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Motivations

= Sensor networks have been proposed for many
apps: surveillance, forest fire detection, ...

= Common in most apps:
- Each sensor detects events within its sensing range

- Sensors collaborate to deliver data to processing centre

= Many previous works assume disk sensing model

Prob. |of sensing
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Motivations (cont’d)

" Why disk sensing model?

Easier to design and analyze coverage protocols

* What is wrong with it?
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Not too realistic [Zou 05, Ahmed 05, Cao 05, ...]

Wastes sensor capacity: signals don’t fall abruptly =»
chance to detect events after r,

Activates more sensors = more interference, shorter
network lifetime

Protocols my not function in real environments



Our Work

= New coverage protocol for probabilistic sensing
models (denoted by PCP)

- Simple, energy efficient

- Robust against clock drifts, failures, location inaccuracy

= One model does not fit all sensor types =

- PCP is designed with limited dependence on sensing
model =» can be used with various sensor types

= PCP can use disk sensing model as well
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Related Works

= Lots of coverage protocols assuming disk model
- PEAS [Ye 03], OGDC [Zhang 05], CCP [Xing 05], ...
- We compare PCP (with disk model) vs. OGDC, CCP

= Analysis of probabilistic sensing models

- |Liu 04] studies implications of adopting prob. models

- |[Lazos 06] analyzes prob. of coverage under general
sensing modes and heterogeneous sensors

- Neither presents distributed coverage protocols
= Coverage protocols using probabilistic models
- CCANS [Zou 05] assumes exponential sensing model

- We show that PCP (with expo model) outperforms
CCANS by wide margins
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Probabilistic Sensing Models

Probability of Sensing
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* Several models have been proposed in literature

* Our protocol can work with various models
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Probabilistic Coverage: Definitions

= Def 1: An area A4 is probabilistically covered
with threshold 6 if for every point x in A:

P()=1-[[@-p,(0) 2 6

- where p,(x): prob. that sensor 7 detects events at x

= That is, the collective probability of sensing events
at x by all sensors is at least 0
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Probabilistic Coverage: Definitions (cont’d)

" Def 2: x is called the least-covered point in A4 if:

P(x) < P(y) Vx,yeAand x=Yy

= Ex.: least-covered point
by three sensors using £
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Probabilistic Coverage: Basic Ideas

= Activate sensors such that the least-covered point
in 4 has prob of sensing > 0

= To do this in distributed manner, we
- divide A4 into smaller subareas,
- determine location of the least-covered point,

- activate sensors to meet & coverage in each subarea

* We choose subareas to be equi-lateral triangles
- Activate sensors at vertices, others sleep =

- Yields optimal coverage in disk sensing model [Bai 06]
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Probabilistic Coverage: Basic Ideas (cont’d)

= Size of each triangle?

- Stretch the separation between active sensors to the
maximum while maintaining 0 coverage =»

- Minimize number of activated sensors

* Theorem 1: Maximum Separation under the
exponential sensing model is:
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PCP: Probabilistic Coverage Protocol

* One node randomly enters
active state o

= The node sends an activation oo
message o

= Closest nodes to vertices of
triangular mesh activated 0

- Using activation timers as
function of proximity to vertex

= Activated nodes send
activation messages
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PCP: Further Optimization

" Def 3: o-circle is the smallest circle drawn anywhere
in A4 s.t. there is at least one node inside it

= Minimizes number of nodes in Pactivator

WALIT state =» saves energy

= The diameter o is computed circle

based on node deployment

= Paper shows calculations for
uniform and grid
distributions

candidate node
for activation
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PCP: Convergence and Correctness

* Theorem 2: PCP converges in at most

(T,0% + Tim) /(5 — 6)

steps with every point has a prob. of sensing > 0

- Convergence time depends only on area size
(not number of sensors) = PCP can scale
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PCP: Activated Nodes and Message Complexity

= Theorem 3: PCP activates at most
12/\/3(s — )

nodes to maintain coverage, and exchanges at
most that number of messages
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PCP: Connectivity

* Theorem 4: Nodes activated by PCP will be
connected if communication range r, is greater
than or equal to maximum separation s
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Evaluation: Setup

* We implemented PCP

- in NS-2; worked fine for up to 1,000 nodes, and

- in our own packet level simulator; scaled to more than 20,000 nodes
deployed in a 1 km x 1 km area

- Implemented Expo and Disk sensing models

Used elaborate energy model (Motes) in [Zhang 05][Ye 03]

= Rigorous evaluation to
- Verify correctness
- Show robustness
- Compare PCP against the state-of-the-art protocols:
* Probabilistic coverage protocol : CCANS
* Deterministic coverage protocols : CCP, OGDC

= Only sample results are presented
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Evaluation: Correctness and Savings
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= Connectivity achieved when r. > s

= Significant savings can be achieved by gauging coverage
threshold 0
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Relative number of active sensors
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Evaluation: Robustness
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= Coverage is maintained even with large: (i) location errors,
and (ii) clock drifts

= (Cost: slight increase in number of activated sensors
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Evaluation: PCP vs. CCANS
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= Significant energy savings

* Much longer lifetime
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Evaluation: PCP vs. OGDC, CCP
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= PCP (with disk model) outperforms OGDC and CCP. Why?
- Peak in CCP is due to many HELLO messages

-  OGDC takes longer time to converge
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Conclusions

* Presented a distributed protocol (PCP) for
maintaining coverage under probabilistic and
deterministic sensing models

- Robust, efficient, and outperforms others

- More suitable for real environments than others

= PCP Limitation

- Does not provide coverage with multiple degrees
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Thank You!

Questions??

= Details are available in the extended version of
the paper at:
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