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Efficient and effective processing of distance-based join queries (DJQs) is of great
importance in spatial databases due to the wide area of applications that may
address such queries (mapping, urban planning, transportation planning, resource
management, etc.). The most representative and studied DJQs are the K Closest
Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries
involve two spatial data sets and a distance function to measure the degree of
closeness, along with a given number of pairs in the final result (K) or a distance
threshold (ε). The output of these queries are a set of pairs (one from each input
set) of spatial objects, with the K lowest distances, and within distance threshold
ε, respectively. In this paper, we enhance the classic plane-sweep algorithm for
DJQs with two improvements, so called sliding window and sliding semi-circle.
Moreover, we propose a new algorithm called Reverse Run Plane-Sweep, that
improves the processing of the classic plane-sweep algorithm for DJQs, minimizing
the Euclidean and sweeping axis distance calculations. But the most important
contribution is the proposal of four new algorithms (FCCPS, SCCPS, FRCPS
and SRCPS) for KCPQ and their extensions for εDJQ in the context of spatial
databases, without the use of an index on each data set saving on disk (neither
inputs are indexed). They employ a combination of the plane-sweep algorithms and
space partitioning techniques to join the data sets. Finally, we present results of
an extensive experimental study, that compares the efficiency and effectiveness of
the proposed algorithms for KCPQ and εDJQ. That performance study conducted
on long spatial data sets (real and synthetic) validates that our proposed plane-
sweep-based algorithms are very promising in terms of both efficient and effective

measures, when neither inputs are indexed.

Keywords: Spatial Databases; Query Processing; Plane-Sweep Technique; Distance-based Join
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1. INTRODUCTION

A Spatial Database is a database system that offers
spatial data types in its data model and query
language, and it supports spatial data types in its
implementation, providing at least spatial indexing
and efficient spatial query processing [1]. In a
computer system, these spatial data are represented
by points, line-segments, regions, polygons, volumes
and other kinds of 2-d/3-d geometric entities and are
usually referred to as spatial objects. For example, a
spatial database may contain polygons that represent
building footprints from a satellite image, or points
that represent the positions of cities, or line segments

that represent roads. Spatial databases include
specialized systems like Geographical databases, CAD
databases, Multimedia databases, Image databases, etc.
Recently, the role of spatial databases is continuously
increasing in many modern applications; e.g. mapping,
urban planning, transportation planning, resource
management, geomarketing, environmental modeling
are just some of these applications.

The most basic form of such a system is answering
spatial queries related to the spatial properties of the
data. Some typical spatial queries are: point query,
range query, spatial join, and nearest neighbor query
[2, 3]. One of the most frequent spatial query in
spatial database systems is spatial join, which finds
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all pairs of spatial objects from two spatial data sets
that satisfy a spatial predicate, θ. Some examples
of the spatial predicate θ are: intersects, contains,
is enclosed by, distance, adjacent, meets, etc [4]; and
when θ is a distance, we have distance-based join queries
(DJQs). The most representative and studied DJQs in
the spatial database field are the K Closest Pairs Query
(KCPQ) and εDistance Join Query (εDJQ). KCPQ
combines join and nearest neighbor queries, like a join
query, all pairs of objects are candidates for the final
result, and like a nearest neighbor query, the K Nearest
Neighbor property is the basis for the final ordering
[5, 6]. εDJQs, also known as Range Distance Join, also
involves two spatial data sets and a distance threshold
ε, and it reports a set pairs of objects, one from each
input set, that are within distance ε of each other.
DJQs are very useful in many applications that use
spatial data for decision making and other demanding
data handling operations. For example, we can use two
spatial data sets that represent the cultural landmarks
and the most populated places of the United States
of America. A KCPQ (K = 10) can discover the 10
closest pairs of cities and cultural landmarks providing
an increase order based on its distances. On the other
hand, a εDJQ (ε = 10) will return all possible pairs
(populated place, cultural landmark) that are within
10 kilometers of each other.

The distance functions are typically based on a
distance metric (satisfying the non-negative, identity,
symmetry and ∆-inequality properties) defined on
points in the data space. A general distance metric
is called Lt-distance (Lt : Points × Points → R+)
or Minkowski distance between two points, P =
(P [0], P [1], · · · , P [d−1]) and Q = (Q[0], Q[1], · · · , Q[d−
1]), in the d-dimensional data space, Dd, and it is
defined as follows:

Lt(p, q) =


(
d−1∑
i=0

|pi − qi|t
)1/t

if 1 ≤ t <∞

max0≤i≤d−1{|pi − qi|} if t =∞
For t = 2 we have the Euclidean distance, for t

= 1 the Manhattan distance and for t = ∞ the
Maximum distance. They are the most known Lt-
distances. Often, the Euclidean distance is used as the
distance function but, depending on the application,
other distance functions may be more appropriate. The
d-dimensional Euclidean space, Ed, is the pair (Dd, L2).
That is, Ed isDd with the Euclidean distance L2. In the
following we will use dist instead of L2 as the Euclidean
distance between two points in Ed and it will be the
basis for DJQs studied on this paper.

dist(p, q) =

√√√√d−1∑
i=0

|pi − qi|2

One of the most important techniques in the
computational geometry field is the plane-sweep
algorithm which is a type of algorithm that uses a
conceptual sweepline to solve various problems in the
Euclidean plane, E2, [7]. The name of plane-sweep is
derived from the idea of sweeping the plane from left
to right with a vertical line (front) stopping at every
transaction point of a geometric configuration to update
the front. All processing is carried out with respect
to this moving front, without any backtracking, with
a look-ahead on only one point each time [8]. The
plane-sweep technique has been successfully applied
in spatial query processing, mainly for intersection
joins, regardless whether both spatial data sets are
indexed or not [9]. In the context of DJQs the plane-
sweep technique has been used to restrict all possible
combinations of pairs of points from the two data sets.
That is, using this technique instead of the brute-force
nested loop algorithm, the reduction of the number
of Euclidean distances computations is proven [10, 6],
and thus the reduction of execution time of the query
processing.

In the context of computational geometry, in [8], the
plane-sweep algorithm is applied to find the closest pair
in a set of points, in an elegant way. Two improvements
when a new pair can be formed are proposed. The first
one is when all candidates which may form a new closest
pair with the fixed point p on the sweepline lie in a half-
circle centered at this point, with radius δ (it is called
half-circle query). The second one, since the half-circle
query is complex and in particular when it is embedded
in a plane-sweep algorithm, a boundary rectangle query
(a rectangle with width δ in X-axis and, height 2 * δ in
Y-axis (p+δ and p−δ from p)) is proposed and adopted
as the final improvement. A critical observation made in
[8] is that as the sweepline passes through a fixed point,
there are at most constant number of points need to be
checked. But this property does not exist in our case
which is essentially a bichromatic closest pair problem,
because the number of points in such a problem cannot
be bounded. Moreover, the algorithm proposed in [8]
uses an array and a balanced binary tree (e.g. AVL-
tree) to sort both axes of the data set, while we will
use one array for each data set, sorting on one axis
(e.g. X axis). Finally, and as we will explain along the
paper, our proposed plane-sweep algorithm can be easy
adapted to distance-based join query processing on disk
resident data.

It is generally accepted that indexing is crucial for
efficient processing of spatial queries. Even more, it
is well-known that a spatial join is generally fastest
if both data sets are indexed. However, there are
many situations where indexing does not necessary
pay off. In particular, the time needed to build the
index before the execution of the spatial query takes an
important relevance in the global performance of the
spatial database systems. For instance, if the output
of a spatial query serves as input to another spatial
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query, and such as output is not reused several times
for subsequent spatial queries, then it may not be
worthwhile to expend the time of building a new index.
This is especially emphasized for spatial intersection
joins that make use of indexes, which needs a long time
to be built (e.g. R*-tree [11]) [12]. For the previous
reasons, the time necessary to build the indexes is an
important constraint, especially if the input data sets
are not used often for spatial query processing. Thus
the main motivation of this article is to propose a new
algorithm for DJQs (KCPQ and εDJQ) when none
inputs are indexed, and to study its behavior in the
context of spatial databases. Moreover, our proposal
is also motivated by the work of [13, 14] for spatial
intersection joins. And the contributions of this paper
are summarized as follows:

1. We enhance the Classic Plane-Sweep algorithm for
DJQs with two improvements (sliding window and
sliding semi-circle). Which were proposed in [8]
for the closest pair problem over one data set, and
here have been adapted to DJQs for spatial query
processing, where two data sets are involved.

2. We improve processing of the Classic Plane-Sweep
algorithm for DJQs, with a new algorithm called
Reverse Run Plane-Sweep, RRPS, that minimizes
Euclidean and sweeping axis distance calculations.

3. We have provided the proofs of the correctness of
both algorithms for KCPQ, that is, Classic Circle
Plane-Sweep (CCPS) and Reverse Run Circle
Plane-Sweep (RCPS) algorithms. They are the
basis of the following algorithms for DJQs, when
neither inputs are indexed and the data are stored
on disk.

4. There are many contributions in the context
of spatial intersection joins when one, both or
neither inputs are indexed. For DJQs most
of the contributions have been proposed when
both inputs are indexed (mainly using R-trees
for KCPQ). For this reason, in this article we
propose four algorithms (FCCPS, SCCPS, FRCPS
and SRCPS) for KCPQ and their extensions
for εDJQ for performing such as DJQs, without
the use of an index on each data set saving
on disk. They employ a combination of the
plane-sweep algorithms (Classic Circle (CCPS)
and Reverse Run Circle (RCPS)) and space
partitioning techniques (uniform splitting and
uniform filling) to join the data sets.

5. We present results of an extensive experimentation,
that compares the performance (in terms of
efficiency and effectiveness) of the proposed
algorithms.

The rest of this paper is organized as follows.
Section 2 defines the KCPQ and εDJQ, which are
the queries studied on this paper, in the context of
spatial databases. Moreover we show a complete
classification of spatial join and distance-based join

queries taking into account whether one, both or
neither inputs are indexed. The Classic Plane-Sweep
algorithm in DJQs is described in Section 3, as
well as two improvements to reduce the number of
distance computations, and the correctness of the
Classic Plane-Sweep algorithm is also proven. In
Section 4, the new plane-sweep algorithm (Reverse Run
Plane-Sweep, RRPS ) for KCPQ is presented, proving
its correctness and that it makes less or at most
equal number of sweeping axis distance calculations
in comparison to Classic Plane-Sweep algorithm. In
Section 5, we present and analyse the Sweeping-Based
Distance Join Algorithm for KCPQ (SBKCPQ) and
εDJQ (SBεDJQ). Section 6 contains the results of
the experimental study, taking into account different
parameters for comparison. Section 7 contains some
concluding remarks and makes suggestions for future
research.

2. PRELIMINARIES AND RELATED
WORK

Given two spatial data sets and a distance function
to measure the degree of closeness, DJQs between
pairs of spatial objects are important joins queries
that have been studied actively in the last years.
Section 2.1 defines the KCPQ and εDJQ, which are the
kernel of this paper. Section 2.2 describes a complete
classification of spatial join and distance-based join
queries taking into account whether one, both or neither
inputs are indexed, along with the review of other recent
contribution related to these DJQs.

2.1. K Closest Pairs Query and εDistance Join
Query

In spatial database applications, the nearness or farness
of spatial objects is examined by performing distance-
based queries (DBQs). The most known DBQs in the
spatial database framework when just a spatial data
set is involved are range query (RQ) and K Nearest
Neighbors query (KNNQ). When we have two spatial
data sets the most representative DBQs are the K
Closest Pairs Query (KCPQ) and the εDistance Join
Query (εDJQ). They are considered DJQs, because
they involve two different spatial data sets and use
distance functions to measure the degree of nearness
between spatial objects. The former DJQ reports only
the top K pairs, and the latter, also know as Range
Distance Join, finds all the possible pairs of spatial
objects, having a distance between ε1 and ε2 of each
other (ε1 ≤ ε2). Their formal definitions for point data
sets (the extension of these definitions to other complex
spatial objects is straightforward) are the following:

Definition 2.1. (K Closest Pairs Query,
KCPQ) Let P = {p0, p1, · · · , pn−1} and
Q = {q0, q1, · · · , qm−1} be two set of points in
Ed, and a natural number K (K ∈ N,K > 0).
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The K Closest Pairs Query (KCPQ)) of P
and Q (KCPQ(P,Q,K) ⊆ P × Q) is a set
of K different ordered pairs KCPQ(P,Q,K) =
{(pZ1, qL1), (pZ2, qL2), · · · , (pZK , qLK)}, with (pZi, qLi)
6= (pZj , qLj), Zi 6= Zj ∧ Li 6= Lj, such that for any
(p, q) ∈ P×Q−{(pZ1, qL1), (pZ2, qL2), · · · , (pZK , qLK)}
we have dist(pZ1, qL1) ≤ dist(pZ2, qL2) ≤ · · · ≤
dist(pZK , qLK) ≤ dist(p, q).

Definition 2.2. (εDistance Join Query) Let P =
{p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be
two set of points in Ed, and a range of distances
defined by [ε1, ε2] such that ε1, ε2 ∈ R+ and ε1 ≤
ε2. The εDistance Join Query (εDJQ) of P and Q
(εDJQ(P,Q, ε1, ε2) ⊆ P × Q) is a set which contains
all the possible pairs of points (pi, qj) that can be
formed by choosing one point pi ∈ P and one point
of qj ∈ Q, having a distance between ε1 and ε2 for each
other: εDJQ(P,Q, ε1, ε2) = {(pi, qj) ⊆ P × Q : ε1 ≤
dist(pi, qj) ≤ ε2}.

These two DJQs have been actively studied in the
context of R-trees [15, 5, 10, 6], but when the data
sets are not indexed they have not been paid similar
attention.

2.2. Related Work

This section presents a complete classification of the
spatial join and distance-based join queries depending
on one, both or neither inputs are indexed. Moreover,
other related DJQs are also revised in the recent
literature, in order to show the importance of this type
of query in the context of spatial databases.

2.2.1. Spatial Join
The spatial join is one of the most related and influential
spatial query with respect to DJQs. Therefore, we are
going to revise a complete classification of the spatial
joins depending on whether one, both or neither input
data sets are indexed.

As we know, given two spatial data sets P and Q, the
spatial join finds pairs of spatial object in the Cartesian
product P × Q which satisfy a spatial predicate, most
commonly intersect. The spatial join is one of the most
important and studied query in spatial databases and
GIS, in [9] a variety of techniques for performing a
spatial join are reviewed. Depending on the existence
of indexes or not, different spatial join algorithms have
been proposed [16]. If both inputs are indexed, several
contributions have been proposed [17, 18, 19, 20, 21].
The most influential one in this category is the R-
tree join algorithm (RJ ) [19], due to its efficiency and
the popularity of R-trees [22, 11]. RJ synchronously
traverses both trees in a Depth-First order, and two
optimization techniques were also proposed, search
space restriction and plane-sweep, to improve the CPU
speed and to reduce the cost of computing overlapping
pairs between the nodes to be joined, respectively. On

the other hand, [21] proposes a Breadth-First traversal
order for the R-tree join with global optimizations that
sorts the output at each level in order to reduce the
number of page accesses. Recently, in [23] a new
interactive spatial query processing technique for GIS
is proposed when two R-trees are processed for spatial
join queries.

Most research after RJ, focused on spatial join
processing when one or both inputs are non-indexed.
If just only one data set (let P) is indexed, a common
method [24, 25] is to build an R-tree for Q (i.e. to
use the existing R-tree RP as a skeleton to build a
seeded tree for the non-indexed input) and then apply
RJ. Another spatial join consist of spatially sorting the
non-indexed objects but, instead of building the packed
tree, it matches each in-memory created leaf node with
the leaf nodes of the existing tree that intersect it
[26]. In [14] several spatial joins strategies when only
one input data set is indexed are investigated. The
main contribution is a method that modifies the Classic
Plane-Sweep algorithm. This approach reads the data
pages from the index in a one-dimensional sorted order
and insert entire data pages into the sweep structure
(i.e. in this case, one sweep structure will contain
objects, while the other sweep structure will contain
data pages). Finally, the slot index spatial join [27]
applies hash-join, using the structure of the existing R-
tree to determine the extents of the spatial partitions.

Directly related to this paper, if both data sets are
non-indexed, the most representative methods include
sorting and external memory plane-sweep [13, 12], or
spatial hash join algorithms [24], like partition based
spatial merge join [28]. In [13] the Scalable Sweeping-
based Spatial Join, SSSJ, was proposed, that employs
a combination of plane-sweep and space partitioning to
join the data sets, and it works under the assumption
that in most cases the limit of the sweepline will
fit in main memory. In [28] a hash-join algorithm
was presented, so called Partition Based Spatial Merge
Join, that regularly partitions the space, using a
rectangular grid, and hashes both inputs data sets into
the partitions. It then joins groups of partitions that
cover the same area using plane-sweep to produce the
join results. Some objects from both sets may be
assigned in more than one partitions, so the algorithm
needs to sort the results in order to remove the duplicate
pairs. Another algorithm based on regular space
decomposition is the Size Separation Spatial Join [29].
It avoids replication of objects during the partitioning
phase by introducing more than one partition layers
(introducing the concept of filter tree). Each object is
assigned in a single partition, but one partition may be
joined with many upper layers. The number of layers
is usually small enough for one partition from each
layer to fit in memory, thus multiple scans during the
join phase are not needed and therefore speeds up the
join. In [30] several improvements of two previous join
algorithms were proposed. In particular, it deals with
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the impact of data redundancy and duplicate detection
on the performance of theses methods. Spatial hash-join
[31] avoids duplicate results by performing an irregular
decomposition of space, based on the data distribution
of the built input. Finally, in [12] extends the SSSJ of
[13] to process data sets of any size by using external
memory, proposing a new join algorithm referred as
iterative spatial join.

2.2.2. KCPQ and εDJQ
The problem of closest pairs queries has received
significant research attention by the computational
geometry community (see [32] for an exhaustive survey),
when all data are stored into the main memory.
However, when the amount of data is too large (e.g.
when we are working with spatial databases) it is not
possible to maintain these data structures in main
memory, and it is necessary to store the data on disk.
Here, we are going to review the KCPQ and εDJQ,
focusing on whether the input data sets are indexed or
not. We must emphasize that most of the contributions
that have been published until now are focused on the
case when both data sets are indexed on R-trees.

Remind that given two spatial data sets P and Q,
the KCPQ asks for the K closest pairs of spatial
objects in P × Q. If both P and Q are indexed
by R-trees, the concept of synchronous tree traversal
and Depth-First (DF) or Best-First (BF) traversal
order can be combined for the query processing [15,
5, 6]. A KCPQ-DF algorithm visits the roots of
the two R-trees (RP and RQ) and recursively follow
the pair of MBRs 〈MP ,MQ〉, MP ∈ RP and MQ ∈
RQ, whose MINMINDIST [5] is the minimum
among all possible pairs. The process is repeated
recursively until the leaf levels are reached, where
potential closest pairs are found. During backtracking
to the upper levels, the algorithm only visits MBRs
whose MINMINDIST (MP ,MQ) is smaller than or
equal to the distance of the K-th closest pair found
so far. A KCPQ-BF algorithm keeps a binary
min-heap with tuples of the following structure:
〈MP ,MQ,MINMINDIST (MP ,MQ)〉 and the pair of
MBRs with the minimum MINMINDIST is visited
first. The corresponding tuple is replaced with tuples
of the form 〈MPi ,MQj ,MINMINDIST (MPi ,MQj )〉
for each MBR MPi in the node pointed by MP and
each MBR MQj

pointed by MQ. This algorithm
is I/O optimal because it only visits the pairs
nodes necessary for obtaining the closest pairs. In
[15], incremental and non-recursive algorithms based
on Best-First traversal using R-trees and additional
priority queues for DJQs were presented. In [10],
additional techniques as sorting and application of
plane-sweep during the expansion of node pairs, and the
use of the estimation of the distance of the K-th closest
pair to suspend unnecessary computations of MBR
distances are included to improve [15]. A Recursive

Best-First Search (RBF) algorithm for DBQ between
spatial objects indexed in R-trees was presented in [33],
with an exhaustive experimental study that compares
DF, BF and RBF for several distance-based queries
(Range Distance, K-Nearest Neighbors, K-Closest
Pairs and Range Distance Join). Recently, in [34],
an extensive experimental study comparing the R*-
tree and Quadtree-like index structures for K-Nearest
Neighbors and K-Distance Join queries together with
index construction methods (dynamic insertion and
bulk-loading algorithm) is presented. It was shown
that when data are static the R*-tree shows the best
performance. However, when data are dynamic, a
bucket Quadtree begins to outperform the R*-tree.
This is due to, once the dynamic R*-tree algorithm
is used, the overlap among MBRs increases with
increasing data set sizes, and the R*-tree performance
degrades.

In the case that just only one data set is indexed,
recently in [35] a new algorithm has been proposed
for KCPQ, which main idea is to partition the space
occupied by the data set without an index into several
cells or subspaces (according to the VA-File structure
[36]) and to make use of the properties of a set of
distance functions defined between two MBRs [6].

If both data sets are non-indexed, the only approach
published until now for KCPQ is [37], which addresses
the case where neither data set has a spatial index.
They proposed an algorithm that considers two stages:
in a first stage, the algorithm partitions both sets of
points into buckets, assigning to each bucket a memory
buffer and an MBR that includes all the points in the
bucket and, a pointer to a list of disk blocks, or a file,
where the objects from the bucket are stored. In a
subsequent stage, the algorithm processes the lists of
objects by means of the metrics defined between MBRs
[6].
εDJQ, also know as Range Distance Join, is

a generalization of the Buffer Query, which is
characterized by two spatial data sets and a distance
threshold ε, which permits search pairs of spatial
objects from the two input data sets that are within
distance ε from each other. In our case, the distance
threshold is a range of distances defined by an interval
of distance values [ε1, ε2] (e.g. if ε1 = 0 and ε2 > 0,
then we have the definition of Buffer Query and if
ε1 = ε2 = 0, then we have the spatial intersection join,
which retrieves all different intersecting spatial object
pairs from two distinct spatial data sets [9]). This query
is also related to the similarity join in multidimensional
databases [38], where the problem of deciding if two
objects are similar is reduced to the problem of
determining if two multidimensional points are within
a certain distance of each other. In [39], the Buffer
Query is solved for non-point (lines and regions) spatial
data sets using R-trees, where efficient algorithms
for computing the minimum distance for lines and
regions, pruning techniques for filtering in a Depth-
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First search algorithm (performance comparisons with
other search algorithms are not included), and extensive
experimental results are presented. We must emphasize
that there are no contributions in the literature for
εDJQ when one or both inputs are non-indexed.

2.2.3. Other related Distance-Based Join Queries
Several DJQs have been studied in the literature which
are related to KCPQ and εDJQ, in [40] a new index
structure, called bRdnn − Tree, to solve different
distance-based join queries is proposed. Moreover, as
conclusion is shown that their approach outperforms
previous R-tree-based algorithms for KCPQ. Other
variants of KCPQ have also been studied in the
literature. More specifically, approximate K closest
pairs in high dimensional data [41, 42] and constrained
K closest pairs [43, 44, 45] have been presented. In
[46] the exclusive closest pairs problem is introduced
(which is a spatial assignment problem) and several
solutions that solve it in main memory are proposed,
exploiting the space partitioning. Moreover, a dynamic
version of the problem is also presented, where the
objective is to continuously monitor the exclusive
closest pair join solution, in an environment where the
joined data sets change positions and content. And
recently, in [47] a unified approach that supports a
broad class of top-K pairs queries (i.e. K-closest pairs
queries, K-furthest pairs queries, etc.) is presented.
Efficient internal and external memory algorithms are
proposed with a theoretical analysis which shows that
the expected performance of the algorithms is optimal
when two or less attributes are involved. Moreover,
such approach does not require any pre-built indexes,
is easy to implement and has low memory requirement.
In [48] top-K similarity join queries over multi-valued
objects is studied. Quantile based distance is applied
to explore the relative instance distribution among
the multiple instances of objects. And efficient and
effective techniques to process top-K similarity joins
over multi-valued objects are developed following a
filtering-refinement framework.

Other complex DJQs using R-trees have been studied
in the literature of the spatial databases, as Iceberg
Distance Join and K Nearest Neighbors Join queries.
In [49], the Iceberg Distance Join Query is studied for
hash-based algorithms and index-based methods (R-
trees). It involves two spatial data sets, a distance
threshold ε and a cardinality threshold K (K > 0).
The answer is a set of pairs of spatial objects from the
two input data sets that are within distance ε from each
other, provided that the first spatial object appears at
least K times in the join result. On the other hand,
in [50], the K Nearest Neighbors Join Query (KNNJ)
is studied for R-tree-based data structures. This
DJQ involves two spatial data sets and a cardinality
threshold K (K > 0). The answer is a set of pairs
of spatial objects from the two input data sets that

includes, for each of the spatial objects of the first
data set, the pairs formed with each of its K nearest
neighbors in the second data set.

Closely related to Distance-based Join processing is
the All-Nearest-Neighbor (ANN) query. The first work
on ANN was [51], which suggests two approaches to
address the ANN problem when the inner data set
is indexed: Multiple nearest neighbor search (MNN),
and Batched nearest neighbor search (BNN). For the
case where neither data set has an index, they also
propose a hash-based method using spatial hashing
introduced in [28]. In [52], the R*-tree and a
Quadtree index enhanced with MBR keys for the
internal nodes (MBRQuadtree) have been compared
with respect to the ANN query. For this operation, a
new distance metric between two MBRs was proposed,
called NXNDIST (the minimum MINMAXDIST [6]).
As conclusion, they showed that for ANN queries, using
the MBRQuadtree is a much more efficient indexing
structure than the R*-tree index.

Recently, in [53] the plane-sweep technique is used to
obtain the α-Distance for spatial query processing for
fuzzy objects. Essentially, the computation of the α-
Distance is to find the closest pair of qualified points of
two fuzzy objects. The main property of this variant
of the plane-sweep method is the use of two sweeplines
to facility the search for the particular types of spatial
queries with fuzzy objects, that has been presented in
such research work.

3. PLANE-SWEEP IN DISTANCE-BASED
JOIN QUERIES

An important improvement for join queries is the
use of the plane-sweep technique, which is a common
technique for computing intersections [7]. The plane-
sweep technique is applied in [8] to find the closest pair
in a set of points which resides in main memory. The
basic idea, in the context of spatial databases, is to move
a line, the so-called sweepline, perpendicular to one of
the axes, e.g. X-axis, from left to right, and processing
objects (points or MBRs) as they are reached by such
sweepline. We can apply this technique for restricting
all possible combinations of pairs of objects from the
two data sets. If we do not use this technique, then we
must check all possible combinations of pairs of objects
from the two data sets and process them. That is,
using the plane-sweep technique instead of the brute-
force nested loop algorithm, the reduction of CPU cost
is proven (e.g. for intersection joins [19, 13, 12] and
KCPQ [10, 6]).

3.1. Classic Plane-Sweep Algorithm

In general, if we assume the spatial object are points
(the data sets are P and Q and they can be organized as
arrays) and a distance threshold δ, the Classic Plane-
Sweep algorithm, applying the plane-sweep technique
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to both sets of points stored in two arrays having the
distance δ (upper bound) as the kernel of the processing,
consists of the following steps:

1. Sorting the entries of the two arrays of points,
based on the coordinates of one of the axes
in increasing or decreasing order. The axis
for the sweepline can be established based on
sweeping axis criteria (e.g. X-axis) and the order
can be fixed by sweeping direction criteria (e.g.
forward sweep (increasing order) or backward sweep
(decreasing order)), both criteria are presented in
[10].

2. After that, two pointers are maintained initially
pointing to the first entry for processing of each
sorted array of points. Assuming that X-axis is the
sweeping axis and the order is increasing (from left
to right, i.e forward sweep), let the reference point
be the point with the smallest X-value pointed by
one of these two pointers, e.g. P , then the reference
point is initialized to this point, P [i].

3. Afterwards, the reference point must be paired up
with the points stored in the other sorted array of
points (called comparison points, Q[j] ∈ Q) from
left to right, satisfying dx ≡ Q[j].x − P [i].x < δ,
processing all comparison points as candidate pairs
where the reference point is fixed. After all possible
pairs of entries that contain the reference point
have been paired up (i.e. the forward lookup stops
when dx ≡ Q[j].x − P [i].x ≥ δ is verified), the
pointer of the reference array is increased to the
next entry, the reference point is updated with the
point of the next smallest X-value pointed by one
of the two pointers, and the process is repeated
until one of the sorted array of points is completely
processed.

Highlight that Classic Plane-Sweep algorithm applies
the distance function over the sweeping axis (in this
case, the X-axis, dx) because in the plane-sweep
technique, the sweep is only over one axis (e.g. the
best axis according to the criteria suggested in [10]).
Moreover, the search is only restricted to the closest
points with respect to the reference point according
to the current distance threshold (δ). No duplicated
pairs are obtained, since the points are always checked
over sorted arrays. Note that, this kind of processing
is called forward sweep, since it scans from left to right
the sorted sets in order to obtain pairs of points that
will be a distance smaller than or equal to δ.

Clearly, the application of this technique can be
viewed as a sliding strip on the sweeping axis with a
width equal to the δ value starting from the reference
point (i.e. [0, δ] in the X-axis), where we only choose
all possible pairs of points that can be formed using the
reference point and the comparison points that fall into
the current strip, see Figure 1. If in the Algorithm 1
we remove lines 12 and 25, then we will get the Classic
Plane-Sweep algorithm with sliding strip.

FIGURE 1. Classic Plane-Sweep Algorithm using sliding
strip, window and semi-circle.

The adaptation of the algorithm from KCPQ to
εDJQ is not so difficult. If we have two sorted sets
of points, we only select the pairs of points in the range
of distances [ε1, ε2] for the final result. That means
the size of the result of this query is not known a
priori and the MaxKHeap is not needed, and hence the
distance threshold will be ε2 instead of δ. Therefore,
the data structure that holds the result set will be a
file of records (resultFile), each of one with three fields
(dist, P [i], Q[j]).

3.2. Improving the Classic Plane-Sweep Algo-
rithm

The basic idea to reduce even more the CPU cost is to
restrict as much as possible the search space near to the
reference point in order to avoid unnecessary distance
computations (that involve square roots) which are the
most expensive operations for DJQs [54]. The proposed
approach makes use the plane-sweep technique and the
restricting the search space.

Notice that in Figure 1, the Classic Plane-Sweep
algorithm applies the distance function only over
the sweeping axis (X-axis) and for this reason some
distances have to be computed even when the points of
the other data set are faraway from the reference, since
those points are included in the sliding strip with width
δ. Here we will propose two improvements of the Classic
Plane-Sweep algorithm over two data sets to reduce the
number of Euclidean distance computations on KCPQ
algorithms.

1. An intuitive way to save distance computations is
to bound the other axis (not only the sweeping
axis) by δ as is illustrated in Figure 1. In this case,
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the search space is now restricted to the closest
points inside the window with width δ and a height
2 ∗ δ (i.e. [0, δ] in the X-axis and [−δ, δ] in the Y-
axis, from the reference point). If in the Algorithm
1 we replace line 12 by if (|PS.P [i].y−QS.P [k].y| <
key dist of MaxKHeap root) and line 25 by if
(|PS.P [k].y −QS.P [j].y| < key dist of MaxKHeap
root), then we will get a new variant of Classic
Plane-Sweep algorithm. Clearly, the application of
this technique can be viewed as a sliding window on
the sweeping axis with a width equal to δ (starting
from the reference point) and height equal to 2 ∗ δ.
And we only choose all possible pairs of points
that can be formed using the reference point and
the comparison points that fall into the current
window.

2. If we try to reduce even more the search space,
we can only select those points inside the semi-
circle centered in the reference point with radius
δ (remember that the equation of all points t =
(t.x, t.y) ∈ E2 that fall completely inside the
circle, centered in the reference point reference =
(reference.x, reference.y) ∈ P and radius δ is
circle(reference, t, δ) ≡ (reference.x − t.x)2 +
(reference.y − t.y)2 < δ2). See the Algorithm
1 at the lines 12 and 25, and for this reason
we call to this variant Classic Circle Plane-
Sweep algorithm, CCPS for short. And the
application of this new improvement can be viewed
as a sliding semi-circle with radius δ along the
sweeping axis and centered on the reference point,
choosing only the comparison points that fall inside
that semi-circle. See the Algorithm 1 to know
how this improvement works on two X-sorted
arrays of points PS.P and QS.P , considering
the sweeping axis the X-axis, which it returns a
(binary) max-heap [55] with the K closest pairs
(MaxKHeap). Notice MaxKHeap should be
initialize to K pairs of points, having all of them
a distance ∞. And when a new pair of points
(dist, PS.P [i], QS.P [j]) is chosen to be inserted
in MaxKHeap, the insertion process consists of
removing the pair with the maximum distance
(root of the MaxKHeap) and adding the newPair,
reorganizing the data structure to restore the
(binary) max-heap property based on dist. See
in Figure 1, the semi-circle, in light grey color,
centered in the reference point. As a conclusion of
this improvement is that the smaller the δ value
the greater the power of discarding unnecessary
comparison points to pair up with the reference
point for computing the distance-based join query.

We must highlight that PS and QS are two
strips (sorted data sets on a sweeping axis), such
as PS = {first, start, end, P [0..n − 1]}, QS =
{first, start, end, P [0..m − 1]}, where first is the
absolute index of the first point of the array in the set;

start and end are local relative indexes of calculating
part of array of points; and P is a sorted array of n or m
(≥ numOfPoints per strip) points, which is a subset
of set P or Q.

Below, we provide a proof of the correctness of
the Classic Circle Plane-Sweep algorithm for KCPQ
(CCPS) algorithm (Algorithm 1) through the Theorem
3.1.

Theorem 3.1. (Correctness) Let PS.P [PS.start
· · · PS.end] and QS.P [QS.start · · ·QS.end] be two
arrays of points in E2, sorted in ascending order of X-
coordinate values (i.e. X-axis is the sweeping axis), the
sweeping direction is from left to right, and MaxKHeap
is an initially empty binary max-heap storing K pairs
of points, where K is a natural number (K ∈ N, 0 <
K ≤ |PS.P | × |QS.P |). The CCPS Algorithm outputs
K closest pairs of points from PS.P and QS.P correctly
and without any repetition.

Proof. Let the reference point be the leftmost point of
both arrays that has not been processed yet.It can be-
long to PS.P or QS.P depending of their X-coordinate
value (line 3). That is, if PS.P [i] < QS.P [j] the refer-
ence point is PS.P [i]. It is QS.P [j] in case QS.P [j] ≤
PS.P [i]. The selection of the reference point without
any repetition is guided by the order determined by the
sweeping direction (from left to right) over the sweep-
ing axis, since the index i of PS.P and the index j of
QS.P are always incremented by one (lines 15 and 28)
when they are processed.
Let the comparison points be all points of the array that
does not contain the reference point. That is, if PS.P [i]
is the reference point, the comparison points will be the
subset of all points QS.P [k] such that j ≤ k ≤ QS.end
(line 4); and if QS.P [j] is the reference point, the com-
parison points will be the subset of all points PS.P [k]
such that i ≤ k ≤ PS.end (line 17). The index of the
comparison points, k, is always incremented by one.
From the previous way of creating pair of points from
PS.P and QS.P in the form (reference, comparison),
we can conclude that the CCPS algorithm generates at
most n×m possible pairs of points correctly and with-
out any repetition.
Now, in order to prove that MaxKHeap contains, at
the end of the execution of the algorithm, at least K
closest pairs of points from all possible pairs generated
from PS.P and QS.P (since the algorithm starts with
an empty MaxKHeap, and the first K pairs created
will be inserted in the MaxKHeap, K ≤ |PS.P | ×
|QS.P |), we are going to study the different types of
pairs generated by the algorithm:
Category 1. Pairs of points that are never
generated by the algorithm due to their dx dis-
tance value. That is, when one pair (refer-
ence, comparison) with dx(reference, comparison) ≥
key dist of MaxKHeap root is discovered (lines 9, 10
or 22, 23), then all other pairs of the form (reference,
comparison’), where comparison’ is on the right of com-
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parison, are not generated (lines 11 or 24), since they
have dx distance ≥ key dist of MaxKHeap root.
Category 2. Pairs of points generated by
the algorithm with dx(reference, comparison) <
key dist of MaxKHeap root, but not inserted into
MaxKHeap, due to having an actual distance from the
reference point larger than key dist of MaxKHeap root.
That is, those pairs that are outside the circle centered
at the reference point with radius key dist of MaxKHeap
root are discarded. They are rejected at the else state-
ment of lines 12 and 25.
Category 3. Pairs of points generated by the algo-
rithm, inserted into MaxKHeap and later removed
from it. That is, those pairs that are inside the circle
centered at the reference point with radius key dist of
MaxKHeap root are inserted intoMaxKHeap, but later
they will be deleted from it because the MaxKHeap
needs to host another pair with a smaller dist value
than them (lines 13, 14, 26 and 27).
Category 4. Pairs of points generated by the algo-
rithm, inserted into MaxKHeap and not removed from
it until the end of the execution of the algorithm. That
is, the pairs that are inside the circle centered at the
reference point with radius key dist of MaxKHeap root
that are inserted and remain into MaxKHeap, since
their dist values are always smaller than key dist of
MaxKHeap root (lines 13, 14, 26 and 27).
Moreover, we must highlight that the pairs of points
generated by the algorithm and inserted in MaxKHeap
while it is not full belong to categories 3 or 4. That
is, the first K pairs of points generated by the algo-
rithm are always inserted in the MaxKHeap, since
key dist of MaxKHeap root = ∞, and they can be
removed from or remain into the heap until the end of
the execution of the algorithm (lines 5, 6, 7, 17, 18 and
19).
Thanks to the (binary) max-heap property, every pair
stored at the MaxKHeap as part of the final result
has a dist smaller than or equal to the dist of the
pair at the root of the MaxKHeap. Moreover, every
pair generated by the algorithm and not stored at the
MaxKHeap as part of the final result has a dist larger
than or equal to the dist of the pair in the root of the
MaxKHeap.
So, it proves that each of the K pairs of the final result
has a dist smaller than or equal to the dist of every pair
not generated by the algorithm (category 1), generated
by the algorithm and not inserted into the MaxKHeap
(category 2), or temporarily inserted into MaxKHeap,
but removed later (category 3).

Moreover, as we know from [19], that the plane-sweep
algorithm for intersection of MBRs from two sets R and
S of MBRs can be performed in O(|R|+|S|+kX), where
|R| and |S| are the numbers of MBRs of both sets,
and kX denotes the numbers of pairs of intersecting
intervals creating by projecting the MBRs of R and
S onto the X-axis. In the same line, CCPS can be

performed in O(|PS.P | + |QS.P | + kSA), where kSA
denotes the number of candidate closest pairs generated
by the reference points from PS.P and QS.P on the
sweeping axis (e.g. X-axis).

Here, we mush highlight that PS and QS are two
strips (sorted data sets over a sweeping axis), which
are subsets of sets P and Q. They are defined
as PS = {first, start, end, P [0..n − 1]}, and QS =
{first, start, end, P [0..m − 1]}, where first is the
absolute index of the first point of the array P [· · · ];
start and end are local relative indexes of calculating
part of array of points; and P [· · · ] is a sorted array of
n and m points, respectively.

3.3. Extension to εDistance Join Query

The adaptation of the CCPS algorithm from KCPQ
to εDJQ is not so difficult, and we will get Classic
Circle Plane-Sweep algorithm for εDJQ (εCCPS). If
we have two sorted sets of points, we only select the
pairs of points in the range of distances [ε1, ε2] for
the final result (lines 12 and 25: if (dist ≥ ε1 and
dist ≤ ε2)). That means the result of this query must
not be ordered and the MaxKHeap is unnecessary
(lines 5, 6, 7 and 8; and lines 18, 19, 20, and 21),
because for εDJQ we do not know beforehand the exact
number of pairs of points that belong to the result.
And now the distance threshold will be ε2 instead of
key dist of MaxKHeap root (line 10: if (QS.P [k].x −
PS.P [i].x ≥ ε2), line 23: if (PS.P [k].x − QS.P [j].x ≥
ε2), line 12: if ((QS.P [k].x−PS.P [i].x)2+(QS.P [k].y−
PS.P [i].y)2 < (ε2)2) and line 25: if ((PS.P [k].x −
QS.P [j].x)2 + (PS.P [k].y − QS.P [j].y)2 < (ε2)2)).
Therefore, the data structure that holds the result set
will be a file of records (resultFile), each one with
three fields (dist, PS.P [i], QS.P [j]). The modifications
of this storage are in the lines 14 and 27, where we
have to replace them by resultF ile.write(newPair).
To accelerate the storing on the resultFile we will
maintain a buffer on main memory (BresultF ile), and
when it is full, its content is flushed to disk. If the
distance threshold for the query (ε2) is large enough,
the compact representation of the join result can be
applied [56]. It consists of reporting groups of nearby
pairs of points instead of every join link separately. This
phenomenon is known as output explosion [56] and it
can appear when data density of the sets of points is
locally very large compared to the range of distances
(distance threshold), and the output of the distance-
based joins becomes unwieldy. In fact, the output can
become quadratic rather than linear in the total number
of data points. Finally, the proof of the correctness of
εCCPS algorithm is similar to the proof of Theorem
3.1 for the CCPS algorithm for KCPQ.
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Algorithm 1 CCPS

Input: PS.P [0..n− 1], QS.P [0..m− 1]: X-sorted arrays of points. MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between PS and QS
1: i = PS.start j = QS.start
2: while i ≤ PS.end and j ≤ QS.end do
3: if PS.P [i].x < QS.P [j].x then . PS.P [i]: reference point
4: for k = j to QS.end increment k do . QS.P [k]: current comparison point
5: if MaxKHeap is not full then
6: calculate distance dist between PS.P [i] and QS.P [k]
7: insert (PS.P [i], QS.P [k]) with key dist into MaxKHeap
8: else
9: calculate x-distance dx between PS.P [i] and QS.P [k]

10: if dx ≥ key dist of MaxKHeap root then
11: break
12: if (PS.P [i].x−QS.P [k].x)2 + (PS.P [i].y −QS.P [k].y)2 < (key dist of MaxKHeap root)2 then
13: calculate distance dist between PS.P [i] and QS.P [k]
14: insert (PS.P [i], QS.P [k]) with key dist into MaxKHeap

15: increment i
16: else . PS.P [i] ≥ QS.P [j] and QS.P [j]: reference point
17: for k = i to PS.end increment k do . PS.P [k]: current comparison point
18: if MaxKHeap is not full then
19: calculate distance dist between PS.P [k] and QS.P [j]
20: insert (PS.P [k], QS.P [j]) with key dist into MaxKHeap
21: else
22: calculate x-distance dx between PS.P [k] and QS.P [j]
23: if dx ≥ key dist of MaxKHeap root then
24: break
25: if (PS.P [k].x−QS.P [j].x)2 + (PS.P [k].y −QS.P [j].y)2 < (key dist of MaxKHeap root)2 then
26: calculate distance dist between PS.P [k] and QS.P [j]
27: insert (PS.P [k], QS.P [j]) with key dist into MaxKHeap

28: increment j

4. REVERSE RUN PLANE-SWEEP ALGO-
RITHM FOR DISTANCE JOIN QUERIES

An interesting improvement of the Classic Plane-Sweep
algorithm is the Reverse Run Plane-Sweep algorithm,
RRPS for short [57]. The main characteristics of this
new algorithm are the use of the concept of run and,
as long as the reference points are considered in an
order (e.g. ascending order) the comparison points are
processed in reverse order (e.g. descending order) until
a left limit is reached, in order to generate candidate
pairs for the required result.

4.1. Reverse Run Plane-Sweep Algorithm for
KCPQ

The Reverse Run Plane-Sweep (RRPS) algorithm [57]
is based on two concepts. First, every point that is used
as a reference point forms a run with other subsequent
points of the same set. A run is a continuous sequence
of points of the same set that doesn’t contain any point
from the other set. For each set, we keep a left limit,
which is updated (moved to the right) every time that
the algorithm concludes that it is only necessary to
compare with points of this set that reside on the right

of this limit. Each point of the active run (reference
point) is compared with each point of the other set
(current comparison point) that is on the left of the
first point of the active run, until the left limit of the
other set is reached. Second, the reference points (and
their runs) are processed in ascending X-order (the
sets are X-sorted before the application of the RRPS
algorithm). Each point of the active run is compared
with the points of the other set (current comparison
points) in the opposite or reverse order (descending X-
order).

The Reverse Run Circle Plane-Sweep algorithm for
KCPQ (RCPS) algorithm is depicted in Algorithm
2, which it is RRPS with the sliding semi-circle
improvement. Again, a binary max-heap (keyed by pair
distances, dist), MaxKHeap, that keeps the K closest
point pairs found so far is used. For each point of
the active run (reference point) being compared with a
point of the other set (current comparison point) there
are 2 cases.

Case 1: If the pair of points
(reference point, comparison point) is inside
the circle centered in the reference point with
radius δ, then this pair with its distance dist is
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inserted in the MaxKHeap (rule 1). In case the
heap is not full (it contains less than K pairs), the
pair will be inserted in the heap, regardless of the
pair distance dist.

Case 2: If the distance between this pair of points in
the sweeping axis (e.g. X-axis) dx is larger than
or equal to δ, then there is no need to calculate the
distance dist of the pair (rule 2). The left limit of
the other set must be updated at the index value
of the point being compared (a comparison with a
point of the other set having an index value smaller
than or equal to the updated left limit will have X-
distance larger than dx and is unnecessary).

Moreover, if the rightmost current comparison point has
an index value equal to the left limit of its set, then all
the points of the active run will have larger dx from
all the current comparison points of the other set and
the relevant pairs need not participate in calculations,
i.e. the algorithm advances to the start of the next run
(rule 3).

For the RCPS algorithm (Algorithm 2), re-
mind that PS and QS are two strips (sorted
data sets over a sweeping axis), such as
PS = {first, start, end, P [0..n − 1]}, QS =
{first, start, end, P [0..m − 1]}, where first is the
absolute index of the first point of the array in the
strip; start and end are local relative indexes of calcu-
lating part of array of points; and P [· · · ] is a sorted
array of n and m points, respectively. leftp and
leftq are variables that hold the local left limits of
the given strips. gleftp and gleftq are variables that
hold the global left limits of the given set. sav sentp
and sav sentq are variables that save the current
X-coordinate of the points that follow the last point of
each set. They are necessary because these points must
be the sentinels of the strips. stop run is a variable
that stores the end of the X-coordinates of the cur-
rent run of set PS.P or QS.P . run setP is a variable
whose value is set to false when PS.P [i] < QS.P [j],
then the current active run will get reference points
from the set QS.P (starting from the index j) and the
comparison points will be from set PS.P (starting
from the index i − 1). Analogously, run setP is set
to true when QS.P [j] < PS.P [i], then the current
active run will get reference points from the set PS.P
(starting from the index i) and the comparison points
will be from set QS.P (starting from the index j − 1).

Theorem 4.1. (Correctness) Let PS.P [PS.start
· · · PS.end] and QS.P [QS.start · · ·QS.end] be two
arrays of points in E2, sorted in ascending order of X-
coordinate values (i.e. X-axis is the sweeping axis), the
sweeping direction is from left to right, and MaxKHeap
is an initially empty binary max-heap storing K pairs
of points, where K is a natural number (K ∈ N, 0 <
K ≤ |PS.P | × |QS.P |). The RCPS Algorithm outputs
K closest pairs of points from PS.P and QS.P correctly

and without any repetition.

Proof. The proof of correctness is similar to the proof
for the CCPS algorithm given for Theorem 3.1. To ex-
tend that proof, we must keep in mind the concepts of
active run, reference point, left limits and comparison
points.
As in Theorem 3.1, the RCPS algorithm generates
candidates pairs correctly and without any repetition,
which is based on sorting of both arrays by the sweep-
ing axis, and the configuration of the active runs with
respect to the reference points, which are guided by
this order, taking into account that a run is a continu-
ous sequence of points of the same array that does not
contain any point from the other array.
We will prove this, since in the RCPS algorithm, the
reference point at each given moment is either PS.P [i]
(lines 21-33) or QS.P [j] (lines 39-51), depending on
which of the two arrays gives the active run. When all
the pairs with reference point PS.P [i] and comparison
points QS.P [k] where leftq < k < j are created, then
index i is incremented by one; and if the (new) point
PS.P [i + 1] belongs to the active run, then it will be
the next reference point. If it is not part of the active
run, then PS.P [i + 1] belongs to the next run of the
same array. In this case, the active run will be deter-
mined by QS.P [j] as a starting point. Thus, eventually
PS.P [i + 1] will be set as a reference point, unless it
is guaranteed that it is not necessary to do this (lines
19-20).
Moreover, since index i is never decremented, there is
no way that PS.P [i] will ever be redefined as a refer-
ence point. So there is no way to have duplications or
repetitions (this is also valid for every point QS.P [j] of
the other array). Thus, each point of each array is de-
fined only once as a reference point and all points of the
other array must be defined as comparison points (sub-
ject to Rule 3 (line 19), or Rule 3 (line 37)). Finally,
from the previous way of creating pair of points from
PS.P and QS.P in the form (reference, comparison),
we can conclude that the RCPS algorithm generates
at most n × m possible pairs of points correctly and
without any repetition.
As in Theorem 3.1, to prove that MaxKHeap contains,
at the end of the execution of the algorithm, at least K
closest pairs of points from all possible pairs generated
from PS.P and QS.P (since the algorithm starts with
an empty MaxKHeap, and the first K pairs will be
inserted in the MaxKHeap, K ≤ |PS.P | × |QS.P |),
we are going to study the different types of pairs gen-
erated by the algorithm:
Category 1. Pairs of points that are never
generated by the algorithm due to the left lim-
its (leftq and leftp) and the dx distance func-
tion. That is, when one pair (reference, com-
parison) with dx(reference, comparison) ≥
key dist of MaxKHeap root is discovered (rule
2, lines 27 or 45), then all pairs of the form (refer-
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Algorithm 2 RCPS
Input: PS.P [0..n− 1], QS.P [0..m− 1]: X-sorted arrays of points. MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between PS.P and QS.P
1: i = PS.start leftp = i− 1 j = QS.start leftq = j − 1
2: sav sentp = PS.P [PS.end+ 1] sav sentq = QS.P [QS.end+ 1]
3: PS.P [PS.end+ 1].x = QS.P [QS.end+ 1] = DBL MAX . initialize the sentinels to DBL MAX (∞)
4: if PS.P [i].x < QS.P [j].x then . find the most left point of two data sets
5: if PS.P [PS.end].x ≤ QS.P [j].x then . the two sets do not overlap
6: i = PS.end+ 1 PS.P [PS.end+ 1].x = QS.P [QS.end].x+ 1
7: else . the two sets are overlapped, skip the first run of the set PS
8: find in the strip PS, the first point PS.P [i] that satisfies PS.P [i].x ≥ QS.P [j].x and update i

9: stop run = PS.P [i].x run setP = FALSE . stop the run of QS set at the start of the second run of the PS set
10: else
11: if QS.P [QS.end].x ≤ PS.P [i].x then . the two sets do not overlap
12: j = QS.end+ 1
13: else . the two sets are overlapped, skip the first run of the set QS
14: find in the strip QS, the first point QS.P [j] that satisfies QS.P [j].x > PS.P [i].x and update j

15: stop run = QS.P [j].x run setP = TRUE . stop the run of PS set at the start of the second run of the QS set

16: while i ≤ PS.end or j ≤ QS.end do . while even one data set is not finished
17: if run setP = TRUE then . the active run is from the PS set
18: while PS.P [i].x < stop run do . while active run unfinished. PS.P [i]: reference point
19: if j − 1 = leftq then . QS.P [j − 1]: last current comparison point - rule 3
20: advance i to next PS-run and break . while
21: for k = j − 1 downto leftq + 1 decrement k do . QS.P [k]: current comparison point
22: if MaxKHeap is not full then
23: calculate distance dist between PS.P [i] and QS.P [k]
24: insert (PS.P[i], QS.P[k]) with key dist into MaxKHeap
25: else
26: calculate x-distance dx between PS.P [i] and QS.P [k]
27: if dx ≥ key dist of MaxKHeap root then . dx ≥ δ - rule 2
28: leftq = k . update the local value of the left limit
29: gleftq = QS.first+ k . update the global value of the left limit
30: break . for
31: if (PS.P [i].x−QS.P [k].x)2 + (PS.P [i].y −QS.P [k].y)2 < (key dist of MaxKHeap root)2 then . rule 1
32: calculate distance dist between PS.P [i] and QS.P [k]
33: insert (PS.P [i], QS.P [k]) with key dist into MaxKHeap

34: increment i . update the reference point PS.P [i]

35: PS.P [PS.end+ 1].x = QS.P [QS.end].x+ 1 stop run = PS.P [i].x . now the active run is from the QS set
36: while QS.P [j].x ≤ stop run do . while active run unfinished. QS.P [j]: reference point
37: if i− 1 = leftp then . PS.P [i− 1]: last current point - rule 3
38: advance j to the next QS-run and break . while

39: for k = i− 1 downto leftp + 1 decrement k do . PS.P [k]: current comparison point
40: if MaxKHeap is not full then
41: calculate distance dist between PS.P [k] and QS.P [j]
42: insert (PS.P [k], QS.P [j]) with key dist into MaxKHeap
43: else
44: calculate x-distance dx between PS.P [k] and QS.P [j]
45: if dx ≥ key dist of MaxKHeap root then . dx ≥ δ - rule 2
46: leftp = k . update the local value of the left limit
47: gleftp = PS.first+ k . update the global value of the left limit
48: break . for
49: if (PS.P [k].x−QS.P [j].x)2 + (PS.P [k].y −QS.P [j].y)2 < (key dist of MaxKHeap root)2 then . rule 1
50: calculate distance dist between PS.P [k] and QS.P [j]
51: insert (PS.P [k], QS.P [j]) with key dist into MaxKHeap

52: increment j . update the reference point QS.P [j]

53: PS.P [PS.end+ 1].x = QS.P [QS.end+ 1].x . revert the PS sentinel at the maximum real X-value (DBL MAX)
54: stop run = QS.P [j].x run setP = TRUE

55: PS.P [PS.end].x = sav sentp QS.P [QS.end].x = sav senq . revert the original values

ence, comparison’), where comparison’ is to the left of
comparison and on the right of the left limit, are not
generated (lines 30 or 48), since they have dx distance
≥ key dist of MaxKHeap root. In addition, the left
limit is updated with the index of comparison (lines 28
or 46), preventing the generation of pairs of the form
(reference’, comparison), where reference’ is on the
right of reference, in future iterations of the algorithm.
Especially, if the left limit is updated with the index
of the first comparison point (rule 3, lines 19 or 37),
then all the rest reference points of the current run are
skipped (lines 20 or 38).
Category 2. Pairs of points generated by the
algorithm with dx(reference, comparison) <
key dist of MaxKHeap root, but not inserted

into MaxKHeap , due to having an actual dis-
tance from the reference point larger than key dist of
MaxKHeap root. That is, those pairs that are outside
the circle centered at the reference point with radius
key dist of MaxKHeap root are discarded. They are
rejected due to Rule 1, lines 31 or 49.
Category 3. Pairs of points generated by the algo-
rithm, inserted into MaxKHeap and later removed
from it. That is, those pairs inside the circle cen-
tered at the reference point with radius key dist of
MaxKHeap root that are inserted into MaxKHeap,
but later are deleted from it because the MaxKHeap
needs to host another pair with a smaller dist value
than them (lines 32, 33, 50 and 51).
Category 4. Pairs of points generated by the al-
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FIGURE 2. Reverse Run Plane-Sweep algorithm using
sliding strip, window and semi-circle.

gorithm, inserted into MaxKHeap and not removed
from it until the end of the execution of the algorithm.
That is, the pairs that are inside the circle centered at
the reference point with radius key dist of MaxKHeap
root that are inserted and remain into MaxKHeap,
since their dist values are always smaller than key dist
of MaxKHeap root (lines 32, 33, 50 and 51).
Moreover, we must highlight that the pairs of points
generated by the algorithm and inserted in MaxKHeap
while it is not full belong to categories 3 or 4. That
is, the first K pairs of points generated by the algo-
rithm are always inserted in the MaxKHeap, since
key dist of MaxKHeap root = ∞, and they can be
removed from or remain into the heap until the end of
the execution of the algorithm (lines 22, 23, 24, 40, 41
and 42).
An finally, thanks to the (binary) max-heap property,
every pair stored at the MaxKHeap as part of the
final result has a dist smaller than or equal to the dist
of the pair in the root of the MaxKHeap. Moreover,
every pair generated by the algorithm and not stored
at the MaxKHeap as part of the final result has a dist
larger than or equal to the dist of the pair in the root
of the MaxKHeap.
So, it is proved that each of the K pairs of the final
result has a dist smaller than or equal to the dist of
every pair not generated by the algorithm (category
1), generated by the algorithm and not inserted into
the MaxKHeap (category 2), or temporarily inserted
into MaxKHeap, but removed later (category 3).

The following example illustrates the operation of
the algorithm. Let’s consider the points of Figure
2, presented, in commonly sorted X-order, in Table

1. The algorithm starts initializing the local variables
i = 0 (equal to PS.start since the first run of PS.P
array starts at PS.P [PS.start]), j = 0 (equal to
QS.start since the first run of QS.P array starts at
QS.P [QS.start]), and the local left limits (leftp = −1
for the array PS.P and leftq = −1 for the array QS.P )
since the last PS.P (QS.P ) point to be used in the
comparison is PS.P [leftp + 1] (QS.P [leftq + 1]) (line
1). Saves the values of the points after the last of
each array in two local variables sav setp and sav sentq,
because it is possible to get as arguments parts of the
arrays (from PS.P [PS.start] to PS.P [PS.end] while
PS.end < PS.P.n) (line 2). To simplify the algorithm
operation (the stopping conditions), a sentinel point
with X-coordinate equal to∞ is added to each array in
the point after the last (line 3).

Since PS.P [0].x < QS.P [0].x is true (line 4), and
PS.P [15].x ≤ QS.P [0].x is false (line 5), the value of i
is advanced to 3 (i = 3), since PS.P [3].x is the first
point of PS.P which has X-coordinate greater than
the QS.P [0].x (line 8), the stop run value is set to 8
(PS.P [3].x) and flag run setP is set to FALSE (i.e. the
first active run is set from the QS.P array having all
points with X-coordinates (QS.P [0], QS.P [1]) smaller
than or equal to the stop run value) (line 9). From the
lines 16 and 17 the processing of the algorithm jumps to
the line 35, just at the end of the part of the algorithm
in which the active run is from the PS.P array (lines
17 - 34).

The sentinel of PS.P is set to PS.P [PS.end+ 1].x =
38 (38 is the value larger than the X-coordinate of
the last point of the QS.P array and smaller than the
sentinel of the QS.P array, i.e. QS.P [QS.end].x + 1).
Moreover, the stop run value is set to equal to 8 (the X-
coordinate of the first point of the next run of the PS.P
array, i.e. PS.P [3].x) (line 35). The active run consists
of QS.P [0] and QS.P [1] (QS.P [1] is the last point of
QS.P before PS.P [4]) and these points are compared
with each of the current comparison points of PS.P
(in reverse X-order) which form the sequence PS.P [i−
1], . . . , PS.P [leftp + 1] (PS.P [2], PS.P [1], PS.P [0]).
The condition QS.P [0].x ≤ stop run (4 ≤ 8) is
true (line 36) and the processing of the first run of
the QS.P array is starting from this point. The
condition i − 1 = leftp (2 = -1) is not true (line
37) so the process of the rule 3 (line 38) will not be
executed. The for loop starts with k = 2 to leftp + 1
(0) (line 39), creating the pairs (QS.P [0], PS.P [2]),
(QS.P [0], PS.P [1]), (QS.P [0], PS.P [0]) in the format
(reference, comparison) pair of points and because the
maxKHeap is not full (line 40) the distances of these
pairs (dist) are calculated at dist1 = 5.099, dist2 =
3.606, dist3 = 19.416 (line 41), and they are inserted
in the not full maxKHeap with their keys dist values
(line 42). The for loop (line 39) terminates because of
the value of k (k = −1) and the local index value of j
is incremented by 1 (line 52).

The condition QS.P [1].x ≤ stop run (5 ≤ 8) is
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still true (line 36) and the while loop will continue
by setting as the reference point to QS.P [1]. The
condition i − 1 = leftp (2 = -1) is not true (line
37) so the process of the rule 3 (line 38) will not be
executed. The for loop starts with k = 2 to leftp + 1
(0) (line 39), creating the pairs (QS.P [1], PS.P [2]),
(QS.P [1], PS.P [1]), (QS.P [1], PS.P [0]) and because
the maxKHeap is full (line 43), the process of each
pair starts by calculating the dx distance of these
pairs (i.e. the rule 2 is checked). For the first
one (QS.P [1], PS.P [2]) the dx distance (dx = 2) is
calculated (line 44) and this value is compared with
the key dist of maxKHeap.root (line 45). Since this
is smaller (2 < 19.416), then the algorithm calculates
the sum of the squares of dx and dy distances of the
current pair and compares this sum with the square
of the key dist of maxKHeap.root (line 49). That is
PS.P [k].x−QS.P [j].x)2 + (PS.P [k].y−QS.P [j].y)2 <
(key dist of MaxKHeap.root)2 (rule 2 ) and the
distance dist of the pair is calculated (dist = 3.606)
(line 50). This pair with its key value is inserted
in full maxKHeap, decreasing the key dist value of
the maxKHeap at the value of 5.099 by deleting the
previous root (line 51). The for loop (line 39) will
be continued with k = 1 and the lines 44 and 45 are
executed like the previous pair (rule 2 is checked). But
the condition for dist of the (line 50) is false and the pair
(QS.P [1], PS.P [1]) having distance sum of squares of dx
and dy of 34, which is greater than 5.0992 and it will
not be inserted in the maxKHeap. The same chance
has the next pair (QS.P [1], PS.P [0]), having distance
sum of squares of dx and dy of 146. The for loop
(line 39) continues for k = 0 but no pair is inserted in
maxKHeap and it terminates because of the value of k
(k = −1), and the local index value of j is incremented
by 1, setting to the value of 2 (j = 2) (line 52). The
condition QS.P [2].x ≤ stop run (15 ≤ 8) now is false
(line 36) and while loop terminates here. The value of
the sentinel of the PS.P array is reverted to∞ (line 53),
the value of stop run is set to 15, and the flag run setP
is set to TRUE (line 54), i = 3, j = 2, and one main
loop is finished.

The second iteration will be started (from the
line 16) having the active run of the PS.P array,
since run setP = TRUE. The active run of the
PS.P array consists of PS.P [3], PS.P [4], PS.P [5] and
PS.P [6] because it is the last point of PS.P before
QS.P [2]. Each of the points of the active run should be
compared with each of the current comparison points
of QS.P (in reverse X-order) which form the sequence
QS.P [j − 1], . . . , QS.P [leftq + 1] (QS.P [0], QS.P [1]).
The conditions of the lines 17 and 18 are true while
the condition of the line 19 is false (rule 3 is checked).
The for loop starts with k = 1 to leftq + 1 (0)
(line 21), creating the pairs (PS.P [3], QS.P [1]) and
(PS.P [3], QS.P [0]). For the first pair and because
the maxKHeap is full (line 25) dx = 3 distance is
calculated (line 26), it is compared with the key dist of

the maxKHeap.root = 5.099 (line 27) which is smaller
(rule 2 is checked), and the sum of squares of dx and dy
distances is compared with the square of the key dist
of the maxKHeap.root (line 31). This sum is equal to
25 so the distance of this pair is calculated at dist = 5
(line 32) and it is inserted in the full maxKHeap with
its key dist value (line 33) by deleting the previous
root and setting the key dist of the maxKHeap.root
to 5. The for loop (line 21) continues with the value of
k = 0 processing the pair (PS.P [3], QS.P [0]) which is
not inserted because of the distance dist = 12.649 value
and it terminates due to the value of k (k = −1). The
local index value of i is incremented by 1 (i = 4) (line
34). The next pair (PS.P [4], QS.P [1]) is not inserted
because of the distance dist = 11.705. The following
pair (PS.P [4], QS.P [0]) has the distance dx = 5 equal
to the key dist of themaxKHeap.root (line 27), the rule
2 is applied and the distance dist is not calculated and
the leftq limit is updated to 0 (rule 2 ). This results the
decision that the last comparison point from the QS.P
array may be the point on the right of the leftq limit,
the QS.P [1] point. The for loop (line 21) is broken
and the index i is incremented to 5. The next pair
(PS.P [5], QS.P [1]) has a distance dx = 6, this value is
larger than the key dist of the maxKHeap.root (5) and
for this the left limit leftq is advanced to leftq = 1.
The value of the condition j − 1 = leftq (1 = 1) is
true (line 19) and the process will skip the examination
of the last point of the active run (line 20) (applying
the rule 3 ). Figure 2 shows the status of the algorithm
right after the examination of (PS.P [5], QS.P [1]). Note
that the reference point is PS.P [5] and the key dist
of the maxKHeap.root = 5.000. The combination of
PS.P [6] to previous points of the QS.P array is skipped
because of the value of the left limit (leftq = 1) and
the condition in line 19 j − 1 = leftq (1 = 1) is true
(the rule 3 is applied), then i is updated to 7 and the
while loop is broken (i = 7 and j = 2). Next, the
algorithm establishes the stop run to 23 (PS.P [7].x),
the active run is now from QS.P which consists of
QS.P [2], QS.P [3] and QS.P [4] because they are the last
points of QS.P before PS.P [7], and the comparison
points are from PS.P which form the sequence PS.P [i−
1], . . . , PS.P [leftp+1] (PS.P [6], . . . , PS.P [0]). And the
execution of the algorithm continues at line 35 for the
current active run.

Following analogous steps, the next iterations of
the while loop at (line 16) examine the next runs as
they depicted in Table 1, either inserting pairs in the
MaxKHeap, or not inserting pairs in the MaxKHeap,
due to their dist distance, or not inserting pairs in the
MaxKHeap, due to their dx values, advancing the left
limits.

Note that, the CCPS algorithm always processes
pairs from left to right, even when the distance of the
reference point to its closest point of the other array is
large (this is likely, since, runs of the two arrays can
be in general interleaved). On the contrary, RCPS
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processes pairs of points in opposite X-orders, starting
from pairs consisting of points that are the closest
possible, avoiding further processing of pairs that is
guaranteed not to be part of the result and substituting
distance calculations by simpler dx calculations, when
possible. This way, δ is expected to be updated more
fastly and the processing cost of RCPS to be lower. In
the specific example described previously, the CCPS
algorithm would perform 9 dist distance calculations,
95 dx calculations, 9 MaxKHeap insertions and
would examine 62 pairs. RCPS performed 6 dist
distance calculations, 77 dx calculations, 6 MaxKHeap
insertions and examined 49 pairs.

4.2. Extension to εDistance Join Query

As for εCCPS for εDJQ, the adaptation of the RCPS
algorithm from KCPQ to εDJQ is not so difficult, and
we will get Reverse Run Circle Plane-Sweep algorithm
for εDJQ (εRCPS). If we have two sorted arrays of
points, we only select the pairs of points in the range
of distances [ε1, ε2] for the final result (lines 31 and
49: if (dist ≥ ε1 and dist ≤ ε2)). That means
the result of this query must not be ordered and the
MaxKHeap is unnecessary (lines 22, 23, 24 and 25;
and lines 40, 41, 42, and 43 can be omitted), because
for εDJQ we do not know beforehand the exact number
of pairs of points that belong to the result. And now
the distance threshold will be ε2 instead of key dist
of MaxKHeap root (lines 27, 45, 31 and 49). As like
εCCPS, the data structure that holds the result set
will be a file of records (resultFile), each one with three
fields (dist, PS.P [i], QS.P [j]) and the modifications of
this storage are in the lines 33 and 51, where we have to
replace them by resultF ile.write(newPair). Finally,
the proof of the correctness of εRCPS algorithm is
similar to the proof of Theorem 4.1 for the RCPS
algorithm.

5. EXTERNAL SWEEPING-BASED DIS-
TANCE JOIN ALGORITHMS

Firstly, we present in this section four new algorithms to
solve the problem of finding the KCPQ when neither of
the inputs are indexed, following similar ideas proposed
in [13, 14] for spatial intersection join. We combine
plane-sweep and space partitioning to join the data sets
and report the required result. These new algorithms
extend the CCPS and RRPS algorithms to solve the
KCPQ where the two set of points are stored on
separate data files on disk. Moreover, we will also
extend them to solve the εDistance Join Query (εDJQ).

5.1. The External Sweeping-Based KCPQ
Algorithms

In general, the External Sweeping-Based KCPQ
algorithms sort the data files containing the sets of
points, then perform the Plane-Sweep-Based KCPQ

algorithm on the two sorted disk-resident data files
and, finally, return the K closest pairs of points in
maxKHeap data structure.

Sorting each data file by the values of the sweeping
axis can be done with the classical external sort/merge
algorithm [58]. For instance, to sort P on the X-axis,
first P is partitioned in dP/Be runs (where B is the size
of a buffer in main memory); each run is sorted in main
memory; and finally the runs are recursively merged in
larger runs, obtaining the sorted file P.

The External Sweeping-Based KCPQ algorithms
start with the two sorted data files (P and Q) and
then, as in the Scalable Sweeping-Based Spatial Join
[13, 14], divide the sweeping axis on a set of strips.
For each file, we maintain, two strips, PS and QS,
in main memory, for applying the Plane-Sweep-Based
KCPQ algorithm (CCPS or RRPS) and return the K
closest pairs of points from P and Q on the maxKHeap
data structure. While strips are filled with data,
the External Sweeping-Based KCPQ algorithms call
repetitively CCPS / RCPS with a possibly non empty
heap and with, in general, different PS.start /PS.end
and QS.start / QS.end limits and different PS.P and
QS.P arrays. At the end of all such calls, the heap will
host K Closest Pairs formed from the two datasets.

Once the data sets are sorted, one can think about:
(i) partitioning policies on the sweeping axis and (ii)
the appropriate number of strips (numOfStrips). We
could consider two basic strategies for partitioning the
sweeping axis:

1. Uniform Filling. Using the disk-page size, which,
in this policy, is equal to the strip size, we calculate
the number of points that fit in each strip and
divide the data of each set into equally populated
numOfStrips (= data file size / strip size) strips
(with a possibly underfilled last strip). Thus,
numOfStrips is different for each set.

2. Uniform Splitting. We partition the sweeping
axis to a number of strips (or intervals) covering,
every time, the same interval on the sweeping axis
for both datasets. To accomplish this, we use a part
of main memory as a buffer (equal to one disk page
for each set) which can hold a number of points
from each set and load it with points. Next, a
synchronization process takes place. We compare
the X coordinates (w.l.o.g. we consider that X is
the sweeping axis) of the last two points of the two
sets. The smallest coordinate is set as the right
border of the current two strips and the points of
the other set (not the one where the point with
the smallest X coordinate belongs) that are located
after the right border (have greater value of X
coordinate) are left to be examined and processed
in the future. Thus, the strip for each set contains
the points of this set up to the right border. In this
way, after the first iteration, the data examined are
located in an X interval with specified limits. Next,
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i 0 1 2 3 4 5 6 7 8
P [i] (0,8) (2,24) (3,22) (8,15) (9,30) (11,33) (14,1) (23,12) (23,34)
j 0 1 2 3 4
Q[j] (4,27) (5,19) (15,16) (18.5,30) (19,24)

i 9 10 11 12 13 14 15 16
P [i] (25,0) (26,13) (26,28) (32,23) (34,16) (39,31) (40,24) (∞,−)
j 5 6 7 8 9 10 11 12
Q[j] (28,20) (30,23) (31,0) (31,32) (36,23) (37,7) (37,19) (∞,−)

TABLE 1. The points of 2 in X-sorted order.

FIGURE 3. Applying the FCCPS algorithm on two data
sets partitioned in strips equally full (4 points/strip).

we process the points residing in the two strips.
Next, we load from secondary to main memory
data points from any of the sets which does not
have any points left unprocessed and we repeat the
synchronization between the points of the two sets
that are located in main memory. Of course, null
strips could be created in some cases, but only for
one of the two data sets at every iteration. This
situation is not problematic, however. It helps
prune pairs that will not be part of the result.

As we can see in Figures 3 and 7, for each set,
the search space is partioned to non-overlaping vertical
strips, whaetver the partition policy. We assign each
point of P and Q to one (and only one) strip. This is
a very important condition for the correctness of the
algorithms, because, in this way, the same pair cannot
be generated twice.

5.2. Algorithms using Uniform Filling

5.2.1. The FCCPS Algorithm
Following the Uniform Filling partitioning policy, the
two sorted data sets P and Q are partitioned in strips
almost equally full, as we can see in Figure 3. The
first sorted set (P) is partitioned in four strips (PS0,
PS1, PS2, and PS3). The second sorted set (Q) is
partitioned in three strips (QS0, QS1, and QS2).

The FCCPS algorithm, see Algorithm 3, requires
every time two strips, one from each data set, to be

present in the main memory. Starting the first iteration
of the algorithm we load one strip from the set P (PS0)
and one strip form the set Q (QS0). These two strips
are the current strips. One of the current strips will
be set as the reference strip, that is, the strip with the
leftmost first point; and the other one as a comparison
strip. The process is starting by loading the first two
strips PS0 and QS0.

In the first step we set the leftmost strip (PS0) as the
reference strip, the other strip (QS0) as a comparison
strip (as it is shown in Figure 3; lines 6 and 24 of
Algorithm 3). Next we examine the K closest pairs in
these strips by using the ClassicP laneSweep (CCPS)
algorithm at lines 8 and 26, during the first iteration of
while-loop at lines 7 and 25, respectively, of Algorithm
3.

In the second step we must examine the points near
the border (i.e. the coordinate on the sweeping axis of
the last point of the current comparison strip) with the
next comparison strip. If maxKHeap is not full, all
the points of the reference strip (PS0) must be joined
with the next comparison strip (QS1). If maxKHeap
is full, we must check the points of the reference strip
which have dx distance from the border smaller than
the key dist of maxKHeap root. In Figure 3 we can
see the border after the join between PS0 and QS0,
and the points of the reference strip (the two last
points) which are near the border in the dark gray area.
Then we load in main memory the next comparison
strip (QS1) to continue searching the K closest pairs
between the PS0 and QS1. After the join between the
reference strip (PS0) and the comparison strip (QS1)
we update the border with a new value, because of a new
last point of the current comparison strip. The process
will continue by loading a new comparison strip (QS2)
as long as we have strips in the comparison set (Q) or
the maxKHeap is not full or there is at least one point
of the reference strip near the border. This step is
implemented by lines 7-19 and 25-37 in the Algorithm
3.

In the third step, we will load in main memory the
next strip PS1 of the reference set P as one of the
current strips. The pair of current strips in the new
iteration will consist of PS1 and QS0 and the process
will be restarted (from the first step) by examining
which of the two current strips of the sets is the left
most one. This step is implemented by lines 20-22 and
38-40 in the Algorithm 3.

We must also highlight that in Algorithm 3, TS
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FIGURE 4. Applying the FRCPS algorithm on two data
sets partitioned in strips equally full (4 points/strip).

is a temporary strip which sometimes is loaded with
points of the P set and other times of the Q set.
We use this strip to read the sequence of the next
(for the CCPS algorithm) or the previous (for the
RRPS algorithm) points of the current strip which
must give us comparison points. Moreover, the func-
tion check near border(border, reference strip) dis-
covers the first point of the reference strip which has
dx smaller that δ from the (right) border.

5.2.2. The FRCPS Algorithm
For the FRCPS algorithm, see Algorithm 4, we scan
the strips in a different order to the previous algorithm
(FCCPS). The reference strips are scanned in the
same order in which the points of the data sets are
sorted (i.e. in ascending order in X-axis), but the
comparison strips are scanned in the opposite order (i.e.
in descending order in X-axis). In this way, we continue
to apply the basic concept of the RRPS algorithm.
If A is a reference point from the one data set and
B, C (with B.x > C.x) are comparison points from
the other data set and moreover: (i) A.x > B.x, that
is the reference points are always on the right of the
comparison points (ii) The points B and C are adjacent
to the X-axis (no other item of the same set lies between
them), then we first calculate the distance of the pair
(A,B) and next the distance of the pair (A,C). Unlike
the previous algorithm (FCCSP ), now we have every
time in main memory four strips, two from each data
set. The leftmost strip of each data set will be defined
as current and the other as next (of the current strip).
So we have two pairs of strips, the current pair and the
next pair.

As it shown in Figure 4, during the execution of the
algorithm, we can have as current pair the strips PS1

and QS1 and next pair the strips PS2 and QS2.
In the first step, we join the strips of the current

pair (PS1 and QS1). From the current pai, we will set

Strips Points {index, (x, y)}
PS0 {0,(0,4)} {1,(4,15)} {2,(10,21)} {3,(17,2)}
PS1 {4,(19,8)} {5,(20,21)} {6,(22,1)} {7,(23,17)}
PS2 {8,(23,20)} {9,(25,28)} {10,(26,23)} {11,(27,2)}
PS3 {12,(29,9)} {13,(30,10)} {14,(33,28)} {15,(37,18)}

TABLE 2. The data set P with 16 points in X-sorted
order.

Strips Points {index, (x, y)}
QS0 {0,(2,20)} {1,(7,16)} {2,(11,4)} {3,(15,27)}
QS1 {4,(18.5,30)} {5,(20,12)} {6,(21,24)} {7,(24,6)}
QS2 {8,(30,9)} {9,(32,10)} {10,(36,25)} {11,(40,6)}

TABLE 3. The data set Q with 12 points in X-sorted
order.

as reference strip the strip which has the rightmost
first point (QS1) and the other strip will be set as
comparison strip (PS1). This step is implemented by
lines 17-22 and 29-34 of Algorithm 4.

In the second step, while the left limit is outside of
the comparison strip, we will load the previous strip
(PS0) of the currentcomparison strip and we make
the join between the strips QS1 and PS0. This loop
will continue until the left limit will be reached inside
the comparison strip. This step is implemented by lines
23-27 and 35-39 of Algorithm 4.

The third step is to prepare the new pair of the
current strips. One of the strips of the current pair
will be replaced by one strip of the next pair. The
leftmost of the strips of the next pair will moved from
the next pair to the current pair, and this strip will
be replaced by a new strip which will be loaded from
secondary memory. This step is implemented by lines
40-51 of the Algorithm 4.

We must also highlight that in Algorithm 4, gleftp
and gleftq are variables that hold global left limits for
the sorted sets P and Q. oleftp and oleftq are local
variables that save the old values of gleftp and gleftq
(previous strips). nPS and nQS are the next strips of
(the current strips) PS and QS.

Now, we are going to show a step-by-step example
of the application of the FRCPS algorithm to find the
K(=3) closest pair of the data sets P and Q having 16
and 12 points, respectively. We also consider that the
maximum number of points per strip is 4. The data
sets and the separation into strips are shown in Figure
3 and in Tables 2 and 3.

The FRCPS algorithm firstly reads the strips:
PS0{first = 0, start = 0, end = 3, P [0,1,2,3]},
QS0{first = 0, start = 0, end = 3, P [0,1,2,3]} as
current strips and PS1{first = 4, start = 0, end =
3, P [4,5,6,7]}, QS1{first = 4, start = 0, end =
3, P [4,5,6,7]} as next strips (see Figure 5). Both left
limits (leftp and leftq) are initialized to -1.

The function using the algorithm RCPS executes
the K(=3)CPQ for the strips PS0 and QS0. Finishing
this join the maxKHeap has the pairs {(dist(P2, Q1) =
5.831), (dist(P1, Q0) = 5.385), (dist(P1, Q1) = 3.162)},
where dist(Pi, Qj) is the distance dist between the
points (P [i] and Q[j]) from sets P and Q, having
absolute indexes in their sets i and j respectively
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Algorithm 3 FCCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS = {first, start, end, P [0..n− 1]}, QS = {first, start, end, P [0..m− 1]}, TS
2: border is a local variable to hold the right border of the calculated strip so far
3: Read from LRU Buffer strips PS and QS
4: while PS.first < N and QS.first < M do . if first point of the strip PS is on the left of left point of the strip QS
5: if PS.P [0].x < QS.P [0].x then
6: TS ← QS
7: while TRUE do
8: CCPS(PS, TS)
9: TS.first += (TS.end+ 1) . prepare to get the next strip of the Q set
10: if TS.first < M then . if the points of strip Q are not finished
11: border = TS.P [TS.end] . set the border at the last x-coordinate
12: if MaxKHeap is full then
13: check near border(border, PS)

14: if PS.start ≤ PS.end then . if there are points of strip P near the border
15: Read from LRU Buffer the next strip of set Q in TS
16: else
17: break . all points are too far from the border

18: else
19: break . end of the set Q
20: PS.first += (PS.end+ 1) . prepare to get the next strip of the P set
21: if PS.first < N then . if the points of strip P are not finished
22: Read from LRU Buffer the next strip of set P in PS

23: else . ifPS.P [0].x ≥ QS.P [0].x
24: TS ← PS
25: while TRUE do
26: CCPS(TS,QS)
27: TS.first += (TS.end+ 1) . prepare to get the next strip of the P set
28: if TS.first < N then . if the points of strip P are not finished
29: border = TS.P [TS.end] . set the border at the last x-coordinate
30: if MaxKHeap is full then
31: check near border(border,QS)

32: if QS.start ≤ QS.end then . if there are points of strip Q near the border
33: Read from LRU Buffer the next strip of set P in TS
34: else
35: break . all points are too far from the border

36: else
37: break . end of the set P
38: QS.first += (QS.end+ 1) . prepare to get the next strip of the Q set
39: if QS.first < M then . if the points of strip Q are not finished
40: Read from LRU Buffer the next strip of set Q in QS

FIGURE 5. Join of strips PS0 and QS0 using the FRCPS
algorithm.

(regardless of the strip in which they are located), and
values for left limits leftp = 1, leftq = 2.

In this first iteration there are no strips on the left
of the current strips, so we skip the second step and we
are going to execute the third step of the algorithm. In
order to prepare the next cycle, the algorithm compares

the X-coordinates of the first points of the next strips
PS1.P [4].x = 19 and QS1.P [4].x = 18.5. Since the
point QS1.P [4] is on the left, the strip QS2 is read.

For the second iteration, we have that PS0{first =
0, start = 2, end = 3, P [0, 1,2,3]}, QS1{first =
4, start = 0, end = 3, P [4,5,6,7]} are the current strips,
and PS1{first = 4, start = 0, end = 3, P [4,5,6,7]},
QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} are
the next strips.

The RCPS executes the K(=3)CPQ for the current
strips. Note that the current strip PS0 is starting from
the point PS0.P2 because of the leftp = 1 value from
the previous iteration. Exiting from RCPS function,
no new pair is inserted into maxKHeap, but the left
limits are updated to leftp = 3, leftq = 2. In order
to prepare the next cycle, the algorithm compares the
first points of the next strips, PS1.P [4].x = 19 and
QS2.P [8].x = 30. Since the point PS1.P [4] is on the
left, the strip PS2 is read.

For the third iteration, we have that PS1{first =
4, start = 0, end = 3, P [4,5,6,7]}, QS1{first =
4, start = 0, end = 3, P [4,5,6,7]} are the current strips,
and PS2{first = 8, start = 0, end = 3, P [8,9,10,11]},
QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} are
the next strips (see Figure 6).

The RCPS executes the K(=3)CPQ for the

Technical Report, Data Engineering Lab, Aristotle University of Thessaloniki, Greece



New Plane-Sweep Algorithms for Distance-Based Join Queries in Spatial Databases 19

Algorithm 4 FRCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS = {first, start, end, P [0..n− 1]}, QS = {first, start, end, P [0..m− 1]}, TS, nPS, nQS
2: gleftp = oleftp = gleftq = oleftp = −1 . initialize the left limits
3: Read from LRU Buffer the first strip of set P in PS and from set Q in QS
4: if PS.P [0].x < QS.P [0].x then . if the first point of the strip PS is on the left of left point of the strip QS
5: tmp = PS.end+ 1
6: while tmp < N and PS.P [PS.end].x < QS.P [0].x do
7: Read from LRU Buffer the next strip of set P in PS
8: tmp += (PS.end+ 1) . tmp = tmp+ PS.end+ 1

9: else
10: tmp = QS.end+ 1
11: while tmp < M and QS.P [QS.end].x < PS.P [0].x do
12: Read from LRU Buffer the next strip of set Q in QS
13: tmp += (QS.end+ 1) . tmp = tmp+QS.end+ 1

14: Read from LRU Buffer the next strip of set P in nPS and of set Q in nQS
15: while gleftp < N − 1 and gleftq < M − 1 do
16: if PS.P [0].x < QS.P [0].x then
17: if gleftp > PS.first then
18: PS.start = gleftp− PS.first+ 1 . start from the next point of the left limit
19: if PS.start ≤ PS.end then
20: RCPS(PS,QS)

21: else
22: RCPS(PS,QS)
23: oleftp = gleftp TS.first = PS.first TS.P [0].x = PS.P [0].x
24: while (TS.first > 0 and ((MaxKHeap is not full) or (QS.P [0].x− TS.P [0].x < key dist of MaxKHeap root)) do
25: Read from LRU Buffer the previous strip of set P in TS
26: RCPS(TS,QS)

27: gleftp = olfetp

28: else . if PS.P [0].x ≥ QS.P [0].x
29: if gleftq > QS.first then
30: QS.start = gleftq −QS.first+ 1 . start from the next point of the left limit
31: if QS.start ≤ QS.end then
32: RCPS(PS,QS)

33: else
34: RCPS(PS,QS)
35: oleftq = gleftq TS.first = QS.first TS.P [0].x = QS.P [0].x
36: while (TS.first > 0 and ((MaxKHeap is not full) or (PS.P [0].x− TS.P [0].x < key dist of MaxKHeap root)) do
37: Read from LRU Buffer the previous strip of set Q in TS
38: RCPS(PS, TS)

39: gleftq = olfetq

40: if nPS.first = N then . if the points of strip PS are finished
41: if nQS.first = M then . if the points of strip QS are finished
42: break . end of sets, terminate the process

43: QS ← nQS
44: Read from LRU Buffer the next strip of set Q in nQS
45: else . the points of strip P are not finished
46: if nQS.first 6= M and nQS[0].x < nPS[0].x then
47: QS ← nQS
48: Read from LRU Buffer the next strip of set Q in nQS
49: else
50: PS ← nPS
51: Read from LRU Buffer the next strip of set P in nPS

FIGURE 6. Join of strips PS1 and QS1 using the FRCPS
algorithm.

current strips. Exiting from RCPS function, the
maxKHeap has now the pairs {(dist(P4, Q5) =
4.123), (dist(P5, Q6) = 3.162), (dist(P1, Q1) = 3.162)}
and leftp = 4, leftq = 4. Since the dx distance
between points PS1.P [4] and QS1.P [4] is dx(P4, Q4) =
19 − 18.5 = 0.5 < 4.123, the algorithm continues
checking the points near the left border. The RCPS
is called to join the strips PS1 and QS0. No new pair is
inserted into maxKHeap. Since the point PS2.P [8] is
on the left of the point QS2.P [8], the strip PS3 is read.

For the forth iteration, we have that PS2{first =
8, start = 0, end = 3, P [8,9,10,11]}, QS1{first =
4, start = 0, end = 3, P [4,5,6,7]} are the current
strips, and PS2{first = 12, start = 0, end =
3, P [12,13,14,15]}, QS2{first = 8, start = 0, end =
3, P [8,9,10,11]} are the next strips.

The RCPS executes the K(=3)CPQ for the current
strips. Exiting from RCPS function, the maxKHeap
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has no changes, but the left limit of the Q set is updated
to leftq = 6. Since the dx distance between the (first)
points PS2.P8 and QS1.P4 is dx(P8, Q4) = 23− 18.5 =
4.5 > 4.123, the algorithm has no need to continues
checking the points near the left border.

Now, the data set P has no next strip (it is finished)
and, then the status for the fifth cycle is as follow:
PS2{first = 12, start = 0, end = 3, P [12,13,14,15]},
QS1{first = 4, start = 3, end = 3, P [4, 5, 6,7]} are the
current strips and only QS2{first = 8, start = 0, end =
3, P [8,9,10,11]} is the next strip.

The RCPS executes the K(=3)CPQ for the current
strips. Exiting from RCPS function, the maxKHeap
has no changes, but the left limit of the Q set is updated
to leftq = 7. The data set P has no next strip (it is
finished), then the status for the sixth cycle is as follows:
PS2{first = 12, start = 0, end = 3, P [12,13,14,15]},
QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} are
the current strips and there is not any next strip.

Finally, the RCPS executes the K(=3)CPQ for
the current strips. Exiting from RCPS function,
the maxKHeap has new pairs {(dist(P12, Q8) =
1.000), (dist(P13, Q8) = 1.000), (dist(P13, Q9) =
2.000)} and the left limits are updated to leftp = 15
and leftq = 9. Since the dx distance between points
PS3.P12 and QS2.P8 is dx(P12, Q8) = |29 − 30| = 1 <
2.0, the algorithm will continue by checking the points
near the left border between the strips PS2 and QS2.
But, no new pair is found and the algorithm is finished.

As a summary, the strips which are read from disk
were 9, the pairs involved in calculations were 57, the dx
calculations were 89 and the complete dist-calculations
were 10.

5.3. Algorithms using Uniform Splitting

5.3.1. The SCCPS Algorithm
Following the Uniform Splitting partitioning policy, the
first sorted set (P) is partitioned in five strips (PS0,
PS1, PS2, PS3 and PS4). The second sorted set (Q) is
partitioned in seven strips (QS0, QS1, QS2, QS3, QS4,
QS5 and QS6).

The SCCPS algorithm, see Algorithm 5, requires
two strips, one of each data set, to be present in
main memory. We define the width of a strip
as the distance between the leftmost (first) and
rightmost (last) points of the strip on the sweeping
axis. After loading a buffer of two disk pages from
secondary memory with points from the two datasets,
we have to execute a synchronization process (through
sync queues function). This process determines the
points in the two disk pages that form the respective
two strips such that every point between the leftmost
and rightmost points of both strips has been read from
secondary memory. The coordinate of the rightmost
point of the strips is defined as border.

We examine the coordinates on the sweeping axis (i.e.
X-axis) of the last points of the current pages PS and

FIGURE 7. Applying the SCCPS algorithm on two data
sets partitioned in strips of variable width.

QS. As it is shown in Figure 7 the PS0 page has the
array of points with indexes PS0.P = [0, 1, 2, 3] which
are depicted with the symbol ’+’. The QS0 page has
the array of points with indexes QS0.P = [0, 1, 2, 3]
which are depicted with the symbol ’*’. The last point
QS0.P [3] is on the left of the last point PS0.P [3]l
(QS0.P [QS0.end].x < PS0.P [PS0.end]). Since, it is
not known if the first point of the Q set next to the
last point of the QS0 strip (the point QS1.P [4]) is on
the left or on the right of the last point of the current
PS0 page, we set as right border the coordinate on
the sweeping axis of the last point of the QS page
(QS0.P [3].x). In this way, at least one strip (QS0) will
have the maximum number of points per strip while
the other strip (PS0) will have points from zero to the
maximum number of points per strip (as we can see in
Figure 7 the PS0 strip has three points).

In the first step, the process is starts loading the first
two pages PS0 and QS0. After the synchronization
process we have two strips and the value of the border
= border1. If both strips have some points (are not
empty) we examine the K closest pairs of points inside
these strips by using the Classic Plane Sweep (CCPS).
This step is implemented by lines 5-6 of Algorithm 5.

The second step is to examine in any not empty strip,
first PS and next QS the points near the border. If the
maxKHeap is full, we must check if the points of the
strip have dx distance from the border smaller than the
key dist of maxKHeap root, else we must check all
points of the strip, with the points of the next strip of
the other set, that is called comparison set. Now, we
must join the points of the PS strip near the border
with the points of the QS strip that have not been
joined with the points of the PS strip in the previous
first step. Then we must update the value of the border
with the coordinate of the last point of the QS0 strip,
check the points of the PS0 strip and if there are some
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FIGURE 8. Applying the SRCPS algorithm on two data
sets partitioned in strips of variable width.

points left, we must continue by loading the next page
of the Q set (QS1). The process will continue as long
as we have a strip in the comparison set (Q) and there
is at least one point of the reference strip (PS0) near
the current value of the border. This second step will
be executed setting as reference strip the QS0 and
comparison strips the rest of the points of PS0, PS1,
· · · . This step is implemented by lines 7-45 of Algorithm
5.

The third step is to prepare the next pair of strips
(PS1 and QS1) by loading two pages (one from each
set) from secondary memory, synchronizing them and
continuing from the first step as long as we have points
for both strips. This step is implemented by lines 46-56
of Algorithm 5.

We must also highlight that in Algorithm 5, the
function sync queues(PS,QS) finds which of the last
points of the two strips is more the leftmost one. Then
it sets the value of the right border equal to the X-
coordinate of this point. Finally, it returns the value of
the right border. border is local variable that holds the
right border of the current strips.

5.3.2. The SRCPS Algorithm
The SRCPS algorithm, see Algorithm 6, requires two
strips, one of each data set, to be present in main
memory. Before the main process of this algorithm and
for the leftmost set we reach the first strip which has
overlap with the first strip of the other set or which is
the last strip of the leftmost set that has no overlap with
the first strip of the other set; lines 5-16 of Algorithm
6.

The first step is to synchronize the current strips
(if both are not empty) and afterwards the RRPS
algorithm is called to join the points between them.
This step is implemented by lines 18-19 and 20-23 of
Algorithm 6.

The second step consists of two parts. In the first

part, we examine three conditions: (1) if the strip of
the first set (PS) has at least one point in the area
on left of the right border (see section 5.3.1), (2) if
the current strip of the other set (QS) has points on
the left of its starting point (in the same strip or in
previous strips), and (3) if the maxKHeap is not full
or if the first point of the PS strip has a distance on the
sweeping axis (dx) from the left border (the coordinate
of the last point of the previous strip of QS) less than
the key dist of maxKHeap root (line 24 of Algorithm
6). If all conditions are true then we call the subroutine
srcps on border (Algorithm 7). In this subroutine we
join the points of the strip PS and all points of the setQ
which are on the left of the starting point of the current
QS strip. This process continues while the maxKHeap
is not full or the points have dx distance from the
keft border smaller than the key dist of maxKHeap root
(line 13 of Algorithm 7). For each set, we keep a left
limit (leftp, leftq), which is updated (moved to the
right) every time that the algorithm concludes that it is
only necessary to compare with points of this set that
reside on the right of this limit. In Figure 8 we can
see the dx distance of the first point of the PS1 strip
from the lborderq which is smaller than the key dist of
maxKHeap root. In the second part, we swap the roles
between PS and QS and we execute the same process
as in the first part. This step is implemented by lines
28-31 of Algorithm 6.

The third step is to prepare the next iteration from
the beginning by updating the values of the borders
and loading the next of the current strips of both sets.
This step is implemented by lines 34-45 of Algorithm
6, where srcps get next strip is called. We must also
highlight that in Algorithm 6, lborderp and lborderq
are variables that store the current left borders of the
sorted sets P and Q.

Next, we are going to show a step-by-step example for
the SRCPS algorithm, using the same input data sets
as in the previous example (for FRCPS). The query
is also the same, that is, we are looking for the K(=3)
closest pairs in the data sets P and Q. The data sets
and the separation into strips, having variable width,
are shown in the Figure 8.

The algorithm SRCPS firstly reads the pages:
PS0{first = 0, start = 0, end = 3, P [0, 1, 2, 3]} and
QS0{first = 0, start = 0, end = 3, P [0, 1, 2, 3]}.
After the synchronization process the current strips
are PS0{first = 0, start = 0, end = 2, P [0,1,2, 3]}
and QS0{first = 0, start = 0, end = 3, P [0,1,2,3]}
(see Figure 9). Both left limits (leftp and leftq)
are initialized to -1. In the first step, the algorithm
RCPS executes the K(=3)CPQ for the strips PS0

and QS0. Finishing this task the maxKHeap has
the pairs {(dist(P2, Q1) = 5.831), (dist(P1, Q0) =
5.385), (dist(P1, Q1) = 3.162)} and the values for left
limits are leftp = 1, leftq = 0. Since there are no strips
on the left of the current strips, we must skip the second
step and continue with the third one, in which the
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Algorithm 5 SCCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS = {first, start, end, P [0..n− 1]}, QS = {first, start, end, P [0..m− 1]}, TS
2: Read from LRU Buffer strips PS and QS
3: border = sync queues(PS,QS)
4: while PS.first < N and QS.first < M do
5: if PS.end ≥ PS.start and QS.end ≥ QS.start then
6: CCPS(PS,QS)

7: if PS.end ≥ PS.start then
8: cur border = border
9: if MaxKHeap is full then
10: check near border(cur border, PS)

11: if PS.start ≤ PS.end then . if there are points of strip PS near the border
12: TS ← QS
13: TS.start = QS.end+ 1 TS.end = QS.P.m− 1 . update the strip TS to check the rest points of QS
14: while TRUE do
15: CCPS(PS, TS)
16: TS.first += (TS.end+ 1) . prepare to get the next strip of the Q set
17: if TS.first < M then . if the points of strip QS are not finished
18: cur border.x = TS.P [TS.end].x . set the border at the last x-coordinate
19: if MaxKHeap is full then
20: check near border(cur border, PS)

21: if PS.start ≤ PS.end then . if there are points of strip PS near the border
22: Read from LRU Buffer the next strip of set Q in TS
23: else
24: break . all points are too far from the border

25: else
26: break . end of the set P
27: if QS.end ≥ QS.start then
28: if MaxKHeap is full then
29: check near border(border,QS) . cur border instead of border

30: if QS.start ≤ QS.end then . if there are points of strip QS near the border
31: TS ← PS
32: TS.start = PS.end+ 1 TS.end = PS.P.n− 1 . update the strip TS to check the rest points of PS
33: while TRUE do
34: CCPS(TS,QS)
35: TS.first += (TS.end+ 1) . prepare to get the next strip of the P set
36: if TS.first < N then . if the points of strip PS are not finished
37: border.x = TS.P [TS.end] . set the border at the last x-coordinate
38: if MaxKHeap is full then
39: check near border(border,QS)

40: if QS.start ≤ QS.end then . if there are points of strip QS near the border
41: Read from LRU Buffer the next strip of set P in TS
42: else
43: break . all points are too far from the border

44: else
45: break . end of the set Q
46: PS.first += (PS.end+ 1) . prepare to get the next strip of the P set
47: if PS.first ≥ N then . if the points of strip PS are finished
48: break
49: QS.first += (QS.end+ 1) . prepare to get the next strip of the Q set
50: if QS.first ≥M then . if the points of strip QS are finished
51: break
52: if PS.end ≥ PS.start then
53: Read from LRU Buffer the next strip of set P in PS

54: if QS.end ≥ QS.start then
55: Read from LRU Buffer the next strip of set Q in QS

56: border = sync queues(PS,QS)

algorithm must prepare the next iteration. Therefore,
the strip PS0 will remain in main memory by setting
the values of the indexes start and end to the value
3, PS0{first = 0, start = 3, end = 3, P [0, 1, 2,3]} and
the next QS page will be read from disk QS1{first =
4, start = 0, end = 3, P [4, 5, 6, 7]}.

For the second iteration and after the
synchronization process, the current strips are
PS0{first = 0, start = 3, end = 3, P [0,1,2,3]} and
QS1{first = 4, start = 0, end = −1, P [4, 5, 6, 7]}
(see Figure 10). The value of QS1.end is smaller than
QS1.start and the first step (join between current strips
PS0 and QS1) will be omitted (line 20 of the Algorithm
6). The current strip PS0 has the point PS0.P [3]

which is at the right border (PS0.start = PS0.end),
the starting point of the current strip QS1 is not
the first point of the set Q. The task will continue
with the second step by comparing the dx distance
between the starting point of the current PS0 strip
(PS0.P [3].x = 17) and the value of lborderq which
is equal to the value of the last point of the previous
strip QS0 (QS0.P [3].x = 15). Thus it is possible to
find closest pairs comparing the point PS0.P [3] with
the points of the strip QS0. The second part of the
second step will not be executed since the current
strip QS1 is empty (QS1.start > QS1.end). Finish-
ing this step, the maxKHeap has not been updated
with new pairs, but the left limit leftq is set to 2. In
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Algorithm 6 SRCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS = {first, start, end, P [0..N − 1]}, QS = {first, start, end, P [0..m− 1]}
2: gleftp = oleftp = gleftq = oleftp = −1 . initialize the left limits
3: Read from LRU Buffer strips PS and QS
4: lborderp = PS.P [0].x, lborderq = QS.P [0].x
5: if PS.P [0].x < QS.P [0].x then . if the first point of the strip PS is on the left of left point of the strip QS
6: tmp = PS.end+ 1
7: while tmp < N and PS.P [PS.end].x < QS.P [0].x do
8: lborderp = PS.P [PS.end].x
9: Read from LRU Buffer the next strip of set P in PS
10: tmp += (PS.end+ 1) . tmp = tmp+ PS.end+ 1

11: else . if first point of the strip QS is on the left of left point of the strip PS
12: tmp = QS.end+ 1
13: while tmp < M and QS.P [QS.end].x < PS.P [0].x do
14: lborderq = QS.P [QS.end].x
15: Read from LRU Buffer the next strip of set Q in QS
16: tmp += (QS.end+ 1) . tmp = tmp+QS.end+ 1

17: while TRUE do
18: if PS.end 6= −2 and QS.end 6= −2 then . if none STRIP is finished
19: sync queues(PS,QS)
20: if PS.start ≤ PS.end and QS.start ≤ QS.end then
21: gleftp = oleftp gleftq = oleftq
22: RCPS(PS,QS)
23: swap(gleftp, oleftp), swap(gleftq, oleftq)

24: if PS.start ≤ PS.end and (Q.start > 0 or QS.first > 0) and ((MaxKHeap is not full) or (PS.P [PS.start].x − lborderq < key dist
of MaxKHeap root)) then

25: srcps on border(PS,QS, lborderq,Q, gleftq,MaxKHeap) . CurS, ComS, lborder, X, left, MaxKHeap
26: if gleftq > oleftq then
27: oleftq = gleftq

28: if QS.start ≤ QS.end and (P.start > 0 or PS.first > 0) and ((MaxKHeap is not full) or (QS.P [QS.start].x − lborderp < key dist
of MaxKHeap root)) then

29: srcps on border(QS, PS, lborderp,P, gleftp,MaxKHeap) . CurS, ComS, lborder, X, left, MaxKHeap
30: if gleftp > oleftp then
31: oleftp = gleftp

32: if oleftp = N − 1 or oleftq = M − 1 then
33: break
34: tmp = srcps get next strip(PS,QS,P)
35: if tmp > −1 then
36: lborderp = tmp . set the border at the last x-coordinate
37: else
38: if tmp < −1 then
39: break . terminate the process, both sets are finished

40: tmp = srcps get next strip(QS, PS,Q)
41: if tmp > −1 then
42: lborderq = tmp . set the border at the last x-coordinate
43: else
44: if tmp < −1 then
45: break . terminate the process, both sets are finished

Algorithm 7 SRCPS ON BORDER(CurS, ComS, lborder, X, left, MaxKHeap)
1: Allocate memory for strip TS = {first, start, end, P [0..N − 1]}
2: if ComS.start > 0 then
3: TS ← ComS
4: TS.start = 0, TS.end = ComS.start− 1
5: else
6: Read from LRU Buffer the previous strip of set X in TS

7: if left > TS.first then
8: TS.start = left− TS.first+ 1 . start from the next point of the left limit
9: if TS.start ≤ TS.end then
10: RCPS(CurS, TS)

11: else
12: RCPS(CurS, TS)
13: while TS.first > 0 and ((MaxKHeap is not full) or CurS.P [CurS.start].x− TS.P [0].x < key dist of MaxKHeap root)) do
14: Read from LRU Buffer the previous strip of set X in TS
15: RCPS(CurS, TS)

the third step, the algorithm must prepare the cur-
rent strips for the next iteration. Therefore, the strip
PS1{first = 4, start = 0, end = 3, P [4, 5, 6, 7]} is read
and QS1{first = 4, start = 0, end = −1, P [4, 5, 6, 7]}
is kept in main memory for the next iteration.

For the third iteration and after the synchronization
process, the current strips are PS1{first = 4, start =
0, end = 3, P [4,5,6,7]} and QS1{first = 4, start =

0, end = 2, P [4,5,6, 7]} (see Figure 10). In the first step,
the RCPS executes the K(=3)CPQ for the current
strips. Exiting from the RCPS function, maxKHeap
has new values {(dist(P4, Q5) = 4.123), (dist(P5, Q6) =
3.162), (dist(P1, Q1) = 3.162)}, and the left limits have
values leftp = 1, leftq = 4. The current strip PS1

has points (all points) at or on the left of the right
border, the starting point of the current strip QS1
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Algorithm 8 SRCPS GET NEXT STRIP(CurS, ComS, X)
1: if CurS.start ≤ CurS.end then
2: CurS.start = (CurS.end+ 1)
3: if CurS.start < CurS.P.m then . if points of the strip CurS are not processed
4: CurS.end = (CurS.P.n− 1)
5: else
6: CurS.first += (CurS.end+ 1) . prepare to get the next strip of the X set
7: if CurS.first < M then . if the points of strip CurS are not finished
8: Read from LRU Buffer the next strip of set X in CurS
9: else
10: if ComS.end = −2 then
11: return -2 . terminate the process, both sets are finished

12: CurS.end = −2 . mark that the X set is finished
13: CurS.first -= CurS.start . revert the old value of the first id

14: return CurS.P [ComS.end].x . set the border at the last x-coordinate
15: else
16: return -1 . the Current STRIP must remain in the main memory

FIGURE 9. Join of strips PS0 and QS0 using the SRCPS
algorithm.

is not the first point of the set Q and the difference
PS1.P [4].x−lborderq = 19−15 = 4 < 4.123. Therefore,
the second step will continue by checking the strips PS1

and QS0 (previous strip of the current strip QS1). The
current strip QS1 has (three) points at or on the left of
the right border, the starting point of the current strip
PS1 is not the first point of the set P and the difference
QS1.P [4].x − lborderp = 18.5 − 17 = 1.5 < 4.123.
Therefore, the second step will continue by checking the
strips QS1 and PS0 (previous strip of the current strip
PS1). The maxKHeap is not updated with new pairs,
but the left limits of the sets are updated to the new
values leftp = 2 and leftq = 4. In the third step, the
algorithm must prepare the current strips for the next
iteration. Therefore, the strip PS2{first = 8, start =
0, end = 3, P [8, 9, 10, 11]} is read and QS1{first =
4, start = 0, end = 2, P [4, 5, 6, 7]} remains in main
memory for next iteration.

For the forth iteration and after the synchronization
process, the current strips are PS2{first = 8, start =
0, end = 0, P [8, 9, 10, 11]} and QS1{first = 4, start =
3, end = 3, P [4, 5, 6, 7]}. In the first step, the RCPS
executes the K(=3)CPQ for the current strips. Exiting
from the RCPS function, the maxKHeap has not

FIGURE 10. Join of strips PS1 and QS1 using the
SRCPS algorithm.

been updated with new values, and the left limits
keep the same values leftp = 2, leftq = 4. The
current strip PS2 has (one) point at or on the left
of the right border, the starting point of the current
strip QS1 is not the first point of the set Q and the
difference PS2.P [8].x− lborderq = 23−21 = 2 < 4.123.
Therefore, the second step will continue by checking
the strips PS1 and QS1 (previous points of the starting
point of the current strip QS1). The current strip
QS1 has (one) point at or on the left of the right
border, the starting point of the current strip PS1

is not the first point of the set P and the difference
QS1.P [7].x−lborderp = 24−23 = 2 < 4.123. Therefore,
the second step will continue by checking the strips
QS1 and PS1 (previous strip of the current strip PS2).
The maxKHeap is not updated with new pairs, but
the left limits of the sets are updated to the new
value leftp = 4. In the third step, the algorithm
must prepare the current strips for the next iteration.
Therefore, the strip PS2{first = 8, start = 0, end =
3, P [8, 9, 10, 11]} is kept and QS2{first = 8, start =
0, end = 3, P [8, 9, 10, 11]} is read from the disk for next
iteration.

For the fifth iteration and after the synchronization
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process, the current strips are PS2{first = 8, start =
1, end = 3, P [8, 9, 10, 11]} and QS2{first = 8, start =
0, end = −1, P [8, 9, 10, 11]}. The value of index
QS2.end is smaller than the index QS2.start and the
first step (join between current strips PS2 and QS2)
will be omitted (lines 20-23 of the Algorithm 6). The
current strip PS2 has three points at or on the left
of the right border, the starting point of the current
strip QS2 is not the first point of the set Q and the
difference PS2.P [9].x− lborderq = 25−24 = 1 < 4.123.
Therefore, the second step will continue by checking
the strips PS2 and QS1 (previous points of the starting
point of the current strip QS2). The second part of
the second step will not be executed since the current
strip QS2 has no points at or on the left of the right
border (QS2.end < QS2.start). The maxKHeap is
not updated with new pairs, but the left limit of the
set Q updated to the new value leftq = 6. In the third
step, the algorithm must prepare the current strips for
the next iteration. Therefore, the strip PS3{first =
12, start = 0, end = 3, P [12, 13, 14, 15]} is read and
QS2{first = 8, start = 0, end = 3, P [8, 9, 10, 11]} is
kept in the main memory for the next iteration.

For the sixth iteration and after the synchronization
process, the current strips are PS3{first = 12, start =
0, end = 3, P [12,13,14,15]} and QS2{first =
8, start = 0, end = 2, P [8,9,10, 11]}. In the first step,
the RCPS executes the K(=3)CPQ for the current
strips. Exiting from RCPS function, the maxKHeap
has new values {(dist(P13, Q9) = 2), (dist(P13, Q8) =
1), (dist(P12, Q8) = 1)}, and the left limits have values
leftp = 14, leftq = 9. The current strip PS3

has all its four points at or on the left of the right
border, the starting point of the current strip QS1

is not the first point of the set Q but the difference
PS3.P [12].x − lborderq = 29 − 24 = 5 > 2. Therefore,
the first part of the second step will be skipped. The
current strip QS2 has three points at or on the left of
the right border, the starting point of the current strip
PS3 is not the first point of the set P but the difference
QS2.P [8].x − lborderp = 30 − 27 = 3 > 2. Therefore,
the second part of the second step will be skipped. In
the third step, the algorithm must prepare the current
strips for the next iteration. Therefore, the strip PS
is finished and will be updated to the following values
PS3{first = 12, start = 4, end = −2, P [12, 13, 14, 15]}
and QS2{first = 8, start = 0, end = 3, P [8, 9, 10, 11]}
is kept in main memory for the next iteration.

In the last iteration (seventh), the first step and the
first part of the second step are skipped because the
set P is finished (PS3.end = −2 < 0). The current
strip QS2 has (the last one) point at or on the left
of the right border, the starting point of the current
strip PS3 is not the first point of the set P but the
difference QS2.P [11].x − lborderp = 40 − 37 = 3 > 2.
Therefore, the second part of the second step will be
skipped. In the third part, the algorithm must prepare
the current strips for the next iteration. For this the

strips PS and QS do not need any update because
they have finished their points from the two sets and
the algorithm is terminated.

As a summary, the strips which are read from the
disk were 12, the pairs involved for calculations were
52, the dx calculations were 84 and the complete dist-
calculations were 10.

5.4. Analysis

The proofs of the correctness of the External Sweeping-
Based KCPQ algorithms (FCCPS, FRCPS, SCCPS
and SRCPS) are similar to the proofs of CCPS and
RRPS given by the Theorems 3.1 and 4.1, respectively.
Since the latter are the kernel for the query processing
of the former. To extend that proof we must take into
account the split of the sweeping axis into strips and
the processing strategy of those strips. To see that
External Sweeping-Based KCPQ algorithms report the
K closest pairs correctly and without any repetition,
one key property is that each point (from P or Q) is
assigned to one and only one strip, hence a same pair
of points cannot be generated twice. And taking into
account the treatment on the borders of the strips, the
External Sweeping-Based KCPQ algorithms guarantee
that all possible candidate pairs of points are considered
and no duplicates are generated.

The I/O cost of the External Sweeping-Based KCPQ
algorithms can be estimated, following a similar
reasoning as in [14]:

1. The cost of sorting each data set can be expressed
as 2m × P, where m represents the number of
merge levels and is logarithmic in |P| [59], and the
constant factor 2 accounts for reading and writing
P at each merge level.

2. The cost of the External Sweeping-Based KCPQ
algorithms depends of the number of strips that
must be read from disk (sr). Let MRmax the
maximum value of MR (memory requirements)
during the execution of a plane-sweep-based
algorithm, the sr can be estimated by: sr w
numOfStrips × dmax{(MRmax/M), 0}e, where
M is the available main memory size. Each
point belonging to one of the strips must be
read just once. Therefore, the I/O cost of the
External Sweeping-Based KCPQ algorithms can
be estimated as (|P|+ |Q|)× sr/numOfStrips.

In summary, the I/O cost of the External Sweeping-
Based KCPQ algorithms can be estimated as:

2m× (P +Q) + (P +Q)× sr/numOfStrips

In the best case (M > MRmax), sr = numOfStrips
and the cost is 2m× (P +Q) + (P +Q). In the worst
case (M ≤ MRmax), additional readings are necessary
to complete the processing for each strip as we have
mentioned above.
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5.5. Extension to εDistance Join Query

The adaptation of the External Sweeping-Based KCPQ
algorithms from KCPQ to εDJQ is not difficult. As
we know, for εDJQ, we have two sets of points P
and Q as input, and the pairs of points in the range
of distances [ε1, ε2] are selected for the final result
and stored in a file of records (resultFile) with three
fields (dist, P [i], Q[j]), where 0 ≤ i ≤ N − 1 and
0 ≤ j ≤M − 1. The MaxHKeap data structure is not
needed. The modifications are related to the file op-
erations on resultFile and instead of calling to CCPS
or RCPS, the algorithms should call to εCCPS
or εRCPS, respectively. Moreover, instead of call-
ing check near border(border, reference strip),
the algorithm will call the function
εcheck near border(border, reference strip), which
will do the same functionality, discovering the first
point of the reference strip which has dx smaller that
ε2 from the (right) border. More specifically, from
FCCPS to get εFCCPS we should call εCCPS in-
stead of CCPS at lines 8 and 26, the lines 12 and 30
must be removed because MaxKHeap is not used, and
εcheck near border(border, reference strip) should
be called at lines 13 and 31.
From SCCPS to get εSCCPS we should call εCCPS
instead of CCPS at lines 6, 15 and 34, the lines 9, 19,
28 and 38 must be removed (MaxKHeap is not used),
and εcheck near border(border, reference strip)
should be called at lines 10, 20, 29 and 39.
From FRCPS to get εFRCPS we should call
εRCPS instead of RCPS at lines 20, 26, 32 and
38. Line 24 should be replaced by while(TS.first >
0 and (QS.P[0].x − TS.P[0].x ≤ ε2)) and line 36
by while(TS.first > 0 and (PS.P[0].x − TS.P[0].x
≤ ε2)).
And from SRCPS to get εSRCPS we should
call εRCPS instead of RCPS at line 22.
Line 24 should be replaced by if(PS.start ≤
PS.end and (Q.start > 0 or QS.first > 0)
and PS.P[PS.start].x − lborderq ≤ ε2) and line
28 by if(QS.start ≤ QS.end and (Q.start > 0
and QS.first > 0) and QS.P[QS.start].x − lbor-
derp ≤ ε2). Moreover, we have to replace RCPS
by εRCPS in line 22, maxKHeap is not used,
εsrcps on border is called in lines 25 and 29. Finally,
in εsrcps on border(CurS,ComS, lborder,X , left, ε2)
we should call εRCPS instead of RCPS at line 10, 12
and 15, and replace the line 13 by while(TS.first > 0
and (CurS.P[CurS.start].x − TS.P[0].x < ε2)).

6. PERFORMANCE EVALUATION

This section provides the results of an extensive
experimentation study aiming at measuring and
evaluating the efficiency of the new algorithms for
KCPQ and εDJQ when none inputs are indexed,
which are proposed in Section 5. In particular,
Section 6.1 describes the experimental settings and

some implementation details. Section 6.2 compares
the four proposed algorithms (FCCPS, SCCPS, FRCPS
and SRCPS) with respect to the number of pairs (K)
in the result of KCPQ. Sections 6.3 and 6.4 show
the effect of the disk page size and the size of the
strip over the execution of the algorithms, respectively.
Section 6.5 examines the effect of the size of LRU buffer
in terms of performance of the proposed algorithms.
Section 6.6 presents a brief outline of an extensive set
of experiments for the execution of εDJQ. Finally, in
Section 6.7 a summary from the experimental results is
reported.

6.1. Experimental Setup and Implementation
Details

In order to evaluate the behavior of the proposed
algorithms, we have used four large real spatial data
sets of North America, representing cultural landmarks
(NAcl consisting of 9203 points) and populated places
(NApp consisting of 24493 points), roads (NArd)
consisting of 569120 line-segments, and railroads
(NArr) consisting of 191637 line-segments. To create
large sets of points, we have transformed the MBRs
of line-segments from NArd and NArr into points
by taking the center of each MBR (i.e. |NArd| =
569120 points, |NArr| = 191637 points). Moreover,
in order to get double amount of points from NArr
and NArd we choose the two points (min, max)
of the MBR of each line-segment (i.e. |NArdD| =
1138240, |NArrD| = 383274). The data of these 6 files
were normalized in the range [0, 1]2 (NAclN, NAppN,
NArrN, NArrND, NArdN and NArdND). We have also
created 6 combinations of input sets (NAppN on

K

NArrN , NAppN on
K
NArdN , NArrN on

K
NArdN ,

NArrN on
K
NArdND, NArrND on

K
NArdN and

NArrND on
K
NArdND) for the query processing.

We have also created synthetic clustered data sets
of 125000, 250000, 500000 and 1000000 points, with
125 clusters in each data set (uniformly distributed in
the range [0, 1]2), where for a set having N points,
N/125 points were gathered around the center of each
cluster, according to Gaussian distribution. We made
4 combinations of synthetic data sets by combining
two separate instances of data sets, for each of the
above 4 cardinalities (i.e. 125KC1N on

K
125KC2N ,

250KC1N on
K

250KC2N , 500KC1N on
K

500KC2N ,
and 1000KC1N on

K
1000KC2N).

All experiments were performed on a PC with Intel
Core 2 Duo, 2.2 GHz CPU with 4 GB of RAM
and several GBs of secondary storage, with Ubuntu
Linux v. 12.04 LTS (Linux OS), using the GNU
C/C++ compiler (gcc). In this OS it is set the value
CLOCKS PER SEC = 106, but the time interval for
two sequential timeslots is 104 Tics. So in the time of
two seconds we have 2 ∗ 106/104 = 200 Tics. The unit
of the time measurement is 10 ms and all experiments
have duration at least 2000 ms. Also every experiment
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was executed for 5 times and as execution time we
got the average between 3 values which was remained
after subtraction the maximum and minimum value of
5 initial values.

In our previous paper [57], it is proven that the semi-
circle variant of both algorithms Classic Plane-Sweep
and Reverse Run Plane-Sweep has the better efficiency
in execution time for KCPQ. For this, all experiments
were executed for CCPS and RCPS. For the KCPQ
and for all (4) algorithms we set four questions. How the
value of K, disk page size, size of the strips and size of
the LRU buffer, affects the efficiency of the algorithms.
For each question we have executed experiments for the
previous 10 combinations of data sets.

The performance measurements to show the efficiency
of our algorithms are:

1. The execution time of processing the DJQ (i.e.
response time). The execution time was measured
for overall execution time of the DJQ algorithms.
This measure is reported in milliseconds (ms) and
represents the overall CPU time consumed, as well
as the I/O time performed by the algorithms (i.e.
execution time = CPU time + I/O time).

2. The number of X-axis distance calculations (dx).
3. The number of disk accesses (disk-pages read).

To measure the effectiveness of our algorithms, we can
use the selection ratio, which is defined as the fraction
of pairs considered by the algorithms for processing
over the total number of possible pairs. It is just the
opposite to the pruning ratio, and a pair selected occurs
when a candidate pair from two strips is considered for
processing according to its dx distance.

With respect to some implementation details, in our
case, a data file is a sequence of records (points 2-
dimensional). They are stored in binary files virtually
divided into pages whose size is set at the file creation.
As we know, in order to design algorithms for processing
KCPQ (K must be fixed in advance), an extra data
structure that holds the K closest pairs is needed. This
data structure is organized as a (binary) max-heap [55],
called maxKHeap, and holds pairs of points sorted
according to their distances dist (i.e. the key is dist).
This data structure stores the K closest pairs of points
with the smallest distance processed so far, and the
pair of points with the largest distance resides on top
of the maxKHeap (the root), and we will discard the
unnecessary pairs of points using its distance value.
Initially, the maxKHeap is empty and the distance of
all elements inside this data structure is infinity (∞).
The pairs of points are inserted in the maxKHeap until
it gets full. Then, when a new pair is discovered, if its
distance dist is smaller than the top of the maxKHeap,
then the root is removed and this new pair is inserted in
the maxKHeap, updating this data structure. Finally,
for εDJQ, maxKHeap is not needed and the resultF ile
is used, which is another binary file whose description
and processing has been shown in Section 3.3.

K FCCPS SCCPS FRCPS SRCPS Total

1 38.78 33.72 25.32 24.41 122.23
10 45.41 44.24 31.80 35.71 157.16
100 57.08 58.57 43.55 51.28 210.48
1000 93.33 96.51 78.08 87.68 355.60
10000 227.41 232.22 194.24 203.33 857.20

TABLE 4. Execution time in ms for KCPQ using FCCPS,
SCCPS, FRCPS and SRCPS for NArrN on

K
NArdND.
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FIGURE 11. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for NArrN on

K

NArdND.

6.2. The effect of the number of pairs (K)

In order to examine the effect of the number of pairs
(K) of the algorithms in terms of performance, we set
the value of K from the set of values (1, 10, 100, 1000
and 10000); the size of disk page equals to 4 KBytes; the
size of strip is 16 KBytes; and there is no LRU buffer
(its size is 0).

6.2.1. The exection time
The results for the measure of execution time were
similar for all input data sets. Table 4 and Figure 11
show the execution time in ms when KCPQ is executed
by the algorithms FCCPS, SCCPS, FRCPS and SRCPS
on NArrN on

K
NArdND data sets. As the value of

K increases the execution time increases, but the rate
of the increment continuously increases and the way of
addiction for these quantities is complex. For example
using FCCPS algorithm from K = 1 to K = 10 the
time increased 17%, from K = 10 to K = 102 26%,
from K = 102 to K = 103 64% and from K = 103 to
K = 104 144%.

In all experiments and for all data sets FCCPS wins
33-16 times vs SCCPS and, FRCPS wins 42-8 times
vs SRCPS. Comparing the best result between FCCPS
and SCCPS (variants of Classic Plane-Sweep algorithm)
and the best result between FRCPS and SRCPS
(variants of Reverse Run Plane-Sweep algorithm) for
every combination of data sets, we can conclude that
FRCPS is faster in all (50-0) cases. Figure 11 represents
the values of the execution time of the queries for
K = 1, 10, 102, 103, 104 of the Table 4.
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K FCCPS SCCPS FRCPS SRCPS

1 31.73% 27.59% 20.72% 19.97%
10 28.89% 28.15% 20.23% 22.72%
100 27.12% 27.83% 20.69% 24.36%
1000 26.25% 27.14% 21.96% 24.66%
10000 26.53% 27.09% 22.66% 23.72%

TABLE 5. Fraction of execution time of each algorithm
on the total time for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS for NArrN on

K
NArdND.
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FIGURE 12. Execution time in fractions for KCPQ
using FCCPS, SCCPS, FRCPS and SRCPS on NArrN on

K

NArdND.

Table 5 shows the values of the execution time of
each query run by each algorithm as a fraction of the
total time consumed by all algorithms for the same
query. In the Figure 12 is represented the values of the
Table 5. Each rectangle has height equal to the total
time consumed by all algorithms for each query. It is
shown that the FRCPS (blue line with blue triangles as
markers) needed 20.23% up to 22.66% of the total time
to execute the queries, so it is the fastest algorithm for
all values of K > 1. Only for the case of K = 1, the
SRCPS algorithm becomes slightly faster, executing the
query in 24.41 ms which is the 19.97% of the total time
consumed by all algorithms.

6.2.2. The number of the dx distance calculations
The results with respect to the number of dx distance
calculations were similar for all input data sets. Table
6 and Figure 13 show the values of this metric when
KCPQ is executed by the algorithms FCCPS, SCCPS,
FRCPS and SRCPS on NArrN on

K
NArdND data

sets. As the value of K increases the number of dx
distance calculations also increases. However, while the
number of K increases geometrically with a ratio of 10,
the number of dx distance calculations increases to a
ratio ranging between 1.83 and 2.66. For example using
SRCPS algorithm from K = 1 to K = 10 the number of
dx distance calculations increased 266%, from K = 10
to K = 102 183%, from K = 102 to K = 103 207% and
from K = 103 to K = 104 213%.

In all experiments and for all data sets SCCPS wins
32-18 times vs FCCPS and, SRCPS wins 44-6 times

K FCCPS SCCPS FRCPS SRCPS Total

1 3.17 2.06 0.99 0.99 7.11
10 5.80 4.69 3.61 3.61 17.72
100 12.45 11.34 10.23 10.23 44.26
1000 33.82 32.73 31.48 31.46 129.48
10000 101.46 100.40 98.46 98.31 398.63

TABLE 6. Number of dx distance calculations is millions
(×106) for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for NArrN on

K
NArdND.

K FCCPS SCCPS FRCPS SRCPS

1 43.9% 28.6% 13.7% 13.7%
10 32.7% 26.5% 20.4% 20.4%
100 28.1% 25.6% 23.1% 23.1%
1000 26.1% 25.3% 24.3% 24.3%
10000 25.5% 25.2% 24.7% 24.7%

TABLE 7. Fraction of number of dx distance calculations
of each algorithm on the total number of dx distance
calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for NArrN on

K
NArdND.

vs FRCPS. Comparing the best result between FCCPS
and SCCPS and the best result between FRCPS and
SRCPS for every combination of data sets, we can
conclude that RR algorithm needs fewer dx distance
calculations in all cases (50-0).

Table 7 shows the values of the number of dx distance
calculations of each query executed by each algorithm as
a fraction of the total number of dx distance calculations
needed by all algorithms for the same query. In the
Figure 13 are represented the values of the Table 7.
Each rectangle has height equal to the total number
of dx distance calculations needed by all algorithms.
It is shown that the SRCPS (green line with green
triangles as markers) needed 13.7% up to 24.7% of
the total number of dx distance calculations needed
to execute the queries. The FRCPS algorithm has
almost equal number of dx distance calculations so its
line is overwritten from the line of the SRCPS. The
RR algorithm needs smaller number of dx distance
calculations in all cases.

6.2.3. The number of the disk accesses (pages read)
The results for the metric of number of disk accesses
(pages read) were similar for all input data sets and this
performance measure proved to be the most important
factor that shaped the results. Table 8 shows the
values of this metric when KCPQ is executed by the
algorithms FCCPS, SCCPS, FRCPS and SRCPS on
NArrN on

K
NArdND data sets. As the value of K

increases the number of disk accesses increases. But the
rate of this increment is too small. While the number K
increases geometrically with a ratio of 10, the number
of pages read also increases, for example, the FRCPS
algorithm steps with 0.051%, 0.358%, 1.069%, 3.678%.

In all experiments and for all data sets FCCPS wins
50-0 times vs SCCPS and, FRCPS wins 50-0 times vs
SRCPS. Comparing the best result between FCCPS and
SCCPS and the best result between FRCPS and SRCPS
for every combination of data sets, we can conclude
that FRCPS needs fewer disk accesses in all cases (50-
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FIGURE 13. Fraction of number of dx distance
calculations of each algorithm on total number of dx distance
calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on NArrN on

K
NArdND.

K FCCPS SCCPS FRCPS SRCPS Total

1 13340 13991 7824 9136 44291
10 13340 16455 7828 11928 49551
100 13348 18495 7856 14252 53951
1000 13388 19387 7940 15364 56079
10000 13540 19583 8232 15772 57127

TABLE 8. Number of disk accesses (in pages read) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
NArrN on

K
NArdND.

0). Table 9 shows the values of the number of disk
accesses of each query executed by each algorithm as a
fraction of the total number of disk accesses needed by
all algorithms for the same query. Figure 14 represents
the values of Table 9. Each rectangle has height equal
to the total number of disk accesses needed by all
algorithms for each query.

Summarizing the results of experiments on the effect
of K in the execution time, the number of dx distance
calculations and the number of pages needed to be
read, we can say that the exponential growth of
K = 1, 10, 102, 103, 104 causes: (1) Increase in the
execution time but not geometrical. (2) The fastest
algorithm proved to be the FRCPS. (3) Increase in the
number of dx-distance calculations with a lower ratio
(ranging from 1.8 to 3.7). (4) Economical algorithm
proves to be the SRCPS. The number of disk accesses
required by FCCPS and FRCPS algorithms increases
with the growth of K, unlike SCCPS and SRCPS whose
increment is more pronounced.

K FCCPS SCCPS FRCPS SRCPS

1 30.1% 31.6% 17.7% 20.6%
10 26.9% 33.2% 15.8% 24.1%
100 24.7% 34.3% 14.6% 26.4%
1000 23.9% 34.6% 14.2% 27.4%
10000 23.7% 34.3% 14.4% 27.6%

TABLE 9. Fraction of number of disk accesses of each
algorithm on the total number of disk accesses for KCPQ
using FCCPS, SCCPS, FRCPS and SRCPS for NArrN on

K

NArdND.
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FIGURE 14. Fraction of number of disk accesses of
each algorithm on total number of disk accesses for KCPQ
using FCCPS, SCCPS, FRCPS and SRCPS on NArrN on

K

NArdND.

pg FCCPS SCCPS FRCPS SRCPS Total

1 843 897 627 658 3024
2 834 881 620 640 2976
4 829 874 616 632 2951
8 828 870 614 628 2939
16 827 870 613 628 2938

TABLE 10. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 1000KC1N on

K

1000KC2N .

6.3. The effect of the disk page size (pg)

In order to examine the effect of the disk page size (pg)
in terms of performance of the algorithms, we set the
value of K = 1000; the size of disk page (pg) = 1, 2,
4, 8 and 16 KBytes; the size of strip is 16 KBytes; and
there is no LRU buffer (its size is 0).

6.3.1. The execution time
The results for the measure of execution time were
similar for all input data sets. Table 10 and Figure
15 show the execution time in ms when KCPQ is
executed by the algorithms FCCPS, SCCPS, FRCPS
and SRCPS on 1000KC1N on

K
1000KC2N data sets.

As the page size increases the execution time is reduced,
but the rate of decrement continuously decreases. For
example, using SRCPS algorithm from pg = 1KB to
pg = 2KB the time decreased 2.66%, from pg = 2KB
to pg = 4KB 1.30%, from pg = 4KB to pg = 8KB
0.66% and from pg = 8KB to pg = 16KB 0.00%. In
the Figure 15 is shown that RR algorithms are faster
than the Classic ones.

Table 11 shows the execution time values as a fraction
of each algorithm’s time on the total execution time
consumed by all algorithms and for all page sizes. In
all experiments and for all data sets FCCPS wins 48-
2 times vs SCCPS and, FRCPS wins 50-0 times vs
SRCPS. Comparing the best result between FCCPS and
SCCPS and the best result between FRCPS and SRCPS
for every combination of data sets, we can conclude that
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FIGURE 15. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 1000KC1N on

K

1000KC2N .

pg FCCPS SCCPS FRCPS SRCPS

1 27.89% 29.65% 20.72% 21.74%
2 28.04% 29.61% 20.84% 21.51%
4 28.09% 29.63% 20.87% 21.41%
8 28.16% 29.60% 20.89% 21.35%
16 28.18% 29.62% 20.88% 21.36%

TABLE 11. Fraction of execution time of each
algorithm on the total execution time for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 1000KC1N on

K

1000KC2N .

FRCPS is the fastest in all cases. Figure 16 represents
the values of the execution time of the queries for disk
page having size 1, 2, 4, 8 and 16 KB which are shown
in the Table 11. The rectangles represent the total
time consumed by all algorithms to execute every query.
It is shown that the increment of the disk page size,
for sizes larger than 4 KB do not give advantage in
query execution for any algorithm. Experiments with
page sizes larger than 32 KB show that the execution
becomes slightly slower.

The fastest algorithm is the FRCPS and the best
disk page size is 8 (for real data sets) and 16 KB (for
synthetic data sets), that is larger the physical I/O unit.

6.3.2. The number of dx distance calculations
The results with respect to the number of dx distance
calculations are similar for all input data sets. In the
Table 12, we can see the values of this metric when
KCPQ is executed by the algorithms FCCPS, SCCPS,
FRCPS and SRCPS on 1000KC1N on

K
1000KC2N

data sets. As the value of disk page size increases,
the number of dx distance calculations stays almost
constant.

In all experiments and for all data sets SCCPS wins
30-20 times vs FCCPS and, SRCPS wins 44-6 times
vs FRCPS. Comparing the best result between FCCPS
and SCCPS and the best result between FRCPS and
SRCPS for every combination of data sets, we can
conclude that RR algorithms need fewer dx calculations
in all cases (50-0).
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FIGURE 16. Execution time in fraction of the current
value of each algorithm on the total execution time of all
algorithms for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 1000KC1N on

K
1000KC2N .

pg FCCPS SCCPS FRCPS SRCPS Total

1 528.0 554.6 381.0 380.4 1844.0
2 529.3 554.8 381.8 381.0 1846.9
4 529.3 554.8 381.8 381.0 1846.9
8 529.5 554.9 382.0 381.4 1847.8
16 529.5 554.9 382.0 381.4 1847.8

TABLE 12. Number of dx distance calculations in millions
(×106) for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 1000KC1N on

K
1000KC2N .

Table 13 shows the values of the number of dx
distance calculations of each query executed by each
algorithm as a fraction of the total number of dx
distance calculations needed by all algorithms for the
same query. In the Figure 17 are represented the
values of the Table 13. Each rectangle has height equal
to the total number of dx calculations needed by all
algorithms. It is shown that the SRCPS (green line
with green triangles as markers) needed 20.63% up to
20.64% of the total number of dx distance calculations
needed to execute the queries. The FRCPS algorithm
has almost equal number of dx distance calculations
so its line is overwritten by the line of the SRCPS.
The RR algorithms need smaller number of dx distance
calculations in all cases.

6.3.3. The number of the disk accesses (pages read)
The results for the metric of number of disk accesses
(pages read) were similar for all input data sets and this
performance measure proved to be the most important

pg FCCPS SCCPS FRCPS SRCPS

1 28.63% 30.08% 20.66% 20.63%
2 28.66% 30.04% 20.67% 20.63%
4 28.66% 30.04% 20.67% 20.63%
8 28.65% 30.03% 20.68% 20.64%
16 28.65% 30.03% 20.68% 20.64%

TABLE 13. Fraction of number of dx distance calculations
of each algorithm on the total number of dx distance
calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 1000KC1N on

K
1000KC2N .
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FIGURE 17. Fraction of number of dx distante
calculations of each algorithm on the total number of dx
distance calculations of all algorithms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 1000KC1N on

K

1000KC2N .

pg FCCPS SCCPS FRCPS SRCPS Total

1 63044 96126 53988 105668 318826
2 31178 47453 26594 52082 157307
4 15590 23729 13298 26042 78659
8 7802 11806 6678 13032 39318
16 3902 5905 3340 6517 19664

TABLE 14. Number of disk accesses (pages read) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
1000KC1N on

K
1000KC2N .

factor that shaped the results. Table 14 shows the
values of this metric when KCPQ is executed by the
algorithms FCCPS, SCCPS, FRCPS and SRCPS on
1000KC1N on

K
1000KC2N data sets. As the disk

page size (pg) increases, the number of disk accesses
decreases. The rate of this decrement is quite stable.
While the disk page size increases geometrically with a
ratio of 2, the number of pages read decrease smoothly,
for example, the FRCPS algorithm steps with 50.74%,
50.00%, 49.78%, 49.99%.

In all experiments and for all data sets FCCPS wins
50-0 times vs SCCPS and, FRCPS wins 50-0 times vs
SRCPS. Comparing the best result between FCCPS
and SCCPS and, the best result between FRCPS and
SRCPS for every combination of data sets, we can
conclude that FRCPS needs fewer disk accesses in all
cases (50-0). Table 15 shows the values of the number of
disk accesses of each query executed by each algorithm
as a fraction of the total number of disk accesses needed
by all algorithms for the same query. In the Figure
18 are represented the values of the Table 15. Each
rectangle has height equal to the total number of disk
accesses needed by all algorithms.

Summarizing the results of experiments on the effect
of disk page size in the execution time, the number of dx
distance calculations and the number of pages needed to
be read, we can say that the growth of pg = 1, 2, 4, 8, 16
causes: (1) Decrease in the execution time not larger
than 15% on real data sets and not larger than 3% on

pg FCCPS SCCPS FRCPS SRCPS

1 19.77% 30.15% 16.93% 33.14%
2 19.82% 30.17% 16.91% 33.11%
4 19.82% 30.17% 16.91% 33.11%
8 19.84% 30.03% 16.98% 33.15%
16 19.84% 30.03% 16.99% 33.14%

TABLE 15. Fraction of number of disk accesses of
each algorithm on the total number of disk accesses for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
1000KC1N on

K
1000KC2N .
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FIGURE 18. Fraction of number of disk accesses (pages
read) of each algorithm on the total number of disk accesses
of all algorithms for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS for 1000KC1N on

K
1000KC2N .

synthetic data sets. (2) The fastest algorithm proves
the FRCPS. (3) The number of dx distance calculations
remains quite stable. (4) Economical algorithm proves
the SRCPS. The number of disk accesses required by
FCCPS and FRCPS algorithms decreases hardly, but
for the SCCPS and SRCPS this decreasing is not so
hard.

6.4. The effect of the size of strips (ss)

In order to examine the effect of the size of the strips
(ss) in terms of performance of the algorithms, we set
the value of K = 1000; pg = ss (size of disk page =
size of strip), the size of strip (ss) = 2, 4, 8, 16 and 32
KBytes; and there is no LRU buffer (its size is 0). In
the previous section 6.3.1 it was proved that the page
size, having constant the size of strip (but larger than
the disk page size), affects the execution time up to 15%
in some cases. In order to neutralize this effect of page
size with respect to the execution time, we set equal
size for pg and ss.

6.4.1. The execution time
The results for the metric of execution time were similar
for all input data sets. Table 16 and Figure 19 show
the execution time in ms when KCPQ is executed by
the algorithms FCCPS, SCCPS, FRCPS and SRCPS on
250KC1N on

K
250KC2N data sets. As the strip size

increases, the execution time is reduced, but the rate of
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ss FCCPS SCCPS FRCPS SRCPS Total

2 150.00 155.38 118.04 126.25 549.67
4 142.67 144.52 111.67 116.48 515.34
8 135.33 139.11 108.95 113.70 497.09
16 121.57 135.56 107.89 111.48 476.50
32 115.37 131.25 108.25 110.00 464.87

TABLE 16. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 250KC1N on

K

250KC2N .
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FIGURE 19. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 250KC1N on

K

250KC2N .

decreasing continuously decreases. For example, using
SCCPS algorithm from ss = 2KB to ss = 4KB the
time decreased 6.99%, from ss = 4KB to ss = 8KB
3.74%, from ss = 8KB to ss = 16KB 3.18% and from
ss = 16KB to ss = 32KB 3.01%. In the Figure 19
is shown that the RR algorithms are faster than the
Classic ones.

Table 17 shows the execution time values as a fraction
of each algorithm’s time on the total execution time
consumed by all algorithms and for all strip sizes. In
all experiments and for all data sets FCCPS wins 46-
4 times vs SCCPS and, FRCPS wins 50-0 times vs
SRCPS. Comparing the best result between FCCPS and
SCCPS and the best result between FRCPS and SRCPS
for every combination of data sets, we can conclude that
FRCPS is the fastest in all cases. Figure 20 represents
the values of the execution time of the queries for strips
having sizes 2, 4, 8, 16 and 32 KB which are shown in
the Table 17. The rectangles represent the total time
consumed by all algorithms to execute every query. It
is shown that the increment of the strip size, for sizes
larger than 32 KB do not give advantage in terms of
query execution time for any algorithm. Experiments
with strip sizes larger than 32 KB are shown that the
execution becomes slower.

The fastest algorithm is FRCPS and the best strip
size is 32 KB for real data sets and 16 KB for synthetic
data sets, in all cases larger than the physical I/O unit.

ss FCCPS SCCPS FRCPS SRCPS

2 27.29% 28.27% 21.47% 22.97%
4 27.68% 28.04% 21.67% 22.60%
8 27.22% 27.98% 21.92% 22.87%
16 25.51% 28.45% 22.64% 23.40%
32 24.82% 28.23% 23.29% 23.66%

TABLE 17. Fraction of execution time of each algorithm
on the total execution time for KCPQ using FCCPS,
SCCPS, FRCPS and SRCPS for 250KC1N on

K
250KC2N .
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FIGURE 20. Execution time in fraction of the current
value of each algorithm on the total execution time of all
algorithms for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 250KC1N on

K
250KC2N .

6.4.2. The number of dx distance calculations
The results with respect to the number of dx distance
calculations were similar for all input data sets. Table
18 and Figure 21 show the values of this metric when
KCPQ is executed by the algorithms FCCPS, SCCPS,
FRCPS and SRCPS on 250KC1N on

K
250KC2N data

sets. As the value of strip size increases the number of
dx distance calculations remains almost constant.

In all experiments and for all data sets SCCPS wins
30-20 times vs FCCPS and, SRCPS wins 37-13 times
vs FRCPS. Comparing the best result between FCCPS
and SCCPS and the best result between FRCPS and
SRCPS for every combination of data sets, we can
conclude that RR algorithm needs fewer dx calculations
in all cases (50-0).

Table 19 shows the values of the number of dx
distance calculations of each query executed by each
algorithm as a fraction of the total number of dx
distance calculations needed by all algorithms for the
same query. In the Figure 21 are represented the

ss FCCPS SCCPS FRCPS SRCPS Total

2 84.4 84.6 63.6 63.7 296.3
4 83.3 84.0 63.5 63.6 294.4
8 81.2 82.6 63.2 63.4 290.4
16 72.4 81.0 63.1 63.1 279.6
32 67.7 77.7 63.0 62.1 270.6

TABLE 18. Number of dx distance calculations in millions
(×106) for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 250KC1N on

K
250KC2N .
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ss FCCPS SCCPS FRCPS SRCPS

2 28.49% 28.54% 21.47% 21.50%
4 28.31% 28.52% 21.56% 21.61%
8 27.96% 28.44% 21.77% 21.83%
16 25.89% 28.95% 22.58% 22.57%
32 25.04% 28.71% 23.30% 22.96%

TABLE 19. Fraction of number of dx distance calculations
of each algorithm on the total number of dx distance
calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS for 250KC1N on

K
250KC2N .
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FIGURE 21. Fraction of number of dx distante
calculations of each algorithm on the total number of dx
distance calculations of all algorithms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for 250KC1N on

K

250KC2N .

values of the Table 19. Each rectangle has height equal
to the total number of dx calculations needed by all
algorithms. It is shown that the FRCPS (blue line
with blue triangles as markers) needed 21.47% up to
23.30% of the total number of dx distance calculations
needed to execute the queries. The SRCPS algorithm
has almost equal number of dx distance calculations
so its line is overwritten from the line of the FRCPS.
The RR algorithm needs smaller number of dx distance
calculations in all cases.

6.4.3. The number of the disk accesses (pages read)
The results for the metric of number of read accesses
(pages read) were similar for all input data sets and this
performance measure proved to be the most important
factor that shaped the results. Table 20 shows the
values of this metric when KCPQ is executed by the
algorithms FCCPS, SCCPS, FRCPS and SRCPS on
250KC1N on

K
250KC2N data sets. As the strip size

(ss) increases the number of disk accesses decreases.
The rate of this decrement is quite stable. While the
strip size increases geometrically with a ratio of 2,
the number of pages read decreases, for example, the
SRCPS algorithm steps with 60.17%, 56.13%, 52.99%,
51.58%.

In all experiments and for all data sets FCCPS wins
50-0 times vs SCCPS, and FRCPS wins 50-0 times vs
SRCPS. Comparing the best result between FCCPS and

ss FCCPS SCCPS FRCPS SRCPS Total

2 11992 17484 10223 18854 58553
4 4620 6878 4015 7510 23023
8 1973 2971 1723 3295 9962
16 908 1377 797 1549 4631
32 436 659 381 750 2226

TABLE 20. Number of disk accesses (pages read) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
250KC1N on

K
250KC2N .

ss FCCPS SCCPS FRCPS SRCPS

2 20.48% 29.86% 17.46% 32.20%
4 20.07% 29.87% 17.44% 32.62%
8 19.81% 29.82% 17.30% 33.08%
16 18.61% 29.73% 17.21% 33.45%
32 19.59% 29.60% 17.12% 33.69%

TABLE 21. Fraction of number of disk accesses of
each algorithm on the total number of disk accesses for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
250KC1N on

K
250KC2N .

SCCPS and the best result between FRCPS and SRCPS
for every combination of data sets, we can conclude
that FRCPS needs fewer disk accesses in all cases (50-
0). Table 21 shows the values of the number of disk
accesses of each query executed by each algorithm as a
fraction of the total number of disk accesses needed by
all algorithms for the same query. In the Figure 22 are
represented the values of the Table 21. Each rectangle
has height equal to the total number of disk accesses
needed by all algorithms for each query.

Summarizing the results of experiments on the effect
of strip size in the execution time, the number of dx
distance calculations and the number of pages needed
to be read, we can say that the exponential growth
of ss = 21, 22, 23, 24, 25 causes: (1) Decrease in the
execution time not larger than 15% for all, real and
synthetic data sets. (2) The fastest algorithm proves
the FRCPS. (3) The number of dx distance calculations
remains quite stable. (4) Economical algorithm proves
the SRCPS. The number of disk accesses needed by all
algorithms decreases notably, but the best behaviour
for this performance measure is for FRCPS.

6.5. The effect of the LRU buffer (bs)

In order to examine the effect of the size of the LRU
buffer (bs) in terms of performance of the algorithms,
we set the value of K = 1000; the size of disk page (pg)
= 16 KBytes; the size of strip (ss) = 16 KBytes; and
the size of LRU buffer (bs) = 0, 128, 256, 512, 1024
KBytes.

Regarding the effect of the LRU-buffer on the
performance of the algorithms, it is expected that only
the execution time will be affected (possibly reduced),
as a result of finding in RAM (and not reading from
disk) some of the strips that are needed for processing.
Nevertheless, there is a cost for the management of
the LRU-buffer. It is not expected that the LRU-
buffer will have any effect on the number of dx distance
calculations, since this performance measure is not
affected whether the data are in RAM or in disk.
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FIGURE 22. Fraction of number of disk accesses (pages
read) of each algorithm on the total number of disk accesses
of all algorithms for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS for 250KC1N on

K
250KC2N .

bs(KB) FCCPS SCCPS FRCPS SRCPS Total

0 120.00 122.55 108.25 117.65 468.45
128 119.80 121.96 111.05 115.56 468.37
256 120.20 122.16 111.11 115.19 468.66
512 121.37 123.53 112.22 117.22 474.34
1024 127.92 131.04 118.63 122.75 500.34

TABLE 22. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for NArrND on

K

NArdND.

6.5.1. The execution time
The results for the metric of execution time were not
similar for all input data sets. As a general note,
we can say that for each algorithm as the size of
the LRU buffer increases, the execution time was also
increased. Table 22 and Figure 23 show the execution
time in ms when KCPQ is executed by the algorithms
FCCPS, SCCPS, FRCPS and SRCPS on NArrND on

K

NArdND data sets. We show this increment of the
time between the execution without buffering and the
buffer, having the maximum size (1 MB) values up to
23.25% were obtained (for the combination of datasets
NAppN on

K
NArdN and for FRCPS algorithm).

For the combinations of the synthetic data sets, the
maximum increment had value up to 4.5%. We have
selected to show the results about the execution time for
the largest combination of real data sets, NArrND on

K

NArdND, in the Table 22 and Figure 23.
Figure 23 shows that the FRCPS algorithm is the

fastest. In all experiments and for all data sets FCCPS
wins 46-4 times vs SCCPS and, FRCPS wins 50-0 times
vs SRCPS. Comparing the best result between FCCPS
and SCCPS and the best result between FRCPS and
SRCPS for every combination of data sets, we can
conclude that FRCPS is the fastest in all cases.

6.5.2. The number of strips found in LRU buffer
The results for the metric of the number of strips found
in the LRU buffer were similar for all input data sets.
For this, we present the values of this number according
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FIGURE 23. Execution time in ms for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for NArrND on

K

NArdND.

bs(KB) FCCPS SCCPS FRCPS SRCPS Total

0 0 0 0 0 0
128 1038 1581 38 2088 5793
256 1061 1581 51 2174 4867
512 1087 1581 51 2176 4895
1024 1122 1581 51 2177 4931

TABLE 23. Number of the strips found in the LRU buffer
for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
NArrND on

K
NArdND.

to the size of the buffer in the Table 23.
Table 23 shows that exist one maximum number

of strips that must be found in the LRU buffer not
depending from the size of the buffer. For FRCPS
algorithm this number is very small, up to 51 strips,
and was appeared from the size of the buffer equal or
larger than 256 KB. We can see that this number is only
the 0.87% relative to the total number of strips found
from all algorithms in the LRU buffer having the same
size. For the combination of NArrND on

K
NArdND

data sets the FRCPS algorithm does not found any strip
in the LRU buffer except the largest buffer of 1MB in
which was found 1 from 873 strips which was read. The
FRCPS algorithm has no need to use the LRU buffer,
but the results on the execution time depicted this
algorithm as the absolute winner for all combinations
of data sets and for all sizes of LRU buffer. The fastest
execution was proved without any buffering.

6.6. Experimental results for εDJQ

In this section, we are going to study the effect of
the increment of distance threshold (ε) for εDJQ. In
order to examine the effect of such distance in the
performance of the εDJQ algorithms, we set the value
of ε1 equal to zero (ε1 = 0) and ε2 = ε from the set of
values {(0, 1.25, 2.5, 5, 10)× 10−5}; the size of disk page
(pg) = 4 KBytes; the size of strip (ss) = 16 KBytes;
and there is no LRU buffer (its size is 0).
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ε × 10−5 εFCCPS εSCCPS εFRCPS εSRCPS Total

0 39.32 36.52 26.35 23.65 125.89
1.25 74.09 83.72 63.06 77.13 298.00
2.5 101.96 112.15 92.35 106.81 413.27
5 157.65 168.43 150.34 165.58 642.00
10 269.37 281.46 266.34 282.85 1100.02

TABLE 24. Execution time in ms for εDJQ using
εFCCPS, εSCCPS, εFRCPS and εSRCPS for NArrN onε

NArdND.
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FIGURE 24. Execution time in ms for εDJQ using
εFCCPS, εSCCPS, εFRCPS and εSRCPS for NArrN onε

NArdND.

6.6.1. The execution time
The results for the measure of execution time are similar
for all input data sets. Table 24 and Figure 24 show the
execution time in ms when the εDJQ is executed by the
algorithms εFCCPS, εSCCPS, εFRCPS and εSRCPS
on NArrN onε NArdND data sets. As the value of
ε increases the execution time grows, and the rate of
the increment continuously grows. For example, using
εFCCPS algorithm from ε = 0 to ε = 1.25 × 10−5

the time increased 209%, from ε = 1.25 × 10−5 to
ε = 2.5×10−5 37%, from ε = 2.5×10−5 to ε = 5×10−5

53% and from ε = 5 × 10−5 to ε = 10 × 10−5 70%. In
the Figure 24 is shown that the εFRCPS algorithm is
the fastest.

In all experiments and for all data sets εFCCPS
wins 40-10 times vs εSCCPS and, εFRCPS wins 45-
5 times vs εSRCPS. Comparing the best result between
εFCCPS and εSCCPS and the best result between
εFRCPS and εSRCPS for every combination of data
sets, we can conclude that εFRCPS is the fastest
in the most (34-16) cases. Figure 24 represents the
values of the execution time of the queries for ε =
{(0, 1.25, 2.5, 5, 10)× 10−5} of the Table 24.

Table 25 shows the values of the execution time of
each query run by each algorithm as a fraction of the
total time consumed by all algorithms for the same
query. Figure 25 represents the values of Table 25. Each
rectangle has height equal to the total time consumed
by all algorithms for each query. It is shown that
the εFRCPS (blue line with blue triangles as markers)
needed 20.93% up to 24.21% of the total time to execute
the queries, so it is the fastest algorithm for all values

ε× 10−5 εFCCPS εSCCPS εFRCPS εSRCPS

0 31.39% 28.89% 20.93% 18.79%
1.25 24.83% 28.09% 21.16% 25.88%
2.5 24.67% 27.14% 22.35% 25.85%
5 24.56% 26.24% 23.42% 25.79%
10 24.49% 25.59% 24.21% 25.71%

TABLE 25. Fraction of execution time of each algorithm
on the total execution time for εDJQ using εFCCPS,
εSCCPS, εFRCPS and εSRCPS for NArrN onε NArdND.
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FIGURE 25. Execution time in fraction of the current
value of each algorithm on the total execution time of all
algorithms for εDJQ using εFCCPS, εSCCPS, εFRCPS and
εSRCPS for NArrN onε NArdND.

of ε > 0. For the value of ε = 0 the εSRCPS algorithm
was faster since the fraction of the time was 18.79%.

6.6.2. The number of dx distance calculations
The results with respect to the number of dx distance
calculations were similar for all input data sets. Table
26 and Figure 26 show the values of this metric when
εDJQ is executed by the algorithms εFCCPS, εSCCPS,
εFRCPS and εSRCPS on NArrN onε NArdND data
sets. As the value of ε increases the number of dx
distance calculations also increases. However, while the
value of ε increases geometrically with a ratio of 2, the
number of dx distance calculations increases to a ratio
ranging between 1.57 and 2. For example using εSRCPS
algorithm from ε = 1.25 × 10−5 to ε = 2.5 × 10−5

the number of dx distance calculations increased 99%,
from ε = 2.5 × 10−5 to ε = 5 × 10−5 99%, and from
ε = 5× 10−5 to ε = 10× 10−5 100%.

In all experiments and for all data sets εSCCPS
wins 50-0 times vs εFCCPS and, εFRCPS wins 34-16
times vs εSRCPS. Comparing the best result between

ε × 10−5 εFCCPS εSCCPS εFRCPS εSRCPS Total

0 2.40 1.20 0.33 0.33 4.35
1.25 25.22 24.13 23.16 23.16 95.67
2.5 48.04 46.96 45.99 45.99 186.98
5 93.71 92.65 91.68 91.68 369.72
10 184.99 183.97 183.00 183.00 734.95

TABLE 26. Number of dx distance calculations in millions
(×106) for εDJQ using εFCCPS, εSCCPS, εFRCPS and
εSRCPS for NArrN onε NArdND.
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ε× 10−5 εFCCPS εSCCPS εFRCPS εSRCPS

0 55.07% 29.76% 7.61% 7.56%
1.25 26.36% 25.22% 24.21% 24.21%
2.5 25.69% 25.11% 24.60% 24.60%
5 25.35% 25.06% 24.80% 24.80%
10 25.17% 25.03% 24.90% 24.90%

TABLE 27. Fraction of number of dx distance calculations
of each algorithm on the total number of dx distance
calculations for εDJQ using εFCCPS, εSCCPS, εFRCPS
and εSRCPS for NArrN onε NArdND.
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FIGURE 26. Fraction of number of dx distante
calculations of each algorithm on the total number of
dx distance calculations of all algorithms for εDJQ using
εFCCPS, εSCCPS, εFRCPS and εSRCPS for NArrN onε

NArdND.

εFCCPS and εSCCPS and the best result between
εFRCPS and εSRCPS for every combination of data
sets, we conclude that RR algorithm needs fewer dx
distance calculations in all cases (50-0).

Table 27 shows the values of the number of dx
distance calculations of each query executed by each
algorithm as a fraction of the total number of dx
distance calculations needed by all algorithms for the
same query. In the Figure 26 are represented the
values of the Table 27. Each rectangle has height equal
to the total number of dx calculations needed by all
algorithms. It is shown that the εFRCPS (blue line
with blue triangles as markers) needed 7.61% for the
case of ε = 0 and for the other cases from 24.21% up to
24.90% of the total number of dx distance calculations
needed to execute the queries. The εSRCPS algorithm
has a little fewer dx distance calculations than εFRCPS
only in the case ε = 0 and in all other cases almost
equal number of dx distance calculations so its line
is overwritten from the line of the εFRCPS. The RR
algorithm needs smaller number of dx calculations in
all cases.

6.6.3. The number of the disk accesses (pages read)
The results for the metric of number of disk accesses
(pages read) were similar for all input data sets and this
performance measure proved to be the most important
factor that shaped the results. Table 28 shows the

ε × 10−5 εFCCPS εSCCPS εFRCPS εSRCPS Total

0 13340 13215 7824 7824 42203
1.25 13380 19223 7900 15220 55723
2.5 13420 19439 8016 15460 56335
5 13516 10535 8204 15720 56975
10 13704 19587 8608 16156 58055

TABLE 28. Number of disk accesses (pages read) for
εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS for
NArrN onε NArdND.

ε× 10−5 εFCCPS εSCCPS εFRCPS εSRCPS

0 31.61% 31.31% 18.54% 18.54%
1.25 24.01% 34.50% 14.18% 27.31%
2.5 23.82% 34.51% 14.23% 27.44%
5 23.72% 34.29% 14.40% 27.59%
10 23.61% 33.74% 14.83% 27.83%

TABLE 29. Fraction of number of disk accesses of
each algorithm on the total number of disk accesses for
εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS for
NArrN onε NArdND.

values of this metric when εDJQ is executed by the
algorithms εFCCPS, εSCCPS, εFRCPS and εSRCPS
on NArrN onε NArdND data sets. As the value of ε
increases, the number of disk accesses increases. But the
rate of this increment is too small. While the number ε
increases geometrically with a ratio of 2, the number of
pages read increases with a lower ratio, for example, the
εFRCPS algorithm steps with 0.971%, 1.468%, 2.345%
and 4.924%.

In all experiments and for all data sets εFCCPS
wins 46-4 times vs εSCCPS and εFRCPS wins 40-10
times vs εSRCPS. Comparing the best result between
εFCCPS and εSCCPS and the best result between
εFRCPS and εSRCPS for every combination of data
sets, we can conclude that εFRCPS needs fewer disk
accesses in all cases (50-0). Table 29 shows the values
of the number of disk accesses of each query executed
by each algorithm as a fraction of the total number
of disk accesses needed by all algorithms for the same
query. Figure 22 represents the values of Table 29. Each
rectangle has height equal to the total number of disk
accesses needed by all algorithms for each query.

Summarizing the results of experiments on the effect
of ε (for εDJQ) in the execution time, the number of dx
distance calculations and the number of pages needed
to be read, we can say that the exponential growth of
ε = {(0, 1.25, 2.5, 5, 10) × 10−5} causes: (1) Increase in
the execution time but not geometrical. (2) The fastest
algorithm proves to be the εFRCPS. (3) Increase in the
number of dx distance calculations with a lower ratio
(ranging from 1.57 to 2). (4) Economical algorithm
proves to be the εFRCPS. The number of disk accesses
required by εFCCPS and εFRCPS algorithms increases
with the growth of ε, unlike εSCCPS and εSRCPS
whose increment is more pronounced.

The experiments was continued in the same form
as in sections 6.3, 6.4 and 6.5 for KCPQ made, in
order to study the effect of the disk page size (pg),
the size of strip (ss) and the size of the LRU-buffer
(bs). In general the results were similar between KCPQ
and εDJQ. Fastest in execution time and reading fewer
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FIGURE 27. Fraction of number of disk accesses (pages
read) of each algorithm on the total number of disk
accesses of all algorithms for εDJQ using εFCCPS, εSCCPS,
εFRCPS and εSRCPS for NArrN onε NArdND.

pages from the disk proved the εFRCPS algorithm for
εDJQ. We can remark only that, for the case of ε = 0
the RRPS algorithms is much better than the Classic
ones. For the cases that ε > 0 the results for FRCPS
are better than εFRCPS. This result is explained if we
accept that the most important factors that improve
the performance of an algorithm for KCPQ are (1)
how quickly will be entered in the maxKHeap pairs
with very short distances, and (2) how efficiently the
algorithm will manage the largest distance of these
pairs. In contrast to KCPQ, εDJQ does not need
the fastest finding pairs with short distance since the
maximum acceptable distance is consistently defined
by the user beforehand (ε). There remains only
the smart and economical management of the given
distance on the final performance of an algorithm and
its characterization in terms of profitability.

6.7. Effectiveness study

To study the effectiveness of the proposed algorithms
we will use the selection ratio, and remember that it is
the fraction of pairs considered by the algorithms for
processing over the total number of possible pairs (a
pair is selected for processing if its dx distance is smaller
than the distance of the K-th closest pair found so far).
This effectiveness measure is the opposite to the pruning
ratio, and therefore the smaller the selection ratio, the
higher the power of pruning of the algorithm.

As to study the efficiency, we can allow for different
parameters as K, pg, ss and bs. Now, we are going
to consider only the increment of K. Tables 30 and
31 reports the effect of K on the selection ratio for
real and synthetic data, respectively. In order to
extract conclusions from the tables, we have to take
into account that for the combination of real data there
are 191, 637, 138, 240 = 218,128,898,880 possible pairs
(2.18 × 1011) and for the synthetic data we have 1012

K FCCPS SCCPS FRCPS SRCPS

1 12.72 7.67 3.00 2.99
10 18.75 13.70 9.01 9.01
100 33.98 28.94 24.19 24.18
1000 82.96 77.96 72.89 72.84
10000 237.97 233.17 226.47 226.12

TABLE 30. Fraction of pairs (×10−6) processed over the
total number of possible pairs (selection ratio) for KCPQ
using FCCPS, SCCPS, FRCPS and SRCPS for NArrN on

K

NArdND.

K FCCPS SCCPS FRCPS SRCPS

1 1.85 1.61 1.13 1.21
10 32.66 29.66 23.65 23.68
100 85.20 88.43 67.62 66.83
1000 266.13 278.41 191.37 190.96
10000 691.96 699.59 509.33 510.08

TABLE 31. Fraction of pairs (×10−6) processed over
the total number of possible pairs (selection ratio) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for
1000KC1N on

K
1000KC2N .

possible pairs. We can observe that an increasing K
makes the selection ratio of the proposed algorithms
that continuously increases. Therefore, the effectiveness
of our algorithms degrades as K turns to be too
large, due to the increase of the distance of the K-
th closest pair. And, the larger the K value, the
smaller the difference between RR and Classic plane-
sweep algorithms (we can mainly see this fact on real
data) in terms of selection ratio.

From the tables, we can observe that SRCPS is
the winner in most of the cases, but FRCPS is very
close to it (being the winner in the remaining cases).
It means that FRCPS sacrifices slightly effectiveness
for efficiency, in the use of the partitioning technique.
And an interesting conclusion from this effectiveness
measure is that the best algorithms in pruning are the
RRPS ones, and this conclusion is according to the
efficiency. Moreover, since the selection ratio depends
on the dx distance, it is the most representative measure
for pruning and for effectiveness.

And we have to highlight that the average
performance in pruning (for all combinations) for real
and synthetic data follows the same trend. Such as
behaviour is shown in Tables 32 and 33, where SRCPS
is the winner in most of the cases, but FRCPS is very
close to it.

K FCCPS SCCPS FRCPS SRCPS

1 5.51 3.16 0.98 0.97
10 43.33 27.40 12.60 12.58
100 64.64 48.70 33.78 33.76
1000 137.71 121.45 105.65 105.51
10000 459.94 442.55 421.18 418.22

TABLE 32. Average fraction of pairs (×10−6) processed
over the total number of possible pairs (selection ratio) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for all
real data sets.
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K FCCPS SCCPS FRCPS SRCPS

1 3.76 3.80 2.74 2.73
10 75.68 77.67 62.26 59.76
100 189.65 203.28 171.06 165.91
1000 573.11 587.07 462.33 462.16
10000 1456.99 1485.84 1252.13 1253.75

TABLE 33. Average fraction of pairs (×10−6) processed
over the total number of possible pairs (selection ratio) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for all
synthetic data sets.

6.8. Conclusions from the experiments

In our previous work [57] was proved that the RRPS
algorithms are faster than the Classic ones for KCPQ
when the data is stored and processed in the main
memory. It is due to that Classic PS algorithms always
process the data sets from left to right and the runs
of the two sets are generally interleaved. On the
other hand, RRPS algorithms process pairs of points
in opposite X-orders, starting from pairs of points that
are the closest possible to each other, avoiding further
processing of pairs that is guaranteed not to be part
of the final result and restricting the search space by
using dx distance values on the sweeping axis. Due
to this, the pruning distance (key dist of MaxKHeap
root) is expected to be updated more quickly, the query
processing cost of RRPS algorithms will be smaller and
it will become faster.

From the experiments presented here and when the
data are stored on disk, we can conclude that the main
factors that determine the execution time are: (1) The
number of operations and comparisons; (2) The number
of pages that are transferred from the disk to main
memory; (3) Volumes of memory required and their
management; and (4) How quickly the maxKHeap is
filled up with pairs having small distances, and how
fast the pruning distance (key dist of MaxKHeap root) is
progressively reduced (it is important for KCPQ, unlike
the εDJQ), because the lower its value is, the greater
the power of pruning. Every one of these factors affects
differently the final result, but FRCPS is the fastest
for the increment of K, disk page size (pg), size of
strips (ss) and size of LRU buffer (bs), although SRCPS
requires less memory volume compared to FRCPS.

With respect to the number of dx distance
calculations, SRCPS algorithm seems to be better
(lower number of calculations) in most of the cases,
although FRCPS is quite close (i.e. the difference
compared to SRCPS in total calculations is rather
small). It is due to that the for RRPS algorithms,
if we ignore the non-sweeping dimension, the number
of calculations can be proved to be optimal, since we
always start with the closest pair of points.

For the case of the number of disk accesses, FRCPS
needs less disk accesses in all experiments (K, pg and
ss). It is due to the combination of RRPS processing
and the uniform filling technique, since for uniform
filling the number of strips is predefined beforehand
and it is smaller than for uniform splitting (higher non-

uniformity of data leads to larger difference between
the two algorithms). This smaller number of strips
leads to smaller number of strips read from disk, and
then smaller number of disk accesses. In addition, the
number of disk accesses seems to be the most influential
factor governing the algorithm efficiency in execution
time, and the difference between SRCPS and FRCPS
becomes significant for this performance measure, in
which FRCPS is totally dominating, and thus, faster.

In conclusion, FRCPS is the best algorithm for all
performance or efficiency measures, and the reasons are
the following:

1. a smaller number of strips that partition the space,
2. a smaller number of strips read from disk,
3. a more consistent application of RRPS processing

in the management of the strips.

Moreover, this work emphasizes on the effective use
of dx distance for pruning, considering the selection
ratio as the effectiveness measure. The main conclusion
in this context is that RRPS algorithms are the most
effective algorithm for pruning, highlighting SRCPS
slightly over FRCPS.

Finally, from this extensive experimental study we
can conclude that RRPS algorithms are the most
efficient and effective for K-CPQ and εDJQ, and we
should highlight the FRCPS variant.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented several efficient and effective
algorithms (FCCPS, SCCPS, FRCPS and SRCPS) for
K-CPQ and εDJQ, when neither inputs are indexed.
First of all, we have enhanced the classic plane-sweep
algorithm for DJQs with two improvements: sliding
window and sliding semi-circle. Next, we propose a
new algorithm called Reverse Run Plane-Sweep, that
improves the processing of the classic plane-sweep
algorithm for DJQs, minimizing the Euclidean and
sweeping axis distance calculations. Then, as the main
contribution of this work the four algorithms (FCCPS,
SCCPS, FRCPS and SRCPS) for KCPQ and εDJQ are
proposed, without the use of an index on each data
set saving on disk (neither inputs are indexed). They
employ a combination of the plane-sweep algorithms
and space partitioning techniques to join the data
sets. Finally, we present results of an extensive
experimental study, where efficiency and effectiveness
measures are compared for the proposed algorithms.
That performance study conducted on long spatial
data sets (real and synthetic), when neither inputs
are indexed, we can conclude that RRPS algorithms
are the most efficient and effective for K-CPQ and
εDJQ, and we should highlight that FRCPS is the
best variant, which combines RRPS processing with
uniform filling partition technique. For the future
work, we plan to further investigate to adapt the new
plane-sweep-based algorithms, when neither input is
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indexed, to other related DJQs (as Iceberg Distance
Join Query [49] and K Nearest Neighbour Join query
[50]). Moreover, it would be interesting to study
approximate implementations of proposed algorithms
by using the distance-based approximate techniques
presented in [42].
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