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ABSTRACT
In this work a method for detecting distance-based outliers
in data streams is presented. We deal with the sliding win-
dow model, where outlier queries are performed in order to
detect anomalies in the current window. Two algorithms
are presented. The first one exactly answers outlier queries,
but has larger space requirements. The second algorithm
is directly derived from the exact one, has limited memory
requirements and returns an approximate answer based on
accurate estimations with a statistical guarantee. Several
experiments have been accomplished, confirming the effec-
tiveness of the proposed approach and the high quality of
approximate solutions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, Performance

Keywords
Anomaly detection, data streams, distance-based outliers

1. INTRODUCTION
In many emerging applications, such as fraud detection,

network flow monitoring, telecommunications, data manage-
ment, etc., data arrive continuously, and it is either unnec-
essary or impractical to store all incoming objects. In this
context, an important challenge is to find the most excep-
tional objects in the stream of data.

A data stream is a large volume of data coming as an
unbounded sequence, where, typically, older data objects
are less significant than more recent ones, and thus should
contribute less. This is because characteristics of the data
may change during the evolution, and then the most recent
behavior should be given larger weight.
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Therefore, data mining on evolving data streams is often
performed based on certain time intervals, called windows.
Two main different data streams window models have been
introduced in literature: landmark window and sliding win-
dow [15].

In the first model, some time points (called landmarks)
are identified in the data stream, and analysis are performed
only for the stream portion which falls between the last land-
mark and the current time. Then, the window is identified
by a fixed endpoint and a moving endpoint.

In contrast, in the sliding window model, the window is
identified by two sliding endpoints. In this approach, old
data points are thrown out as new points arrive. In particu-
lar, a decay function is defined, that determines the weight
of each point as a function of elapsed time since the point
was observed. A meaningful decay function is the step func-
tion. Let W be a parameter defining the window size and
let t denote the current time, the step function evaluates to
1 in the temporal interval [t−W + 1, t], and 0 elsewhere.

In all window models the main task is to analyze the por-
tion of the stream within the current window, in order to
mine data stream properties or to single out objects con-
forming with characteristics of interest.

In this work, the problem of detecting objects, called out-
liers, that are abnormal with respect to data within the cur-
rent window, is addressed. Specifically, the sliding window
model with the step function as decay function is adopted.

There exist several approaches for the problem of singling
out the objects mostly deviating from a given collection of
data [8, 6, 17, 11, 16, 1, 22]. In particular, distance-based
approaches [17] exploit the availability of a distance function
relating each pair of objects of the collection. They identify
as outliers the objects lying in the most sparse regions of
the feature space.

Distance-based definitions [17, 24, 4] represent an use-
ful tool for data analysis [18, 14, 21]. Given parameters k
and R, an object is a distance-based outlier if less than k
objects in the input data set lie within distance R from it
[17]. Distance-based outliers have robust theoretical founda-
tions, since they are a generalization of different statistical
tests. Furthermore, they are computationally efficient, since
distance-based outlier scores are a monotonic non-increasing
function of the portion of the database already explored.

Two algorithms for detecting distance-based outliers in
data streams are presented. The first one exactly answers
outlier queries at any time, but has larger space require-
ments. The second algorithm is directly derived from the
exact one, has limited memory requirements and returns an
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approximate answer based on highly accurate estimations
with a statistical guarantee.

The approach proposed in this work introduces a novel
concept of querying for outliers. Specifically, previous work
deals with continuous queries, that are queries evaluated
continuously as data stream objects arrive; conversely, we
deal with one-time query, that are queries evaluated once
over a point-in-time (for a survey on data streams query
models refer to [7]).

The underlying intuition is that, due to stream evolution,
object properties can change over time and, hence, evaluat-
ing an object for outlierness when it arrives, although mean-
ingful, can be reductive in some contexts and sometimes
misleading. On the contrary, by classifying single objects
when a data analysis is required, data concept drift typical
of streams can be captured. To this aim, it is needed to sup-
port queries at arbitrary points-in-time, called query times,
which classify the whole population in the current window
instead of the single incoming data stream object. To our
best knowledge this is the first work performing outlier de-
tection on windows at query time.

The example below shows how concept drift can affect the
outlierness of data stream objects.

Example 1. Consider the following figure.
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The two diagrams represent the evolution of a data stream of
1-dimensional objects. The abscissa reports the time of arrival
of the objects, while the ordinate reports the value assumed by
each object. Let the number k of nearest neighbors to consider be
equal to 3, and let the window size W be equal to 7. The dashed
line represents the current window.

The left diagram reports the current window at time t7 (com-
prehending the interval [t1, t7]), whereas the right diagram re-
ports the current window at time t12 (comprehending the interval
[t6, t12]).

First of all, consider the diagram on the left. Due to the data
distribution in the current window at time t7, the object o7 is an
inlier, since it has four neighbors in the window. Then, if an anal-
ysis were required at time t7, the object o7 would be recognized
as an inlier. Note that o7 belongs to a very dense region.

Nevertheless, when stream evolves the data distribution changes.

The region, which o7 belongs to, becomes sparse, and data stream

objects assume lower values. On the right figure is reported the

evolution of the stream until time t12. In the novel distribution,

o7 has not any neighbor. Then, if an analysis were required at

time instant t12, o7 should be recognized as an outlier. Note that

now o7 belongs to a very sparse region. 2

The contribution of this work can be summarized as fol-
lows:

• the novel task of data stream outlier query is intro-
duced;

• an exact algorithm to efficiently detect distance-based
outliers in the introduced model is presented;

• an approximate algorithm is derived from the exact
one, based on a trade off between spatial requirements
and answer accuracy; the method approximates object
outlierness with a statistical guarantee;

• by means of experiments on both real and synthetic
data sets, the efficiency and the accuracy of the pro-
posed techniques are shown.

The rest of the work is organized as follows. Section 2 briefly
surveys related outlier detection approaches and data stream
algorithms. Subsequent Section 3 formally states the data
stream outlier query problem which this work deals with.
Section 4 describes both the exact and the approximate al-
gorithm. Section 5 illustrates experimental results. Finally,
Section 6 presents conclusions.

2. RELATED WORK
Distance-based outliers have been first introduced by Knorr

and Ng [17]. Given parameters k and R, an object is a
distance-based outlier if less than k objects in the input
data set lie within distance R from it. This definition is a
solid one, since it generalizes several statistical outlier tests.

Some variants of the original definition have been subse-
quently introduced in literature. In particular, Ramaswamy
et al. [24], in order to rank the outliers, introduced the fol-
lowing definition: given k and n, an object o is an outlier if
no more than n− 1 other objects in the dataset have higher
value for Dk than o, where Dk(o) denotes the distance of
the kth nearest neighbor of o. Subsequently, Angiulli and
Pizzuti [4, 5, 3], with the aim of taking into account the
whole neighborhood of the objects, proposed to rank them
on the basis of the sum of the distances from the k nearest
neighbors, rather than considering solely the distance to the
kth nearest neighbor. In this work we will deal with the
definition provided in [17].

Knorr et al. [17, 19] presented two algorithms. The first
one is a block nested loop algorithm that runs in O(dN2)
time, where N is the number of points and d the number
of dimensions of the data set, while the second one is a
cell-based algorithm that is linear with respect to N , but
exponential in d. The last method is fast only if d is small.
On the other hand, the nested loop approach does not scale
well. Thus, efforts for developing efficient algorithms that
scale to large datasets have been subsequently made.

In [24] the authors presented two novel algorithms to de-
tect outliers. The first assumes the dataset is stored in a
spatial index, like the R∗-tree [10]. The second algorithm,
first partitions the input points using a clustering algorithm,
and then prunes the partitions that cannot contain outliers.

Bay and Schwabacher [9], introduced the distance-based
outlier detection algorithm ORCA. Basically, ORCA en-
hances the naive block nested loop algorithm with a sim-
ple pruning rule and randomization, obtaining a near linear
scaling on large and high dimensional data sets. The CPU
time of the this nested loop schema is often approximately
linear in the dataset size.

Distance-based methods previously discussed are designed
to work in the batch framework, that is under the assump-
tion that the whole data set is stored in secondary mem-
ory and multiple passes over the data can be accomplished.

812



Hence, they are not suitable for data streams. While the
majority of the approaches to detect anomalies in data min-
ing consider the batch framework, some researchers have
attempted to address the problem of online outlier detec-
tion.

In [27] the SmartSifter system is presented, addressing
the problem from the viewpoint of statistical learning the-
ory. The system employs an online discounting learning al-
gorithm to learn a probabilistic model representing the data
source. Every time a datum is input, SmartSifter evaluates
how large the datum is deviated relative to a normal pat-
tern. In [2] the focus is on detecting rare events in a data
stream. Rare events are defined on the basis of their devi-
ation from expected values computed on historical trends.
In [25] a distributed framework to approximate data distri-
butions coming from a sensor network is presented. Kernel
estimators are exploited to approximate data distributions.
The technique is used to report outlying values in the union
of the readings coming from multiple sensors.

The last work applies the outlier technique presented with
two outlier definitions, i.e. distance-based and MDEF-based
[23]. However, it must be said that this method is specifi-
cally designed to support sensor networks. Moreover, all the
techniques above discussed, detect anomalies online as they
arrive, and one-time queries are not supported.

3. STATEMENT OF THE PROBLEM
Next, the formalism employed in this work will be pre-

sented. First of all, the formal definition of distance-based
outlier is recalled [17].

Definition 3.1 (Distance-Based Outlier).
Let S be a set of objects, obj an object of S, k a positive inte-
ger, and R a positive real number. Then, obj is a distance-
based outlier (or, simply, an outlier) if less than k objects
in S lie within distance R from obj.

Objects lying at distance not greater than R from obj are
called neighbors of obj. The object obj is not considered a
neighbor of itself.

A data stream DS is a possible infinite series of objects
. . . , objt−2, objt−1, objt, . . ., where objt denotes the object
observed at time t. We will interchangeably use the term
identifier and the term time of arrival to refer to the time
t at which the object objt was observed for the first time.

We assume that data stream objects are elements of a
metric space on which is defined a distance function. In the
following we will use d to denote the space required to store
an object, and ∆ to denote the temporal cost required for
computing the distance between two objects.

Given two object identifiers tm and tn, with tm ≤ tn, the
window DS[tm, tn], is the set of n − m + 1 objects objtm ,
objtm+1, . . ., objtn . The size of the window DS[tm, tn] is
n−m + 1.

Given a window size W , the current window is the window
DS[t − W + 1, t], where t is the time of arrival of the last
observed data stream object.

An expired object obj is an object whose identifier id is
less than the lower limit of the current window, i.e. such
that id < t−W + 1.

Now, we are in the position of defining the main problem
we are interested in solving.

Definition 3.2 (Data Stream Outlier Query).

Given a data stream DS, a window size W , and fixed pa-
rameters R and k, the Data Stream Outlier Query is: return
the distance based outliers in the current window.

The time t, which a data stream outlier query is requested
at, is called query time.

In the following the neighbors of an object obj that pre-
cede obj in the stream and belong to the current window are
called preceding neighbors of obj. Furthermore, the neigh-
bors of an object obj that follow obj in the stream and belong
to the current window are called succeeding neighbors of obj.

According to Definition 3.1, an inlier is an object obj
having at least k neighbors in the current window. In other
words, let α be the number of preceding neighbors of obj
and β be the number of succeeding neighbors of obj, obj is
an inlier if α + β ≥ k.

Let obj be an inlier. Since during stream evolution objects
expire, the number of preceding neighbors of obj decreases.
Therefore, if the number of succeeding neighbors of obj is
less than k, obj could become an outlier depending on the
stream evolution. Conversely, since obj will expire before
its succeeding neighbors, inliers having at least k succeed-
ing neighbors will be inliers for any stream evolution. Such
inliers are called safe inliers.

Example 2. The following diagram represents the evolution of a
one-dimensional data stream. Let k be 3, and let W be 16.

o6

t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t15t14 t16 t17 t18 t19 t20 t21 t22

R

R

R

R

o1

o2

o3 o4

o7

o8

o9
o10

o11

o12

o13

o14

o15

o16

o17

o18
o19

o20

o21

o22

time

va
lu

e

o5

t2

Consider the current window (the dashed one) at time t18: both
o9 and o11 are inliers, since o9 has four neighbors (o5, o10, o14, o15),
and also o11 has four neighbors (o3, o4, o6, o13). Moreover, since
o9 has three succeeding neighbors, it is a safe inlier, while o11 is
not a safe inlier.

Indeed, consider instant t22. The object o9 is still an inlier:

object o5 expired, but o9 has still three (succeeding) neighbors.

Conversely, o11 is now an outlier: objects o3, o4 and o6 expired,

and now it has only one neighbor. 2

4. ALGORITHM
In this section the algorithm STORM, standing for STream

OutlieR Miner, is described. Two variants of the method are
presented.

When the entire window can be allocated in memory, the
exact answer of the data stream outlier query can be com-
puted. In the above setting, the algorithm exact-STORM is
able to exactly answer outlier queries at any time (Section
4.1).

Nevertheless, interesting windows are often so large that
they do not fit in memory, while in some applications only
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limited memory can be allocated . In this case approxima-
tions must be employed. The algorithm approx-STORM is
designed to work in the latter setting by introducing effec-
tive approximations in exact-STORM (Section 4.2). These
approximations guarantee highly accurate answers with lim-
ited memory requirements (Section 4.3).

After having described the two methods, temporal and
spatial costs required to obtain exact and approximate an-
swers will be stated (Section 4.4).

4.1 Exact algorithm
The algorithm exact-STORM is shown in Figure 1. This

algorithm consists of two procedures: the Stream Manager
and the Query Manager. The former procedure receives
the incoming data stream objects and efficiently updates a
suitable data structure that will be exploited by the latter
procedure to effectively answer queries.

In order to maintain a summary of the current window,
a data structure, called ISB (standing for Indexed Stream
Buffer), storing nodes is employed (nodes are defined next).
Each node is associated with a different data stream object.

ISB provides a method range query search, that, given an
object obj and a real number R ≥ 0, returns the nodes in
ISB associated with objects whose distance from obj is not
greater than R. We will describe the implementation of ISB
in Section 4.4.

Now, the definition of node is provided. A node n is a
record consisting of the following information:

• n.obj : a data stream object.

• n.id : the identifier of n.obj, that is the arrival time of
n.obj.

• n.count after : the number of succeeding neighbors of
n.obj. This field is exploited to recognize safe inliers.

• n.nn before: a list, having size at most k, containing
the identifiers of the most recent preceding neighbors
of n.obj. At query time, this list is exploited to recog-
nize the number of preceding neighbors of n.obj. We
assume that both the operation of ordered insertion of
a novel identifier in the list and the operation of search
of an identifier in the list are executed in time O(log k)
(see [20] for a suitable implementation).

The Stream Manager takes as input a data stream DS, a
window size W , a radius R, and the number k of nearest
neighbors to consider.

For each incoming data stream object obj, a novel node
ncurr is created with ncurr.obj = obj. Then a range query
search with center ncurr.obj and radius R is performed in
ISB, that returns the nodes associated with the preceding
neighbors of obj stored in ISB.

For each node nindex returned by the range query search,
since the object obj is a succeeding neighbor of nindex.obj,
the counter nindex.count after is incremented. Moreover,
since the object nindex.obj is a preceding neighbor of obj,
the list ncurr.nn before is updated with nindex.id.

If the counter nindex.count after becomes equal to k, then
the object nindex.obj becomes a safe inlier. Thus, it will
not belong to the answer of any future outlier query. De-
spite this important property, a safe inlier cannot be dis-
carded from ISB, since it may be a preceding neighbor of
a future stream object. Finally, the node ncurr is inserted

into ISB. This terminates the description of the procedure
Stream Manager.

In order to efficiently answer queries, when invoked by the
user, the Query Manager performs a single scan of ISB. In
particular, for each node n of ISB, the number prec neighs of
identifiers stored in n.nn before associated with non-expired
objects is determined. This is accomplished in O(log k) time
by performing a search in the list n.nn before of the iden-
tifier closest to the value t − W + 1, that is the identifier
of the oldest object in n.nn before belonging to the current
window.

The number succ neighs of succeeding neighbors of n.obj
is stored in count after. Thus, if prec neighs + succ neighs
≥ k then the object n.obj is recognized as an inlier, otherwise
it is an outlier and is included in the answer of the outlier
query.

4.2 Approximate algorithm
Figure 2 shows the algorithm approx-STORM. The exact

algorithm requires to store all the window objects. If the
window is so huge that does not fit in memory, or only lim-
ited memory can be allocated, the exact algorithm could be
not employable. However, as described in the following, the
algorithm described in the previous section can be readily
modified to reduce the space required.

With this aim, two approximations are introduced.
Firstly, in order to severely reduce the space occupied, we

do not store all the window objects into ISB. In particu-
lar, objects belonging to ISB can be partitioned in outliers
and inliers. Among the latter kind of objects there are safe
inliers, that are objects that will be inliers in any future
stream evolution. As already observed, despite safe inliers
cannot be returned by any future outlier query, they have
to be kept in ISB in order to correctly recognize outliers,
since they may be preceding neighbors of future incoming
objects.

However, as shown in subsequent Section 4.3, it is suffi-
cient to retain in ISB only a fraction of safe inliers to guaran-
tee an highly accurate answer to the outlier query. Thus, in
order to maintain in ISB a controlled fraction ρ (0 ≤ ρ ≤ 1)
of safe inliers, the following strategy is adopted.

During stream evolution, an object obj of the stream be-
comes a safe inlier when exactly k succeeding neighbors of
obj arrive. At that time, if the total number of safe in-
liers into ISB exceeds ρW , then a randomly selected object
of ISB is removed. The random selection policy adopted
guarantees that safe inliers surviving into ISB are uniformly
distributed in the window.

To answer one-time queries both outliers and non-safe in-
liers, which are objects candidate to become outliers if the
stream characteristics change, have to be maintained in ISB.
Note that, meaningful combinations of the parameters R
and k are only those for which the number of outliers, and
hence of non-safe inliers, amounts to a negligible fraction of
the overall population. Thus, the number of nodes in ISB
can be assumed approximately equal to ρW. In the follow-
ing section it will be discussed how to compute an optimal
value for ρ in order to obtain a statistical guarantee on the
approximation error of the estimation of the number of pre-
ceding neighbors of each data stream object.

The second approximation consists in reducing the size
of each node by avoiding storing the list of the k most re-
cent preceding neighbors. This is accomplished by storing
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Procedure Stream Manager
Input: DS is the data stream;

W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. if the oldest node noldest of ISB expires, then remove the node noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t, ncurr.nn before = ∅,
ncurr.count after = 1;

3. perform a range query search with center obj and radius R into ISB. For each
node nindex returned by the range query:

(a) increment the value nindex.count after;

(b) update the list ncurr.nn before with the object identifier nindex.id;

4. insert the node ncurr into ISB.

Procedure Query Manager
Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:

(a) let prec neighs be the number of identifiers stored in n.nn before associated
with non-expired objects, and let succ neighs be n.count after;

(b) if prec neighs + n.succ neighs ≥ k then mark n.obj as inlier, else mark it as
an outlier;

2. return all the objects marked as outliers.

Figure 1: Exact data stream distance-based outlier detection algorithm.

in each node n, instead of the list n.nn before, just the frac-
tion n.fract before of previous neighbors of n.obj observed in
ISB at the arrival time n.id of the object n.obj. The value
n.fract before is determined as the ratio between the number
of preceding neighbors of n.obj in ISB which are safe inliers
and the total number of safe inliers in ISB, at the arrival
time of n.obj.

At query time, in order to recognize outliers, a scan of
ISB is performed, and, for each stored node n, the number of
neighbors of n.obj in the current window has to be evaluated.
Since only the fraction n.fract before is stored now in n, the
number of preceding neighbors of n.obj in the whole window
at the current time t has to be estimated.

Let α be the number of preceding neighbors of n.obj at the
arrival time of n.obj. Assuming that they are uniformly dis-
tributed along the window, the number of preceding neigh-
bors of n.obj at the query time t can be estimated as

prec neighs = α · W − t + n.id

W
.

Note that n.fract before does not give directly the value α,
since it is computed by considering only the objects stored
in ISB and, thus, it does not take into account removed
safe inliers preceding neighbors of n.obj. However, α can be
safely (see next section) estimated as

α ≈ n.fract before ·W.

Summarizing, the number of preceding neighbors of n.obj
at the query time t can be estimated as

prec neighs = n.fract before · (W − t + n.id).

Recall that to classify objects the sum between the esti-
mated number of its preceding neighbors and the number of

succeeding neighbors is computed. It is worth to point out
that the number of succeeding neighbors is not estimated,
since n.count before provides the true number of succeeding
neighbors of n.obj. Therefore as stream evolves, the above
sum approaches the true number of neighbors in the window.

4.3 Approximation Error Bounds
Now, we discuss how to set the parameter ρ in order to

obtain safe bounds on the approximation error of the esti-
mation.

Let W be the window size, let w be the number of safe
inliers in ISB, let α be the exact number of preceding neigh-
bors of an object at its time of arrival, let eα be the number
of preceding neighbors of the object in ISB which are safe
inliers at its time of arrival, and let µ denote the ratio α

W .

In order to determine an optimal value for ρ, a value for w,
such that eα

w is a good approximation for µ, has to be deter-
mined. Formally, the following property has to be satisfied.
For given δ > 0 and 0 < ε < 1, we want to have:

Pr

����� eαw − µ

���� ≤ ε

�
> 1− δ. (1)

Since ISB contains a random sample of the window safe
inliers, a safe bound for w can be obtained from the well
known Lyapounov Central Limit Theorem.

This theorem asserts that, for any λ

lim
w→∞

Pr

" eα− wµp
wµ(1− µ)

≤ λ

#
= Φ(λ)

where Φ(λ) denotes the cumulative distribution function of
the normal distribution.
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Procedure Stream Manager
Input: DS is the data stream;

W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. if the oldest node noldest of ISB expires, then remove the node noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t, ncurr.count after =
1, and set count before = 0;

3. perform a range query search with center obj and radius R into ISB. For each
node nindex returned by the range query:

(a) increment the value nindex.count after. If the number of safe inliers in ISB
is greater than ρW , then remove from ISB a randomly selected safe inlier;

(b) increment the value count before;

4. set ncurr.fract before = count before
safe inliers

, where safe inliers is the number of safe inliers

into ISB, and insert the node ncurr into ISB.

Procedure Query Manager
Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:

(a) let prec neighs be n.fract before · (W − t + n.id), and let succ neighs be
n.count after;

(b) if prec neighs+ succ neighs ≥ k then mark n.obj as inlier, else mark it as an
outlier;

2. return all the objects marked as outliers.

Figure 2: Approximate data stream distance-based outlier detection algorithm.

Thus, if w is large enough, then the following relation
holds:

Pr

" eα− wµp
wµ(1− µ)

≤ λ

#
≈ Φ(λ).

Now, the result that will allow us to get the needed safe
bound for w can be formally presented.

Theorem 4.1. For any δ > 0 and 0 < ε < 1, if w satisfies
the following inequality

w >
µ(1− µ)

ε2

�
Φ−1

�
1− δ

2

��2

(2)

then it satisfies (1).

Theorem 4.1 is a direct consequence of the central limit the-
orem (see [26] for details).

Now, the bound stated in the above theorem is exam-
ined. Although the provided bound depends on the un-
known value α, it can be safely applied by setting µ to 1

2
.

Therefore, in order to satisfy (1), being w = ρW , it is suffi-
cient to set ρ to the value

ρ =
1

4ε2W

�
Φ−1

�
1− δ

2

��2

. (3)

It is worth to note that the bound for w given by expression
(2) does not depend on the window size W . Furthermore,
since in expression (3) the unknown value µ is safely set to 1

2
,

whenever µ is different to 1
2

the property (1) is guaranteed

for values of ε and δ better than those used to compute w.
In particular, the two following inequalities hold:

Pr

����� eαw − µ

���� ≤ ε

�
> 1− δ∗, and (4)

Pr

����� eαw − µ

���� ≤ ε∗
�

> 1− δ. (5)

In the first inequality, δ∗ is obtained from the following equa-
tion:

1

4ε2

�
Φ−1

�
1− δ

2

��2

=
µ(1− µ)

ε2

�
Φ−1

�
1− δ∗

2
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whereas, in the second one, ε∗ is obtained from

1

4ε2

�
Φ−1

�
1− δ

2

��2

=
µ(1− µ)

ε∗2

�
Φ−1

�
1− δ

2

��2

.

Note that, if the true value for µ is 1
2
, then δ∗ = δ and

ε∗ = ε.
Equation (5) can be rewritten as

Pr

� eα
w
− ε∗ ≤ α

W
≤ eα

w
+ ε∗

�
> 1− δ.

It follows that the maximum error err we can make in com-
puting α is

err = Wε∗ = W · 2ε
p

µ(1− µ).

This value provides the maximum error made in estimating
the total number of neighbors of an object when it arrives.
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Now, we are interested in determining when the above
error will cause a misclassification, i.e. when an inlier (resp.,
an outlier) will be estimated as an outlier (resp., an inlier).

For an object obj having identifier id, when it arrives,
the number of true preceding neighbors is µW . As stream
evolves, some preceding neighbors expire, and, assuming
they are uniformly distributed along the window, in the por-
tion of the stream preceding obj in the current window their
number becomes µ(W − t + id).

To correctly classify obj, if the sum between the number α
of preceding neighbors of obj and the number β of succeeding
neighbors is greater (resp. smaller) than k in the current
window, then also the estimated value for α plus the number
β of succeeding neighbors should be greater (resp. smaller)
than k. Formally, let W = W − t + id be the number of
objects of the current window preceding the object obj with
identifier id, let α = µW be the true value of preceding
neighbors of obj in the current window, let β be the number
of its succeeding neighbors, and let 2Wε

p
µ(1− µ) be the

error err. If α + β is greater than k, then the following
inequality should hold:

µW − 2Wε
p

µ(1− µ) + β > k

Assuming that the distribution of succeeding neighbors is
the same as the distribution of preceding neighbors, β can
be approximated to µ(W−W ), where (W−W ) is the portion
of the stream in the current window succeeding obj. Thus,
for

µ >
kW + 2W

2
ε2 +

q
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µup

(6)

an inlier is recognized with probability (1− δ).
Analogously, if α + β < k, starting from

µW + 2Wε
p

µ(1− µ) + β < k

with the same assumption stated above, we obtain that for

µ <
kW + 2W

2
ε2 −

q
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µdown

(7)

an outlier is recognized with probability (1− δ).
It can be concluded that, if an object obj has more than

µupW or less than µdownW neighbors, it is correctly classi-
fied with probability 1− δ.

Contrariwise, if the number of neighbors of obj is in the
range [µdownW, µupW ] then we have an estimation error

at most equal to 2Wε
p

µ(1− µ) that could lead to a mis-
classification. Both the error and the range are small and
directly proportional to ε. Moreover, they depend on the
current time t. As t increases, the error goes to zero and the
range tends to be empty.

Before concluding, it is worth to recall that object classi-
fication depends also on the number of succeeding neighbors
of the object, whose true value is known.

4.4 Implementation and Cost Analysis
In this section the implementation of ISB is detailed, and

then, temporal and spatial costs of STORM are analyzed.

Implementation details. The ISB data structure is a
pivot-based index [12]. It performs proximity search in any
metric space making use of a certain number of objects (also

called pivots) selected among the objects stored into the in-
dex. Distances among pivots and objects stored into the
index are precalculated when a novel pivot is generated.
When a range query with center obj and radius R is sub-
mitted to the index, the distances between the pivots and
the query object obj are computed. The precalculated dis-
tances are exploited to recognize the index objects lying
at distance greater than R from obj. For each index ob-
ject obj′, if there exists a pivot p, such that |dist(obj, p) −
dist(obj′, p)| > R, then, by the triangular inequality, it is
known that dist(obj, obj′) > R, and obj′ is ignored. Oth-
erwise, obj′ is marked as a candidate neighbor and if the
distance dist(obj′, obj) ≤ R then obj′ is returned as a true
neighbor of obj. By using this kind of technique the range
query search returns the list of neighbors of obj. The per-
formances of pivot-based indexes are related to the number
of pivots employed. In particular the larger is the number of
pivots, the more accurate is the list of candidates, and then
the lower is the number of distances computed. Neverthe-
less, the cost of querying and building the index increases.
In this work the number of pivots used is logarithmic with
respect to the index size. In order to face concept drift, the
older pivot is periodically replaced with an incoming object.

Now, the temporal cost of operations to be executed on
the ISB data structure is analyzed. Recall that the cost of
computing the distance between two objects is ∆. Assume
that the number of nodes stored in ISB is N .

The cost of performing a range query search corresponds
to the cost of computing the distances between an object and
all the pivots plus the cost of determining true neighbors.
Since the number of pivots we used is logarithmic in the size
of the index, the former cost is O(∆ log N). As for the latter
cost, let η (0 ≤ η ≤ 1) be the mean fraction of index objects
marked as candidate neighbors when the radius is set to R.
In order to determine if a candidate is a true neighbor, its
distance from the query object has to be computed. Then,
the cost is O(∆ηN). Supposing that the latter cost is always
greater than the former one, the total cost for the range
query search is O(∆ηN).

The cost of removing an object from the index is constant,
since it practically consists in flagging as empty the entry of
an array.

Finally, as for the insertion of an object obj into ISB, it
requires to compute the distances among obj and all the
pivots. However, since insertion is always performed after
the range query search, these distances are already available
and, then, the insertion cost is constant, too.

Spatial analysis. For exact-STORM, ISB stores all the W
objects of the current window and, for each of them, the list
nn before of the k most recent preceding neighbors, and two
integer numbers. Recall that each object requires space d
and each list requires space k.

For approx-STORM, assuming meaningful combinations
of the parameters, ISB stores approximately ρW objects of
the current window and, for each of them, a counter of pre-
ceding neighbors, and two integer numbers.

Summarizing, the spatial cost of the algorithm STORM
is

• O(W (d + k)) for exact-STORM, and

• O(ρWd) for approx-STORM.

817



0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
Mixed Gauss data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
Rain data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
TAO data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
DARPA data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

Figure 3: Precision and Recall of approx-STORM.

Temporal analysis. The procedure Stream Manager con-
sists of four steps (see Figures 1 and 2). The cost of the step
1 corresponds to the cost of removing an object from ISB,
which, from the discussion above, is constant. Also step 2
has a constant cost.

Step 3 performs a range query search, whose cost isO(∆ηN).
For each of the ηN objects returned by the search, the
exact-STORM performs an ordered insertion into the list
nn before, that costs O(log k) (see Section 4.1), and executes
some other operations having constant cost. Contrariwise,
the approx-STORM possibly removes a node from ISB and
executes some other operations. Both the removal and the
other operations have constant cost.

Finally, step 4 inserts a node into ISB and hence has con-
stant cost. Summarizing, the cost of the procedure Stream
Manager is

• O(∆ηW log k) for exact-STORM, and

• O(∆ηρW ) for approx-STORM.

The procedure Query Manager consists of a scan of the ISB
structure. For each node n, the exact-STORM computes
prec neighs in timeO(log k) (see Section 4.1) by determining
the number of identifiers in n.nn before associated with non-
expired objects. Conversely, the approx-STORM performs
only steps having constant cost. Summarizing, the cost of
the procedure Query Manager is

• O(W log k) for exact-STORM, and

• O(ρW ) for approx-STORM.

5. EXPERIMENTAL RESULTS
In this section, we present results obtained by experiment-

ing the proposed techniques on both synthetic and real data
sets.

First of all, the data set employed are described. The
Gauss data set is a synthetically generated time sequence
of 35,000 one dimensional observations, also used in [23]. It
consists of a mixture of three Gaussian distributions with
uniform noise.

We also used some public real data from the Pacific Ma-
rine Environmental Laboratory of the U.S. National Oceanic
& Atmospheric Administration (NOAA). Data consist of
temporal series collected in the context of the Tropical At-
mosphere Ocean project (TAO)1. This project collects real-
time data from moored ocean buoys for improved detec-
tion, understanding and prediction of El Niño and La Niña,

1See http://www.pmel.noaa.gov/tao/.

which are oscillations of the ocean-atmosphere system in the
tropical Pacific having important consequences for weather
around the globe. The measurements used in experiments
have been gathered each ten minutes, from January 2006 to
September 2006, by a moored buoy located in the Tropical
Pacific.

We considered both a one and a three dimensional data
stream. The Rain data set consists of 42,961 rain measure-
ments. The TAO data set consists of 37,841 terns (SST,
RH, Prec), where SST is the sea surface temperature, mea-
sured in units of degrees centigrade at a depth of 1 meter,
RH is the relative humidity, measured in units of percent
at a height of 3 meters above mean sea level, and Prec is
the precipitation, measured in units of millimeters per hour
at a height of 3.5 meters above mean sea level. The three
attributes were normalized with respect to their standard
deviation.

Finally, we employed the 1998 DARPA Intrusion Detec-
tion Evaluation Data [13], that has been extensively used to
evaluate intrusion detection algorithms. The data consists
of network connection records of several intrusions simulated
in a military network environment. The TCP connections
have been elaborated to construct a data set of 23 numeri-
cal features. We used 50,000 TCP connection records from
about one week of data.

In all experiments, the window size W was set to 10,000
and the parameter k was set to 0.005 ·W = 50. The param-
eter R was selected to achieve a few percent of outliers in
the current window (R = 0.1 for Gauss, R = 0.5 for Rain,
R = 1 for TAO, and R = 1,000 for DARPA).

Furthermore, an outlier query was submitted every one
hundred objects. Measures reported in the sequel are aver-
aged over the total number of queries submitted. The first
query was submitted only after having observed the first W
data stream objects.

The classification accuracy of the method was evaluated.
It is worth to recall that exact-STORM exactly detects distance-
based outliers in the current window. Thus, the answer re-
turned by this algorithm was used to evaluate the quality of
the approximate solution returned by approx-STORM.

The precision and recall measures were employed. Preci-
sion represents the fraction of objects reported by the algo-
rithm as outliers that are true outliers. Recall represents the
fraction of true outliers correctly identified by the algorithm.

Figure 3 shows precision (dark bars, on the left) and recall
(light bars, on the right) achieved by approx-STORM on the
four considered data sets, for increasing values of ρ, that is
ρ = 0.01, ρ = 0.05, and ρ = 0.10.

Interestingly, on the Gauss data set the method practi-
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Figure 4: Number of nearest neighbors associated with the misclassified objects of the Rain data set.

Data set ρ = 0.01 ρ = 0.05 ρ = 0.10 Exact
Gauss 0.17 0.43 0.84 7.52
Rain 0.17 0.47 0.81 7.86
TAO 0.17 0.42 0.62 3.94
DARPA 0.17 0.29 0.47 3.28

Table 1: Elaboration time per single object [msec].

cally returned all and only the true outliers. This is because
in this data set outliers are represented by noise which is
well separated from the data distribution. Notice that other
methods were not able to obtain this very good classification
result.

As for the data sets from the TAO Project, since outliers
there contained are associated to large oscillations of earth
parameters, they lie on the boundary of the overall measure-
ment distribution and are not completely separated from the
rest of the population. Thus, there exists a region of tran-
sition where the approximate algorithm can fail to exactly
recognize outliers (see below in this section for an evalua-
tion of the characteristics of objects on which classification
errors are made).

It is clear by the diagrams that by augmenting the pa-
rameter ρ the precision tends to decrease while the recall
tends to increase. This can be explained since by using a
small sample size the number of nearest neighbors tends to
be overestimated. Anyway, the classification accuracy was
very good, e.g. precision 0.965 and recall 0.942 on the Rain
data set, and precision 0.948 and recall 0.935 on the TAO
data set, for ρ = 0.05.

The DARPA data set represents a challenging classifica-
tion task due the considerable number of attributes it is
composed of. The precision-recall trade-off previously ob-
served is confirmed also on this data set. Moreover, the
classification accuracy is of remarkable quality: for ρ = 0.05,
precision 0.947 and recall 0.956 were achieved.

Table 1 reports the time (in milliseconds) employed by
approx-STORM for various values of ρ (first three columns),
and by exact-STORM (fourth column) to process an incom-
ing data stream object2. Approx-STORM guarantees time
savings with respect to exact-STORM which are in most
cases proportional to the parameter ρ. Differences in perfor-

2Experiments were executed on a Core 2 Duo based machine
having 2GB of main memory.

mances among the various experiments are justified by the
different characteristics of the data sets, and among them,
particularly, by the mean fraction η of objects falling in the
neighborhood of radius R of data stream objects.

Figure 4 shows the distribution of the number of near-
est neighbors associated with objects of the Rain data set
which are misclassified by exact-STORM. These diagrams
are interesting to comprehend the nature of the misclassi-
fied objects returned and the quality of the approximation.
From left to right, diagrams are associated with increasing
values of ρ.

The abscissa reports the number of nearest neighbors,
while the ordinate the cumulated absolute frequency of mis-
classified objects. Two cumulated histograms are included
in each diagram, one concerning outliers and the other con-
cerning inliers.

Light bars (on the left) represent the mean number of
outliers which are reported as inliers. Thus, these misclas-
sifications concern the recall measure. Specifically, a bar of
position k0 and height h0 represents the following informa-
tion: among the objects having at most k0(< 50) nearest
neighbors (and hence outliers), on the average, h0 of them
have been recognized as inliers.

Dark bars (on the right) represent the mean number of
inliers which are reported as outliers. Thus, these misclassi-
fications concern the precision measure. Specifically, a bar
of position k0 and height h0 represents the following infor-
mation: among the objects having at least k0(≥ 50) nearest
neighbors (and hence inliers), on the average, h0 of them
have been recognized as outliers.

These diagrams show that for small sample sizes the num-
ber of errors is biased towards the outliers, due to the over-
estimation effect. Moreover, more interestingly, they show
the nature of the misclassified objects. Indeed, as predicted
by the analysis of Section 4.3, for an object the probabil-
ity of being misclassified greatly decreases with the distance
|k0−k| between the true number k0 of its nearest neighbors
and the parameter k. Indeed, the majority of the misclas-
sified inliers have a number of neighbors close to k. For
example, when ρ = 0.05, almost all the misclassified outliers
have at most 60 neighbors (compare this value with k = 50).

The quality of the approximate answer is thus very high.
Although these objects are not outliers according to Defini-
tion 3.1, from the point of view of a surveillance application,
they could be as interesting as true outliers, since they any-
how lie in a relatively sparse region of the feature space.
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6. CONCLUSIONS
In this work the problem of detecting distance-based out-

liers in streams of data has been addressed. The novel data
stream outlier query task was proposed and motivated, and
both an exact and an approximate algorithm to solve it were
presented. Also, bounds on the accuracy of the estima-
tion accomplished by the approximated method. Finally,
experiments conducted on both synthetic and real data sets
showed that the proposed methods are efficient in terms pro-
cessing time, and the approximate one is effective in terms
of precision and recall of the solution.
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