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Abstract 
 

Moving monitoring query on moving objects is an 
important type of query in location based services. 
Existing solutions suffer from high communication cost. 
In this paper, we propose a distributed solution to this 
problem. Our approach employs two ways of 
communications, on-demand access and broadcast 
channel, to reduce communication cost. Two different 
indexes are proposed and evaluated using simulations. 
The performance results indicate that our solution 
achieves from 30% to 60% savings in communications 
when compared to MobiEyes [2]. 
 
1. Introduction 
 

With the advance in wireless communication 
technology and the popularity of positioning systems, a 
variety of location based services have become 
available to the public. Among them, spatial 
monitoring of moving objects is fundamental to these 
applications.   In particular, if the spatial query is 
anchored around a moving object (e.g., monitoring the 
k nearest neighbors of a moving object), this query is 
referred to as a moving query.   In a more complex 
environment where many objects are moving, we can 
also have moving monitoring query over moving 
objects.  For instance, while walking in downtown, the 
user can issue a query like “Find me the available 
TAXIs within two miles.” 

There are three main challenges in answering 
moving queries over moving objects.  First, the query 
results must be updated constantly until the user 
explicitly terminates the continuous query.  Second, the 
data points are moving constantly making location 
updates very expensive.  Third, the region of interest 
(i.e., monitoring region) itself is also changing steadily 
adding significantly more complexity.  Most existing 
solutions employ a centralized approach [5, 6, 7, 8], 
where the focus is on designing efficient data structures 
and algorithms.  The limitations of this approach are 
twofold.  First, the server, with finite computation and 

communication capability, may not be able to cope 
with the high location-update frequency, desired in 
some of the applications.  Second, frequent location 
update is not a natural fit for energy-constrained 
mobile devices.  It can quickly drain the mobile 
batteries.   

Addressing the aforementioned issues is not trivial 
as a lower location-update rate would affect the quality 
of the query results.  Some recent techniques have 
focused on distributed solutions [1, 2, 3, 4].  In a 
distributed environment, mobile objects monitor the 
query, and need to update the server only when the 
query result changes.  This approach requires much 
fewer communications with the server.  Nevertheless, 
the server needs to supply relevant information, from 
time to time, to support the query monitoring processes 
on the mobile devices.  When the number of mobile 
objects increases or the object mobility increases, this 
communication cost can become quite high [1, 2, 3, 4].   
A more scalable solution is desirable. 

In a wireless environment, there are two ways of 
communications between the server and clients.  One 
way is on-demand access, in which client and server 
send messages to each other whenever necessary. 
Another way is using broadcast, where the server 
periodically broadcasts data on an open wireless 
channel.  A client can tune into the channel to retrieve 
the desired data. 

In this paper, we leverage a hybrid of on-demand 
data access and periodic broadcast to design a new 
distributed solution for moving monitoring queries on 
moving objects.  The server sets aside a broadcast 
channel to repeatedly broadcast query information.  
The area of interest is mapped into grid cells.  When a 
mobile client moves from one cell into another cell, it 
tunes into the broadcast channel to download 
information on relevant queries instead of contacting 
the server for the information.  To improve the tuning 
efficiency, we proposed two indexing schemes for the 
broadcast technique.   Our simulation results indicate 
that the proposed solutions achieve from 30% to 60% 
savings in communication cost when compared to 



MobiEyes [2].  The reduction in communications also 
significantly improves energy conservation on the 
mobile devices. 

The remainder of this paper is organized as 
follows.  We discuss some related work in Section 2 to 
make the paper self-contained. In Section 3, we present 
an overview of the proposed environment.  We discuss 
the index structures in Section 4, and the query 
processing technique in Section 5.  The simulation 
study is presented in Section 6.  Finally, we conclude 
this paper in Section 7. 

 
2. Related Work 
 

In a wireless environment, mobile device’s limited 
battery power is a critical concern. Because for a 
mobile device, sending a message consumes more 
energy than receiving a message, there are proposals 
using broadcast channel to replace the on-demand data 
request to save energy. In the existing proposals [10, 12, 
13, 14, 15, 16], the focus is on how to design a good 
index to facilitate data access. Since a mobile object 
has the ability to switch between an active mode and a 
doze mode, with an effective index, it can first tune 
into the broadcast channel to get the predicted arrival 
time of the desired data, then goes back to the doze 
mode, and returns to the active mode to download the 
data when the data comes. 

Two performance metrics are typically used to 
evaluate an index: tuning time and access latency 
(time). The tuning time means the total time that a 
mobile object needs to stay in the active mode to get 
data, which includes the time spent on searching index 
and downloading data. The access latency is referred to 
the total time elapsed from the moment a mobile object 
tuning into the broadcast channel to the moment the 
mobile object actually obtaining the desired data. One 
popular technique to reduce access latency is the (1, m) 
interleaving technique [11], as shown in Fig. 1. In this 
technique, a complete index is broadcast preceding 
every 1/m fraction of the full broadcast cycle. By 
duplicating the index for m times, the waiting time to 
reach an index can be shortened, thus access latency is 
reduced. Please note that this technique is orthogonal to 
any proposed wireless index, and thus can be applied to 
any index. In this paper, we also adopt this interleaving 
technique. 

Moving monitoring query over moving objects has 
been studied extensively. One direction in this area is to 
reduce server side workload by proposing efficient 
server side data structure and index [5, 6, 7, 8]. Another 
direction is to use distributed computing to reduce both 
server side workload and communication cost. Gedik 
and Liu introduced MobiEyes [2], which is capable of 

answering moving range queries over moving objects. 
Wu et al. [1] proposed a distributed solution to answer 
moving kNN queries. Our recent works [3, 4] addressed 
moving range and moving kNN queries in street 
network environment. Moreover, in [9], the authors 
used local-area wireless network to alleviate the high 
communication cost problem. Trajcevski et al. [17] 
worked on how to aggregate query results in a 
distributed environment. 

 
 

Figure 1. Layout for the Interleaving Tech. 
 

To the best of our knowledge, our paper is the first 
to combine broadcast channel and distributed 
computing to answer moving monitoring query over 
moving objects. 
 
3. System Overview 
 

In this section, we give an overview of our system 
and the proposed query processing technique. The 
system consists of a centralized server, a number of 
stationary base stations and a large number of moving 
objects.  A moving object and the server communicate 
with each other through base stations.  We also assume 
that the server can broadcast data on a wireless channel 
accessible to all moving objects.  Each moving object 
has a GPS-like device to determine its location and has 
some computing capability. 

The geographical area of interest is a big 
rectangular area, which is mapped into grid of cells of 
an α × α square area.  Every moving object has a 
unique object ID. When a moving object reports its 
location to the server, the message has the following 
format <i, pi, vi, ti>, where i is the object ID, pi is the 
object’s position, vi is the object’s velocity, and ti is the 
time when the object’s position and velocity are 
recorded.  

In our system, moving range queries are issued by 
moving objects. If a moving object has issued a 
moving query, we call it a query object; otherwise, we 
call it a data object.  A moving range query is modeled 
as a tuple <qid, oid, range>, where qid is the query’s 
ID, oid is the ID of the associated query object, and 
range defines the moving search area around the query 
object.  A query area can be a circle (specified by a 
radius) or a rectangle (specified by width and length).  



The result of a query is a set of identifiers of the 
moving objects currently residing in the query’s region. 
An example is given in Fig. 2.a, where the terrain is 
divided into 16 cells, labeled according to the Hilbert 
Curve order as C1, C2, …, C16.  A query object is drawn 
as a triangle, and the query region is the area covered 
by the circle. Two data objects (drawn as the stars) 
residing in that circle are included as the query result.  

One important concept is the monitoring region of 
a moving range query. Given a query object and its 
current grid cell, the query region can overlap several 
neighboring grid cells.  The union of all grid cells this 
query region may overlap as the query point moves 
inside its current grid cell is referred to as the 
monitoring region for the given query.  In our 
environment, all moving objects within the monitoring 
region of a query must monitor their distance to the 
query point and update the query result if they fall 
within the query region (i.e., the distance is less than 
the range field specified in the query).   As an example, 
the nine grid cells in the upper right corner of Fig. 2.a 
comprise the monitoring region of the query. There are 
two data objects in cells C7 and C11, respectively.  
They are currently not part of the query result, but they 
need to monitor their distance to the query object.  We 
note that the shape of a monitoring region is a 
rectangular area if the query region is a rectangle. 

 

               
               a                                 b 

Figure 2. Example of (a). moving query and 
(b). monitoring region 

 
If a monitoring region of a query overlaps with a 

given grid cell, we say that this query intersects with 
the cell.  When an object moves around, it could exit its 
current cell and enter a new cell. Whenever this 
happens, the object needs to get a new set of queries 
intersecting with the new cell to continue the 
monitoring task.  In Fig. 2.b, the monitoring regions of 
three queries Q3, Q7, and Q9 are represented by the 
three rectangular areas.  The shaded cell in the center 
intersects with all three of these queries. Any object 
moving into this shaded cell should monitor these three 
queries.   Obviously, the costs associated with 
obtaining these relevant queries from time to time 
increases with the increases in the number of data 
objects or the increases in the object mobility.   We 

discuss a broadcast technique to address this issue in 
the following section. 
 
4. Broadcast Index Design 
 

In existing research works [1,2,3,4], when a 
moving object moves to a new cell (or a new road 
segment), the moving object contacts the server to 
request a new set of queries. In this paper, we 
broadcast query information on a wireless channel. 
Instead of sending a message to the server, the moving 
object just tunes into the wireless channel and 
downloads the relevant queries. How to design an 
effective index becomes critical. A good index should 
enable short tuning time and incur little overhead on 
access time. We introduce two indexes in this section. 

Fig. 3 shows the overall structure of the first 
proposed index, named as Grid Index (GI). This index 
consists of two levels. The upper-level index is built on 
top of grid cells, which can be any type of index 
supporting a quick identification of grid cell given a 
geographical location, for example, a quad-tree. In our 
case, since the cell has a fixed pre-known size, no tree 
index is needed. A simple mapping function is 
sufficient to determine the desired cell.  

 

 
Figure 3. Grid Index structure  

 
The low-level index consists of many blocks, with 

each block corresponding to a cell in the upper-level 
index. Inside each block, we store the pointers to all the 
queries intersecting with that corresponding cell. For 
example, two blocks are shown in Fig. 3. The first 
block stores all the pointers to the queries intersecting 
with the cell C1, where P1, P2, etc. are the pointers to 
query Q1, Q2, etc. At the end of each block, we put a 
special tag to indicate the end of that block.  

With the upper-level index, a moving object can 
map its location to the corresponding grid cell. 
Following the pointer in that cell, the object is directed 
to the lower-level index, where the object can 
download the pointers to the queries it should monitor. 
When it sees the tag for the end of a block, it stops 
downloading and goes to doze mode. It only returns to 
active mode when the interested query data buckets 
arrive. 



One drawback of the above mentioned technique 
is that when a mobile object moves from one cell to 
another cell, it has to download a complete new set of 
queries from the broadcast channel that it should 
monitor in the new cell.  

We observe that since the old cell and the new cell 
are adjacent, there are some queries required to be 
monitored by objects in both cells. When a mobile 
object moves from the old cell to the new cell, only a 
subset of the queries needs be downloaded. This 
inspires us to design an index that can facilitate the 
downloading of only the missing queries.  Notice that a 
mobile object can move into a new cell from four 
directions: west, south, east, and north.  We can 
classify the queries whose monitoring regions intersect 
with the new cell into different types, such that for a 
specific direction from which the mobile object enters 
the new cell only certain types of the queries need to be 
retrieved.  An algorithm that categorizes such queries 
into nine types is given in Fig. 4.  

Using the algorithm in Fig. 4, queries belonging to 
type 1, 2, or 3 should be added for monitoring when an 
object moves into this cell from the west side. Queries 
belonging to type 3, 4, or 5 should be added for 
monitoring when an object enters from the south side. 
Similarly, when an object enters from the east side, 
queries of type 5, 6, or 7 should be added; and queries 
of type 7, 8, or 1 should be added when an object 
enters from the north side.  
  
  
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Figure 4. Algorithm to determine query type 
 
Fig. 5 illustrates the four scenarios when an object 

moves into a new cell from four different directions. In 
the diagram, Q1, Q2, …, and Q8 are examples of queries 
which belong to type 1, type 2, …, and type 8, 
respectively. As we can see, in the Fig. 5.a, when an 

object moves from the lightly shaded cell (the old cell) 
into the darkly shaded cell (the new cell), only queries 
with type 1, 2, and 3 need to be added. Fig. 5.b, 5.c, 
and 5.d are examples for the other three scenarios. 

 

  
      (a) from the west (b) from the south 
 

    
      (c) from the east (d) from the north 
Figure 5. Scenarios when object changing cell 
 

 
Figure 6. Direction Index structure 

 
Based on the above observations, we propose a 

three-level index structure, called Direction Index (DI). 
Unlike the Grid Index, we include one more level to 
represent the direction from which an object enters the 
new cell, as shown in Fig. 6. We use letters “W”, “S”, 
“E”, and “N” to represent the directions “West”, 
“South”, “East”, and “North”, respectively. Inside a 
“W” cell, there is a pointer pointing to the beginning of 
the list of type 1 queries in the lower-level index. It is 
similar for the “S” and “E” cell.  For an “N” cell, it is a 
little more complex.  Since an object entering a new 
cell from the north needs to get queries of type 7, 8 and 
1, we provide two pointers in an “N” cell, with the first 
one pointing to the beginning of type 1 queries, and the 
second one pointing to the beginning of type 7 queries. 

Besides the addition of the middle-level index, 
there are two differences in the lower level. The first 
difference is that there is no need to include pointers 

Input: a cell c, all queries intersecting with this cell 
Output: each query’s type for the cell c 
For each query q 

Get the monitoring region (MR) of q 
If c is a west side boundary cell of MR 

If c is the north-west corner cell of MR, q.type = 1 
Else if c is the south-west corner cell of MR, 

q.type = 3 
Else, q.type = 2 

Else if c is a south side boundary cell of MR 
If c is the south-east corner cell of MR, q.type = 5 
Else, q.type = 4 

Else if c is an east side boundary cell of MR 
If c is the north-east corner cell of MR, q.type = 7 
Else, q.type = 6 

Else if c is a north side boundary cell of MR 
q.type = 8 

Else // not a boundary cell 
q.type = 9 



for type 9 queries because they are already in the 
object’s monitoring list when it is in the old cell. This 
feature reduces the index size, and leads to better 
access time and tuning time.  

The second difference is that we need to sort the 
pointers using the associated query types, and use a tag 
to mark the end of types 1, 3, 5, and 7. This feature 
enables an object to know when to stop downloading 
the index packets. As an example in Fig. 6, if an object 
is interested in downloading queries of types 1, 2, and 
3, it first follows the pointer from the “W” cell and gets 
to the start of type 1 queries.  It then downloads the 
queries until it recognizes the end tag of type 3 queries. 
As another example, if an object enters cell Cn from the 
east direction, since there is no link originated from the 
“E” cell, the object knows that there is no query that 
needs to be downloaded and it can go back to doze 
mode. 

 
5. Data Structures and Query Processing 
 

In the proposed system, query processing is 
distributed among moving objects and the server.  
After a query is initiated, the server calculates the 
monitoring region for that query, and notifies objects in 
that monitoring region to monitor this query.  In this 
section, we first present the data structures on the 
server and moving objects, and then discuss how the 
system handles different activities. 
 
5.1. Data Structures 

 
There are three main data structures used by the 

server. The Query Object Table stores the list of query 
objects and their parameters including velocity, 
position, and the time stamp when the velocity and 
position are recorded. The Server Query Table, keeps 
the list of moving queries. Each query contains the 
query object’s ID, the specified range, and the 
monitoring region. Query result is also saved in this 
table.  The third table is the Reverse Query Table, 
where all queries intersecting with each cell are saved. 
To facilitate the Direction Index, query’s type is also 
stored in this table. 

Each mobile object needs to maintain a Client 
Query Table to keep track of all the queries it should 
monitor. In this table, we store each query’s ID, 
velocity, position, and the time when the velocity and 
position were reported, and the specified range. 
 
5.2 Installing Queries 

 
When the server receives a new moving query 

(with its associated moving object ID, position, 

velocity, and the query’s search range), the server first 
updates the Query Object Table and the Server Query 
Table, then calculates the monitoring region for this 
new query and saves the result into the Server Query 
Table, and finally updates the Reverse Query Table. 

After installing the query on the server, the server 
forwards the query’s information to all moving objects. 
Moving objects in the monitoring region save the 
message and start to monitor their distance to the query 
object. For objects outside of the query’s monitoring 
region, they can simply ignore that message. 
 
5.3. Handling Objects Changing Query Result 

 
For all queries in its monitoring list, an object 

needs to periodically predict the current positions of 
the query objects using the saved velocity, time, and 
position information in the Client Query Table.  It then 
calculates its distance to the query object to determine 
if it is in the query’s range. If the result is different 
from the previous result computed in the last time unit, 
the object sends a message to request the server to 
either adding it to the query result or removing it from 
the query result. After receiving the message from the 
moving object, the server locates the query from the 
Server Query Table, and updates the result accordingly. 

 
5.4. Handling Query Objects Changing 
Velocities 

 
Query objects need to report their new velocities to 

the server if there are significant changes. Once the 
server receives a new velocity, it broadcasts a message 
with the updated velocity information to moving 
objects in that query’s monitoring region. Upon 
receiving the message, a moving object first updates its 
Client Query Table, and then applies the updated 
velocity to calculate the distance under monitoring. 
 
5.5. Handling Objects Changing Grid Cells 

 
When an object moves from one cell to another 

cell, the object first needs to determine which queries 
should not be monitored anymore. With the saved 
query’s information, an object computes its minimum 
distance to the query object given that the object itself 
is moving within the new cell. If the minimum distance 
is greater than the specified query range, that query is 
dropped from the monitoring list. Also, the moving 
object needs to get new queries to monitor. In existing 
solutions, such as MobiEyes [2], moving objects 
always send messages to the server to request new 
queries. In our system, with the help of a broadcast 
channel containing query information, moving objects 



do not need to send messages to the server anymore. 
Instead, they just tune into the broadcast channel and 
download the necessary new queries. Two different 
index methods are presented in Section 4. We study the 
effectiveness of these two methods in Section 6. 

When the moving object changing cell happens to 
be a query object, it still needs to send a message to the 
server.  In response, the server performs the following 
three tasks.  First, it updates the tables on the server 
and computes a new monitoring region for the query. 
Second, the server broadcasts a message to all moving 
objects residing in the old monitoring region to stop 
monitoring this query. Finally, the server notifies all 
moving objects in the new monitoring region to 
monitor this query. 
 
5.6. Communication between Server and 
Objects 
 

As we have discussed in Section 4, objects need to 
switch to doze mode when they are waiting for query 
data packets to arrive. However, objects have to stay 
awake to receive broadcast messages from the server, 
as suggested in Section 5.4 and 5.5. This presents a 
dilemma. To solve this problem, we can make use of 
synchronized time between the server and moving 
objects [18, 19].  With synchronized time, the server 
sends out messages to moving objects only at pre-
scheduled time slots, on the other hand, moving objects 
just need to wake up periodically during doze mode at 
these pre-scheduled time slots. If a moving object does 
not receive anything from the server when it wakes up, 
it goes back to sleep and wakes up again at the next 
pre-scheduled wake up time. 
 
6. Simulation Study 
 

We implemented a simulator in Java to evaluate 
the performance of the proposed system. The system in 
the simulation consists of a base station, a broadcast 
channel, and a number of moving objects. The 
available bandwidth is set to 100K bps. The packet size 
is varied from 64 bytes to 1024 bytes. In each packet, 
two bytes are used for the packet ID, and two bytes are 
allocated to a pointer. Coordinate is represented with 
eight bytes. The size of a query is set to fifty bytes (to 
hold query ID, position, velocity, time, and range). In 
the broadcast channel, queries are ordered using the 
Hilbert curve order. For each query, we first identify 
the cell where the query’s query object is located in, 
then calculate the Hilbert curve value for that cell, and 
use that value for ordering. 

Our simulation is set up as follows. The area of 
interest is a square-shaped region of 64 × 64 square 
miles. The whole region is divided into grid cells, 
where each cell is a square with an area of α × α. 
Moving objects are randomly generated and placed in 
the region. The velocities are in the range of [0, 1] mile 
per time unit (equivalent to [0, 60] mile per hour) with 
random directions, following a Zipf distribution with a 
deviation of 0.7.  Among the moving objects, some are 
randomly selected as query objects. The query regions 
have circular shape with their radius randomly chosen 
from the set {1, 2, 3, 4, 5} miles.  At each time unit, 
there are ten percent of moving objects changing their 
velocities. The threshold for changing velocity is set as 
0.1 mile per time unit. We run simulation for 10 times 
with different seeds and compute the average as the 
final simulation results.  Each simulation lasts for 200 
time units. The simulation was run on a Pentium 4 
2.6GHz desktop with 2GB memory. In the experiments, 
we vary different parameters to study the performance. 
The parameters are listed in Table 1.  If not otherwise 
stated, the experiment takes the default values. 
 

Table 1. Simulation parameters 
Parameter Name Value Range ( or Set) Default 
Cell Size (mile) {1, 2, 4, 8, 16} 2 
# of Objects [2000, 10000] 10000 
# of Queries [200, 1000] 200 
Packet Size (byte) {64,128,256,512, 1024} 64 

 
In the remainder of this section, we first determine 

a good cell size for the simulation study.  We then 
compare our system with MobiEyes on communication 
cost.  Finally, we compare the two proposed indexing 
schemes in terms of access time and tuning time, and 
discuss the effect of packet size on these two indexes. 
 
6.1 On Selecting Cell Size (α) 

 
One important parameter in our system is the cell 

size α. An optimal α value should reduce the number of 
messages as much as possible. To make sure that the 
comparison on communication cost to MobiEyes is fair 
(Section 6.2), we try to determine a good α value for 
MobiEyes. 

Fig. 7.a shows that as the value of α increases, 
fewer messages are communicated. This can be 
explained as follows. When the cell size is increased, 
there are less messages resulting from objects changing 
cells. We note that when the whole terrain consists of 
only one cell, the number of messages drops to the 
minimum.  However, in this situation, all objects need 
to monitor all queries in the system, which increases 
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Figure 7. Cell size selection. (a). # of messages vs. α, (b). # of queries monitored vs. α,  
(c). Product of # of messages and # of queries monitored vs. α 

 
the computation workload on the client side 
considerably. To study this effect, we use the number 
of queries monitored by each moving object as a metric 
to approximate the level of computation workload.  Fig. 
7.b shows the average number of queries monitored by 
each moving object with the increases in cell size. As 
we can see, the curve increases sharply as expected.  
To find a good α value, we compute the product of the 
number of messages and the number of queries 
monitored, and then plot the curve against the cell size 
as shown in Fig. 7.c.  This figure shows that the 
product is the minimum when the cell size is the 
smallest (equal to 1). Since the curve increases only 
slightly when the cell size is set to 2, we select "α = 2" 
as a good setting for MobiEyes.  This value gives a 
good balance between communication cost and 
computation cost. We note that this α value is selected 
to give MobiEyes the best performance in our 
simulation study.  It is not a universally good value. 

 
6.2. On Communication Cost 

 
In this section, we focus on the communication 

cost of the system, which is measured in terms of the 
number of messages communicated between the server 
and moving objects. Our system is compared against 
MobiEyes, where only the on-demand communication 
mechanism is used between server and moving objects. 
We study the sensitivity of our system on two 
parameters: the number of moving objects and the 
number of queries.  The sensitivity analyses with 
respect to other parameters have also been studied; but 
we do not include the results here due to space limit. 

In Fig. 8.a, we vary the number of moving objects 
from 2000 to 10000, and measure the average number 
of messages per time unit. The figure shows that our 
system requires less than half the number of messages 
required by MobiEyes, which equals about 60% in 
savings in terms of communication cost. The reason is 
that there are a lot of messages due to changing-cell 
activities in MobiEyes.  In contrast, in our system, 

unless the object that changes cell is a query object, the 
changing-cell activity does not entail extra message. 

In Fig. 8.b, we study the effect of the number of 
queries on communication cost. As we can see, when 
the number of queries is increased from 200 to 1000, 
more messages are needed. This is reasonable since 
more queries mean more updates for query result 
change (Section 5.3) and query object velocity change 
(Section 5.4), which require more messages. Our 
method saves about 60% of messages when the number 
of queries is small, and still saves about 30% when the 
number of queries is large. 
 
6.3. Comparison of the Proposed Indexes 

 
In this section, we compare the performance of the 

Grid Index (GI) and Direction Index (DI) using access 
time and tuning time as metrics. For the access time, 
we also include a technique, called No Index, where no 
index is used. The No Index technique only broadcasts 
data packets, and clients have to download all the data 
packets to determine which one to keep or discard. 
Since the No Index technique does not use any index, it 
has the minimal access time, and thus serves as a good 
baseline for comparison. On the other hand, the tuning 
time for the No Index technique is prohibitively long, 
we do not include it when examining the tuning times 
for the proposed indexes. 

In Fig. 9.a, we vary the number of objects to 
compare the two indexes and the No Index technique. 
The figure shows that the access time increases linearly 
when the number of objects increases. This is expected 
because the access time is measured as an average per 
time unit. When there are more moving objects, the 
access time for all objects adds up linearly. The figure 
also shows that both GI and DI need longer access time 
compared to the No Index technique, but the difference 
is not very big. The access times with GI and with DI 
are about 1.5 times and 2 times that of the No Index 
technique, respectively. 
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Figure 8. Comparison with MobiEyes on communication cost. 
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Figure 9. Study on access time and tuning time for the proposed indexes. 

 
As discussed in Section 4, the lower-level index in 

the DI does not include type 9 queries, which leads to a 
smaller lower-level index when compared to the GI. 
However, because of the middle-level index, the total 
size of the DI is still larger that the total size of the GI, 
which explains why the DI needs longer access time. 

We also study the tuning time of the two indexes 
when varying the number of objects. As shown in Fig. 
9.b, the tuning times of both indexing schemes increase 
linearly with the increase of the number of objects, 
with the GI experiences a steeper slope. This is due to 
the fact that an object needs to download more queries 
in GI. 

In Fig. 9.c and 9.d, we study the effect of varying 
the number of queries. Fig. 9.c shows the result on 
access time. When the number of queries is still small, 
GI is better than DI on access time. However, when the 
number of queries increases, GI gradually loses its 
advantage over DI. This can be explained as follows. In 
one broadcast cycle, there are two components to be 
broadcast: the index and the data, and the size of the 
data component is much larger than the size of the 

index. Although the size of the GI is smaller than the 
size of the DI, when the number of queries increases, 
the size of the data component also increases and 
offsets the advantage brought in by the smaller index 
size. 

In Fig. 9.d, we can see the tuning time for the GI is 
very sensitive to the number of queries, while the 
tuning time for the DI only increases slowly with the 
increases in the number of queries. This is because 
when there are more queries, there are on average more 
queries to be monitored for each cell. This translates 
into more queries to be downloaded in GI when an 
object switches cell. But for DI, this problem is not 
very severe since only a subset of the monitoring 
queries for a cell need to be downloaded, which 
explains why the curve for DI only increases slowly. 

For a system using broadcast channels, the size of 
a packet is important to the performance. We study the 
effect of packet size by varying the packet size from 64 
bytes to 1024 bytes. The results are presented in Fig. 
9.e and 9.f. In Fig. 9.e, it shows that the access times 
for three indexes only change slightly when the packet 



size varies. This is due to the fact that the access time is 
dominated by the total length of one broadcast cycle, 
and the effect of packet size on the total cycle length is 
almost negligible. 

In Fig. 9.f, it demonstrates that the tuning times for 
both indexes increase quickly with the increase in 
packet size. When the packet size is the smallest, the 
system has the shortest tuning time. This is expected 
due to the overhead associated with using larger 
packets over smaller packets. One interesting finding is 
that the DI requires shorter tuning time than the GI 
when the packet size is small; but the tuning times for 
the two indexes converge when the packet size 
becomes larger. That is because more queries can be fit 
in a larger packet; and when an object downloads one 
packet, it downloads more queries than it actually 
needs. This cancels the advantage of using DI. 

In conclusion, when there are a large number of 
queries and/or objects, DI is a better index than GI, 
because DI requires much shorter tuning time, and only 
demands slightly longer access time. 

 
7. Conclusion 

 
In this paper, we proposed to use periodic 

broadcast to reduce the processing cost of moving 
queries over moving objects.  We designed two 
indexing schemes for the broadcast environment.  The 
simulation results indicate that the proposed solutions 
achieve 30% to 60% savings over MobiEyes. Our 
future work includes extending this hybrid approach to 
address more complex queries. 
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