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Relevance Feedback in Image Information Retrieval
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Motivation

� Initial work on content-based retrieval focused on 

using low-level features like color and texture for 

image representation.

�After each image is associated with a feature vector, 

similarity between images is measured by computing

distances between feature vectors in the feature space.distances between feature vectors in the feature space.

� It is generally assumed that the features are able to 

locate visually similar images close to each other in the 

feature space so that non-parametric approaches, like 

the k-nearest neighbor search, can be used for retrieval.



Motivation

�There are cases where the user is not satisfied 

by the answers returned.

�Several relevant objects may not be retrieved or 

in addition to the relevant objects there are a lot 

of non-relevant ones.of non-relevant ones.

�Possible solutions:

– Request more answers (e.g., next 10)

– Rephrase and reexecute the query

– Relevance feedback



A Possible Solution: RF

�Take advantage of user relevance judgments in 
the retrieval process:

– User issues a query and gets back an initial hit list

– User marks hits as relevant or non-relevant

– The system computes a better representation of the 
information need based on this feedbackinformation need based on this feedback

– This process can be repeated more than once.

Idea: you may not know what you’re looking for, 
but you’ll know when you see it.



Forms of RF

�Explicit feedback: users explicitly mark relevant and 

irrelevant documents

� Implicit feedback: system attempts to infer user 

intentions based on observable behaviorintentions based on observable behavior

�Blind feedback (also known as pseudofeedback): 

feedback in absence of any evidence, explicit or 

otherwise



The Goal of RF
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RF in Text Retrieval

�RF was originally proposed for text-based 

information retrieval.

�The goal is to improve the quality of the 

returned documents.

�Fundamental work: Rocchio�Fundamental work: Rocchio



Rocchio Method

�Used in practice:
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qm = modified query vector; 

q = original query vector;

�New query

– Moves toward relevant objects

– Away from irrelevant objects

q0 = original query vector;

α,β,γ: weights (hand-chosen or set 

empirically); 

Dr  = set of known relevant doc vectors; 

Dnr = set of known irrelevant doc vectors



Rocchio Example
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RF Example



RF Example: initial results



RF Example: user selection



RF Example: revised results



RF Example: alternative interface
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CBIR with RF in MARS

� There is an urgent need to develop integration mechanisms to 
link the image retrieval model to text retrieval model, such that
the well established text retrieval techniques can be utilized.

� This paper studies approaches of converting image feature 
vectors (Image Processing domain) to weighted-term vectors (IR 
domain).

� Furthermore, the relevance feedback technique from the IR 
domain is used in content-based image retrieval to demonstrate domain is used in content-based image retrieval to demonstrate 
the effectiveness of this conversion. 

� Experimental results show that the image retrieval precision 
increases considerably by using the proposed integration 
approach.

� The method has been implemented in the MARS prototype 
system developed at the University of Illinois @ Urbana 
Campaign.



Weighted Distance Approach
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Weighted Distance Approach
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Weighted Distance Approach

�The similarity between images is measured by 

computing distances between feature vectors in the 

feature space. 

�Given two feature vectors x and y and the weight 

vector w, we use the weighted distances L1 or L2:
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Weighted Distance Approach

�From the pattern recognition point of view, for a 

feature to be good, its variance among all the 

images in the database should be large but its 

variance among the relevant images should be 

small. small. 

�Any one of these is not enough alone but

characterizes a good feature when combined 

with the other.



Weighted Distance Approach

Let       denote the weight of the j-th feature component in 

the k+1 iteration.

This weight is given by the following equation:
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Weighted Distance Approach

According to the values of        and            there are four 

different cases:
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Weighted Distance Approach

Case 1

�When is large and is small,       becomes 

large.

�This means that the feature has a diverse set of values

in the database but its values for relevant images are

similar. 
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similar. 

�This is a desired situation and shows that this feature is 

very effective in distinguishing this specific relevant 

image set, so a large weight assigns more importance

to this feature.



Weighted Distance Approach

Case 2

�When both and are large, is close to 1.

�This means that the feature may have good 

discrimination characteristics in the database but is not 

effective for this specific relevant image group. 
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�The resulting weight does not give any particular 

importance to this feature.



Weighted Distance Approach

Case 3

�When both and are small, is again close to 
1. 

�This is a similar but slightly worse situation than the 
previous one. 
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previous one. 

�The feature is not generally effective in the database 
and is not effective for this relevant set either. 

�No importance is given to this feature.



Weighted Distance Approach

Case 4

�When is small and is large, becomes small.

�This is the worst case among all the possibilities. 

�The feature is not generally effective and even causes 

the distance between relevant images to increase. 
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�A small weight forces the distance measure to ignore 

the effect of this feature.



Weighted Distance Approach

Retrieval Algorithm

[1] initialize all weights uniformly.

[2] compute           j = 1, 2, …, Q.

[3] for k = 1,  k <= K,  k++

- search the DB using         and retrieve 
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- compute              j = 1, 2, …, Q
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Weighted Distance Approach

Precision results



Weighted Distance Approach

Precision results


