
Computing Full and Iceberg Datacubes Using
Partitions

(Extented Abstract)

Marc Laporte1, Noël Novelli2, Rosine Cicchetti1,3, and Lotfi Lakhal1,3

1 IUT d’Aix-en-Provence - Département Informatique
Avenue Gaston Berger, F-13625 Aix-en-Provence, Cedex 1, France

laporte@romarin.univ-aix.fr

2 LaBRI, CNRS UMR 5800 - Université de Bordeaux 1, Bât A30
351 Cours de la Libération, F-33405 Talence Cedex, France

novelli@labri.fr

3 LIF Marseille, CNRS FRE-2504 - Université de la Méditerranée, Case 901
163 Avenue de Luminy, F-13288 Marseille Cedex 9, France

{cicchetti,lakhal}@lif.univ-mrs.fr

Abstract. In this paper, we propose a sound approach and an al-
gorithm1 for computing a condensed representation of either full or
iceberg datacubes. A novel characterization of datacubes based on
dimensional-measurable partitions is introduced. From such partitions,
iceberg cuboids are achieved by using constrained product linearly in
the number of tuples. Moreover, our datacube characterization provides
a loss-less condensed representation specially suitable when considering
the storage explosion problem and the I/O cost. We show that our al-
gorithm Ccube turns out to an operational solution more efficient than
competive proposals. It enforces a lecticwise and recursive traverse of
the dimension set lattice and takes into account the critical problem
of memory limitation. Our experimental results shows that Ccube is a
promising candidate for scalable computation.

1 Motivation

Answering efficiently OLAP queries requires to pre-compute their results, i.e.
datacubes [8], and to store them. Computing datacubes is specially costly in
execution time [1,15,3] and preserving them is memory consuming because of
the disk explosion problem [11].
Althrough intrinsically related, the two issues have been addressed separately.
On one hand, various algorithms have been defined to compute datacubes more
and more efficiently [1,15]. On the other hand, approaches have been proposed

1 This work is partially supported by the AS CNRS-STIC “Data Mining”

M.-S. Hacid et al. (Eds.): ISMIS 2002, LNAI 2366, pp. 244–254, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Computing Full and Iceberg Datacubes Using Partitions 245

to minimize storage requirements. They are based on physical techniques [17],
choice of results to be materialized [11], or approximation model [2].
Recently the algorithm BUC was introduced [3]. It addresses the twofold issue
of computing and storing cubes by taking into consideration the relevance
of results. BUC aims to compute iceberg datacubes which are similar to
“multi-feature cubes” proposed in [16]. When computing such cubes, aggregates
not satisfying a selection condition specified by user (similar to the clause
Having in SQL) are discarded. Let us notice that the algorithm H-Cubing is
intended for computing iceberg cubes by enforcing more complex measures [10].
Motivations behind computing iceberg cubes are the following. Firstly, iceberg
cubes provide users only with relevant results because scarce or exceptional
dimensional combinations of values are discarded. Computation performances
can be improved since the lattice to be explored can be pruned (using the
selection condition) [3], and storage requirement is decreased. Precomputed
iceberg cubes also offer an efficient solution for answering iceberg queries [5].
Another important issue, when computing iceberg cubes, concerns OLAP
mining, i.e. the discovery of multidimensional association rules [9], classification
rules [13], or multidimensional constrained gradients [4].

In this paper, we propose an approach for achieving full or iceberg dat-
acubes. The originality of our proposal is that it aims to compute a loss-less
condensed representation of datacubes which is specially less voluminous than
the classical representation of the datacube.
The main contributions of our approach are the following. Firstly, we introduce
a novel and sound characterization of datacubes based on the concept of
dimensional-measurable partitions, inspired from the partition model [18]. From
a dimensional-measurable partition, according to a set of dimensional attributes,
computation of the associated cuboid is simple. A cuboid results from a single
group-by query according to a certain set of dimensions [9]. This new concept
is attractive because dealing with dimensional-measurable partitions means
operating linearly set intersections (and thus the use of sorting or hash-based
methods is avoided). Secondly, our characterization provides a condensed
representation of datacubes in order to minimize disk storage and I/O cost. The
third contribution provides a new principle, dictated by the critical problem of
main memory limitation, for navigating through the dimensional lattice. It is
called lecticwise and recursive traverse of the dimensional lattice, offers a sound
basis for our computing strategy, and applies for computing full or iceberg
datacubes. Finally, the described ideas are enforced through a new operational
algorithm, called Ccube. Ccube has been experimented by using various
benchmarks. Our experiments show that Ccube is more efficient than BUC.
The rest of the paper is organized as follows. In section 2, we introduce the
novel concepts of our approach and characterize datacubes. Section 3 is devoted
to our algorithmic solution and Section 4 to experiments. Finally, we discuss
the strengths of our approach and evoke further research work.

246 M. Laporte et al.

2 Condensed Representation of Iceberg Datacubes

In this section, we introduce a novel characterization of datacubes which is based
on simple concepts. It offers a condensed representation which can be seen as a
logical and loss-less proposal for minimizing the storage explosion.
First of all, we assume that the relation r to be aggregated is defined over a
schema R encompassing, apart from the tuple identifier, two kinds of attributes:
(i) a set Dim of dimensions which are the criteria for further analysis, and (ii) a
measurable attributeM standing for the measure being analyzed2. We also make
use of the following notations: X stands for a set of dimensions {A1, A2 . . .}, X
⊆ Dim. We assume that an anti-monotonic constraint w.r.t. inclusion Cond is
given by the user as well as an additive aggregative function f (e.g. count, sum
. . .).
Inspired from the concept of partition defined in [18], we introduce the concept
of Dimensional-Measurable partition according to a set of dimensions.

Definition 1 Dimensional-Measurable Classes
Let r be a relation over the schema R = (RowId, Dim, M), and X ⊆ Dim.
The Dimensional-Measurable equivalence class of a tuple t ∈ r according to X
is denoted by [t]X , and defined as follows:
[t]X = { (u[RowId], u[M]) / u ∈ r, u[X] = t[X] }.

Example 1 Let us consider the classical example of studying the sales of a
company according to various criteria such as the sold product (Product), the
store (Store) and the year (Year). The measure being studied according to the
previous criteria is the total amount of sales (Total). An instance of our relation
example is illustrated in figure 1.
The DM-equivalence class of the tuple t1, i.e. having RowId = 1, according to
the dimension Product, groups all the tuples (their identifier and measurable
value) concerning the product 100:
[t1]Product = { (1, 70) (2, 85) (3, 105) (4, 120) (5, 55) (6, 60) }. ✷

A Dimensional-Measurable partition (or DM-partition) of a relation, ac-
cording to a set of dimensions, is the collection of DM-equivalence classes
obtained for the tuples of r and satisfying the anti-monotonic constraint.

Definition 2 DM-Partition
Let r be a relation over the schema R, X a set of dimensions, X ⊆ Dim and
Cond an anti-monotonic constraint. The DM-partition of r according to X is
denoted by ΠX(r), and defined as follows: ΠX(r) = { [t]X |= Cond / t ∈ r }.

Example 2 Let us resume our relation example given in figure 1. We assume
that the condition is: Sum(Total) > 220. The DM-partition, according to
the attribute Product is given below (the various DM-equivalence classes are
2 All definitions, given in this section, can be easily extended in order to consider a

set of measures, like in [16].

Computing Full and Iceberg Datacubes Using Partitions 247

Sales
RowId Product Store Year Total

1 100 a 1999 70
2 100 a 2000 85
3 100 b 1999 105
4 100 b 2000 120
5 100 c 1999 55
6 100 c 2000 60
7 103 a 1999 36
8 103 a 2000 37
9 103 b 1999 55
10 103 b 2000 60
11 103 c 1999 28
12 103 c 2000 30

Fig. 1. The relation example Sales

delimited by <>). ΠProduct(Sales) = {< (1, 70)(2, 85)(3, 105)(4, 120)(5, 55)(6,

60) >, < (7, 36)(8, 37)(9, 55)(10, 60)(11, 28)(12, 30) > }. ✷

Let us underline that our implementation of DM-partitions only preserves
tuple identifiers which are used for indexing measurable values. In order to
efficiently handle DM-partitions, we introduce the concept of constrained
product.

Lemma 1 Constrained Product of DM-Partitions
Let r be a relation, and ΠX(r), ΠY (r) two DM-partitions computed from r ac-
cording to X and Y respectively. The product of the two partitions, denoted by
ΠX(r) •c ΠY (r), is obtained as follows, and equal to ΠX∪Y : ΠX(r) •c ΠY (r) =
{ [t]X ∩ [t]Y |= Cond / [t]X ∈ ΠX(r), [t]Y ∈ ΠY (r) } = ΠX∪Y (r)

Example 3 Let us consider ΠProduct(Sales) and ΠStore(Sales). Their
product, obtained by intersection of the associated DM-equivalence classes, is
achieved and classes not respecting the condition are discarded. The result is
the following: ΠProduct(Sales) •c ΠStore(Sales) = {< (3, 105)(4, 120) > }. ✷

From any DM-partition, an iceberg cuboid can be simply achieved by ag-
gregating the measurable values of its equivalence classes. Moreover the whole
relevant information contained in a relation can be represented through the
set of DM-partitions computed according to each dimensional attribute of
its schema. These partitions are called, in the rest of the paper, the original
DM-partitions. Provided with such a set of DM-partitions, it is possible to
compute iceberg cuboids according to any dimension combination, by making
use of constrained product of DM-partitions. Thus the iceberg datacube, derived
from r, can be achieved from the original DM-partitions.

248 M. Laporte et al.

In our approach, an iceberg cuboid results from applying an aggregative function
f over the measurable attribute M for each class in the DM-partition ΠX(r).
Each class is symbolized by one of its tuple identifiers.

Definition 3 Condensed Iceberg Cuboids
Let ΠX(r) be a DM-partition of r, and f an aggregative function. For each
equivalence class in ΠX(r), [t]X .M stands for the set of values of the measurable
attribute and t[RowId] a tuple identifier from [t]X . The cuboid aggregating values
of M in r according to X is denoted by CuboidX(r) and defined as follows:
CuboidX(r) = { (t[RowId], f([t]X .M)) / [t]X ∈ ΠX(r) }

Example 4 Let us consider the cuboid yielded by the following SQL query:
SELECT Product, Sum(Total) FROM Sales
GROUP BY Product HAVING Sum(Total) ¿ 220
Since the DM-partition ΠProduct(Sales) encompasses two DM-equivalence
classes satisfying the anti-monotonic constraint, our condensed representation
of the associated iceberg cuboid groups only two couples (delimited by <>):
CuboidProduct(Sales) = {< 1, 495 >, < 7, 246 >}. The former couple gives the
sale amount for the product 100 (for all stores and years) and the latter provides
a similar result for the product 103. ✷

For characterizing cuboids, we state an equivalence between our represen-
tation and the result of the aggregate formation defined by A. Klug [12].

Lemma 2 Correctness
Let CuboidX(r) be a cuboid according to X, achieved from r by applying the
previous definition with Cond = true. Then we have:

Aggregation < X, f > (r)= { t[X] ◦ y/t ∈ r, y = f({t′/t′ ∈ r, t′[X] = t[X]}) }3

= { t[X] ◦ f([t]X .M)/∃ [u]X ∈ ΠX(r)
such that (t[RowId], t[M]) ∈ [u]X }

Definition 4 Condensed Iceberg Datacubes
Let r be a relation. The condensed iceberg datacube associated to r, noted
CUBE(r), is defined by:
CUBE(r) = {CuboidX(r)
= ∅/X ∈ 2Dim} where 2Dim is the power set of Dim.

Example 5 Let us consider the following query yielding the iceberg cube
according to Product and Store (depicted in figure 2 (left)):
SELECT Product, Store, Sum(Total) FROM Sales
CUBE BY Product, Store HAVING Sum(Total) ¿ 220
The single equivalence class in Π∅(Sales) satisfies the given condition
(Sum(Total) = 741). When achieving the constrained product of the two
DM-partitions given below, the condition is applied and the result is as follows:
ΠProduct(Sales) •c ΠStore(Sales) = {< (3, 105)(4, 120) > }. It is used for building a
3 Definition given by A. Klug in [12].

Computing Full and Iceberg Datacubes Using Partitions 249

Sales by Product and Store
Product Store Total

ALL ALL 741
100 ALL 495
103 ALL 246
ALL a 228
ALL b 340
100 b 225

Sales by Product and Store
Cuboid∅ = { < 1, 741 > }
CuboidProduct = { < 1, 495 >, < 7, 246 > }
CuboidStore = {< 1, 228 >, < 3, 340 > }
CuboidProduct,Store = {< 3, 225 > }

Fig. 2. An iceberg cube example

tuple of the iceberg cuboid (< 3, 225 >) which carries the following information:
the total amount of sales for the product and the store referred to in tuple t3
is 225. Figure 2 (right) illustrates the condensed representation of the iceberg
datacube example. ✷

3 Computing Condensed Iceberg Cubes

In this section, we give the foundations of our algorithmic solution. We begin
by recalling the definition of the lectic order (or colexicographical order) [7].
Then, we propose a new recursive algorithm schema for enumerating constrained
subsets of 2Dim according to the lectic order.

Definition 5 Lectic Order
Let (R, <) be a totally ordered and finite set. We assume for simplicity that R
can be defined as follows: R = {1, 2, . . . , n}. R is provided with the following
operator: Max : 2R → R

X → the last element of X.
The lectic order <l is defined as follows:
∀X,Y ∈ 2R, X <l Y ⇔ Max(X − Y) < Max(Y − X).

This definition yields a strict linear order on the set of all subsets, called lectic
order.
Example 6 Let us consider the following totally ordered set: R = {A, B, C,
D}. Enumerating combinations of 2R with respect to the lectic order provides
the following result: ∅ <l A <l B <l AB <l C <l AC <l BC <l ABC <l D <l

AD <l BD <l ABD <l CD <l ACD <l BCD <l ABCD. ✷

Proposition 1. [6]
∀X,Y ∈ 2R, X ⊂ Y ⇒ X <l Y .

The previous proposition ensures that minimal subsets not respecting the
anti-monotonic constraint (called negative border [14]) are the first ones
encountered in the lectic order.

250 M. Laporte et al.

Let us underline that traverses following from lectic or lexicographical orders
are both depth-first-search. However the lectic order is compatible with the
anti-monotonic constraint whereas lexicographical order is not.

Recursive Algorithm Schema for Constrained Subset
Enumeration in Lectic Order

The novel algorithm LCS (Lectic Constrained Subset) gives the general
algorithmic schema used by Ccube. It is provided with two dimensional
attribute subsets X and Y , and handles a set of attribute combinations: the
negative border (NegBorder). The latter set encompasses all the minimal
attribute subsets not satisfying the anti-monotonic constraint. The algorithm is
based on a twofold recursion and the recursive calls form a binary tree in which
each execution branch achieves a dimensional subset. The general strategy
for enumerating dimensional attribute subsets consists of generating firstly all
the constrained subsets (i.e. satisfying Cond) not encompassing a dimensional
attribute, and then all the subsets which encompass it. More precisely, the
maximal attribute, according to the lectic order, is discarded from Y and
appended to X in the variable Z. The algorithm is recursively applied with
X and the new subset Y . If Z is not a superset of an element in NegBorder,
then the algorithm assesses whether the condition holds for Z. If it does, the
algorithm is recursively called with the parameters Z and Y , else Z is added to
NegBorder. The first call of LCS is provided with the two parameters X = ∅
and Y = Dim while NegBorder is initialized to {}.

Algorithm LCS(X, Y)
1 if Y = ∅ then output X
2 else
3 A := Max(Y)
4 Y := Y − {A}
5 LCS(X, Y)
6 Z := X ∪ {A}
7 if
 ∃ T ∈ NegBorder such that T ⊆ Z
8 then
9 if Z |= Cond
10 then LCS(Z, Y)
11 else NegBorder := NegBorder ∪ Z

Lemma 3 Algorithm Correctness
The correctness of the algorithm LCS is based on proposition 1 and:

(i) due to the anti-monotonic property of Cond, we have:
∀ X ⊆ Y , Y |= Cond ⇒ X |= Cond;

(ii) from the distributivity property of the dimensional lattice, we have: ∀ A ∈
Dim, ∀ X ⊂ Dim, 2X∪{A} ∩ 2X−{A} = ∅. Thus any dimensional subset is
enumerated only once.

Computing Full and Iceberg Datacubes Using Partitions 251

Example 7 Let us consider our relation Sales and the condition
Sum(Total) ≥ 350. In this context, the binary tree of recursive calls when
running our algorithm is depicted in figure 3. Leaves in this tree correspond to
outputs which are, from left to right, ordered in a lectic way. In any left subtree,
all subsets not encompassing the maximal attribute (according to the lectic
order) of the subtree root are considered while in right subtrees, the maximal
attribute is preserved. ✷

ConstrainedSubset
(Ø, {Product, Store, Year})

ConstrainedSubset
(Ø, {Product, Store})

ConstrainedSubset
(Ø, {Product})

ConstrainedSubset
(Ø, Ø)

Ø

ConstrainedSubset
({Product}, Ø)

Product

X = Ø Y = {Product}
Z = {Store}

ConstrainedSubset
({Year}, {Product, Store})

ConstrainedSubset
({Year}, {Product})

X = {Year} Y = {Product}
Z = {Year, Store}

ConstrainedSubset
({Year}, Ø)

X = {Year} Y = Ø
Z = {Year, Product}

Year

¬ Year Year

¬ Product Product ¬ Product Product

¬ Store Store Store¬ Store

<l <l Output

Fig. 3. Execution tree

We propose an algorithm, called Ccube, for computing full and iceberg
datacubes. It fits in the theoretical framework previously presented. A pre-
processing step is required in order to build DM-partitions according to each
single attribute from the input relation. According to the user need, these
DM-partitions can be full or iceberg partitions. While performing this initial
step, the computation of the cuboid according to the empty set is operated and
its result is yielded.
If the original partitions (∪A∈DimΠA(r)) cannot fit in main memory, then the
fragmentation strategy proposed in [15] and used in [3] is applied. It divides the
input relation in fragments according to an attribute until the original associated
DM-partitions can be loaded. Ccube adopts the general algorithm schema
described through LCS but it is intended to compute all desired aggregates
and thus it yields the condensed representation of all possible cuboids. Ccube
deals with DM-partitions and enforces constrained product of DM-partitions.
Like LCS, its input parameters are the subsets X and Y . When Z is not a
superset of a negative border element, its DM-partition is computed by applying
the constrained product of the in-memory DM-partitions ΠX(r) and ΠA(r).
The constrained product is implemented through two functions called Product
and Prune. The latter discards DM-equivalence classes not satisfying the
anti-monotonic constraint and the second recursive call is performed only if the
DM-partition according to Z is not empty. The NegBorder encompasses the
minimal attribute combinaisons Z such that CuboidZ(r) = ∅. The pseudo-code
of the algorithm Ccube is given below.

252 M. Laporte et al.

Algorithm CCUBE(X, Y)
1 if Y = ∅ then Write CuboidX(r)
2 else
3 A := Max(Y)
4 Y := Y − {A}
5 CCUBE(X, Y)
6 Z := X ∪ {A}
7 if
 ∃ T ∈ NegBorder such that T ⊆ Z
8 then
9 ΠZ(r) := Product(ΠX(r), ΠA(r))
10 ΠZ(r) := Prune(ΠZ(r))
11 if ΠZ(r) <> ∅
12 then CCUBE(Z, Y)
13 else NegBorder := NegBorder ∪ Z

4 Experimental Comparison

In order to assess performances of Ccube, the algorithm was implemented
using the language C++. An executable file can be generated with Visual C++
5.0 or GNU g++ compilers. Experiments were performed on a Pentium Pro
III/700 MHz with 2 GB, running Linux.
The benchmark relations used for experiments are synthetic data sets auto-
matically generated under the assumption that the data is uniformly and at
random distributed. With these benchmarks, optimization techniques (such as
attribute ordering used in BUC) do not improve efficiency.
An executable version of BUC is not available from the authors, we have
therefore developed a new version of this algorithm under the very same
conditions than for Ccube implementation and with a similar programming
style.

0

500

1,000

1,500

2,000

10 100 1,000

T
im

es
 in

 s
ec

on
ds

Cardinality of attributes

(A) CCUBE vs. BUC

CCUBE
BUC

0

50

100

150

200

250

300

350

O.OO1 % 0.005 % 0.01 %

T
im

es
 in

 s
ec

on
ds

Minimum Support

(B) CCUBE vs. BUC (cardinality = 10)

CCUBE
BUC

0

2

4

6

8

10

12

O.OO1 % 0.005 % 0.01 %

T
im

es
 in

 s
ec

on
ds

Minimum Support

(C) CCUBE vs. BUC (cardinality = 1,000)

CCUBE
BUC

Fig. 4. Execution times in seconds for relations with 100,000 tuples and 10 attributes

Computing Full and Iceberg Datacubes Using Partitions 253

0

50

100

150

200

250

300

2 4 6 8 10

I/O
 T

im
es

 in
 s

ec
on

ds

Number of attributes

(A) CCUBE vs. BUC (cardinality = 100)

1,000,000 tuples

CCUBE
BUC

0

100

200

300

400

500

600

700

800

900

100,000 1,000,000 3,000,000 5,000,000

T
im

es
 in

 s
ec

on
ds

Number of tuples

(B) CCUBE (cardinality = 100)

10 attributes

Minimum Support = 0.01 %

CCUBE

0

20

40

60

80

100

120

2 4 6 8 10

T
im

es
 in

 s
ec

on
ds

Number of attributes

(C) CCUBE (cardinality = 100)

1,000,000 tuples

Minimum Support = 0.01 %

CCUBE

Fig. 5. I/O times in seconds for various numbers of attributes (A) and execution times
for various numbers of tuples and attributes with a minimum support (B, C)

Figure 4 (A) gives the execution times of the two algorithms, when com-
puting a fullcube and varying the dimension cardinalities from 10 to 1,000. The
input is a relation encompassing 100,000 tuples and 10 attributes. As expected,
Ccube behaves specially well. As mentioned in [3], BUC is penalized when
domain cardinalities are small and the gap between execution times of Ccube
and BUC decreases as the domain cardinality increases. Figures 4 (B) and (C)
provide execution times of Ccube and BUC when computing the iceberg cube
from the same input relation. The minimum support varies from 0.001 % to
0.01 % and the used function is Count. The cardinality of all dimensions is set
to 10 or 1,000. In any case, Ccube is more efficient than BUC.

Figure 5 (A) gives the times required for writing results. The input rela-
tion encompasses 1,000,000 tuples and the number of dimensions varies from 2
to 10. Dimension cardinality is set to 100.

The curves, in figure 5 (B, C), illustrate Ccube scalability according to
the tuple number and dimension number when computing an iceberg datacube
with a minimum support set to 0.01 %. The tuple number of the input relation
varies from 100,000 to 5,000,000. As expected, Ccube behaves linearly in the
number of tuples. The dimension number varies from 2 to 10.

5 Conclusion

The approach presented in this paper addresses the computation of either full or
iceberg datacubes. It fits in a formal framework proved to be sound and based
on simple concepts. We propose an alternative representation of data sets to be
aggregated: the DM-partitions. By selecting relevant DM-partitions, we show
that on one hand memory requirement is decreased when compared to BUC one
[3], and on the other hand all necessary cuboids can be computed by enforcing in-
memory DM-partition products, i.e. by performing set intersections, linearly in
the set cardinalities. Ccube traverses the dimensional lattice by following from
the lectic order. Its navigation principles are soundly founded. In addition, we

254 M. Laporte et al.

propose a condensed representation of datacubes which significantly reduces the
necessary storage space without making use of physical techniques. We show that
Ccube has good scale-up properties and is more efficient than BUC. Intended
further work concerns an extension of datacubes that we call decision datacubes
which represent small covers for associative classification rules.

References

1. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrish-
nan, and S. Sarawagi. On the Computation of Multidimensional Aggregates. In
VLDB’96, pages 506–521, 1996.

2. D. Barbará and M. Sullivan. Quasi-Cubes: Exploiting Approximations in Multidi-
mensional Databases. SIGMOD Record, 26(3):12–17, 1997.

3. K.S. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg
CUBEs. In ACM SIGMOD, USA, pages 359–370, 1999.

4. G. Dong, J. Han, J. M. W. Lam, J. Pei, and K. Wang. Multi-Dimensional Con-
strained Gradients in Data Cubes. In VLDB’01, pages 321–330, Italy, 2001.

5. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman. Com-
puting Iceberg Queries Efficiently. In VLDB’98, New York City, New York, USA,
pages 299–310. Morgan Kaufmann, 1998.

6. B. Ganter and K. Reuter. Finding all Closed Sets: A General Approach. Order,
8:283–290, 1991.

7. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1999.

8. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generaliz-
ing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery,
1(1), 1997.

9. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2001.

10. J. Han, J. Pei, G. Dong, and K. Wang. Efficient Computation of Iceberg Cubes
with Complex Measures. In ACM SIGMOD’01, USA, 2001.

11. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes ef-
ficiently. In ACM SIGMOD’96, pages 205–216, Montreal, Quebec, Canada, June
1996.

12. A. C. Klug. Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions. Journal of ACM, 29(3):699–717, 1982.

13. H. Lu and H. Liu. Decision Tables: Scalable Classification Exploring RDBMS
Capabilities. In VLDB’00, pages 373–384, Cairo, Egypt, September 2000.

14. H. Mannila and H. Toivonen. Levelwise Search and Borders of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery, 10(3):241–258, 1997.

15. K.A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In VLDB’97,
Athens, Greece, pages 116–125, 1997.

16. K.A. Ross, D. Srivastava, and D. Chatziantoniou. Complex Aggregation at Mutiple
Granularities. In EDBT’98, LNCS vol. 1377, pages 263–277. Springer Verlag, 1998.

17. K.A. Ross and K.A. Zaman. Serving Datacube Tuples from Main Memory. In
SSDM’2000, Berlin, Germany, pages 182–195, 2000.

18. N. Spyratos. The partition model: A deductive database model. ACM TODS,
12(1):1–37, 1987.

	Motivation
	Condensed Representation of Iceberg Datacubes
	Computing Condensed Iceberg Cubes
	Experimental Comparison
	Conclusion

