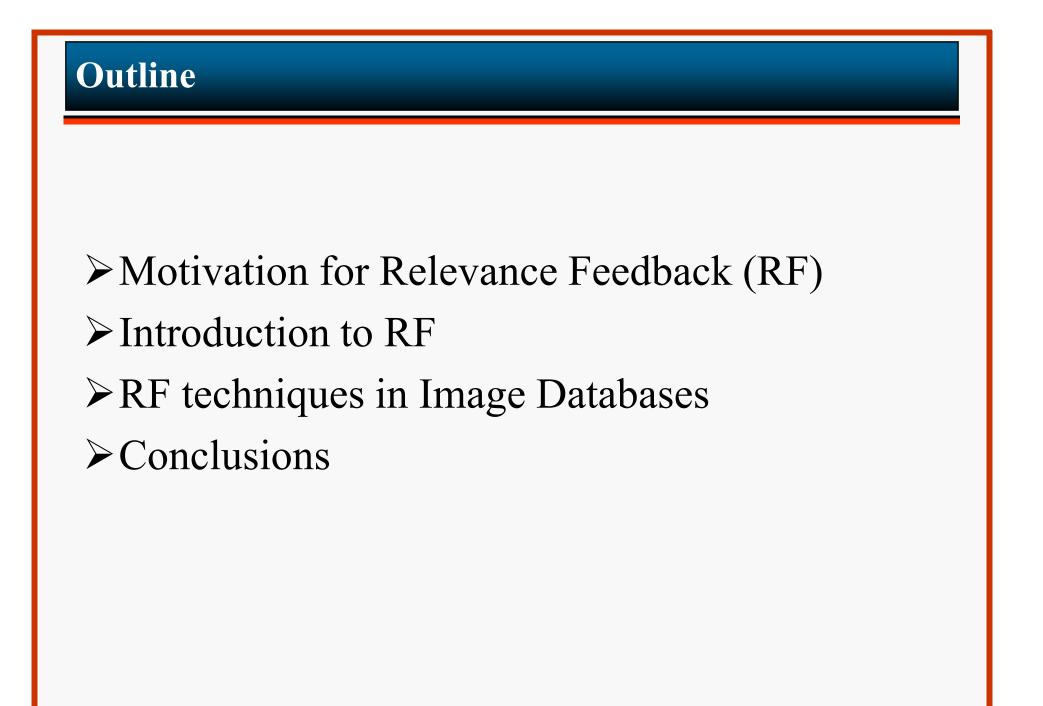
Ανάκτηση Πληροφορίας

Relevance Feedback in Image Information Retrieval



Motivation

- Initial work on content-based retrieval focused on using low-level features like color and texture for image representation.
- After each image is associated with a feature vector, similarity between images is measured by computing distances between feature vectors in the feature space.
- It is generally assumed that the features are able to locate visually similar images close to each other in the feature space so that non-parametric approaches, like the *k*-nearest neighbor search, can be used for retrieval.

Motivation

- There are cases where the user is not satisfied by the answers returned.
- Several relevant objects may not be retrieved or in addition to the relevant objects there are a lot of non-relevant ones.
- ≻Possible solutions:
 - Request more answers (e.g., next 10)
 - Rephrase and reexecute the query
 - Relevance feedback

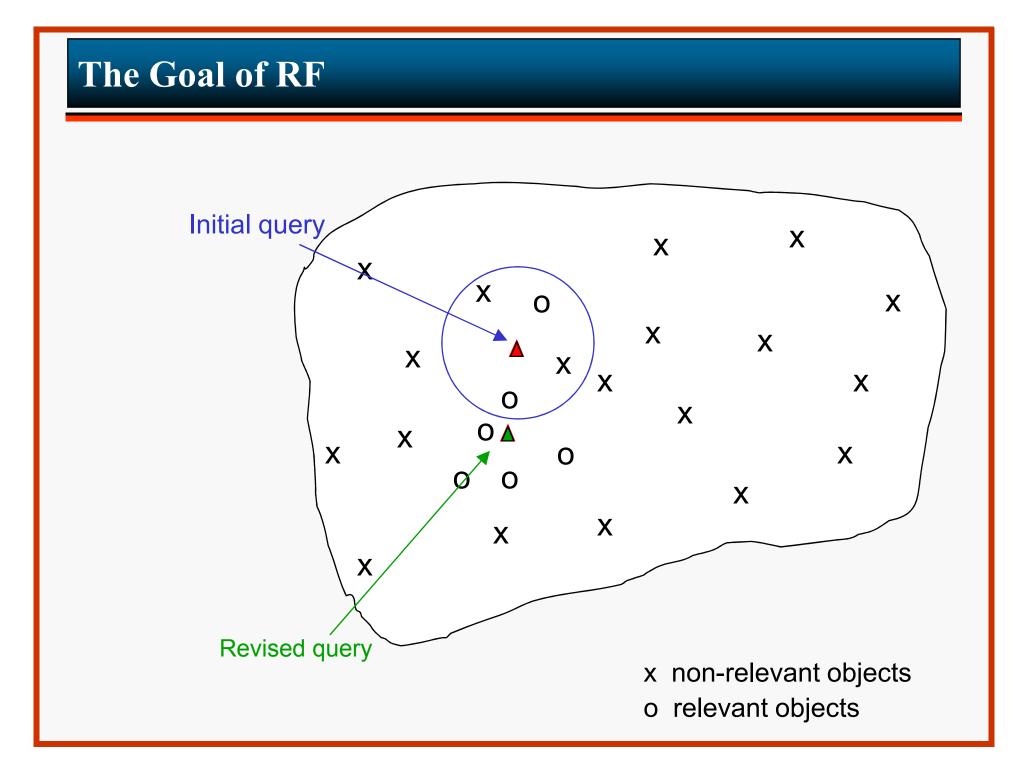
A Possible Solution: RF

Take advantage of user relevance judgments in the retrieval process:

- User issues a query and gets back an initial hit list
- User marks hits as relevant or non-relevant
- The system computes a better representation of the information need based on this feedback
- This process can be repeated more than once.

Idea: you may not know what you're looking for, but you'll know when you see it.

- Explicit feedback: users explicitly mark relevant and irrelevant documents
- Implicit feedback: system attempts to infer user intentions based on observable behavior
- Blind feedback (also known as pseudofeedback): feedback in absence of any evidence, explicit or otherwise



RF in Text Retrieval

➢ RF was originally proposed for text-based information retrieval.

- The goal is to improve the quality of the returned documents.
- Fundamental work: Rocchio

Rocchio Method

 \succ Used in practice:

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

 q_m = modified query vector;

 q_0 = original query vector;

 α, β, γ : weights (hand-chosen or set

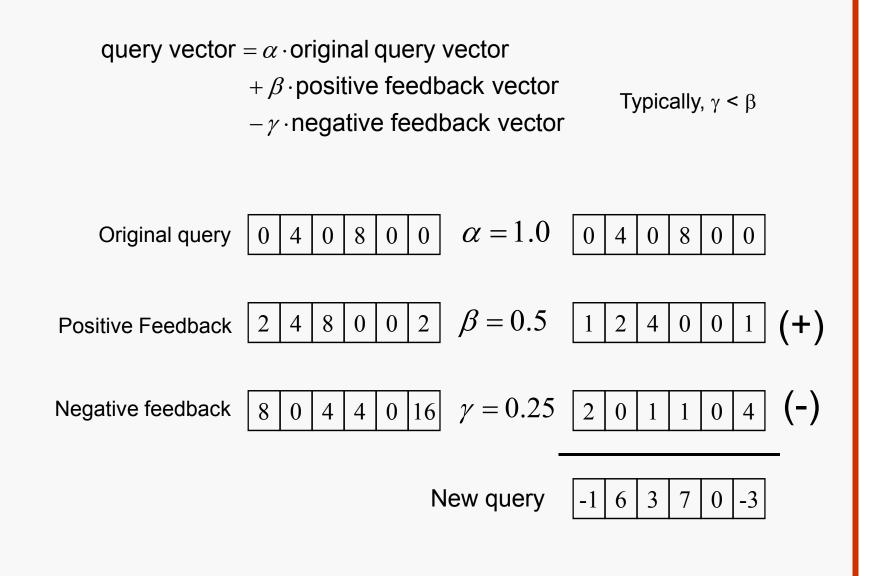
empirically);

 D_r = set of known relevant doc vectors;

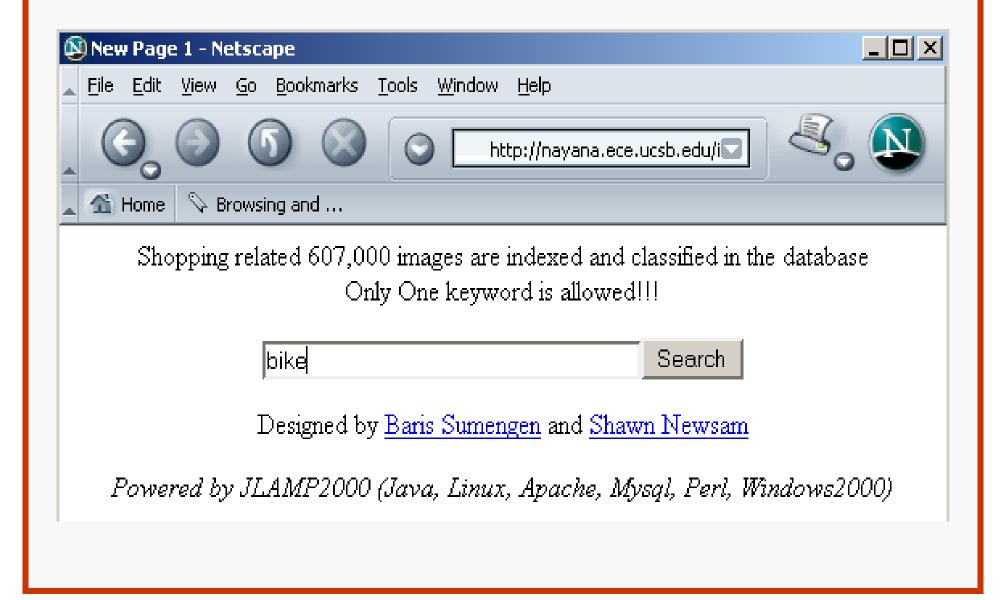
New query D_{nr} = set of known irrelevant doc vectors

- Moves toward relevant objects
- Away from irrelevant objects

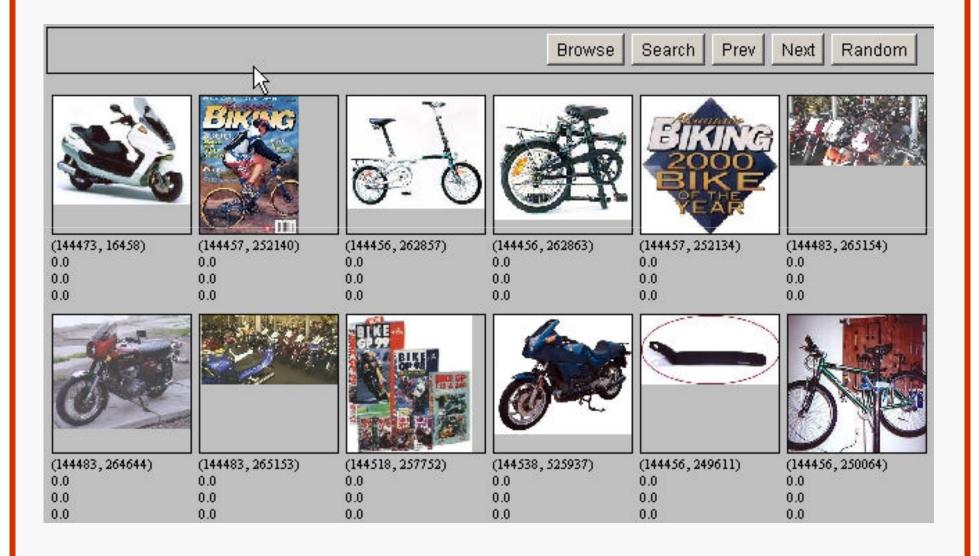
Rocchio Example



RF Example



RF Example: initial results



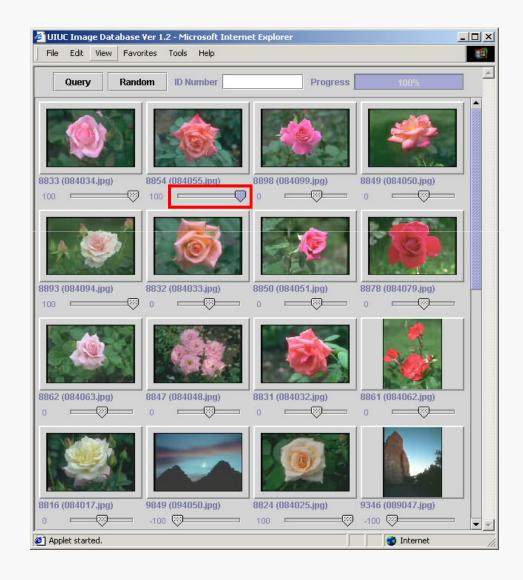
RF Example: user selection

Browse Search Prev Next Random					
	Birgs	TJ			
(144473, 16458) 0.0 0.0 0.0	(144457, 252140) 0.0 0.0 0.0 0.0	(144456, 262857) 0.0 0.0 0.0 0.0	(1444 <i>56</i> , 262863) 0.0 0.0 0.0	(1444 <i>5</i> 7, 252134) 0.0 0.0 0.0 0.0	(144483, 265154) 0.0 0.0 0.0 0.0
(144483, 264644) 0.0	(144483, 265153)	(144518, 257752)	(144538, 525937) 0.0	(144456, 249611) 0.0	(144456, 250064) 0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0

RF Example: revised results

Browse Search Prev Next Random					
0000		0			
(144538, 523493) 0.54182 0.231944 0.309876	(144538, 523835) 0.56319296 0.267304 0.295889	(144538,523529) 0.584279 0.280881 0.303398	(144456, 253569) 0.64501 0.351395 0.293615	(144456, 253568) 0.650275 0.411745 0.23853	(144538,523799) 0.66709197 0.358033 0.309059
A		ĪĮ	State		She had 'Eq' Kei Kala far had kanta lind
(144473, 16249) 0.6721 0.393922 0.278178	(144456, 249634) 0.675018 0.4639 0.211118	(144456, 253693) 0.676901 0.47645 0.200451	(144473, 16328) 0.700339 0.309002 0.391337	J L (144483, 265264) 0.70170796 0.36176 0.339948	(144478, 512410) 0.70297 0.469111 0.233859

RF Example: alternative interface



Some RF Techniques

- 1. Yong Rui, Thomas S. Huang and Sharad Mehrotra. "Content-Based Image Retrieval with Relevance Feedback in MARS", *International Conference on Image Processing (ICIP)*, 1997.
- 2. Selim Aksoy, Robert M. Haralick, Faouzi A. Cheikh, Moncef Gabbouj. "A Weighted Distance Approach to Relevance Feedback", *International Conference on Pattern Recognition (ICPR)*, 2000.
- 3. Zhong Su, Hongjiang Zhang, Stan Li, and Shaoping Ma. "Relevance Feedback in Content-Based Image Retrieval: Bayesian Framework, Feature Subspaces, and Progressive Learning", *IEEE Transactions on Image Processing*, 2003.
- 4. DeokHwan Kim, ChinWan Chung. "Qcluster: Relevance Feedback Using Adaptive Clustering for ContentBased Image Retrieval", *SIGMOD*, 2003.
- 5. Junqi Zhang Xiangdong Zhou Wei Wang Baile Shi1 Jian Pei. "Using High Dimensional Indexes to Support Relevance Feedback Based Interactive Images Retrieval", *VLDB*, 2006.

CBIR with **RF** in **MARS**

- There is an urgent need to develop integration mechanisms to link the image retrieval model to text retrieval model, such that the well established text retrieval techniques can be utilized.
- This paper studies approaches of converting image feature vectors (Image Processing domain) to weighted-term vectors (IR domain).
- Furthermore, the relevance feedback technique from the IR domain is used in content-based image retrieval to demonstrate the effectiveness of this conversion.
- Experimental results show that the image retrieval precision increases considerably by using the proposed integration approach.
- The method has been implemented in the MARS prototype system developed at the University of Illinois @ Urbana Campaign.

Selim Aksoy, Robert M. Haralick, Faouzi A. Cheikh, Moncef Gabbouj. A Weighted Distance Approach to Relevance Feedback, *Proceedings* of International Conference on Pattern Recognition (ICPR), 2000.

K number of iterations

- Q number of features in feature vector
- R^k retrieval set after the *k*-th iteration
- R_{rel}^k set of objects in R^k marked as relevant
- F_{i}^{k} values of the *j*-th feature component of images in R^{k}
- $F_{rel,j}^k$ values of the *j*-th feature component of images in R_{rel}^k

- The similarity between images is measured by computing distances between feature vectors in the feature space.
- ➢ Given two feature vectors x and y and the weight vector w, we use the weighted distances L₁ or L₂:

$$L_{1}(x, y; w) = \sum_{j=1}^{Q} |w_{j} \cdot (x_{j} - y_{j})|$$

$$L_{2}(x, y; w) = \left(\sum_{j=1}^{Q} |w_{j} \cdot (x_{j} - y_{j})|^{2}\right)^{1/2}$$

- From the pattern recognition point of view, for a feature to be good, its variance among all the images in the database should be large but its variance among the relevant images should be small.
- Any one of these is not enough alone but characterizes a good feature when combined with the other.

Let w_j^k denote the weight of the *j*-th feature component in the *k*+1 iteration.

This weight is given by the following equation:

$$\mathcal{W}_{j}^{k} = rac{\sigma_{j}^{0}}{\sigma_{rel,j}^{k}}$$

where:

$$\sigma_j^0 = std(F_j^0) \qquad \qquad \sigma_{rel,j}^k = std(F_{rel,j}^k)$$

According to the values of σ_j^0 and $\sigma_{rel,j}^k$ there are four different cases:

	σ_j^0	$\sigma^k_{\mathrm{rel},j}$	$w_j^k = \sigma_j^0 / \sigma_{\text{rel},j}^k$
best case	large	small	large
	large small	large small	~ 1
	small	small	~ 1
worst case	small	large	small

Case 1

- → When σ_j^0 is large and $\sigma_{rel,j}^k$ is small, w_j^k becomes large.
- This means that the feature has a diverse set of values in the database but its values for relevant images are similar.
- This is a desired situation and shows that this feature is very effective in distinguishing this specific relevant image set, so a large weight assigns more importance to this feature.

Case 2

- ➤ When both σ_j⁰ and σ_{rel,j}^k are large, w_j^k is close to 1.
 ➤ This means that the feature may have good discrimination characteristics in the database but is not effective for this specific relevant image group.
- The resulting weight does not give any particular importance to this feature.

Case 3

- > When both σ_j^0 and $\sigma_{rel,j}^k$ are small, w_j^k is again close to 1.
- This is a similar but slightly worse situation than the previous one.
- ➤ The feature is not generally effective in the database and is not effective for this relevant set either.
- \succ No importance is given to this feature.

Case 4

> When σ_j^0 is small and $\sigma_{rel,j}^k$ is large, w_j^k becomes small.

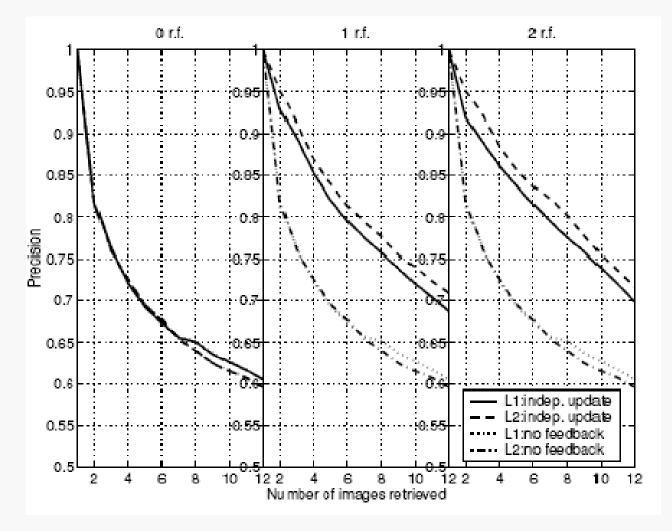
 \succ This is the worst case among all the possibilities.

- The feature is not generally effective and even causes the distance between relevant images to increase.
- A small weight forces the distance measure to ignore the effect of this feature.

Retrieval Algorithm

[1] initialize all weights uniformly. $w_i^0 = 1/Q$ j = 1, 2, ..., Q[2] compute σ_i^0 j = 1, 2, ..., Q. [3] for k = 1, $k \le K$, k + +- search the DB using w_i^{k-1} and retrieve R^k - get feedback from user and populate R_{rel}^k - compute $\sigma_{rel \, i}^{k}$ j = 1, 2, ..., Q- compute $w_{j}^{k} = \frac{\sigma_{j}^{0}}{\sigma_{k}^{k}} \quad j = 1, 2, ..., Q$ - normalize $w_j^k = \frac{w_j^k}{\sum_{i=1}^Q w_i^k}$

Precision results



Precision results

Distance	0 rf	1 rf	2 rf
L_1	0.60	0.69 (13.53%)	0.70 (1.71%)
L_2	0.60	0.71 (19.03%)	0.72 (1.06%)