worst schedules (which were found 
by exhaustive enumeration). Note that the net scheduling overhead 
(the extra probe costs incurred by sampling) is show in dark at the 
top of the 0.1% and 1% bars. Observe that our scheduler generates 
the best schedules in most cases with a very small sample size of 
0.1% (and thus the average probe cost closely approximates that 
of the best schedule)• It is interesting to contrast with 1% sam- 
piing: First, while 1%, with more sampling, gives exactly the best 
schedule (as their light bars are of the same heights in Figure 13), 
its higher sampling overhead makes it overall less attractive than 
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0.1%. Second, for larger k (e.g., k = I00), the net overhead of 1% 
becomes less significant, because of the increasing probe reusing 
by MPro- thus larger sampling size can be justified by larger k. 

7. CONCLUSION 
We have presented our framework and algorithms for evaluating 

ranked queries with expensive probe predicate. We identified that 
supporting probe predicates are essential, in order to incorporate 
user-defined functions, external predicates, and fuzzy joins. Unlike 
the existing work which assumes only search predicates that pro- 
vide sorted access, our work addresses generally supporting expen- 
sive predicates for ranked queries. In particular, we proposed Algo- 
rithm MPro which minimizes probe accesses as much as possible. 
As a basis, we developed the principle of necessary probes for de- 
termining ifa probe is truly necessary in answering a top-k query. 
Our algorithm is thus provably optimal, based on the necessary- 
probe principle. Further, we show that MPro can scale well and 
can be easily parallelized (and it supports approximation [ 11 ]). 

We have implemented the mechanism described in this paper, 
based on which we performed extensive experiments with both 
real-life databases and synthetic datasets. The results are very en- 
couraging. Our experiments show that the probe cost of Algo- 
rithm MPro is desirably proportional to the retrieval size. It can 
eliminate as much as 97% probes for our benchmark queries when 
k = 10, which can be orders of magnitude faster than the standard 
scheme with complete probing. We believe that our framework can 
enable practical support for expensive predicates in ranked queries. 
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