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Dimensionality Reduction




Feature selection

Select the “best” features (subset of the original one)

Filter methods:

rank the features individually according to some criteria (information gain, x?,
etc.) and take the top-k or eliminate redundant features (correlation)

Wrapper methods:

evaluate each subset using some data mining algorithm; use heuristics for the
exploration of the subset space (forward/backward search, etc.)

Embedded methods:

feature selection is part of the data mining algorithm




Filter methods - Information Gain (IG)

For a random variable X (class) its entropy

H =—EP(xl.)>< log(P(x,)) , c classes
i=1

“High Entropy”: X is from a uniform distribution — lack on information

“Low Entropy”: X is from varied (peaks and valleys) distribution — rich in
information content

Let variable A (feature), IG(X, A) represents the reduction in entropy
(~ gain in Information) of X achieved by learning the state of A:

IG(X,A)=H(X)-H(X|A)




Filter methods - Chi-squared test (x2)

Test of independence between a class X and a feature A

X2(A) = EE Ey) v values, c classes

i=l j=1
O;: observed frequency of class j for feature A (value i)
E;: the expected frequency

(# of samples with value i) x (# of samples with class j)

.
J # of samples in total




Finding the k best variables

Find the subset of k variables that predicts best:

This is a generic problem when p is large
(arises with all types of models, not just linear regression)

Models with different complexity..
* p models with a single variable
* p(p-1)/2 models with 2 variables, etc

. 2P possible models in total

Best k set is not the same as the best k individual variables
What does “best” mean here?




Search Problem

How can we search over all 2 ¥ possible models?
exhaustive search is clearly infeasible

Heuristic search is used to search over model space:
 Forward search (greedy)
e Backward search (greedy)
* Branch and bound techniques

Variable selection problem in several data mining algorithms
e OQuter loop that searches over variable combinations
* Inner loop that evaluates each combination




Forward model selection

e Start with the variable the lowest p-value (i.e. value with the
highest evidence for rejecting the null hypothesis)

* add in each repetition the variable with the highest F-test value:
RSS, — RSS,

_ P>~ P
= RSS,

n— 0,
- Assume two models p,,p, with |p,|>|p,|

- Repeat until F-value < threshold; (or p-value > threshold,)
- RSSi the residual sum of squares - the error induced by the model:

F=>"(y;-f(x)

with y. real value and f(x;) predicted by models containing p, .




Backward Elimination

e start with the full model

e drop the predictor that produces the smallest F
value (or highest p-value)

* Continue until F-value < threshold;
(or p-value > threshold )

* Sometimes constraint N>p




Complexity versus Goodness of Fit

Training data




Complexity versus Goodness of Fit
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Complexity versus Goodness of Fit
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Complexity and Generalization

Score Function 4
e.g., squared \
error \
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Complexity = degrees
of freedom in the model

Optimal model (e.g., number of variables)
complexity




Useful References

* Principles of Data Mining, David J. Hand, Heikki Mannila and Padhraic Smyth
MIT Press 2001

- T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning,
Springer Verlag, 2001

« Dash, Manoranjan, and Huan Liu. "Feature selection for classification.” Intelligent

data analysis 1.1-4 (1997): 131-156.

N. R. Draper and H. Smith, Applied Regression Analysis, 2"9 edition,

Wiley, 1981 (the “bible” for classical regression methods in statistics

An introduction to variable and feature selection, Isabelle Guyon, André

Elisseeff, The Journal of Machine Learning Research archive Volume 3, 3/1/2003,

pp. 1157-1182

Mohammed J. Zaki, course notes, High Dimesional Notes

http://www.cs.rpi.edu/~zaki/www-new/uploads/Dmcourse/Main/chap6.pdf




Dimensionality Reduction

Linear
SVD, MDS, PCA, NMF, LDA




Data features

Huge volume/ Dimensionality
Heterogeneity

Dynamism
Motion
Availability?
Frequent Updates
Huge query loads

Examples: Web, P2P systems, Image data




Curse of Dimensionality

e Some coordinates do not contribute to the
data representation.

* Subsets of the dimensions may be highly
correlated.

* Nearest neighbor is distorted in a high
dimensional space

Low dimension intuitions do not apply to high
dimensions

 Empty space phenomenon




Curse of Dimensionality — k-NN

5172‘

:'82‘ 74

0 A 7

T3

b=l D=2 D=3

Assuming k-nn
- 2dk neighbors are needed for a d dimensional space
- Distance computations are increasingly complex




Empty space phenomenon

Hyper sphere within a hyper rectangle
d

Respective Volumes vy(s) = 2"’”5/ ar(d/ ),V(R) = (2r)“
2

The fraction of the sphere within the
rectangle becomes insignificant with d

Increasing
d
. 2 —

e Normal distribution in high dimensions
e longest/shortest distances converge.
e Clustering becomes infeasible




Inscription of hyper sphere in a hypercube

The radius of the inscribed circle accurately reflects the difference between
the volume of the hypercube and the inscribed hypersphere in d-dimensions.

http://www.cs.rpi.edu/~zaki/www-new/uploads/Dmcourse/Main/chap6.pdf




Dim. Reduction — Linear Algorithms

Matrix Factorization methods

* Principal Components Analysis (PCA)

e Singular Value Decomposition (SVD)
 Multidimensional Scaling (MDS)

* Non negative Matrix Factorization (NMF)
e Latent Semantic Indexing (LSI)




Low Rank Approximation

Data:X = {x; € R™"|x; columns of X}
Goal: approximate X = UVT,
UeR™, VeR™, ,r<<n

- each data vector x;: x; ~ Uv;T, v; is the i-th column
of V.

Geometric interpretation:

- each data vector x; € R™, ;~ Uv;’, is approximated
by its projection to an r-dimesional space spanned by

the column vectors of U
- Y=UVT the approximation matrix, max rank r



Frobenius distance

1X —Y||? = ii(xij - ¥;)*

i=1j=1
* Minimizing the Frobenius distance can be considered
as maximum likelihood estimation

SOME CONTRIBUTIONS TO DIMENSIONALITY REDUCTION, Wei Tong, Ph.D. thesis,
2010, Michigan State University
http://www.ece.uprm.edu/~domingo/teaching/ciic8996/SOME %20CONTRIBUTIONS%20TO
%20DIMENSIONALITY%20REDUCTION.pdf




Dim. Reduction—-Eigenvectors

A nxn matrix

« eigenvalues A: |A-Al|=0

« Eigenvectors x : AX=Ax

« Matrix rank: # linearly independent rows or columns

« Areal symmetric table A nxn can be expressed as: A=UAUT
« U’s columns are A's eigenvectors

« N\’ s diagonal contains A’s eigenvalues

o A=UAUT=A X XT A XX+ A X XT

X,XT, represents projection via x, (A, eigenvalue, x; eigenvector)

XX T vs. XTX




Singular Value Decomposition (SVD)

Eigen values and eigenvectors decomposition is applied to square
matrices. For non square matrices we apply Singular Value

Decomposition.

Let X a mxn table, X = UZVT

U :orthogonal mxm, its columns are the eigenvectors of
XXT.

U,V define orthogonal basis: UTU = VVT =1

Z: mxn contains A’s singular values (square roots of XXT

eigenvalues)
V : nxn, its columns are the eigenvectors of XTX




Singular Value Decomposition (SVD) - |

PROOF
X=UIV', X'=VI'U" ->XX'= UZ(VIV)Z'U" -> XX"= UZZU’
Similarly: -> X™X= UZ(V" V)Z'U" therefore X'X= VZTZU’

Hence: U: eigenvectors of XX', V: eigenvectors of X' X and Z sgrt of MM'
(or M'M) eigenvalues

Let X a mxn table, X = UZVT then anrrank approximation
of Xis:

Y = Upprdiag(oy, ... ar)anrT



Singular Value Decomposition (SVD) - I

Matrix approximation

The best rank r approximation Y’ of a matrix X. (minimizing the
Frobenius norm)

m n min{m,n }

ZZ'G‘Jl = trace(AAT) = Z cT

=1 j3=1
where A transpose of A, g; are the singular values of A, and the trace function is used.

The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. This
norm is often easier to compute than induced norms.




Multidimensional Scaling (MDS)

Initially we depict vectors in random places
Iteratively reposition them in order to minimize

Stress.
— Stress = E(dij—dij’)z/E dij2

Complexity O(N3) (N:number of vectors)

* Result:
A new depiction of the data in a lower dimensional

space.

* |mplement usually by:
Eigen decomposition of the inner product matrix and
projection on the k eigenvectors that correspond to the k

largest eigenvalues.



Multidimensional Scaling

. Data is given as rows in X
—  C=XXT(inner product of x, with X))
—  Eigen decomposition of C’ = ULU!
—  Eventually X’ =U,LY?, where k is the projection dimension

NERPRE - 0.3540571 - 0.0266618| - 0.0427173  0.7674171 - 0.5321456
- 0.4041785 - 0.8612673| 0.2512931 - 0.1004458  0.1470402
X = 6141216 U= - 0.530976¢  0.1813750| - 0.5293206  0.1591309  0.£161685
15|68 - 0.3931327  0.0342107| - 0.4240133 - 0.5922139 - 0.5801532
1212 6 - 0.5242075  0.4726950| 0.£892456 - 0.1579292  0.0420115
3141915
EV L= 429.83919  28.182284 | 13.857017  0.1215106  1.380D-14
XXT
- 152.18764 - 0.7513907
54. 62 81. €0. 79. , - ﬂlzgfijg - ;4;12:3?"
°2 =2 5e- ee 52 X =U2L21/2= _ ;;8.;;3;5 0.96412‘!;}
C= 81 86 126. 3. 117. - Joe 32201 1s 321604
€0. €6 93. €9. 85. _ cememe Ceome
79. 82 117.  8s. 131.




Principal Components Analysis

The main concept behind Principal Components Analysis is
dimensionality reduction, maintaining as much as possible
data’s variance.

variance: V(X)=02=E[(X-1)?]
Let N objects, with mean value, m, it is approximated as:
N




Dimensionality reduction based on variance
maintenance

+ 4 AX|s_ .
maximizing
+ variance




Principal Components Analysis

«A linear transformation that chooses a new coordinate system for the
data set such that the greatest variance by any projection of the data
set comes to lie on the first axis (then called the first principal
component), the second greatest variance on the second axis, and so

on ...» (wikipedia)

Let n dimensional data, with dimensions: x,,...,x,

The objective is to project the data to k dimensions via some linear
decomposition:

—q X *
Yi=a; Xt a7t X

should maintain the variance of the original data




Covariance Matrux

X,
Let Matrix X = L } where Xi vectors

covariance matrix 2 is the matrix whose (i, j) entry is
the covariance

-E[(Xl — p) (X1 = )] E[(Xy = ) (Xo = p2)] -+ E[(Xy = ) (X — pta)]

E[( Xy — o) (X1 — )] E[(Xo — po)(Xo — p2)] --- E[(Xo — pa)( Xy — pn)]
Y —

_E[(Xn - #'n)(Xl - /Jl)] E[(Xn - /Ln)(X'_’ - /12)] e E[(Xn - M't})(Xn = Hn )]_

Also: cov(X) = X'T™X’, where X’'= X-M




Principal Components Analysis (PCA)

e The basic idea of PCA is the maximization of the
covariance.

— Variance: Depicts the maximum deviation of a random variable
from the mean.

— 02=Zi=1n ((Xi — WY, )%/n)

e Method:

— Assumption: Data is described by p variables and contained as rows in
matrix X,

— We subtract mean values from columns. X'=(X-M)
— Calculate covariance matrix W = X'T X’



Principal Components Analysis (PCA) — (2)

 Calculation of covariance matrix W
— A matrix nxn, in each cell of W(i,j) we have the covariance of X X;.
* Calculate eigenvalues and eigenvectors of W (X,D) = UAUT

 Retain k largest eigenvalues and corresponding eigenvectors
— kis aninput parameter
— There is an input parameter and k is calculate by

5P i N/3P A > 85%

* Projection : A’X,



Principal Components Analysis

X, 23|45 X'= X it s 3.70 | 1.05 | -1.05 | 0.2
x, |6]4]2]|6 X |3]0]-3 c 1.05| 0.7 | 0.55 | 0.55
X =x, 1]5016(8f] s xe-m | 111]1)2]1CO0VH 05055 2.20 | 0.70
X4 1(4|4]6 X4 2| -1 -1 0.2 | 0.55| 0.70 | 1.70
Xs 31419|51vy X5 oO(0]|0 -1
wmys ot
15 20 25 30 >

(Z¢=1> (XM (X3e-my) ) /4

-0.90 | -0.18
U= -0.20 | -0.40
-0.90 | -0.18 2.2 | 1.16
-0.20 | -0.40 0 0
-2.4 | -1.56
2.7 | 0.54
L= N
XU 0.2 | 0.4




PCA, example

Axis corresponding to the
second principal component

\

Axis corresponding to the
first principal component

/




PCA Synopsis & Applications

- Preprocessing step preceding the application of data

mining algorithms (such as clustering).

- Data Visualization & Noise reduction.

- Nominal complexity O( np*2+p”3)
n: number of data points

p: number of initial space dimensions

The new space maintains sufficiently the data
variance.




Non Negative Matrix factorization (NMF)

- Applying SVD results in factorized matrices with positive and
negative elements may contradict the physical meaning of
the result.

Example:
- X gray-scale image intensities, Y its SVD approximation

- difficult to interpret the reconstructed matrix Y for a gray-
scale image with negative elements.

- Nonnegative matrix factorization (NMF)

find the reduced rank nonnegative factors to approximate a
given nonnegative data matrix.




Non Negative Matrix factorization (NMF)

Assume X mxn data matrix (XU > 0),7 « min(m,n)

Then NMF finds non negative matrices

U€eR™" VeRY : X~UVT

To find U,V is to minimize Euclidian Distance
X—-UVT:

rn I \’
1 I v/ j "L " | . o
min f(U,V) > ( ij 108 7 g Xij + (UV ),-,)

t l; |
s. b Ui 20,V 2 0,Vi,a,b, .




NMF Algorithms

Multiplicative: updating solutions U and V

U'Xx -
AT ( )hj 7. r (XV )iu

b (U UV I )[,J' i i ( UV v ) .

7
b hj

Gradient descent algorithms

df

N T T ()f
V ooy s | Uia + Uia — €@y
AV "
J

Voj Vo ¢ U4

g, and g, are the step sizes.




Linear discriminants analysis

Linear discriminant analysis, two classes
Linear discriminant analysis, C classes




LDA — two classes

 LDA aims to project data in a lower dimensional
space that preserves as much of the class
discriminatory information as possible

« Assume X = (z1,x9,...T,) d-dimensional
that belong to either of the classes C1 and C2.

« We search for y =w! X that best separates the
data of C1 and C2.

A A
X X,




LDA — two classes

The projection should
- maximize the distance of the class centers
- minimize the in class variance

A
X

-
-

-
-~

This axis yields better class separability —» {

----

This axis has a larger distance between means



LDA two classes — Fischer’s criterion

Distance between projected classes centers i1 io:

~ A 1 C 1 C C
‘/1/1_”2’ — W ch yZ 1_m ZCQ yZ |Cl| ch T - |C | 202 T i

Within class variance 5; = Zygci (y — lzi)Z
Total within class scatter for the projected data

SA1—|-SA2




Fischer’s linear discriminant

linear functionof Yy = w~ X

maximizing: J(w) _ | —pie)?
- S1+Ss

Therefore, searching for a projection
where same class points are

- projected very close to each o

g

- projected means are as farther as*{ {7 »s

------
‘‘‘‘‘

X




Optimization — within class scatter

Within class scatter matrix in feature space x

Suw =951+ 92

Where S; =3 cc, (& — pi) (@ — )"
Within class scatter matrix in projected space y

A 2 A 2

S1 + SQ = wTSww
Where SA'Z — 'wTS,L-w
between class scatter in projected Spacey

i1 — pi2|* = w' (pr — p2) (1 — p2)’ w = w' Spw




Fishers Criterion optimization

T
S
J(W) = ’ZIJJJTS‘f/Q;JU
To find maximum
L J(W)=0 = S,;'Spw—Jw=0

Solving the generalized eigenvalue problem:
S,(leB’w = Jw
We find:

T
w* = argmaz[LrSEL] = S, (11 — o)




An example[1]

10

. Compute the LDA projection for the
following 2D dataset

X1 = {(4,1), (2,4), (2,3), (3,6), (4,4)} HEEERENN

X2 = {(9,10), (6,8), (9,5), (8,7), (10,8)} 6l o
SOLUTION (by hand) X,
— The class statistics are

sn[® 78 sn[ 2% B5ca s

uy =[3.03.6]"; pu, =[8.47.6]" % 2 & & s
— The within- and between-class scatter are

_ 129.16 216 264 —.44
S8 = [ 16.0] Sw = [ 5.28
— The LDA projection is then obtained as the solution of the generalized
eigenvalue problem

SitSsv =av = [Siisy — a1 | = 0= |18 =4 881|953 - 1565

5. 3.76 — A
1169 881 _ 1y, ) 91

— Ordirectly by
_ w' =St (uy — ) = [-.91 — 39|
[1] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

10



LDA C classes [1]

Fisher’s LDA generalizes gracefully for C-class problems

— Instead of one projection y, we will now seek (C — 1) projections
[V1, V2, --- Yc—1] by means of (C — 1) projection vectors w;arranged by
columns into a projection matrix W = [wy |wy] ... |wo—1]:

yi=wix=2y=WTx

Derivation x, 1 R
— The within-class scatter generalizes as
Sw = Zf=1 Si

* where S; = Yyew, (x — p) (x — p)"
1
and u; = Eerwix

S
— And the between-class scatter becomes /
Sp = Xfo Ny — ) (u; — )7

1 1 «C
+ where g =~ Yy, x =+ X, Ny —s, — R

— Matrix St = Sg + Sy is called the total scatter

[1] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU



LDA C classes

- mean vector and scatter matrices for the projected samples
~ 1 = - -
Hi = N_iZyEw,-y Sw = Ziczl ZyEwi(y — i)y — l"i)T

~ 1 ~ - ~\ 7 o~ -
i==vyy Sp = Xy Ni(@; — ) (g — D7

- Thus generalizing the two class problem: S, = WTSWW.
S"B = WTSBW
- Searching for a projection maximizing the ratio of between-
class/within-class scatter.

- projection is no longer a scalar (C — 1 dimensions), use the
determinant of the scatter matrices to obtain a scalar
objective function 1S5|  IWTSzw|

TV =151 = WTs,w

[1] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU



LDA C classes

- seek the projection matrix W* maximizing this ratio
- optimal projection matrix W
- columns are eigenvectors resp. largest eigenvalues of generalized
eigenvalue problem:
| T

. wTsgw
W* = [wilw3|..wi_{] = argmaleT‘iwll = (Sg —A4;Sy)w; =0

[1] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU



LDA vs. PCA

This example illustrates the performance of PCA sty Toad b ol ot W] AN AW
and LDA on an odor recognition problem % (AR DS et M oy 9 7
—  Five types of coffee beans were presented to an array 0 " — y P A L S
of gas sensors b b\
—  For each coffee type, 45 “sniffs” were performed and g " ' ! ;
the response of the gas sensor array was processed ir  § [ siecll, sl i -\
order to obtain a 60-dimensional feature vector g o T Y SR S S ey -
Results (T [ »
—  From the 3D scatter plots it is clear that LDA 20k RS i A S AV S MNP ;i
outperforms PCA in terms of class discrimination TR S s Al O
— This is one example where the discriminatory YA A3 A ot
information is not aligned with the direction of . . ‘

maximum variance

7.42 A

7.4 4

7.38 o

'g 7.36 -

7.34

7.32 5

-1.88 03

axis 2

[1] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU axis 1

axig 2



Limitations of LDA

LDA produces at most C — 1 feature projections

— If the classification error estimates establish that more features are needed,
some other method must be employed to provide those additional features

LDA is a parametric method (it assumes unimodal Gaussian likelihoods)

— If the distributions are significantly non-Gaussian, the LDA projections may not
preserve complex structure in the data needed for classification

LDA will also fail if discriminatory information is \
not in the mean but in the variance of the data




Regression evaluation

variance explained by our model
2 _ > (yi—1i)°
=1 = S

: mean squared error (residual) divided by
total error: unexplained variance proportion.




LDA vs. PCA

- PCA considers the data as a whole

- Axes optimal for representing the data
indicating the maximum variation
actually lies.

- LDA axis is optimal for distinguishing x,
between the different classes. |

0,

- compare ¢, and u axes... PCA: (1.0

Uy pmmmmmmmmmm == LDA:v

- -
-
-~
B
- -
-~ -
-~

e - - - - - -

X}

=

http://www.doc.ic.ac.uk/~dfg/Probabilisticinference/




Nonlinear Dimensionality reduction

« ISOMAP
* LLE




ISOMAP

Swiss Role:
- geometric distance is not a good
approach
- Assume Geodesic Distance
- Graph based distance

- Compute X: pair-wise
geodesic distances between all of the
points (Floyd—\Warshall algorithm)
- Apply Multidimensional Scaling:
- XXT=UAUT
- X, =UA2




Locally-Linear Embedding (LLE)

LLE objective:
maintain the Topological proximity of the 3D space in the 2D one




Locally-Linear Embedding (LLE)

1. Compute the Neighbors of each data point:
k-NN or all within distance th

2. Reconstruction error:  E(W) = Z ')?, — Zj Wi f,
i

2

invariance to rotation, scaling
3. Compute the Weights that Best Reconstruct Each Data
point from its neighbors, minimizing the cost above

4. Compute the low-dim vector Y best reconstructed by the
weights minimizing

2
oY) =) Vi WY,
i
- Solve s sparse NxN eigenvector problem

- Bottom nonzero Eigenvectors.

Nonlinear dimensionality reduction by locally linear embedding, Sam T. Roweis,
Lawrence K. Saul, Science, 2000



Input Manifold




