
Mining Top-K Frequent Closed Patterns without Minimum
Support∗

Jiawei Han Jianyong Wang Ying Lu Petre Tzvetkov
University of Illinois at Urbana-Champaign, Illinois, U.S.A.

{hanj, wangj, yinglu, tzvetkov}@cs.uiuc.edu

ABSTRACT
In this paper, we propose a new mining task: mining top-k
frequent closed patterns of length no less than min `, where
k is the desired number of frequent closed patterns to be
mined, and min ` is the minimal length of each pattern.
An efficient algorithm, called TFP, is developed for min-
ing such patterns without minimum support. Two meth-
ods, closed node count and descendant sum are proposed
to effectively raise support threshold and prune FP-tree both
during and after the construction of FP-tree. During the
mining process, a novel top-down and bottom-up combined
FP-tree mining strategy is developed to speed-up support-
raising and closed frequent pattern discovering. In addition,
a fast hash-based closed pattern verification scheme has been
employed to check efficiently if a potential closed pattern is
really closed.

Our performance study shows that in most cases, TFP
outperforms CLOSET and CHARM, two efficient frequent
closed pattern mining algorithms, even when both are run-
ning with the best tuned min support. Furthermore, the
method can be extended to generate association rules and
to incorporate user-specified constraints. Thus we conclude
that for frequent pattern mining, mining top-k frequent closed
patterns without min support is more preferable than the
traditional min support-based mining.

1. INTRODUCTION
As one of several essential data mining tasks, mining fre-

quent patterns has been studied extensively in literature.
From the implementation methodology point of view, re-
cently developed frequent pattern mining algorithms can
be categorized into three classes: (1) Apriori-based, hori-
zontal formatting method, with Apriori [1] as its represen-
tative, (2) Apriori-based, vertical formatting method, such
as CHARM [8], and (3) projection-based pattern growth
method, which may explore some compressed data struc-
ture such as FP-tree, as in FP-growth [3].

The common framework is to use a min support threshold
to ensure the generation of the correct and complete set
of frequent patterns, based on the popular Apriori property
[1]: every subpattern of a frequent pattern must be frequent
(also called the downward closure property). Unfortunately,
this framework, though simple, leads to the following two
problems that may hinder its popular use.

First, Setting min support is quite subtle: a too small

∗ The work was supported in part by U.S. National Science
Foundation, University of Illinois, and Microsoft Research.

threshold may lead to the generation of thousands of pat-
terns, whereas a too big one may often generate no an-
swers. Our own experience at mining shopping transaction
databases tells us this is by no means an easy task.

Second, frequent pattern mining often leads to the gen-
eration of a large number of patterns (and an even larger
number of mined rules). And mining a long pattern may
unavoidably generate an exponential number of subpatterns
due to the downward closure property of the mining process.

The second problem has been noted and examined by re-
searchers recently, proposing to mine (frequent) closed pat-
terns [5, 7, 8] instead. Since a closed pattern is the pattern
that covers all of its subpatterns with the same support,
one just need to mine the set of closed patterns (often much
smaller than the whole set of frequent patterns), without los-
ing information. Therefore, mining closed patterns should
be the default task for mining frequent patterns.

The above observations indicate that it is often preferable
to change the task of mining frequent patterns to mining top-
k frequent closed patterns of minimum length min `, where
k is a user-desired number of frequent closed patterns to be
mined (which is easy to specify or set default), top-k refers
to the k most frequent closed patterns, and min `, the min-
imal length of closed patterns, is another parameter easy to
set. Notice that without min `, the patterns found will be
of length one (or their corresponding closed superpatterns)
since a pattern can never occur more frequently than its cor-
responding shorter ones (i.e., subpatterns) in any database.

In this paper, we study the problem of mining top-k fre-
quent closed patterns of minimal length min ` efficiently
without min support, i.e., starting with min support = 0.
Our study is focused on the FP-tree-based algorithm. An
efficient algorithm, called TFP, is developed by taking ad-
vantage of a few interesting properties of top-k frequent
closed patterns with minimum length min `, including (1)
any transactions shorter than min ` will not be included in
the pattern mining, (2) min support can be raised dynami-
cally in the FP-tree construction, which will help pruning
the tree before mining, and (3) the most promising tree
branches can be mined first to raise min support further,
and the raised min support is then used to effectively prune
the remaining branches.

Performance study shows that TFP has surprisingly high
performance. In most cases, it is better than two efficient
frequent closed pattern mining algorithms, CLOSET and
CHARM, with the best tuned min support.

Moreover, association rules can be extracted by minor ex-
tension of the method, and constraints can also be incorpo-



rated into top-k closed pattern mining.
Therefore, we conclude that mining top-k frequent closed

patterns without minimum support is more preferable (from
both usability and efficiency points of view) than traditional
min support-based mining.

The remaining of the paper is organized as follows. In
Section 2, the basic concept of top-k closed pattern mining
is introduced, and the problem is analyzed with the related
properties identified. Section 3 presents the algorithm for
mining top-k closed patterns. A performance study of the
algorithm is reported in Section 4. Extensions of the method
are discussed in Section 5, and we conclude our study in
Section 6.

2. PROBLEM DEFINITION
In this section, we first introduce the basic concepts of top-

k closed patterns, then analyze the problems and present an
interesting method for mining top-k closed patterns.

Let I = {i1, i2, . . . , in} be a set of items. An itemset
X is a non-empty subset of I. The length of itemset
X is the number of items contained in X, and X is called
an l-itemset if its length is l. A tuple 〈tid, X〉 is called
a transaction where tid is a transaction identifier and X

is an itemset. A transaction database TDB is a set of
transactions. An itemset X is contained in transaction
〈tid, Y 〉 if X ⊆ Y . Given a transaction database TDB, the
support of an itemset X, denoted as sup(X), is the number
of transactions in TDB which contain X.

Definition 1. (top-k closed itemset) An itemset X

is a closed itemset if there exists no itemset X ′ such that
(1)X ⊂ X ′, and (2) ∀ transaction T , X ∈ T → X ′ ∈ T . A
closed itemset X is a top-k closed itemset of minimal
length min ` if there exist1 no more than (k − 1) closed
itemsets of length at least min ` whose support is higher
than that of X.

Our task is to mine top-k closed itemsets of minimal
length min ` efficiently in a large transaction database.

Example 1 (A transaction dataset example). Let
Table 1 be our transaction database TDB. Suppose our task
is to find top-4 frequent closed patterns with min ` = 4.

TID Items Ordered Items

T100 i, c, d, e, g, h d, c, e, h, i, g

T200 m, a, p, c, e, d d, c, e, a, p, m

T300 a, i, b, d, e, g d, e, a, b, i, g

T400 b, a, d, h, c, n d, c, a, h, b, n

T500 a, e, c c, e, a

T600 n, a, c, d, e d, c, e, a, n

T700 p, a, b, c, d, e, h d, c, e, a, h, b, p

Table 1: A transaction database TDB.

Our first question is “which mining methodology should be
chosen from among the three choices: Apriori, CHARM, and

1Since there could be more than one itemset having the same
support in a transaction database, to ensure the set mined
is independent of the ordering of the items and transactions,
our method will mine every closed itemset whose support is
no less than the k-th frequent closed itemset.

FP-growth?” Without min support threshold, one can still
use Apriori to mine all the l-itemsets level-by-level for l from
1 to min `. However, since one cannot use the downward
closure property to prune infrequent l-itemsets for genera-
tion of (l + 1)-itemset candidates, Apriori has to join all the
length l itemsets to generate length l + 1 candidates for all
l from 1 to min ` − 1. This is inefficient. CHARM loses its
pruning power as well since it has to generate transaction
id list for every item, and find their intersected transaction
id list for every pair of such items since there is no itemset
that can be pruned. Will the fate be the same for FP-growth?
Since FP-growth uses a compressed data structure FP-tree to
register TDB, all the possible itemsets of a transaction and
their corresponding length information are preserved in the
corresponding branch of the FP-tree. Moreover, FP-tree pre-
serves the support information of the itemsets as well. Thus
it is possible to utilize such information to speed up mining.
Of the three possible methods, we will examine FP-growth
in detail.

The question then becomes, “how can we extend FP-growth
for efficient top-k frequent closed pattern mining?” We have
the following ideas: (1) 0-min support forces us to construct
the “full FP-tree”, however, with top-k in mind, one can
capture sufficient higher support closed nodes in tree con-
struction and dynamically raise min support to prune the
tree; and (2) in FP-tree mining, one can first mine the most
promising subtrees so that high support patterns can be de-
rived earlier, which can be used to prune low-support sub-
trees. In the following section, we will develop the method
step-by-step.

3. MINING TOP-K FREQUENT CLOSED PAT-
TERNS: METHOD DEVELOPMENT

In this section, we perform step-by-step analysis to de-
velop an efficient method for mining top-k frequent closed
patterns.

3.1 Short transactions and l-counts
Before studying FP-tree construction, we notice,

Remark 3.1 (Short transactions). If a transaction
T contains less than min ` distinct items, none of the items
in T can contribute to a pattern of minimum length min `.

For the discussions below, we will consider only the trans-
actions that satisfy the minimum length requirement.

root

i:1

h:1

e:4

h:1

p:1

a:1

h:1

b:1 i:1

b:1

a:1

d:6

c:5 e:1 

n:1

b:1
g:1

n:1 g:1

a:3

m:1

p:1

L-watermark

a) The FP-tree constructed from TDB.

Item count l-count

d 6 0

c 5 0

e 5 0

a 5 3

h 3 3

b 3 3

i 2 2

g 2 2

n 2 2

p 2 2

m 1 1

b) Count and
l-count of items.

Figure 1: FP-tree and its header table.

Let the occurrence frequency of each item be stored as
count in the (global) header table. Here we introduce in



the header table another counter, l(ow)-count, which records
the total occurrences of an item at the level no higher than
min ` in the FP-tree, as shown in Figure 1 b).

Remark 3.2 (l-count). If the l-count of an item t is
lower than min support, t cannot be used to generate fre-
quent itemset of length no less than min `.

Rationale. Based on the rules for generation of frequent item-
set in FP-tree [3], only a node residing at the level min ` or
lower (i.e., deeper in the tree) may generate a prefix path no
shorter than min `. Based on Remark 3.1, short prefix paths
will not contribute to the generation of itemset with length
greater or equal to min `. Thus only the nodes with l-count
no lower than min support may generate frequent itemset
of length no less than min `.

People may wonder that our assumption is to start with
min support = 0, how could we still use the notion of
min support? Notice that if we can find a good number
(i.e., no less than k) of closed nodes with nontrivial sup-
port during the FP-tree construction or before tree mining,
the min support can be raised, which can be used to prune
other items with low support.

3.2 Raising min support for pruning FP-tree

Since our goal is to mine top-k frequent closed nodes, in
order to raise min support effectively, one must ensure that
the nodes taken into count are closed.

Lemma 3.1 (Closed node). At any time during the
construction of an FP-tree, a node nt is a closed node (rep-
resenting a closed itemset) if it falls into one of the following
three cases: (1) nt has more than one child and nt carries
more count than the sum of its children, (2) nt carries more
count than its child, and (3) nt is a leaf node.

Rationale. This can be easily derived from the definition
of closed itemset and the rules for construction of FP-tree
[3]. As shown in Figure 2 a), a node (nt : t) denotes an
itemset n1, . . . , nt with support t. Any later transaction (or
prefix-path) that contains exactly the same set of items will
be represented by the same node in the tree with increased
support. If nt has more than one child and nt carries more
count than the sum of its children, then nt cannot carry the
same support as any of its children, and thus nt must be a
closed node. The same reason holds if nt carries more count
than its child. If nt is a leaf node, the future insertion of
branches will make the node either remain as a leaf node or
carry more count than its children, thus nt must be a closed
node as well.

To raise min support dynamically during the FP-tree con-
struction, a simple data structure, called closed node count

array, can be used to register the current count of each
closed l-node with support node#, as illustrated in the left.
The array is constructed as follows. Initially, all the count
of each node# is initialized to 0 (or only the non-zero l-
node is registered, depending on the implementation). Each
closed l-node with support m in the FP-tree has one count
in the count slot of node# m. During the construction of
an FP-tree, suppose inserting one transaction into a branch
makes the support of a closed l-node P increases from m to

root

n_t:t

n_1:m

n_g:g

s_p: pn_s: s

a) Judging the closed node

l-node# count

95 1

..

.
..
.

5 9
4 7
3 17
2 32
1 86

b) Count of closed l-nodes
with support node#.

Figure 2: Closed node and closed node count array.

m + 1. Then the count corresponding to the node# m + 1
in the array is increased by one whereas that corresponding
to the node# m is decreased by one.

Based on how the closed node count array is constructed,
one can easily derive the following lemma.

Lemma 3.2 (Raise min support using closed node).
At any time during the construction of an FP-tree, the mini-
mum support for mining top-k closed itemsets will be at least
equal to the node# if the sum of the closed node count array
from the top to node# is no less than k.

Besides using the closed node count array to raise mini-
mum support, there is another method to raise min support

with FP-tree, called anchor-node descendant-sum, or simply
descendant-sum, as described below. An anchor-node is a
node at level min `−1 of an FP-tree. It is called an anchor-
node since it serves as an anchor to the (descendant) nodes
at level min ` and below. The method is described in the
following example.

root

d:25

b:118
L-watermark

c:64

d:24

f:15

h:12

h:18

a:182

e:21

e:22

d:43
c:75

f:20

g:20

h:20

c:75
d:68
e:43
h:38
f:20
g:20

Figure 3: Calculate descendant sum for an anchor
node of an FP-tree.

Example 2. As shown in Figure 3, node b is an anchor
node since it resides at level min ` − 1 = 2. At this node,
we collect the sum of the counts for each distinct itemset of
b’s descendants. For example, since b has two descendant d-
nodes, (d : 25) and (d : 43), b’s descendant sum for d is (d :
68) (which means that the support of itemset abd contributed
from b’s descendants is 68). From the FP-tree presented in
Figure 3, it is easy to figure out that b’s descendant sum

should be {(c : 75), (d : 68), (e : 43), (h : 38), (f : 20), (g :
20)}. Such summary information may raise min support



effectively. For example, min support for top-3 closed nodes
should be at least 43 based on b’s descendant sum.

Lemma 3.3 (descendant sum). Each distinct count in
descendant sum of an anchor node represents the minimum
count of one distinct closed pattern that can be generated by
the FP-tree.

Rationale. Let the path from the root of the FP-tree to an
anchor node b be β. Let a descendant of b be d and its count
be countd. Then based on the method for FP-tree construc-
tion, there must exist an itemset β ·d whose count is countd.
If β · d is a closed node, then it is the unique closed node in
the FP-tree with count countd; otherwise, there must exist a
closed pattern which is its super-pattern with support countd.
Since another node in b’s descendant sum with the same
support countd may share such a closed node with β · d, and
also another branch may contribute additional count to such
a closed node, thus only a distinct count in descendant sum

of b may represent the minimum count of a distinct closed
pattern generated by the FP-tree.

We have the following observations regarding the two sup-
port raising methods. First, the closed node count method
is cheap (only one array) and is easy to implement, and it can
be performed at any time during the tree insertion process.
Second, comparing with closed node count, descendant sum

is more effective at raising min support, but is more costly
since there could be many (min ` − 1) level nodes in an
FP-tree, and each such node will need a descendant sum

structure. Moreover, before fully scanning the database,
one does not know which node may eventually have a very
high count. Thus it is tricky to select the appropriate an-
chor nodes for support raising: too many anchor nodes may
waste storage space, whereas too few nodes may not be able
to register enough count information to raise min support

effectively. Computing descendant sum structure for low
count nodes could be a waste since it usually derives small
descendant sum and may not raise min support effectively.

Based on the above analysis, our implementation explores
both techniques but at different times: During the FP-tree
construction, it keeps an closed node count array which raises
min support, dynamically prunes some infrequent nodes,
and reduces the size of the FP-tree to be constructed. Af-
ter scanning the database (i.e., the FP-tree is constructed),
we traverse the subtree of the level (min ` − 1) node with
the highest support to calculate descendant sum. This will
effectively raise min support. If the so-raised min support

is still less than the highest support of the remaining level
(min `−1) nodes, the remaining node with the highest sup-
port will be traversed, and this process continues. Based on
our experiments, only a small number of nodes need to be
so traversed (if k for top-k is less than 1000) in most cases.

3.3 Efficient mining of FP-tree for top-k patterns
The raise of min support prunes the FP-tree and speeds

up the mining. However, the overall critical performance
gain comes from efficient FP-tree mining.

We have the following observations.

Remark 3.3 (Item skipping). If the count of an item
in the global header table is less than min support, then it is
infrequent and its nodes should be removed from the FP-tree.

Moreover, if the l-count of an item in the global header ta-
ble is less than min support, the item should not be used to
generate any conditional FP-tree.

The TFP-mining with FP-tree is similar to FP-growth.
However, there are a few subtle points.

1. “Top-down” ordering of the items in the global header table
for the generation of conditional FP-trees.

The first subtlety is in what order the conditional FP-trees
should be generated for top-k mining. Notice since FP-growth
in [3] is to find the complete set of frequent patterns, its min-
ing may start from any item in the header table. For top-k
mining, our goal is to find only the patterns with high sup-
port and raise the min support as fast as possible to avoid
unnecessary work. Thus mining should start from the item
that has the first non-zero l-count (which usually carries
the highest l-count) in the header table, and walk down the
header table entries to mine subsequent items (i.e., in the
sorted item list order). This ordering is based on that items
with higher l-count usually produce patterns with higher
support. With this ordering, min support can be raised
faster and the top-k patterns can be discovered earlier. In
addition, an item with l-count less than min support do not
have to generate conditional FP-tree for further mining (as
stated in Remark 3.2). Thus, the faster the min support

can be raised, the more and earlier pruning can be done.

2. “Bottom-up” ordering of the items in a local header table
for mining conditional FP-trees.

The second subtlety is how to mine conditional FP-trees.
We have shown that the generation of conditional FP-trees
should follow the order of the sorted item list, which can
be viewed as top-down walking through the header table.
However, it is often more beneficial to mine a conditional
pattern tree in the “bottom-up” manner in the sense that
we first mine the items that are located at the low end of
a tree branch since it tends to produce the longest patterns
first then followed by shorter ones. It is more efficient to first
generate long closed patterns since the patterns containing
only the subset items can be absorbed by them easily.

3. Efficient searching and maintaining of closed patterns using
a pattern-tree structure.

The third subtle point is how to efficiently maintain the
set of current frequent closed patterns and check whether a
new pattern is a closed one.

During the mining process, a pattern-tree is used to keep
the set of current frequent closed patterns. The structure
of pattern-tree is similar to that of FP-tree. Recall that the
items in a branch of the FP-tree are ordered in the support-
decreasing order. This ordering is crucial for closed pat-
tern verification (to be discussed below), thus we retain this
item ordering in the patterns mined. The major difference
between FP-tree and pattern-tree is that the former stores
transactions in compressed form, whereas the latter stores
potential closed frequent patterns.

The bottom-up mining of the conditional FP-trees gener-
ates patterns in such an order: for patterns that share pre-
fixes, longer patterns are generated first. In addition, there
is a total ordering over the patterns generated. This leads
to our closed frequent pattern verification scheme,
presented as follows.

Let (i1, . . . , il, . . . , ij , . . . , in) be the sorted item list, where
il is the first non-zero l-count item, and ij be the item whose



conditional FP-tree is currently being mined. Then the set
of already mined closed patterns, S, can be split into two
subsets: (1) Sold, obtained by mining the conditional trees
corresponding to items from il to ij−1 (i.e., none of the item-
sets contains item ij), and (2) Sij

, obtained so far by min-
ing ij ’s conditional tree (i.e., every itemset contains item
ij). Upon finding a new pattern p during the mining of ij ’s
conditional tree, we need to perform new pattern checking
(checking against Sij

) and old pattern checking (checking
against Sold).

The new pattern checking is performed as follows. Since
the mining of the conditional tree is in a bottom-up man-
ner, just like CLOSET, we need to check whether (1) p is a
subpattern of another pattern pij

in Sij
, and (2) supp(p) ≡

supp(pij
). If the answer is no, i.e., p passes new pattern

checking, p becomes a new closed pattern with respect to S.
Note that because patterns in Sold do not contain item ij ,
there is no need to check if p is a subpattern of the patterns
in Sold.

The old pattern checking is performed as follows. Since
the global FP-tree is mined in a top-down manner, pattern
p may be a super-pattern of another pattern, pold, in Sold

with supp(p) ≡ supp(pold). In this case, pold cannot be a
closed pattern since it is absorbed by p. Therefore, if p has
passed both new and old pattern checking, it can be used to
raise the support threshold. Otherwise, if p passes only the
new pattern checking, then it is inserted into the pattern-
tree, but it cannot be used to raise the support threshold.

The correctness of the above checking is shown in the
following lemmas.

Lemma 3.4 (New pattern checking). If a pattern p

cannot pass the new pattern checking, there must exist a
pattern, pij

, in Sij
, which must also contain item ij with

supp(pij
) ≡ supp(p).

Rationale. This can be obtained directly from the new pattern
checking method.

Let prefix(p) be the prefix pattern of a pattern p (i.e.,
obtained by removing the last item ij from p).

Lemma 3.5 (Old pattern checking). For old pattern
checking, we only need to check if there exists a pattern
prefix(p) in Sold with supp(prefix(p)) ≡ supp(p).

Rationale. Since a pattern in Sold does not contain item ij ,
it cannot become a super-pattern of p. Thus we only need to
check if it is a subpattern of p. In fact we only need to check
if there is a pattern prefix(p) in Sold with the same support
as p. We can prove this by contradiction. Let us assume
there is another subpattern of prefix(p) that can be absorbed
by p. If this is the case, according to our mining order, we
know this subpattern must have been absorbed by prefix(p)
either via new pattern checking or old pattern checking.

Lemma 3.6 (Support raise). If a newly mined pat-
tern p can pass both new pattern checking and old pattern
checking, then it is safe to use p to raise min support.

Rationale. From Lemma 3.5, there will be two possibilities
for p. First, it is a real closed pattern, i.e., it will not be
absorbed by any patterns later. Second, it will be absorbed
by a later found pattern, and this pattern can only absorb
pattern p. In this case, we will not use the later found pat-
tern to raise support because it has already been used to raise

support when we found pattern p (or p’s precedents). Thus
it is safe to use p to raise min support.

To accelerate both new and old pattern checking, we in-
troduce a two-level index header table into the pattern-tree
structure. Notice that if a pattern can absorb (or be ab-
sorbed by) another pattern, the two patterns must have
same support. Thus, our first index is based on the sup-
port of a pattern. In addition, for new pattern checking, we
only need to check if pattern p can be absorbed by another
pattern that also contains ij ; and for old pattern checking,
we need to check if p can absorb prefix(p) that ends with
the second-last item of p. To speed up the checking, our
second level indexing uses the last item ID in a closed pat-
tern as the index key. At each pattern-tree node, we also
record the length of the pattern, in order to judge if the
corresponding pattern needs to be checked.

The two-level index header table and the checking process
are shown in the following example.

Example 3 (Closed pattern verification). Figure 4
shows a two-level indexing structure for verification of closed
patterns. Based on the lemmas, we only need to index into

7

a
Support

3

Item−id

 e

d:9

e:3

c:6

a:3

a:2

e:3

a:3

Figure 4: Two-level indexing for verification of closed

patterns.

the first structure based on the itemset support, and based
on its matching of the last two items in the index structure
to find whether the corresponding closed node is in the tree.

3.4 Algorithm
Now we summarize the entire mining process and present

the mining algorithm.

Algorithm 1. Mining top-k frequent closed itemsets with
minimal length min ` in a large transaction database.

Input: (1) A transaction database DB, (2) an integer k,
i.e., the k most frequent closed itemsets to be mined,
and (3) min `, the minimal length of the frequent closed
itemsets.

Output. The set of frequent closed itemsets which satisfy
the requirement.

Method.

1. Initially, min support = 0;

2. Scan DB once2, Collect the occurrence frequency (count)
2 This scan can be replaced by a sampling process, which re-
duces one database scan but increases the chance that items
may not be ordered very well due to biased sampling, which
may hurt performance later. Thus such scan reduction may
or may not improve the performance depending on the data
characteristics and the ordering of transactions.



of every item in transactions and sort them in fre-
quency descending order, which forms sorted item list
and the header of FP-tree.

3. Scan DB again, construct FP-tree, update the l-count
in the header of the FP-tree, use closed node count
array to raise min support, and use this support to
prune the tree. After scanning DB, traverse FP-tree
with descendant sum check, which raises min support

further, and the raised min support is used to prune
the tree.

4. Tree mining is performed by traversing down the header
table, starting with the item with the first non-zero l-
count and generate the conditional FP-tree for each
item, as along as its l-count is no less than the current
min support. Each conditional FP-tree is mined in
“bottom-up” (i.e., long to short) manner. Each mined
closed pattern is inserted into a pattern-tree.

5. Output patterns from pattern-tree in the order of their
support. Stop when it outputs k patterns.

4. EXPERIMENTAL EVALUATION
In this section, we report our performance study of TFP

over a variety of datasets.
In particular, we compare the efficiency of TFP with CHARM

and CLOSET, two well known algorithms for mining frequent
closed itemsets. To give the best possible credit to CHARM
and CLOSET, our comparison is always based on assigning
the best tuned min support (which is difficult to obtain in
practice) to the two algorithms so that they can generate the
same top-k closed patterns for a user-specified k value (un-
der a condition of min `). These optimal min support are
obtained by running TFP once under each experimental con-
dition. This means that even if TFP has only comparable
performance with those algorithms, it will still be far more
useful than the latter due to its usability and the difficulty
to speculate min support without mining. In addition, we
also study the scalability of TFP.

The experiments show that (1) the running time of TFP
is shorter than CLOSET and CHARM in most cases when
min ` is long, and is comparable in other cases; and 2) TFP
has nearly linear scalability.

4.1 Datasets
Both real and synthetic datasets are used in experiments,

and they can be grouped into the following two categories.

1. Dense datasets that contain many long frequent
closed patterns: 1) pumsb census data, which consists of
49,044 transactions, each with an average length of 74 items;
2) connect-4 game state information data, which consists of
67,557 transactions, each with an average length of 43 items,
and 3) mushroom characteristic data, which consists of 8,124
transactions, having an average length of 23 items. All these
datasets are obtained from the UC-Irvine Machine Learning
Database Repository.

2. Sparse datasets: 1) gazalle click stream data, which
consists of 59,601 transactions with an average length of
2.5 items, and contains many short (length below 10) and

some very long closed patterns, (obtained from BlueMartini
Software Inc.), and 2) T10I4D100K synthetic data from the
IBM dataset generator, which consists of 100,000 transac-
tions with an average length of 10 items, and with many
closed frequent patterns having average length of 4.

4.2 Performance Results
All experiments were performed on a 1.7GHz Pentium-4

PC with 512MB of memory, running Windows 2000. The
CHARM code was provided to us by its author. The CLOSET
is an improved version that uses the same index-based closed
node verification scheme as in TFP.

We compared the performance of TFP with CHARM and
CLOSET on the 5 datasets by varying min ` and K. In most
cases K is selected to be either 100 or 500 which covers the
range of typical K values. We also evaluated the scalability
of TFP with respect to the size of database.

Dense Datasets: For the dense datasets with many
long closed patterns, TFP performs consistently better than
CHARM and CLOSET for longer min `.

0

2

4

6

8

10

5 10 15 20 25

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

a) K = 100

0

2

4

6

8

10

5 10 15 20 25

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

b) K = 500

Figure 5: Performance on Connect-4 (I)

Figure 5 shows the running time of the three algorithms
on the connect-4 dataset for K fixed at 100 and 500 respec-
tively and min ` ranging from 0 to 25. We observe that,
TFP’s running time for K at 100 and 500 remains stable
over the range of min `. When min ` reaches 11 or 12, TFP
starts to outperform CHARM and the same for CLOSET
when min ` reaches 17 or 18. The reason is that for long
patterns, the min support is quite low. In this case, CHARM
has to retain many short frequent patterns before forming
the required longer patterns, and the FP-tree of CLOSET
would also contain a large number of items that takes up
much mining time. On the other hand, TFP is able to use
the min ` length restriction to cut many short frequent pat-
terns early, thus reduce the total running time.

Figure 6 shows the running time of the three algorithms
on the connect-4 dataset with min ` set to 10 and 20 respec-
tively and K ranging from 100 to 2000. For the connect-4
dataset, the average length of the frequent closed patterns
is above 10, thus min ` at 10 is considered to be a very low
length restriction for this dataset. From a) we can see that
even for very low length restriction such as 10, TFP’s perfor-
mance is comparable to that of CLOSET and CHARM when
it runs without giving support threshold. For min ` equal
to 20, the running time for TFP is almost constant over the
full range, and on average 5 times faster than CHARM and
2 to 3 times faster than CLOSET. We also noticed that,
even for very low min ` as K increases, the performance
gap between TFP, CLOSET, and CHARM gets smaller.



0

1

2

3

4

5

6

200 400 600 800 1000 1200 1400 1600 1800 2000

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

K

TFP
CHARM
CLOSET

a) min ` = 10

0

2

4

6

8

10

12

200 400 600 800 1000 1200 1400 1600 1800 2000

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

K

TFP
CHARM
CLOSET

b) min ` = 20

Figure 6: Performance on Connect-4 (II)

Figure 7 shows the running time of the three algorithms
on the mushroom and pumsb datasets with K set to 500
and min ` ranges from 0 to 25. For the mushroom dataset,
when min ` is less than 6 all three algorithms have simi-
lar low running time. TFP keeps its low running time for
the whole range of min ` and starts to outperform CHARM
when min ` is as low as 6 and starts to outperform CLOSET
when min ` is equal to 8. Pumsb has very similar results as
connect-4 and mushroom datasets.

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

a) Mushroom

0

5

10

15

20

5 10 15 20 25

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

b) Pumsb

Figure 7: Performance on Mushroom and Pumsb

Sparse Dataset: Experiments show that TFP can effi-
ciently mine sparse datasets without min support. It has
comparable performance with CHARM and CLOSET for low
min `, and outperforms both on higher min `.

Figure 8a) shows the running times of TFP, CHARM, and
CLOSET on T10I4D100K with K fixed at 100 and min `

ranges from 1 to 10. Again, it demonstrates TFP’s strength
in dealing with long min `. At min ` = 8, the performance
of CHARM and CLOSET starts deteriorating, while TFP re-
tains its good performance. Figure 8b) shows the perfor-
mance on the same dataset but with min ` fixed at 8 and
varying K from 200 to 2000. The curves show that when
K is above 400, the running times of CHARM and CLOSET
are around 3 times slower than TFP.

The experiments on the gazelle dataset are shown in Fig-
ure 9. For smaller K, TFP outperforms both CHARM and
CLOSET for min ` greater than or equal to 5. For K =
500, TFP continues to outperform CLOSET for min ` greater
than or equal to 5, and has similar performance as CHARM.

From this performance study, we conclude that TFP has
good overall performance for both dense and sparse datasets.
Its running time is nearly constant over a wide range of
K and min ` values for dense data. Unlike CHARM and
CLOSETwhose performance deteriorates as min ` increases,

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

a) K = 100

0

5

10

15

20

25

30

35

40

45

50

200 400 600 800 1000 1200 1400 1600 1800 2000

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

K

TFP
CHARM
CLOSET

b) L = 8

Figure 8: Performance on T10I4D100K

0

0.5

1

1.5

2

2.5

2 4 6 8 10 12 14

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

a) K = 100

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s)

Minimal Length (L)

TFP
CHARM
CLOSET

b) K = 500

Figure 9: Performance on Gazelle

TFP’s running time stays low. The reason is inherent from
the mining strategy of TFP, CHARM, and CLOSET. In most
time, the support for long patterns is lower than that of
short patterns. Thus even with the optimal support given,
both CLOSET and CHARM are unable to prune short fre-
quent patterns early, thus causing much time spent on min-
ing useless patterns. On the other hand, TFP is able to
use the min ` length restriction to cut many short frequent
patterns early, thus improves its running time instantly. In
addition, TFP does not include any nodes that reside above
min ` level to participate in the mining process. As min `

increases, more nodes reside above the min ` level of the
tree means that less conditional FP-trees need to be built,
thus keeps the running time low.

Besides the good performance over long min ` values, the
performance of TFP over short min ` values (even when
min ` = 1, i.e., no length constraint) is still comparable
to that of CLOSET and CHARM. In such cases, the run-
ning times between the three do not differ much, and both
CLOSET and CHARM were run with the optimal support
threshold while TFP was not given any support threshold.

Scalability Test: Our performance tests showed that the
running time of TFP increases linearly with increased dataset
size.

5. DISCUSSION
In this section, we discuss the related work, how to gener-

ate association rules from the mined top-k frequent patterns,
and how to push constraints into the mining process.

5.1 Related work
Recent studies have shown that closed patterns are more

desirable [5] and efficient methods for mining closed pat-



terns, such as CLOSET [7] and CHARM [8], have been de-
veloped. However, these methods all require a user-specified
support threshold. Our algorithm does not need the user to
provide any minimum support and in most cases runs faster
than two efficient algorithms, CHARM and CLOSET, which
in turn outperform Apriori substantially [7, 8].

Fu, et al. [2] studied mining N most interesting item-
sets for every length l, which is different from our work in
several aspects: (1) they mine all the patterns instead of
only the closed ones ; (2) they do not have minimum length
constraints—since it mines patterns at all the lengths, some
heuristics developed here cannot be applied; and (3) their
philosophy and methodology of FP-tree modification are also
different from ours. To the best of our knowledge, this is the
first study on mining top-k frequent closed patterns with
length constraint, therefore, we only compare our method
with the two best known and well-performed closed pattern
mining algorithms.

5.2 Generation of association rules
Although top-k frequent itemsets could be all that a user

wants in some mining tasks, in some other cases, s/he wants
to mine strong association rules from the mined top-k fre-
quent itemsets. We examine how to do this efficiently.

Items in the short transactions, though not contributing
to the support of a top-k itemset of length no less than
min `, may contribute to the support of the items in it.
Thus they need to be included in the computation which
has minimal influence on the performance. To derive cor-
rect confidence, we have the following observations: (1) The
support of every 1-itemset is derived at the start of min-
ing. (2) The set of top-k closed itemsets may contain the
items forming subset/superset relationships, and the rules
involving such itemsets can be automatically derived. (3)
For rules in other forms, one needs to use the derived top-k
itemsets as probes and the known min support as threshold,
and perform probe constrained mining to find the support
only related to those itemsets. (4) As an alternative to the
above, one can set min `= 2, which will derive the patterns
readily for all the combinations of association rules.

5.3 Pushing constraints into TFP mining
Constraint-based mining [4, 6] is essential to top-k mining

since users may always want to put constraints on the data
and rules to be mined. We examine how different kinds
of constraints can be pushed into the top-k frequent closed
pattern mining.

First, succinct and anti-monotone constraints can be pushed
deep into the TFP-mining process. he succint constraints
should be pushed deep to select only those itemsets before
mining starts and the anti-monotonic constraint should be
pushed into the iterative TFP-mining process in a similar
way as FP-growth.

Second, for monotone constraints, the rule will also be
similar to that in traditional frequent pattern mining, i.e,
if an itemset mined so far (e.g., abcd) satisfies a constraint
“sum ≥ 100”, adding more items (such as e) still satisfies it
and thus the constraints checking can be avoided in further
expansion.

Third, for convertible constraints, one can arrange items
in an appropriate order so that the constraint can be trans-
formed into an anti-monotone one and the anti-monotone
constraint pushing can be applied.

Interested readers can easily prove such properties for top-
k frequent closed pattern mining.

6. CONCLUSIONS
We have studied a practically interesting problem, mining

top-k frequent closed patterns of length no less than min `,
and proposed an efficient algorithm, TFP, with several opti-
mizations: (1) using closed node count and descendant sum

to raise min support before tree mining, (2) exploring the
top-down and bottom-up combined FP-tree mining to first
mine the most promising parts of the tree in order to raise
min support and prune the unpromising tree branches, and
(3) using a special indexing structure and a novel closed
pattern verification scheme to perform efficient closed pat-
tern verification. Our experiments and performance study
show that TFP has high performance. In most cases, it out-
performs two efficient frequent closed pattern mining algo-
rithms, CLOSET and CHARM, even when they are running
with the best tuned min support. Furthermore, the method
can be extended to generate association rules and to incor-
porate user-specified constraints.

Based on this study, we conclude that mining top-k fre-
quent closed patterns without min support should be more
preferable than the traditional min support-based mining
for frequent pattern mining. More detailed study along this
direction is needed, including further improvement of the
performance and flexibility at mining top-k frequent closed
patterns, as well as mining top-k frequent closed sequential
patterns or structured patterns.

Acknowledgements. We are grateful to Dr. Mohammed
Zaki for providing the code and data conversion package of
CHARM and promptly answering many questions .

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. VLDB’94.

[2] A. W.-C. Fu, R. W.-W. Kwong, and J. Tang. Mining
n-most interesting itemsets. ISMIS’00.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. SIGMOD’00.

[4] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of
constrained associations rules. SIGMOD’98.

[5] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. ICDT’99.

[6] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining
frequent itemsets with convertible constraints.
ICDE’01.

[7] J. Pei, J. Han, and R. Mao. CLOSET: An efficient
algorithm for mining frequent closed itemsets.
DMKD’00.

[8] M. J. Zaki and C. J. Hsiao. CHARM: An efficient
algorithm for closed itemset mining. SDM’02.


