
Many-to-Many Aggregation for Sensor Networks∗

Adam Silberstein Jun Yang
Department of Computer Science, Duke University, Durham, NC 27708, USA

{adam,junyang}@cs.duke.edu

Abstract

Wireless sensor networks have enormous potential to aid
data collection in a number of areas, such as environmental
and wildlife research. In this paper, we address the challenges
of supporting many-to-many aggregation in a sensor network.
An application of many-to-many aggregation is in-network con-
trol of sensors. For expensive sensing tasks such as sap flux
measurements and camera repositioning, we use low-cost in-
formation obtained at multiple other nodes in the network to
control such tasks, e.g., decreasing sampling rates when read-
ings are predictable or unimportant, while increasing sampling
rates when there are interesting activities. In general, there is
a many-to-many relationship between sources (nodes provid-
ing control inputs) and destinations (nodes requiring control
outputs). We present a method for implementing many-to-many
aggregation in a sensor network that minimizes the communica-
tion cost by optimally balancing a combination of multicast and
in-network aggregation. Our optimization technique is efficient
in finding the initial solution and handling dynamic updates.

1 Introduction
Wireless sensor networks are playing an increasingly important
role in monitoring applications. A network consists of battery-
powered nodes, equipped with sensors for taking readings (e.g.
temperature, light, or even pictures), and a radio for communi-
cating over short distances with neighboring nodes. Nodes are
deployed in an area of interest, such as a forest, and instructed to
take readings. They forward data through the network, relaying
through other nodes, to a base station for collection. Because
of limited battery, energy efficiency is of primary concern in
wireless sensor networks.
In this paper we investigate the problem of supportingmany-

to-many aggregation in an energy-efficientmannerwithin a sen-
sor network. In many-to-many aggregation, there are multiple
destination nodes; to each destination, we need compute and de-
liver an aggregate over the readings at some source nodes. The
relationship between sources and destinations is many-to-many,
i.e., one source may be needed in computing aggregates for

∗This work is supported by the NSF CAREER and DDDAS programs
(under awards IIS-0238386 and CNS-0540347), and by an IBM Faculty
Award.

multiple destinations, and one destination’s aggregate is com-
puted over multiple sources.

Motivation Many-to-many aggregation is a general abstraction
for implementing in-network control of sensors, where we con-
trol the activities of one node (e.g., sensor sampling rate) us-
ing information collected at other nodes. The control signal
for destination node k can be generated by an aggregation func-
tion fk(vk,1, vk,2, . . . , vk,nk

), evaluated over the readings at the
source nodes of k, where vk,j denotes the j-th source reading.
In-network control is beginning to play an increasingly im-

portant role as the applications of sensor networks continue to
expand. Many types of advanced sensors consume a great deal
of energy for sensing, even more than for communication. Be-
ing able to intelligently control sampling rates of such sensors
is key to energy conservation. One such example is a type of
sap flux sensor used by our ecologist collaborators to study for-
est growth. This sensor utilizes two prongs inserted into a tree.
One prong heats the tree’s sap at the insertion point. At the
other prong, the sensor measures the time until it detects higher
temperature sap, giving a measurement of sap flow speed. Since
this sensor needs to generate heat, it consumes a great deal more
energy than a passive one that simply measures the environ-
ment. Because sap flux measurements are so expensive, it is
not prudent to operate these sensors at high sampling rates un-
less conditions suggest there may be significant changes in the
readings. For example, sap flow is negligible at night, increases
at the beginning of the day, and decreases at the end of the day.
Furthermore, lack of moisture also prevents sap flow from ris-
ing. These factors, which direct when high-frequency sampling
will be beneficial, can be measured at low cost with light and
soil moisture sensors, and used to control the sap flux sensors.
As another example, consider a sensor network deployed in

a wildlife habitat with the goal of taking pictures of animals
living there. The network contains sparsely placed camera sen-
sors that are too expensive to use at high frequency. Instead,
the network also utilizes motion and vibration sensors. They
are sampled frequently and used to control the orientations and
sampling rates of the cameras. As the cameras can shoot from
a distance, the motion and vibration readings may be located
many hops away, so the control may require a fair amount of
communication. The communication cost of computing and
transmitting control signals is the price we pay for optimizing
high-cost sensing tasks. Therefore, minimizing this communi-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 986

m

l

k

ji

c

b

a

i j
wa va + wb vb + wc vc

m

l

k

ji

d

c

b

a wk, a va + wk, b vb + wk, c vc + wk, d vd

wl, a va + wl, b vb + wl, c vc

wm, a varaw: va
agg: wk, a va + wk, b vb + wk, c vc + wk, d vd
agg: wl, a va + wl, b vb + wl, c vc

(A) (B)

(C)

Figure 1. (A) Multicast. (B) In-network aggre-
gation. (C) A more complex example.

cation cost is critical to the effectiveness of this approach.
One possible approach is out-of-network control of sensors:

All sources to send data to the base station, where all control
signals are computed and sent to destinations. In contrast, we
argue for in-network control without the base station’s partici-
pation, which is an instance of the many-to-many aggregation
problem. This approach has several advantages. First, we avoid
round trips to the base station, for which the number of hops
(and therefore the communication cost) increases with network
size. Second, we avoid creating bottlenecks at nodes near the
base station, which would otherwise be overburdenedwith mes-
sage traffic and deplete their energy earlier than other nodes.
Finally, even for applications that need to collect all readings at
the base station anyway, real-time in-network control is bene-
ficial since it allows batching. With batching, data is grouped
together for transmission, which lowers message overhead and
potentially increases compression ratio. Batching is not an op-
tion for real-time out-for-network control.

Challenge in Many-to-Many Aggregation We identify two
opportunities in optimizing many-to-many aggregation. First,
because each source reading may be needed at multiple desti-
nations, it is natural to use multicast, a well-studied technique
in networking. The simplest way to exploit multicast is to build
a multicast tree rooted at each source spanning all destinations
to which the source contributes. For example, in Figure 1(A),
source i’s reading is needed as input for controlling destinations
k, l, andm. Instead of sending vi from i in three separate mes-
sages, which would result in three copies to j, i only need send
one copy of vi to j, which then forwards vi to k, l,m following
the multicast protocol.
Another optimization is to push aggregate computation into

the network, a technique commonly used in sensor networks pi-
oneered by [11]. Consider the example in Figure 1(B). Suppose
the aggregation function for destination j is wava + wbvb +

wcvc, the weighted sum of three source readings. As values va,
vb, and vc converge at the intermediate node i on their way to
j, i can evaluate the function and simply pass on a single result
instead of three individual values. Message routes from sources
to the same destination essentially form an aggregation tree, and
we can store additional state (e.g., weights in the weighted sum)
at the intermediate nodes to enable in-network aggregation.
While both multicast and in-network aggregation have been

studied separately before, the interaction of the two techniques
involves interesting trade-offs, which we investigate in depth in
this paper. In general, destinations have different control func-
tions; for example, weights in weighted sums may vary depend-
ing on distances between sources and destinations. Hence, once
a source value has been aggregatedwith others for a destination,
the result becomes specific to that destination, and cannot ben-
efit other destinations. In contrast, a raw source value, i.e., one
that has not been aggregated, is useful to any of its destinations.
Intuitively, in the initial hops from a source, we prefer to leave
the value raw, since nodes near the source likely still have many
destinations as their descendants in the multicast tree, which
can benefit from shared transmission of this raw value. On the
other hand, closer to the leaves of the multicast tree, we prefer
to aggregate, because these nodes have fewer descendants, but
likely have more values converging from other multicast routes
headed to the same destination. These two cases are exempli-
fied in Figures 1(A) and (B). In (A), it is better for source i to
leave vi raw and transmit a single message to node j, instead of
creating three separate partial aggregate values intended for k,
l, and m. In (B), it is better for node i to aggregate va, vb, and
vc because leaving them raw would not benefit any node other
than the destination j.
The preceding intuition and examples are helpful, but also

simple. Consider now the example in Figure 1(C). Nodes a

through d are sources, while k throughm are destinations with
aggregation functions to their right. The arrows depict the
routes used to deliver data. The plan illustrated has edge i → j

transmit one raw value and two aggregated values, for a total
message size of three. This choice involves carefully balancing
multicast and aggregation—decisions of whether to multicast
or aggregate are different for different values, and depend on
the actual demand for the values downstream. The problem of
finding a network-wide optimal plan becomes more difficult as
the number of edges, and the traffic at each, increase. We must
also consider consistency of the plan across edges. A plan that
aggregates a value at an upstream edge and then requires it to be
raw at a downstream edge is infeasible. Once a value is aggre-
gated, we cannot in general recover the raw value. Therefore,
it would seem that we cannot solve the problem by looking at
each edge in isolation. A surprising result of this paper, how-
ever, is that we can indeed do so efficiently without sacrificing
consistency or optimality (under reasonable assumption on the
multicast routes). This result is not only interesting theoreti-
cally, but also has important practical implications: It enables
an efficient divide-and-conquer approach to optimization, and
makes it easier for a plan to adapt to dynamic changes.

Contributions In this paper we address the problem of ef-
ficiently implementing aggregation functions with multiple
sources and destinations, which requires combining and bal-
ancing the techniques of multicast and in-network aggregation.
Given the multicast trees (under minor restrictions), we prove
the problem can be solved independently for each edge while
still guaranteeing global optimality and consistency of the plan.
We show the single-edge problem reduces to an instance of
weighted bipartite vertex cover, which can be solved efficiently

1-4244-0803-2/07/$20.00 ©2007 IEEE. 987

in polynomial time. We discuss how to implement the plan in-
side a sensor network with low overhead, demonstrating that
the amount of in-network state required by our approach is no
more than a constant factor of the basic multicast approach. We
also briefly describe techniques for handling dynamic route ad-
justments and incorporating temporal suppression for continu-
ous computation of aggregation functions. Finally, we demon-
strate the effectiveness of our optimal solution to the multiple-
aggregation problem through experiments.

2 Optimizing Many-to-Many Aggregation
2.1 Preliminaries
The sensor network consists of a set of fixed-location nodes. At
each time step, each node takes a low-cost numerical reading,
such as temperature or light. For simplicity of presentation, we
assume each node produces exactly one reading, and we use
vi to denote the value of the reading produced by node i. It
is straightforward to generalize our results to the case where a
node is responsible for any number of readings.

Problem Definition Our task is to evaluate, at each time step,
a set of aggregation functions within the network, and make
each result available at a destination node (for controlling its
behavior). Again, for simplicity, we assume each node can be
the destination of at most one aggregation function, though this
assumption is simple to lift. The aggregation function destined
for node d, denoted fd, is defined over the readings from the set
of source nodes of d. Let S denote the set of all sources and D

denote the set of all destinations in the entire network. Let ∼
denote the many-to-many producer-consumer relationship be-
tween sources and destinations: s ∼ d means s ∈ S is a source
of d ∈ D.
In this paper, we consider aggregation functions that gen-

eralize algebraic aggregates [7, 11]. More precisely, for
destination d, suppose its sources are s1, . . . , sn. We re-
quire there exist an evaluator function ed, a merging func-
tion md, and a set of pre-aggregation functions wd,si

(one for each source si), such that fd(vs1
, . . . , vsn

) =

ed(md({wd,s1
(vs1

), . . . , wd,sn
(vsn

)})). Each pre-aggregation
function transforms the corresponding source reading into,
in general, a constant-size partial aggregate record. The
merging function combines partial aggregates records to-
gether, and satisfies the property that md(R1 ∪ R2) =

md({md(R1), md(R2)}) for any sets R1 and R2 of partial ag-
gregate records. Finally, the evaluator function takes a partial
aggregate record and computes the actual result of the aggre-
gation function. Our aggregation functions generalize alge-
braic aggregates by allowing each input to be transformed dif-
ferently. We have found this feature necessary in our ecologi-
cal monitoring application, as it allows us to express weighted
versions of aggregate functions. As an example, consider a
weighted-average function f(v1, . . . vn) = 1

n

Pn
i=1

αivi. The
pre-aggregation function for each input is wi(x) = 〈αix, 1〉.
The merging function is m({〈x, a〉, 〈y, b〉}) = 〈x + y, a + b〉.
Finally, the evaluator function is e(〈x, a〉) = x/a.
In general, aggregation functions running in a network can

be quite different from each other. One may be a weighted
sum, while another may be a weighted standard deviation; they
may have overlapping but different sets of sources, and even for
common sources, they may have different weights. We assume
once a pre-aggregation functionwd,s is applied to raw value vs,
the result becomes specific to destination d, and cannot be used
for computing aggregation functions for other destinations.

Routing Ideally, we would like to jointly optimize many-to-
many aggregation and the choice of routes. The resulting op-
timization problem, however, would likely become intractable.
Therefore, in this paper, we restrict ourselves to the problem of
optimizing many-to-many aggregation given a set of multicast
trees. Each multicast tree is rooted at a source and spans all
destinations of this source; the edges are always directed from
a node to its children. We impose the following restrictions on
these multicast trees. (1)Minimality: Removing any edge from
amulticast tree rooted at source swill cause the tree to no longer
span all destinations of s. (2) Sharing: If node i can reach node
j via directed paths in two multicast trees, then the two paths
are identical. Intuitively, the second restriction encourages path
sharing across multicast trees because it creates more opportu-
nities for aggregation: When two raw values head to a common
destination in their respective multicast trees, as soon as their
paths converge, they can be aggregated and the partial aggre-
gate record can travel on a unique path to the destination.
For simplicity of presentation, we assume stable multicast

routes in the remainder of this section. In Section 3, we discuss
how to lift this assumption.

2.2 Single-Edge Optimization
We begin by tackling the problem of finding the optimal plan
for many-to-many aggregation at each directed edge, indepen-
dent of solutions at other edges. Note it is conceivable that two
independently obtained single-edge solutions may turn out to be
inconsistent with each other. Specifically, if an upstream edge
decides to aggregate a raw value (with others), then it would be
infeasible for a downstream edge to still transmit this raw value.
In Section 2.3 we show how to combine single-edge solutions
into a consistent global plan without sacrificing optimality.
For each directed edge e : i → j, we must determine how to

transmit as little data as possible through e to be able to compute
the aggregation functions downstream. If e is on the multicast
path from source node s to destination d, we say that s ∼e d.
Let Se = {s ∈ S | ∃d ∈ D : s ∼e d} and De = {d ∈ D |

∃s ∈ S : s ∼e d}; that is, Se and De are the sets of sources
and destinations (respectively) connected through e. Obviously,
we can just focus on how to deliver the information from Se to
De; there is no need to consider source-destination connections
that do not go through e. As a concrete example, consider edge
i → j in Figure 1(C). In Figure 2(A) we show Si→j , Di→j ,
and the producer-consumer relationship ∼i→j among them (as
a binary matrix).
As a side note, it is possible for the reverse edge j → i to

appear in some other multicast trees, and we would optimize
that edge independently from i → j. Also, a node can be in
both Se andDe; our algorithm handles this case perfectly well.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 988

1

111

1111

a b c d

k

l

m

d

c

b

a

m

l

k

Sources

Destinations

Sources
Destinations

(A) (B)

Figure 2. Single-edge optimization. (A) In-
puts. (B) Reduction to vertex cover.

Our options for what to transmit on edge e are: (1) Transmit-
raw: for a source s ∈ Se, transmit its reading raw. (2) Transmit-
aggregate: for a destination d ∈ De, aggregate readings from
all of d’s sources in Se and transmit the partial aggregate record.
Either option results in a value being transmitted, and we seek
to minimize the total amount of transmission required to evalu-
ate all aggregation functions. Note it is not helpful to have the
additional option of aggregating some, but not all, of d’s sources
available at e. The reason is that the resulting partial aggregate
record is specific to d and cannot benefit other destinations, so
we may as well replace it with one that aggregates all available
sources of d; doing so would not increase the total amount of
transmission, and in fact might decrease it as we no longer need
to transmit to d raw values already aggregated.

Weighted Bipartite Vertex Cover This problem elegantly re-
duces to an instance of weighted bipartite vertex cover. The
reduction, illustrated in Figure 2(B), works as follows. Source
nodes Se form one set of bipartite graph vertices U while des-
tination nodes De form the other set of bipartite graph vertices
V . (If a node is in both Se and De, there will be two bipar-
tite graph vertices, one in U and one in V , corresponding to
the roles of source and destination, respectively.) If s ∼e d,
an undirected edge connects their corresponding vertices in the
bipartite graph.
A vertex cover of a bipartite graph (U,V, E) is a subset of

vertices C ⊆ U ∪ V such that for each bipartite graph edge
(u, v) ∈ E, at least one of u and v belongs to C. Each vertex
cover C corresponds to a possible solution to our single-edge
optimization problem: Choosing a vertex u ∈ U in C corre-
sponds to transmitting the raw value for source u, while choos-
ing a vertex v ∈ V corresponds to aggregating all source values
for destination v and transmitting the partial aggregate record.
The fact that C is a vertex cover guarantees the sufficiency of
the information transmitted along the edge: If a destination d

is chosen in C, the partial aggregate record we transmit already
includes contributions from all upstream sources of d, so we
need not transmit anything else for d along this edge. If, on the
other hand, d is not chosen in C, then C must have chosen ev-
ery source s of d (otherwise some bipartite graph edge s ∼e d

would not be covered); in that case, all upstream source values
of d are transmitted raw, still allowing the aggregation function
to be evaluated at d.
We further assign weights to bipartite graph vertices accord-

ing to the cost of the corresponding transmission options: A
vertex in U is weighted by the size of the corresponding raw
value; a vertex in V is weighted by the size of the correspond-

ing partial aggregate record. For example, for weighted sum,
source and destination weights would be equal (because both
raw values and partial aggregate records are floating-point num-
bers), but for weighted average, destinations would weigh more
(because each partial aggregate record includes an additional
integer count). To minimize the total amount of transmission,
we look for a vertex cover with minimum total weight.
The minimum weighted vertex cover problem for bipartite

graphs can be solved efficiently in polynomial time [1] us-
ing standard network flow techniques. For completeness, we
present a simple mixed-integer programming formulation be-
low. In the following, constant cv denotes the weight of ver-
tex v, and boolean variable xv indicates whether vertex v is
included in the cover (1 if included; 0 otherwise).

Minimize:
X

v∈U∪V

cvxv subject to:

∀(u, v) ∈ E : xu + xv ≥ 1.

As an example, a solution to the single-edge optimization prob-
lem in Figure 2 for edge i → j in Figure 1(C) includes source a

and destinations k and l, which corresponds to the plan shown
in Figure 1(C).

2.3 Global Plan
The single-edge optimization problem in the preceding sec-
tion has been solved without regard to decisions made at other
edges. As mentioned several times before, independently ob-
tained single-edge solutions may not work consistently to-
gether. Specifically, aggregating a value at an upstream edge
makes it impossible to discern the raw value at a downstream
edge. Therefore, downstream edges can only consider solutions
that also aggregate the value. Interestingly, we show that inde-
pendently obtained single-edge solutions are indeed consistent
with each other. In other words, selecting the optimal solution
for any particular edge does not eliminate the optimal solution
at any other edge as a choice. Therefore, we can independently
optimize for each edge, and assemble the single-edge solutions
together into a consistent and optimal global plan.
The only additional requirement we impose is that every

single-edge optimization problem has a unique solution (i.e.,
there is only one vertex cover with the minimum weight). We
can easily satisfy this requirement by adding minuscule weights
to each vertex to consistently create tiebreakers among choices.
The weight we assign to each source and each destination is
consistent for all instances of weighted bipartite vertex cover
problems across all edges. We are now ready to state the main
result of this section.

Theorem 1. Optimal solutions to the individual weighted bi-
partite vertex cover problems at each edge in the multicast trees
form, in combination, a consistent global plan for the entire net-
work.

The proof is far from trivial, and we present it in Ap-
pendix A. It is difficult to overstate the importance of this result
to our approach. First, Theorem 1 allows us to simplify opti-
mization greatly. Instead of solving a complex problem over

1-4244-0803-2/07/$20.00 ©2007 IEEE. 989

the entire network, we are able to divide the problem up into
tractable pieces and solve them independently. Potentially, this
optimization can be carried out by the individual nodes them-
selves inside the network. Second, a direct corollary of The-
orem 1 is that small changes to the input have fairly localized
impact on the global plan. For example, adding one new source
to an aggregation function would only change single-edge solu-
tions at nodes lying on the multicast tree path from the source to
the destination; for other nodes, inputs to their single-edge opti-
mization problems remain unchanged, so their solutions remain
unchanged and still part of the optimal global plan according to
Theorem 1. As we will see in Section 3, this property makes
our approach easily adaptable to dynamic changes.

3 Implementing the Plan in Network
Ordering and Merging Messages We call each raw value or
partial aggregate record transmitted along an edge a message
unit. For example, in Figure 1(C), edge i → j transmits three
message units. There are timing dependencies among message
units. We say that message unit u′ waits for message unit u
if u contains data required in computing or sending u′. For
example, the third message unit wl,ava + wl,bvb + wl,cvc at
edge i → j waits for message units va, vb, and vc from edges
a → i, b → i, and c → i respectively. The following theo-
rem follows directly from the multicast path sharing assumption
(Section 2.1) and construction of the single-edge optimization
problems (Section 2.2). The detailed proof is in [16].

Theorem 2. There are no wait-for cycles among the message
units in the optimal global many-to-many aggregation plan;
that is, there exist no message units u1, u2, . . . , un such that
un waits for u1, and ui waits for ui+1 for i = 1, . . . , n − 1.

Theorem 2 immediately leads to a straightforward, though
suboptimal, method for scheduling transmissions, which trans-
mits each message unit as an individual message. Each node,
upon receiving an incoming message unit, produces and trans-
mits all outgoing message units that are no longer waiting for
any additional message units.
We can do substantially better by combining single-unit

messages into multiple-unit messages, thereby saving the per-
message transmission overhead. Messages to be sent out along
the same edge are eligible for merging. Before merging two
messages into one, we need to check that doing so does not
create wait-for cycles. The new message inherits all wait-for
relationship involving the two original messages, and we check
to see if the new message is part of any cycle; if not, we pro-
ceed with the merge. In general, it may be possible an edge
has several messages that cannot be merged. For example, edge
e1’s message unit x1 may be waiting for e2’s message unit y2,
e2’s x2 may be waiting for e3’s y3, and e3’s x3 may in turn be
waiting for e1’s y1; in this case, one ei must transmit xi and
yi separately to break the cycle. Such situations seem to be
quite rare. For all our experiments in Section 4, we simply use
a greedy algorithm that keeps finding two messages to merge as
long as they do not create cycles, and this algorithm is able to
merge all messages along each edge into one. In other words,

for all our experiments, our approach only sends one message
per multicast tree edge, regardless of the number of trees shar-
ing this edge. This result is the best one can hope for, as every
edge must transmit some information.
A number of additional optimizations are possible, but we

do not explore them further in this paper. One optimization is to
construct a detailed transmission schedule from the global plan,
aimed at avoiding collisions and reducing node listening time.
Another optimization is to use broadcast to transmit message
units shared by multiple edges.

Implementing Node Behavior A message unit can be either a
raw value, tagged by the source node identifier, or a partial ag-
gregate record, tagged by the destination node identifier. Based
on the single-edge solutions for its incident edges, each node n

maintains state for many-to-many aggregation in four tables.
• Raw table specifies how to forward raw values. If n needs
to transmit the value of source s raw to an outgoing edge e,
then this table contains an entry 〈s, g〉, where g identifies the
outgoing message in which to send this raw value.

• Pre-aggregation table specifies how to pre-aggregate raw
values. If the value of source s reaches n raw but n needs
to aggregate it for destination d (including the case when
d = n), then this table contains an entry 〈s, d, wd,s〉, where
wd,s is the pre-aggregation function (or more precisely, in-
formation needed to evaluate this function). For example, if
the aggregation function for d is a weighted average of its
sources, then we store the weight associated with s.

• Partial aggregate table specifies how to merge and/or for-
ward partial aggregate records. If n needs to compute and/or
forward a partial aggregate record for destination d (includ-
ing the case when d = n), then this table contains an entry
〈d, c, md, g〉, where c is the total number of partial aggre-
gate records to be combined at n for d, including both those
received by n and those generated by n by pre-aggregating
raw values;md is the merging function (omitted if c = 1); g
identifies the outgoing message (omitted if d = n) in which
to send the result partial aggregate record.

• Outgoing message table specifies how to combine outgoing
message units into messages and where to send them. For
each outgoing message, the table contains an entry 〈g, c, n′〉,
where g identifies the message, c is the total number of mes-
sage units in g, and n′ is the recipient of the message.

Finally, each destination d stores the evaluation function ed for
its aggregate function. The contents of above tables are com-
puted out-of-network according to the optimal many-to-many
aggregation plan, and disseminated into the network.
Algorithms for disseminating the above information and for

using it to control nodes them at runtime are both straightfor-
ward; see [16] for details. It is worthwhile noting, as shown
by the following theorem, the amount of state required inside
the network is quite low—in fact on the same order as what is
required to implement just the pure multicast approach (which
aggregates only at destinations) or the pure in-network aggre-
gation approach (which aggregates at the earliest opportunity),
whichever is less.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 990

Theorem 3. Let |T | denote the size of a tree T in the num-
ber of nodes. Ts denotes the multicast tree rooted at source s.
Ad denotes the aggregation tree rooted at destination d formed
by multicast paths from d’s sources to d. The total amount of
state required by our optimal many-to-many aggregation plan
is O(min{

P
s |Ts|,

P
d |Ad|}).

FlexibilityTrade-Off in Routing usingMilestones So far, our
optimization has been based on multicast trees fully specified
down to individual hops. While knowing every hop allows max-
imal control by our many-to-many aggregation algorithm and
creates the most optimization opportunities, it constrains the
flexibility of the communication layer at runtime. For exam-
ple, consider a fully specified path a → b → c → d → e. The
communication layer must guarantee reliable message delivery
on every hop (using acknowledgments and retransmissions, for
example). Routing around an intermediate node, say b, is not
an option, because b would be waiting indefinitely for the mes-
sage from a while possibly holding other messages destined for
c. If the route between a and c is unstable (e.g., susceptible to
transient failures), then requiring it to always pass through b (or
any other particular node for that matter) is suboptimal.
Motivated by the need for more routing flexibility, we pro-

pose the milestone approach to handle routing for many-to-
many aggregation. A route from a source to a destination may
go through a number of intermediate nodes. We select a sub-
set of these intermediate nodes as milestones. Optimization in
Section 2 would be done on sources, destinations, milestones,
and “virtual” edges among them, instead of physical one-hop
edges. Specifying milestones guarantees communication from
the source to the destination must go through each milestone.
This guarantee provides the basis for our compile-time opti-
mization, which depends on multiple routes converging at a
common node at runtime. On the other hand, how the mes-
sage is actually delivered between milestones is completely up
to the communication layer, which is free to choose any route as
it sees fit at runtime. We can choose any number of milestones
per route, based on the expected route stability. If most parts
of a route are very unstable, we should choose few milestones,
because it may be much more expensive for the communication
layer to traverse through pre-selected milestones than simply to
the destination. On the other hand, if a route is very stable,
every intermediate node can be chosen as a milestone, which
would provide additional opportunities for aggregation. For ex-
ample, in the path a → b → c → d → e, if the portion between
a and c is unstable but the rest is dependable, we can choose c

and d to be milestones.

Adapting to Dynamic Situations Although the milestones can
prevent transient routing changes from affecting the plan, we
still need to deal with other types of changes. Changes to mul-
ticast trees and choice of milestones may happen if stability of
certain routes have changed significantly. Changes to aggrega-
tion functions may happen when old nodes die or new nodes are
deployed. We briefly sketch our approach here. The following
corollary, which follows directly from Theorem 1, provides the
theoretical underpinning of our approach.

Corollary 1. The globally optimal many-to-many aggregation
plan remains unchanged at edges for which inputs to their
single-edge optimization problems remain unchanged.

Based on this corollary, when changes occur, we simply
need to identify edges whose workloads have changed, re-
optimize the corresponding single-edge optimization problems,
and install the new local plans at the incident nodes. In many
cases, updates to the global plan will be limited to a small part
of the network. For example, when a source is removed from
an aggregation function, only the edges along the multicast path
from the source to the destination will be affected; nodes not on
this path need not be updated. Even under a simple multicast
approach with no aggregation, most of the nodes contacted by
our approach would have to be contacted to have their routing
states adjusted.
Therefore, Theorem 1 is significant not only for reducing

the complexity of optimization, but also, and arguably more
importantly, for reducing the cost of transmitting updated edge
plans into the network. If a small update were to force us to
re-optimize and transmit new plans to all edges, the cost would
perhaps be prohibitively high. Theorem 1 demonstrates the fea-
sibility of adapting our plan to dynamic situations.

Continuous Control with Suppression While all aggregation
functions for in-network control can be recomputed periodi-
cally at every time step, some types of aggregation functions
can be continuously maintained (up to desired precision) using
a variant of temporal suppression. With temporal suppression,
each source transmits the difference between its latest value
and its value at the time of its last transmission, if this differ-
ence exceeds a certain threshold. For example, for weighted
sum αvi + βvj + γvk + · · · , if vi and vj have changed by
v̂i and v̂j respectively, then the weighted sum will change by
αv̂i + βv̂j , computed by aggregating the changes themselves.
This approach may work for certain aggregation functions bet-
ter than periodic recomputation.
Temporal suppression can impact the optimality of a plan.

The current solution, which we call the “default” solution, opti-
mizes the case where all sources transmit values. Consider the
solution for edge i → j in Figure 1(C), which transmits one raw
value and two partial aggregate records. Suppose in a particular
timestep, v̂a and v̂b arrive at i, while vc and vd have not changed
and are suppressed. Using the default solution requires trans-
mitting three message units; the two partial aggregate records
containwk,av̂a +wk,bv̂b and wl,av̂a +wl,bv̂b respectively. The
optimal solution, though, is to transmit both v̂a and v̂b raw, us-
ing only two message units.
We have extended our approach to make it more efficient

with temporal suppression, but we only have space here to
sketch it briefly; see [16] for details. We still install the de-
fault plan (optimized for the case where all sources transmit)
in the network. The basic idea is to allow a node to override
the default plan at runtime to improve efficiency, based on the
actual input the node receives each timestep. Instead of aggre-
gating a raw value v for multiple destinations d1, d2, . . ., a node
n may decide to continue transmitting v raw. This override de-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 991

cision has the consequence that v will be transmitted raw all the
way to d1, d2, . . . (using multicast), because only n stores v’s
pre-aggregation functions for d1, d2, . . .; downstream nodes do
not. Hence, the resulting plan may be suboptimal because of
the potential of missing some opportunities for aggregating v

downstream, though such opportunities will be rare if temporal
suppression is highly effective. A more flexible alternative is to
store the pre-aggregation function of a value at every node on
the multicast path from the source to the destination, but more
state would have to be stored in the network.

Handling Failures The milestone routing approach, discussed
earlier in this section, handles transient failures that can be re-
solved by temporary route changes. Permanent link failures
may in general require redesigning the multicast trees and hence
re-optimizing the many-to-many aggregation plan; permanent
node failures may additionally necessitate changes in aggre-
gation functions themselves. Techniques described earlier for
adapting to dynamic situations can be applied here. In [16], we
present additional techniques to further alleviate the impact of
failures by introducing some redundant state into the network.

4 Experimental Evaluation
In this section we present experimental results drawn from a
simulation of a network of Mica2 motes [4]. We assume a
generic MAC-layer protocol and measure the energy spent on
both sending and receiving. Each transmitted message includes
a header of fixed size, followed by the body. Radio range is set
at 50 meters. For node locations, we use the coordinates of the
2003 deployment on Great Duck Island [12], with some modi-
fication to filter out multiple nodes at identical coordinates. The
resulting configuration has 68 nodes in a 106 × 203m2 area.
For all experiments except on suppression, all node readings
change at every timestep, and we periodically recompute all ag-
gregate functions. For routing, we build a multicast tree from
each source to all destinations requiring it.
We have implemented four algorithms. Multicast simply

multicasts raw values to destinations. Aggregation aggregates
raw values as soon as their routes to the same destination con-
verge. Optimal implements our optimal many-to-many ag-
gregation plan, which combines and balances multicast and
in-network aggregation. Flood is a simple algorithm where
sources flood the entire network using broadcasts; unlike the
other algorithms, it needs no additional state in the network. To
reduces the per-message overhead for flood, we build in a delay
at each node so that it can collect a large number of values and
combine them into one message before sending.

Adjusting AggregationWorkload The first set of experiments
exposes the impact of the number, size, and “shape” of aggre-
gation functions in the workload. We control these factors by
adjusting the number of destinations, the number of sources per
destination, and a dispersion factor d between 0 and 1 that dic-
tates what proportion of sources are at each hop distance from
the destination. The relative contribution from each hop dis-
tance h is given by dh−1/

PH
h=1

dh−1, where H is the dis-
tance limit for which nodes may be chosen as sources. This

formula captures a typical situation where a destination is in-
fluenced more by close neighbors, but might also require some
measurements available only at distant nodes. A larger dmeans
the sources are more “dispersed.”
In Figure 3 we vary the number of aggregation functions,

or destinations. Each aggregation function involves 20 sources,
and d = 0.9. For most workloads, flood is much more expen-
sive than all others. As long as a node is a source, Flood sends
its value to the entire network; it does not take a large workload
to make most nodes sources. For very heavy workloads, flood is
slightly better thanmulticast and aggregation due to its efficient
use of broadcasts and the simplicity of its protocol.1 When the
number of destinations is small, multicast does not work well
because each source value is needed at a few destinations; ag-
gregation works better because each destination has 20 sources
to aggregate. As the number of destinations increases, costs
generally rise for multicast, aggregation, and optimal. At the
same time, transmitting raw values begins to have a higher ben-
efit as each source has more destinations, so multicast begins to
outperform aggregation. Note that optimal significantly outper-
forms all other algorithms, and its advantage overmulticast and
aggregation continues to grow throughout.
In Figure 4 we vary the size of the aggregation functions, i.e.,

their number of sources. Multicast outperforms aggregation at
the lowest sizes, where there are fewer opportunities to aggre-
gate converging values headed for the same destination. As the
number of sources per destination increases, more aggregation
opportunities arise, so aggregation beats multicast. Again, by
jointly exploiting both multicast and in-network aggregation,
optimal outperforms and scales much better than using either
multicast or aggregation exclusively.
The final experiment, shown in Figure 5, is designed to ob-

serve the impact of aggregation “shape” as controlled by the dis-
persion factor d. 20% of all nodes are destinations, each aggre-
gating 20 sources from 1–4 hops away. We range from d = 0,
where all sources are within one hop, to d = 1, where sources
one to four hops away are equally likely. Again, we see optimal
significantly outperforms the other algorithms, and its advan-
tage grows as more optimization opportunities arise when the
multicast trees become deeper. As a side note, it is somewhat
counterintuitive that the costs actually decrease as we disperse
the sources more. We discuss this phenomenon in more detail
in [16], but the crux is that we have used a standard algorithm
for constructing single-source multicast trees, which tends to
create many edges that are not shared across trees, especially
when shallow trees are possible. This observation illustrates the
importance of jointly designing routing and data processing in
sensor networks, a topic worthy of future investigation but be-
yond the scope of this paper.

Increasing Network Size We next evaluate how our many-to-
many aggregation approach scales with increased network size.
We create a series of five simulated networks with increasing
1The other algorithms, especially multicast and optimal, can also ben-

efit from broadcasts (cf. Section 3) if we implement selective listening.
While we have not implemented this optimization, we note that it would
further increase the advantage of the other algorithms over flood.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 992

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ou

nd
 E

ne
rg

y
(m

J)

Percent of Nodes Set as Destinations

Optimal
Multicast

Aggregation
Flood

Figure 3. Varying the number
of aggregation functions.

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40

A
vg

. R
ou

nd
 E

ne
rg

y
(m

J)

Number of Sources per Destination

Optimal
Multicast

Aggregation
Flood

Figure 4. Varying the number
of sources per function.

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 0.2 0.4 0.6 0.8 1

A
vg

. R
ou

nd
 E

ne
rg

y
(m

J)

d

Optimal
Multicast

Aggregation

Figure 5. Varying the disper-
sion factor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50 100 150 200 250

A
vg

. R
ou

nd
 E

ne
rg

y
(m

J)

Number Network Nodes

Optimal
Multicast

Aggregation

Figure 6. Increas-
ing network size.

-20

-15

-10

-5

 0

 5

 10

 15

 0 0.05 0.1 0.15 0.2 0.25 0.3

Pe
rc

en
t I

m
pr

ov
em

en
t i

n
Co

ns
um

pt
io

n

Probability of Value Change

Aggressive
Medium

Conservative

Figure 7. Override
policies.

area and number of nodes. In each case, 25% of all nodes
are destinations, each aggregating using 15% of all nodes as
sources. The result is shown in Figure 6. We omit flood; it
is over an order of magnitude more costly than optimal in all
but the smallest network. Compared with multicast and aggre-
gation, optimal exerts its usual flexibility to obtain substantial
energy savings. The larger the network, the more edges there
are at which optimal makes the best decision, while multicast
and aggregation are forced to make suboptimal ones.

Suppression and Override We next experimentally investi-
gate how our many-to-many aggregation plan works with tem-
poral suppression. In Figure 7, we control the probability with
which node values change in each timestep, and compare the
dynamic override approach (Section 3) with the approach of
simply recomputing all aggregation function in each timestep.
Recall override is heuristic, and may backfire as it destroys
aggregation opportunities downstream. We have implemented
three versions of the heuristic (see [16] for a detailed descrip-
tion): aggressive overrides the decision to aggregate and instead
transmit the raw value as long as doing so is locally optimal;
conservative only overrides if transmitting raw is substantially
cheaper locally; medium falls in between the two. As expected,
the higher the change probability, the less effective is tempo-
ral suppression, and the more energy is consumed each round
for all approaches. To better illustrate the trade-off among the
three override policies, we plot the improvement they gain over
the solution given by full recomputation. The results are aver-

aged over 10 timesteps in 3 random networks (each with 30%

of nodes as destinations with 25 sources each). When change
probability is low, override policies earn savings of 10–15%;
aggressive is slightly better, though conservative also achieves
most of the savings. When probability is higher, however, more
values are likely to change, creating more aggregation oppor-
tunities that override might miss downstream. As a result, all
override policies suffer, but conservative, being more judicious
about override, does not degrade much past the recomputation
approach (which would be optimal when change probability is
1). In practice, the choice of override policy should depend on
the volatility of source values. It may also be possible to add
additional hints, such as the number of multicast descendants,
to suggest the potential penalty of overriding.

Summary There are three main points to glean from this sec-
tion. First, flooding is quite expensive, and especially when the
number and the size of aggregation functions are small; it sim-
ply transmits much more data than necessary. Second, multicast
and in-network aggregation, when optimally combined, is very
powerful. Experiments confirm significant reduction in energy
consumption, and support our initial intuition that values should
be initially transmitted raw from their sources, but aggregated
closer to their destinations. Finally, for continuous control using
multiple aggregation functions, our dynamic override approach
provides an effective mechanism for altering the default plan to
match the degree of volatility in source values.

5 Related Work
In-Network Aggregation Aggregating data en route to a des-
tination is a feature in the well-known systems, TAG [11] and
Cougar [18]. TAG addresses the problem of determining time
to wait for child nodes to return their partial aggregates with
epoch duration. Yao and Gehrke [19] suggest communication
between child and parent to trade estimates of waiting time.
TAG and TiNA [15] discuss a group-by clause that allows for
aggregation among sources in the same group; each source,
however, can only participate in one group. TiNA has nodes
favor a parent in the same group, which reduces the number
of partial aggregate records listed in the parent’s outgoing mes-
sage. Hellerstein and Wang [8] give the example of computing
a Haar wavelet over the network, and the problem of using the

1-4244-0803-2/07/$20.00 ©2007 IEEE. 993

communication tree as the support tree, which can be used to
decode values at varying resolutions. In all of these examples,
data from multiple sources are aggregated en route to a single
destination (the base station). In this paper, we too consider
multiple sources, but then also multiple destinations.

In-Network Control of Sensing Several examples exist of in-
network control of sensing. Deshpande et al. [5] construct
query plans that sample low-cost sensors first in hope of answer-
ing queries without sampling expensive ones. Cardell-Oliver et
al. [2] use a single precipitation sensor to assign a sampling rate
to all soil moisture sensors in the network, setting the frequency
high when it rains. Our many-to-many aggregation framework
significantly generalizes control. Readings from an arbitrary
subset of source nodes can be used at runtime to control sam-
pling at an arbitrary subset of destination nodes.

One-to-Many and Many-to-Many Communication Beside
the many-to-one communication pattern of in-network aggre-
gation, other patterns include one-to-many and many-to-many.
One-to-many communication disseminates data from a single
source to multiple destinations. The main technique is multi-
cast, which has been well studied in sensor networks (see [13]
for a survey). Many-to-many communication delivers data from
multiple sources to multiple respective destinations. Our many-
to-many aggregation problem is one example. Other sensor net-
work work also addresses this pattern. Data funneling [14] al-
lows various controller nodes to request data from particular
network regions. In each such region, nodes send data to a
border node for compression. While there can be many con-
troller nodes, each one’s request is optimized in isolation as an
instance of many-to-one. In contrast, we optimize the entire
many-to-many problem as a whole. In directed diffusion [9],
nodes transmit interests for data, and nodes providing that data
diffuse it in the direction of the interest. In this case, since re-
quests are made ad-hoc, our style of optimization is difficult.

Models The pervasive use of models [6, 17, 3] in sensor net-
works for improving energy efficiency provides potential appli-
cations for our many-to-many aggregation. Although initially
designed for out-of-network use [6], models are now not only
being used in-network [17, 3], but also becoming spatial, with
each model taking multiple nodes’ readings as input. Maintain-
ing multiple such models in-network requires many-to-many
communication. If the associated computation can be expressed
as aggregation functions, then our approach may be appropriate
for supporting these in-network models.

Shared Aggregation The problem of computing multiple ag-
gregations also arises in stream processing, where many users
have different, but often similar, queries to be run against the
stream. Krishnamurthy et al. [10] develop techniques for find-
ing commonalities among queries and sharing work between
them. Similar approaches may be beneficial in our case, es-
pecially when multiple destinations have very similar aggrega-
tions. The bipartite vertex cover reduction, as depicted in Fig-
ure 2, does not capture the possibility of using the same partial
aggregate for different destinations. An interesting direction for

future work would be to reconsider the optimization problem to
accommodate this possibility.

6 Conclusion
We have described the many-to-many aggregation problem for
sensor networks, where we need to compute and deliver to each
destination node a different aggregate over a subset of source
nodes. We optimize many-to-many aggregation by combin-
ing and balancing the techniques of multicast and in-network
aggregation. Interestingly, we show that the optimal multiple-
aggregation plan can be obtained by independently solving the
optimization problem at each edge, and combining the solutions
into a globally optimal and consistent plan. This result implies
that dynamic adjustments to routes and aggregation workload
can be handled efficiently, by only re-optimizing the affected
edges. We also show how to extend the multiple-aggregation
plan for continuous evaluation with temporal suppression. We
believe this work will becomemore important as networks grow
larger, as it enables in-network control of sensor nodes, allow-
ing them react to changes without expensive intervention by the
base station.

References
[1] R.K. Ahuja, T.L Magnanti, and J.B. Orlin. Network Flows. Prentice
Hall, 1993.

[2] R. Cardell-Oliver, K. Smetten, M. Kranz, and K. Mayer. A Reactive
Soil Moisture Sensor Network: Design and Field Evaluation. Intl.
Journal of Distributed Sensor Networks, 1(2), 2005.

[3] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate
Data Collection in Sensor Networks using Probabilistic Models. In
Proc. of the 2006 Intl. Conf. on Data Engineering, Atlanta, Georgia,
USA, April 2006.

[4] Crossbow Inc. ”MPR-Mote Processor Radio Board User’s Manual”.
[5] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting
Correlated Attributes in Acquisitional Query Processing. In Proc. of
the 2005 Intl. Conf. on Data Engineering, Tokyo, Japan, April 2005.

[6] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-Driven Data Acquisition in Sensor Networks. In Proc. of the
2004 Intl. Conf. on Very Large Data Bases, Toronto, Canada, August
2004.

[7] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Total. In Proc. of the 1996 Intl. Conf. on Data Engineering,
New Orleans, Louisiana, USA, February 1996.

[8] J. Hellerstein and W. Wang. Optimization of In-Network Data Re-
duction. In Proc. of the 2004 Workshop on Data Management for
Sensor Networks, Toronto, Canada, August 2004.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva. Directed Diffusion for Wireless Sensor Networking.
ACM/IEEE Trans. on Networking, 11(1):2–16, 2002.

[10] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for
streamed aggregation. In Proc. of the 2006 ACM SIGMOD Intl. Conf.
on Management of Data, Chicago, Illinois, USA, June 2006.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. In Proc. of the
2002 USENIX Symp. on Operating Systems Design and Implementa-
tion, Boston, Massachusetts, USA, December 2002.

[12] A. Mainwaring, R. Szewczyk, J. Anderson, and J. Polastre. Great
Duck Island. http://www.greatduckisland.net.

[13] P. Mohapatra and S. Krishnamurthy. Ad Hoc Networks Technologies
and Protocols, chapter Multicasting in Ad Hoc Networks. Springer,
2005.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 994

[14] D. Petrovic, R. Shah, K. Ramchandran, and J. Rabaey. Data Funnel-
ing: Routing with Aggregation and Compression forWireless Sensor
Networks. In Proc. of the 2003 IEEE Sensor Network Protocols and
Applications, Anchorage, Alaska, USA, May 2003.

[15] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Balanc-
ing Energy Efficiency and Quality of Aggregate Data in Sensor Net-
works. The VLDB Journal, 13(4):384–403, 2004.

[16] A. Silberstein and J. Yang. Multiple Aggregation for In-Network
Control of Sensors. Technical report, Duke University, July 2006.
www.cs.duke.edu/dbgroup/papers/2006-sy-multiaggr.pdf.

[17] D. Tulone and S. Madden. PAQ: Time Series Forecasting for Ap-
proximate Query Answering in Sensor Networks. In Proc. of the
2006 European Workshop on Sensor Networks, Zurich, Switzerland,
February 2006.

[18] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. ACM SIGMOD Record, 31(3), 2002.

[19] Y. Yao and J. Gehrke. Query Processing for Sensor Networks. In
Proc. of the 2003 Conf. on Innovative Data Systems Research, An-
silomar, California, USA, January 2003.

A Proof of Theorem 1
This section is devoted to the non-trivial proof of Theorem 1. Let
mvc(U, V, E) denote the minimum vertex cover (unique by our assump-
tion) of bipartite graph (U, V, E). We start with a lemma:

Lemma 1. Consider any (U, V, E).
A. For any set of destination vertices Y disjoint from V , and any set of
edges F between U and Y : if source vertex u ∈ mvc(U, V, E), then
u ∈ mvc(U, V ∪ Y, E ∪ F).

B. For any set of source vertices X disjoint from U , and any set of edges
F between X and V : if source vertex u ∈ mvc(U ∪ X, V, E ∪ F),
then u ∈ mvc(U, V, E).

Proof. We simultaneously prove (A) and (B) by induction on the size of
(U, V, E) (as measured by its total number of vertices). The base case of
(∅, ∅, ∅) is trivial: (A) is vacuously true because (U, V, E) has no source
vertex; (B) is also vacuously true because the edge set E ∪ F is empty (F
must be empty because V is empty).
Now, suppose that (A) and (B) hold for any (U, V, E) with size less

than k (inductive hypothesis). We now show that (A) and (B) also hold for
any (U, V, E) of size k. We begin with (A).
1. Consider first the graph (U, V ∪Y, E∪F). Let Y1 = Y ∩mvc(U, V ∪

Y, E ∪F) be the subset of Y included in mvc(U, V ∪ Y, E ∪F), and
Y2 = Y − Y1 be the subset that is not included. Let F1 and F2 be the
subsets of F incident to Y1 and Y2, respectively. F = F1 ∪ F2.

2. Consider the graph (U, V ∪ Y2, E ∪ F2) (i.e., Y1 and incident edges
are removed). We argue that mvc(U, V ∪Y2, E ∪F2) = mvc(U, V ∪
Y, E∪F)−Y1, i.e., the two minimum covers include the same vertices,
except those removed. The reason is as follows. Note that mvc(U, V ∪
Y, E∪F)−Y1 covers (U, V ∪Y2, E∪F2), whilemvc(U, V ∪Y2, E∪
F2)∪ Y1 covers (U, V ∪ Y, E ∪F). If mvc(U, V ∪ Y, E ∪ F)− Y1

is different from, and hence weighs more than (by our assumption of
unique solution), mvc(U, V ∪Y2, E ∪F2), then mvc(U, V ∪Y2, E ∪
F2)∪Y1 would weigh less thanmvc(U, V ∪Y, E∪F), a contradiction.
Now, becausemvc(U, V ∪Y, E∪F) does not include Y2 by definition,
and we have just seen that mvc(U, V ∪ Y2, E ∪ F2) and mvc(U, V ∪
Y, E ∪ F) include the same vertices in U and V ∪ Y2, we know that
mvc(U, V ∪Y2, E∪F2) includes none of Y2. Therefore, mvc(U, V ∪
Y2, E ∪ F2) must include all of X2, the source vertices in U that are
connected to Y2 via F2 (otherwise we cannot cover F2).

3. Consider the graph (U −X2, V, E−E2), whereE2 is the subset ofE
incident to X2 (i.e., Y2, X2 and incident edges are further removed).
We argue that mvc(U − X2, V, E − E2) = mvc(U, V ∪ Y2, E ∪
F2) − X2, i.e., the two minimum covers include the same vertices,
except those removed. The reasoning is similar to that in the second
step above. Note that mvc(U, V ∪ Y2, E ∪ F2) − X2 covers (U −

X2, V, E−E2), while mvc(U−X2, V, E−E2)∪X2 covers (U, V ∪
Y2, E ∪ F2). If mvc(U, V ∪ Y2, E ∪ F2) − X2 is different from,
and hence weighs more than (by our assumption of unique solution),
mvc(U − X2, V, E − E2), then mvc(U − X2, V, E − E2) ∪ X2

would weigh less than mvc(U, V ∪ Y2, E ∪ F2), a contradiction.
4. From the above steps, we see that if source vertex u ∈ mvc(U −

X2, V, E − E2), then u ∈ mvc(U, V ∪ Y, E ∪ F). At this point,
it suffices to prove that if u ∈ mvc(U, V, E), then u ∈ mvc(U −
X2, V, E−E2). IfX2 = ∅, then E2 = ∅, and the claim is obviously
true. Otherwise, |(U−X2, V, E−E2)| < k. By the inductive hypoth-
esis for (B), if u ∈ mvc(U, V, E), then u ∈ mvc(U−X2, V, E−E2).
The proof for (A) completes.
The proof of (B) is almost the mirror image of the proof for (A) and

follows the same logical steps. Therefore, we only present a sketch below.
1. Consider first the graph (U ∪ X, V, E ∪ F). Let X1 be the subset of

X included inmvc(U ∪X, V, E∪F), andX2 be the subset that is not
included. Let F1 and F2 be the subsets of F incident to X1 and X2,
respectively.

2. Consider the graph (U ∪ X2, V, E ∪ F2) (i.e., X1 and incident
edges are removed). We can show that mvc(U ∪ X2, V, E ∪ F2) =
mvc(U ∪ X, V, E ∪ F) − X1, i.e., the two minimum covers in-
clude the same vertices, except those removed. We can then show that
mvc(U ∪X2, V, E ∪F2) includes none ofX2 and therefore all of Y2,
the vertices in V that are connected toX2 via edges E2 ⊆ E.

3. Consider the graph (U, V − Y2, E − E2) (i.e., X2, Y2 and incident
edges are further removed). We can show that mvc(U, V − Y2, E −
E2) = mvc(U ∪ X2, V, E ∪ F2)− Y2, i.e., the two minimum covers
include the same vertices, except for those removed.

4. From the above steps, we it suffices to prove that if source vertex
u ∈ mvc(U, V − Y2, E − E2), then u ∈ mvc(U, V, E). The case
when Y2 = ∅ is trivial, and the case when Y2 �= ∅ follows from the
inductive hypothesis for (A).

Proof (Sketch) of Theorem 1. Consider two multicast edges e and e′. Sup-
pose their single-edge optimization problems are solved on (U, V, E)
and (U ′, V ′, E′), respectively. Let U0 = U ∩ U ′, U− = U − U ′,
U+ = U ′ − U , V0 = V ∩ V ′, V − = V − V ′, V + = V ′ − V ,
E0 = E ∩ E′, E− = E − E′, and E+ = E′ − E. Clearly, U0, U−,
U+ are disjoint; V0, V −, V + are disjoint; E0, E−, E+ are disjoint.
The lone threat to a consistent global plan is the following case: e is

immediately upstream of e′ (i.e., the arrowhead of e coincides with the tail
of e′) in the multicast tree rooted at a source s, and s is included in the
solution of e′ but not in the solution of e. To this end, we will show that
s ∈ mvc(U ′, V ′, E′) implies s ∈ mvc(U, V, E).
First, s ∈ mvc(U ′, V ′, E′) implies s ∈ mvc(U ′ ∪ U−, V ′, E′) =

mvc(U0 ∪ U+ ∪ U−, V ′, E0 ∪ E+). The reason is that all E′ edges
are between U ′ and V ′, so U− has no incident edges at all in (U ′ ∪
U−, V ′, E′), and should not be chosen in mvc(U ′ ∪ U−, V ′, E′).
Next, by Lemma 1(B), s ∈ mvc(U0 ∪ U+ ∪ U−, V ′, E0 ∪ E+)

implies that s ∈ mvc(U0 ∪ U−, V ′, E0) = mvc(U, V0 ∪ V +, E0).
Lemma 1(B) is applicable here because E+ can connect only U+ and V ′.
This observation follows from the fact that e is immediately upstream of
e′: If there exists a multicast path containing e′ from a source in U to a
destination in V ′, then this path must contain e as well (see [16] for a more
detailed argument).
Then, by Lemma 1(A), s ∈ mvc(U, V0 ∪ V +, E0) in turn implies

s ∈ mvc(U, V0 ∪ V + ∪ V −, E0 ∪ E−) = mvc(U, V ∪ V +, E).
Lemma 1(A) is applicable here because E− can connect only U and V −.
This observation follows from the multicast path sharing assumption (Sec-
tion 2.1), and also the fact that e is immediately upstream of e′: If a source
in U connects to a destination in V ′ through e, then this connection must
go through e′ as well (see [16] for a more detailed argument).
Finally, s ∈ mvc(U, V ∪ V +, E) implies s ∈ mvc(U, V, E), com-

pleting the proof. The reason is that all E edges are between U and V ,
so V + has no incident edges at all in (U, V ∪ V +, E), and should not be
chosen in mvc(U, V ∪ V +, E).

1-4244-0803-2/07/$20.00 ©2007 IEEE. 995

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

