
Multimedia Database Systems
Indexing Part A

Multidimensional Indexing Techniques

Department of Informatics
Aristotle University of Thessaloniki

Fall 2016-2017

Outline

Motivation
Multidimensional indexing
– R-tree
– R*-tree
– X-tree
– Pyramid technique

Processing Nearest-Neighbor queries
Conclusions

Motivation

In many real-life applications objects are represented as
multidimensional points:

Spatial databases
(e.g., points in 2D or 3D space)

Multidimensional databases
(each record is considered a point in n-D space)

Multimedia databases
(e.g., feature vectors are extracted from images, audio
files)

Examples of 2D Data Sets

Requirements

Indexing scheme are needed to speed up query
processing.
We need disk-based techniques, since we do not
want to be constrained by the memory capacity.
The methods should handle insertions/deletions
of objects (i.e., they should work in a dynamic
environment).

The R-tree

A. Guttman:
“R-tree: A Dynamic Index Structure for Spatial Searching”,
ACM SIGMOD Conference, 1984

R-tree Index Structure

An R-tree is a height-balanced tree similar to a B-tree.

Index records in its leaf nodes containing pointers to data objects.

Nodes correspond to disk pages if the index is disk-resident.

The index is completely dynamic.

Leaf node structure (r, objectID)
– r: minimum bounding rectangle of object
– objectID: the identifier of the corresponding object

Nonleaf node structure (R, childPTR)
– R: covers all rectangles in the lower node
– childPTR: the address of a lower node in the R-tree

Properties of the RProperties of the R--treetree

M: maximum number of entries that will fit in one node
m: minimum number of entries in a node, m ≤ M/2

Every leaf node contains between b and M index records unless it is the
root.
For each index record (r, objectID) in a leaf node, r is the smallest
rectangle (Minimum Bounding Rectangle (MBR)) that spatially contains
the data object.
Every non-leaf node has between m and M children, unless it is the root.
For each entry (R, childPTR) in a non-leaf node, R is the smallest rectangle
that spatially contains the rectangles in the child node.
The root node has at least 2 children unless it is a leaf.
All leaves appear at the same level.

R2

R-Tree Example

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

<MBR, Pointer to a child node>

<MBR, Pointer or ID>

M : maximum number of entries
m : minimum number of entries (≤ M/2)
(1) Every leaf node contains between m and M index

records unless it is the root.
(2) Each leaf node has the smallest rectangle that spatially

contains the n-dimensional data objects.
(3) Every non-leaf node has between m and M children

unless it is the root.
(4) Each non-leaf node has the smallest rectangle that

spatially contains the rectangles in the child node.
(5) The root node has at least two children unless it is a

leaf.
(6) All leaves appear on the same level.

9

R-tree Search Algorithm

Given an R-tree whose root is T, find all index records whose rectangles
overlap a search rectangle S.

Algorithm Search
– [Search subtrees]

• If T is not a leaf, check each entry E to determine whether E.R
overlaps S.

• For all overlapping entries, invoke Search on the tree whose root is
pointed to by E.childPTR.

– [Search leaf node]
• If T is a leaf, check all entries E to determine whether E.r overlaps S.

If so, E is a qualifying record.

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

R-Tree Search Example (1/7)

11

Find all objects whose rectangles are
overlapped with a search rectangle S

S

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

R-Tree Search Example (2/7)

12

S

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

R-Tree Search Example (3/7)

13

S

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

RR--Tree Search Example (4/7)Tree Search Example (4/7)

14

S

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

RR--Tree Search Example (5/7)Tree Search Example (5/7)

15

S

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

RR--Tree Search Example (6/7)Tree Search Example (6/7)

16

S

R2

R6

L
K

I

H
G

R5

R1

R3
A

B

R4

E

F
D

R1 R2

R3 R4 R6R5

A B D E F G H I K L

RR--Tree Search Example (7/7)Tree Search Example (7/7)

17

S

B and D
overlapped objects with S

R-tree Insertion

Algorithm Insert
// Insert a new index entry E into an R-tree.

– [Find position for new record]
• Invoke ChooseLeaf to select a leaf node L in which to place E.

– [Add record to leaf node]
• If L has room for another entry, install E.
• Otherwise invoke SplitNode to obtain L and LL containing E

and all the old entries of L.

– [Propagate changes upward]
• Invoke AdjustTree on L, also passing LL if a split was

performed

– [Grow tree taller]
• If node split propagation caused the root to split, create a

new root whose children are the 2 resulting nodes.

Algorithm ChooseLeaf

// Select a leaf node in which to place a new index entry E.

[Initialize]
– Set N to be the root node.

[Leaf check]*
– If N is not a leaf, return N.

[Choose subtree]
– If N is not a leaf, let F be the entry in N whose rectangle F.I

needs least enlargement to include E.I.
Resolve ties by choosing the entry with the rectangle of
smallest area.

[Descend until a leaf is reached]
– Set N to be the child node pointed to by F.p.
– Repeat from *.

Algorithm AdjustTree

// Ascend from a leaf node L to the root, adjusting covering rectangles
and propagating node splits as necessary.

[Initialize]
– Set N=L. If L was split previously, set NN to be the resulting second

node.

[Check if done]*
– If N is the root, stop.

[Adjust covering rectangle in parent entry]
– Let P be the parent node of N, and let En be N’s entry in P.
– Adjust En.I so that it tightly encloses all entry rectangles in N.

[Propagate node split upward]
– If N has a partner NN resulting from an earlier split, create a

new entry ENN with ENN.p pointing to NN and ENN.I enclosing all
rectangles in NN.

– Add ENN to P if there is room. Otherwise, invoke SplitNode to produce P
and PP containing ENN and all P’s old entries.

[Move up to next level]
– Set N = P and set NN = PP if a split occurred. Repeat from *.

R-tree Deletion

Algorithm Delete
// Remove index record E from an R-tree.

– [Find node containing record]
• Invoke FindLeaf to locate the leaf node L containing E.
• Stop if the record was not found.

– [Delete record]
• Remove E from L.

– [Propagate changes]
• Invoke CondenseTree, passing L.

– [Shorten tree]
• If the root node has only one child after the tree has been adjusted, make the

child the new root.

Algorithm FindLeaf
// Find the leaf node containing the entry E in an R-tree with root T.

– [Search subtrees]
• If T is not a leaf, check each entry F in T to determine if F.I overlaps E.I. For

each such entry invoke FindLeaf on the tree whose root is pointed to by F.p
until E is found or all entries have been checked.

– [Search leaf node for record]
• If T is a leaf, check each entry to see if it matches E. If E is

found return T.

Algorithm CondenseTree

// Given a leaf node L from which an entry has been deleted, eliminate the node if it
// has too few entries and relocate its entries.
// Propagate node elimination upward as necessary.
// Adjust all covering rectangles on the path to the root.

[Initialize]
– Set N=L. Set Q, the set of eliminated nodes, to be empty.

[Find parent entry]*
– If N is the root, go to +.
– Otherwise, let P be the parent of N, and let En be N’s entry in P.

[Eliminate under-full node]
– If N has fewer than m entries, delete En from P and add N to set Q.

[Adjust covering rectangle]
– If N has not been eliminated, adjust En.I to tightly contain all entries in N.

[Move up one level in tree]
– Set N=P and repeat from *.

[Re-insert orphaned entries]+
– Re-insert all entries of nodes in set Q.

Entries from eliminated leaf nodes are re-inserted in tree leaves as described in
Insert, but entries from higher-level nodes must be placed higher in the tree, so
that leaves of their dependent subtrees will be on the same level as leaves of the
main tree.

Node Splitting

The total area of the 2 covering rectangles after a split should
be minimized.

The same criterion was used in ChooseLeaf to decide a new
index entry: at each level in the tree, the subtree chosen was
the one whose covering rectangle would have to be enlarged least.

bad split good split

Node Split Algorithms

Exhaustive Algorithm
– To generate all possible groupings and choose the best.

The number of possible splits is very large.

Quadratic-Cost Algorithm
– Attempts to find a small-area split, but is not guaranteed to find one

with the smallest area possible.
– Quadratic in M (node capacity) and linear in dimensionality
– Picks two of the M+1 entries to be the first elements of the 2 new groups

by choosing the pair that would waste the most area if both were put in
the same group, i.e., the area of a rectangle covering both entries would
be greatest.

– The remaining entries are then assigned to groups one at a time.
– At each step the area expansion required to add each remaining entry to

each group is calculated, and the entry assigned is the one showing the
greatest difference between the 2 groups.

Algorithm Quadratic Split

// Divide a set of M+1 index entries into 2 groups.

[Pick first entry for each group]
– Apply algorithm PickSeeds to choose 2 entries to be the first

elements of the groups.
– Assign each to a group.

[Check if done]*
– If all entries have been assigned, stop.
– If one group has so few entries that all the rest must be assigned to it

in order for it to have the minimum number m, assign them and
stop.

[Select entry to assign]
– Invoke algorithm PickNext to choose the next entry to assign.
– Add it to the group whose covering rectangle will have to be

enlarged least to accommodate it.
– Resolve ties by adding the entry to the group with smaller entry,

then to the one with fewer entries, then to either.
– Repeat from *.

Algorithms PickSeeds & PickNext

Algorithm PickSeeds
// Select 2 entries to be the first elements of the groups.

– [Calculate inefficiency of grouping entries together]
• For each pair of entries E1 and E2, compose a rectangle J including

E1.I and E2.I.
• Calculate d = area(J) – area(E1.I) – area(E2.I).

– [Choose the most wasteful pair.]
• Choose the pair with the largest d.

Algorithm PickNext
// Select one remaining entry for classification in a group.
– [Determine cost of putting each entry in each group]

• For each entry E not yet in a group,
- Calculate d1 = the area increase required in the covering rectangle
of Group 1 to include E.I.
- Calculate d2 similarly for Group 2.

– [Find entry with greatest preference for one group]
• Choose any entry with the maximum difference between d1 & d2.

A Linear-Cost Algorithm

Linear in M and in dimensionality
Linear Split is identical to Quadratic Split but uses a different
PickSeeds. PickNext simply chooses any of the remaining entries.

Algorithm LinearPickSeeds
// Select 2 entries to be the first elements of the groups.
– [Find extreme rectangles along all dimensions]

• Along each dimension, find the entry whose rectangle has the
highest low side, and the one with the lowest high side.

• Record the separation.

– [Adjust for shape of the rectangle cluster]
• Normalize the separations by dividing by the width of the entire set

along the corresponding dimension.

– [Select the most extreme pair]
• Choose the pair with the greatest normalized separation along any

dimension.

Performance (Insert/Delete/Search)

Performance (Search/Space)

Conclusions

The R-tree structure has been shown to be useful for
indexing spatial data objects of non-zero size.

The linear node-split algorithm proved to be as good
as more expensive techniques.

It was fast, and the slightly worse quality of the
splits did not affect search performance noticeably.

The R*-tree

N. Bechmann, H.-P. Kriegel, R. Schneider, B. Seeger:
“The R*-tree: An Efficient and Robust Access Methods for Points and Rectangles”,
ACM SIGMOD Conference, 1990.

Introduction

– R-tree
• Tries to minimize the area of the enclosing rectangle

(minimum bounding rectangle: MBR) in each inner
node.
[Note] SAMs are based on the approximation of a

complex spatial object by MBR.
– R*-tree

• Tries to minimize the area, margin and overlap of each
enclosing rectangle in the directory and to increase
storage utilization.
It clearly outperforms the R-tree.

Parameters for Retrieval Performance

The area covered by a directory rectangle should be
minimized.

The dead space should be minimized.
The overlap between directory rectangles should be
minimized.
The margin of a directory rectangle should be minimized.
Storage utilization should be maximized.

Overlap of an entry
E1, …, Ep are the entries in a node.

pkiEEE
p

kii
ikk ≤≤∩= ∑

≠=

,))(gletanrec)(gletanrec(area)(overlap
,1

Trade-offs in Performance Parameters

Keeping the area, overlap, and margin of a directory
rectangle small will be paid with lower storage
utilization.
Since more quadratic directory rectangles support
packing better, it will be easier to maintain high
storage utilization.
The performance for queries with large query
rectangles will be affected more by the storage
utilization.

Split of
the R*-tree

Algorithm ChooseSubtree

Set N to be the root.
If N is a leaf, return N. *
Else

– If the child_pointers in N point to leaves
// Determine the minimum overlap cost //

• Choose the entry in N whose rectangle needs least overlap
enlargement to include the new data rectangle.

• Resolve ties by choosing the entry whose rectangle needs least
area enlargement, then the entry with the rectangle of
smallest area.

– Else
// Determine the minimum area cost //

• Choose the entry in N whose rectangle needs least area
enlargement to include the new data rectangle.

• Resolve ties by choosing the entry with the rectangle of
smallest area.

Set N to be the child_node pointed to by the child_pointer
of the chosen entry and repeat from *.

Split of the R*-tree

Finding good splits
– Along each axis, the entries are first sorted by the lower value, then sorted

by the upper value of their rectangles.
– For each sort M-2m+2 distributions of the M+1 entries into 2 groups are

determined, where the k-th distribution (k = 1, …, M-2m+2) is described as
follows:

• The 1st group contains the 1st (m-1)+k entries,
• The 2nd group contains the remaining entries.

– For each distribution, goodness values are determined.
• Depending on these goodness values the final distribution of the entries is

determined.
• Three different goodness values and different approaches of using them in

different combinations are tested experimentally.

1, 2, 3, 1, 2, 3, ……, m, m+1, , m, m+1, ……, M, M--m+1, Mm+1, M--m+2, m+2, ……, M+1, M+1

m entries possible M-2m+2 splits m entries

Three Goodness Values

Area-value
– area[bb(1st group)] + area[bb(2nd group)]

Margin-value
– margin[bb(1st group)] + margin[bb(2nd group)]

Overlap-value
– area[bb(1st group)] ∩ area[bb(2nd group)]

where bb: bounding box of a set of rectangles

Algorithm Split
Invoke ChooseSplitAxis to determine the axis, perpendicular to which the split
is performed.
Invoke ChooseSplitIndex to determine the best distribution into 2 groups
along that axis.
Distribute the entries into 2 groups.

Algorithm ChooseSplitAxis
For each axis

– Sort the entries by the lower then by the upper value of their rectangles and
determine all distributions as described above.

– Compute S, the sum of all margin-values of the different distributions.
Choose the axis with the minimum S as split axis.

Algorithm ChooseSplitIndex
Along the chosen split axis, choose the distribution with the minimum overlap-
value.
Resolve ties by choosing the distribution with minimum area-value.

The Split Process

Forced Reinsert

Data rectangles inserted during the early growth of the index
may have introduced directory rectangles not suitable to the
current situation.

This problem would be maintained or even worsened if
underfilled nodes would be merged under the old parent.

R-tree
– Deletes the node and reinserts the orphaned entries in the

corresponding level.

Distributing entries into different nodes.

R*-tree
– Forces entries to be reinserted during the insertion routine.

Algorithm Insert
Invoke ChooseSubtree, with the level as a parameter, to find an appropriate
node N, in which to place the new entry E.
If N has less than M entries, accommodate E in N. If N has M entries,
invoke OverflowTreatment with the level of N as a parameter [for
reinsertion or split].
If OverflowTreatment was called and a split was performed, propagate
OverflowTreatment upwards if necessary. If OverflowTreatment caused a
split of the root, create a new root.
Adjust all covering rectangles in the insertion path s.t. they are minimum
bounding boxes enclosing their children rectangles.

Algorithm OverflowTreatment
If the level is not the root level and this is the 1st call of OverflowTreatment
in the given level during the insertion of one data rectangle, then invoke
ReInsert.
Else Invoke Split.

Insertion

Algorithm ReInsert
1. For all M+1 entries of a node N, compute the distance between the

centers of their rectangles and the center of the bounding rectangle of
N.

2. Sort the entries in decreasing order of their distances computed in 1.
3. Remove the first p entries from N and adjust the bounding rectangle

of N.
4. In the sort, defined in 2, starting with the maximum distance (= far

reinsert) or minimum distance (= close reinsert), invoke Insert to
reinsert the entries.

The parameter p can be varied independently as part of performance
tuning.

Experiments showed that p = 30% of M yields the best
performance.

Reinsert

Performance Comparison

Conclusions

Forced reinsert changes entries between neighboring nodes and
thus decreases the overlap.
As a side effect, storage utilization is improved.
Due to more restructuring, less splits occur.
Since the outer rectangles of a node are reinserted, the shape of
the directory rectangles will be more quadratic. As discussed
above, this is a desirable property.

The X-tree

S. Berchtold, D.A. Keim, and H.-P. Kriegel:
“The X-tree: An Index Structure for High-Dimensional Data”,
VLDB Conference, 1996.

Motivation

The R*-tree is not adequate for indexing high-
dimensional datasets.

– Major problem of R-tree-based indexing methods
• The overlap of the bounding boxes in the directory

which increases with growing dimension.
– X-tree

• Uses a split algorithm that minimizes overlap.
• Uses the concept of supernodes.
• Outperforms the R*-tree and the TV-tree by up to 2

orders of magnitude.

Introduction

Some observations in high-dimensional datasets
– Real data in high-dimensional space are highly correlated and clustered.

The data occupy only some subspace.
– In most high-dimensional datasets, a small number of dimensions bears most of the

information.
Transforms data objects into some lower dimensional space

Traditional index structures may be used.

Problems of Dimensionality Reduction
– The datasets still have a quite large dimensionality.
– It’s a static method.

X-tree
– Avoids overlap of bounding boxes in the directory by using a new organization of

directory supernode
– Avoids splits which would result in a high degree of overlap in the directory.
– Instead of allowing splits that introduce high overlaps, directory nodes are extended

over the usual block size, resulting in supernodes.

Problems of R-tree-based Index Structures

The performance of the R*-tree deteriorates rapidly when going to higher
dimensions The overlap in the directory is increasing very rapidly with
growing dimensionality of data.

Overlap of R*-tree Directory Nodes

Definition of Overlap

The overlap of an R-tree node is the percentage of space covered by
more than one hyper-rectangle.

The weighted overlap of an R-tree node is the percentage of data
objects that fall in the overlapping portion of the space.

Multi-overlap of an R-tree Node

The sum of overlapping volumes multiplied by the number of
overlapping hyper-rectangles relative to the overall volume of
the considered space.

X-tree (eXtended node tree)

The X-tree avoids overlap whenever possible without allowing
the tree to degenerate.
Otherwise, the X-tree uses extended variable size directory
nodes, called supernodes.
The X-tree may be seen as a hybrid of a linear array-like and a
hierarchical R-tree-like directory.
– In low dimensions

a hierarchical organization would be most efficient.
– For very high dimensionality

a linear organization is more efficient.
– For medium dimensionality

Partially hierarchical and partially linear organization may
be efficient.

Structure of the X-tree

The X-tree consists of 3 kinds of nodes
– Data nodes
– Normal directory nodes
– Supernodes: large directory nodes of variable size To

avoid splits in directory nodes

X-tree shapes in different dimensions

The number and size of superndoes increases with the
dimension.

X-tree Insertion

Split Algorithm

Supernodes

If the number of MBRs in one of the partitions is below a given
threshold, the split algorithm terminates without providing a split.
In this case, the current node is extended to become a supernode of
twice the standard block size.
If the same case occurs for an already existing supernode, the
supernode is extended by one additional block.
If a supernode is created or extended, there may be not enough
contiguous space on disk to sequentially store the supernode. In this
case, the disk manager has to perform a local reorganization.

Determining the Overlap-Minimal (Overlap-Free) Split

Split History

For finding an overlap-free split, we have to determine a dimension according to which
all MBRs of S have been split previously.

The split history provides the necessary information:
- split dimensions and new MBRs created by split.
- It may be represented by a binary tree, called the split tree.

Performance Evaluation (1/2)

Performance Evaluation (2/2)

The Pyramid-Technique

S.Berchtold, C. Bohm, H.-P. Kriegel
“The Pyramid-Technique: Towards Breaking the Curse of Dimensionality”
ACM SIGMOD Conference, 1998.

Contents

Introduction
Analysis of Balanced Splits
The Pyramid-Technique
Query Processing
Analysis of the Pyramid-Technique
The Extended Pyramid-Technique
Experimental Evaluation

Introduction

A variety of new DB applications has been
developed
– Data warehousing

• Require a multidimensional view on the data

– Multimedia
• Using some kind of feature vectors

Has to support query processing on large amounts
of high-dimensional data

Analysis of Balanced Splits

Performance degeneration
– Data space cannot be split in each dimension

• To a uniformly distributed data set
• 1-dimenstion data space 21 = 2 data pages
• 20-dimension data space 220 ≈ 1,000,000 data pages

– Similar property holds for range query
•

– q = 0.63, d = 20, selectivity s = 0.01% = 0.0001
d sq =

d=1: q = 0.0001
d=2: q = 0.01
d=3: q = 0.0464
…
d=20: q = 0.6310

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

D im e n s io n s

q

← 0 . 6 3 fo r d = 2 0

Analysis of Balanced Splits

Expected value of data page access

–
)

1
5.0,1min(

)(

)
)(

(log

),,(balanced

2 dC
N

eff
Nqd

eff

qdC
NE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⋅=

10

The Pyramid-Technique

Basic idea
– Transform d-dimesional point into 1-dimensional

value
– Store and access the values using B+-tree

• Store d-dimensional points plus 1-dimensional key

Data Space Partitioning

Pyramid-Technique
– Split the data space into 2d pyramids

• top: center point (0.5, 0.5, …, 0.5)
• base: (d-1)-dimensional surface

– each of pyramids is divided into several partitions

Center Point
(0.5, 0.5)

d-1 dimensional

2-dimension

4 pyramids

partition

Data Space Partitioning

Definition 1: (Pyramid of a point v)

–

•
⎩
⎨
⎧

≥+
<

=
)5.0()(
)5.0(

max

max

jmax

jmax

vifdj
vifj

i

|))5.0||5.0:|,),(0,(|(kjmax vvkjdkjkjj −≥−≠<≤∀=

p0

p1

p2

p3

d0

d1

p0

p1 +2

(0.6, 0.2) (0.6, 0.2)

v
0.5-v1

0.5-v0

0.5-v0≥0.5-v1
= 0.3 ≥ 0.0

jmax = 0
vjmax = 0.8 ≥ 0.5
i=jmax+d= 0+2=2

v2 is in p20.5-v1≥0.5-v0
jmax = 0

vjmax = 0.2<0.5
i = 1

v is in p1

(0.8, 0.5)

v2

Data Space Partitioning

Definition 2: (Height of a point v)
–

Definition 3: (Pyramid value of a point v)
–

div vh MOD 5.0 −=

)(vv hipv +=

Pyramid p1

(0.6, 0.2)

v

hv=0.5-0.2=0.3

p0

p1

p2

p3

d0

d1

(0.6, 0.2)

Def 1: i = 1
Def 2: hv = 0.3
Def 3: pvv = 1+0.3 = 1.3

Index Creation

Insert
– Determine the pyramid value of a point v
– Insert into B+-tree using pvv as a key
– Store the d-dimensional point v and pvv

• In the according data page of the B+-tree

– Update and delete can be done analogously
Resulting data pages of the B+-tree
– Belong to same pyramid
– Interval given by the min and max value partition

min
max

M=3

0.30.20.1 1.10.4 1.2

1.10.3

1.3

(0.6,0.2)

Query Processing

Point query
– Compute the pyramid value pvq of q
– Query the B+-tree using pvq

– Obtain a set of points sharing pvq

– Determine whether the set contains q

M=3

0.30.20.1 1.21.10.4 1.41.3 2.42.32.2 3.43.33.2

1.20.3 2.4

1.2

(0.2,0.7)

(0.2, 0.7)

qq=(0.2,0.3)
pvq=0.3

Query Processing

Range query

Point_Set PyrTree::range_query(range q)
{
Point_Set res;
for (i=0; i<2d; i++) {
if (intersect(p[i], q) {
determine_range(p[i], q, hlow, hhigh);

cs = btree_query(i+hlow, i+hhigh);
for (c=cs.first; cs.end; cs.next)
if (inside(q, c))
res.add(c);

}
}
return res;

}

Lemma 1

Lemma 2

M=3

0.30.20.1 1.21.10.4 1.41.3 2.42.32.2 3.43.33.2

1.20.3 2.4

1.2

[0.1, 0.6][0.1, 0.3]

i=0

hlow=0.2
hhigh=0.4

(0.1, 0.3)

i=1

(0.5, 0.3)
(0.3, 0.2)
(0.5, 0.1)

i=2i=3

(0.2,0.7) (0.3,0.4)

(0.1, 0.5)
(0.1,0.3)

Q

Query Processing

Lemma 1: (Intersection of a Pyramid and a
Rectangle)
–

•

)ˆ(ˆ :,0, ji qMINqijdjj
min

−≤≠<≤∀

⎩
⎨
⎧ ≤≤

=
otherwise),(

0 if0
)(

maxmin

maxmin

rrmin
rr

rMIN

d0

d1

[0.4, 0.9][0.1, 0.3] [-0.1, 0.4][-0.4, -0.2]

p0

p1

i=0:
qimin=-0.1
-MIN(qj)=-0.2
-0.1 > -0.2

false
i=1:

qimin=-0.4
-MIN(qj)=0
-0.4 < 0

true

Only use i<d

Query Processing

Lemma 2: (Interval of Intersection of Query and
Pyramid)
– Case 1:

•

– Case 2: (otherwise)
•

–

))ˆ0ˆ(:0,(
maxmin jj qqdjj ≤≤<≤∀

)(,0 ihighlow qMAXhh)==

)(),(),0(ihighjijdjlow qMAXhqminh
min

)== ≠<≤

⎩
⎨
⎧ ≥

=
otherwise)(

)()(if))(),((

i

ijji
j qMIN

qMINqMAXqMINqMINmax
q

min)

))))

d0

d1

d0

d1

i=0:
hlow=0
hhigh=0.3

i=1:
hlow=0
hhigh=0.1

i=0:
hlow=0.2
hhigh=0.4

i=1:
hlow=0.2
hhigh=0.3

MIN(qj)

MIN(qi)

= MIN(qi)

Only use i<d

Analysis of the Pyramid-Technique

Required number of accesses pages for 2d
pyramids

–)1()1()(2
))12(1(2),,(

1

epyrimidtre qddC
qNdNqdE

eff

d

−⋅+⋅
−−⋅+

=
+

Does not reveal any performance degeneration

The Extended Pyramid-Technique

Basic idea

Conditions
–
–

•)(log
1

2)(imp
i xxt

−

=

]1,0[]1,0[: ,5.0)(,1)1(,0)0(→=== iiiii tmpttt

(0.1, 0.y)

(0.x, 0.1)
(0.5, 0.5)

r
iii

r
i mpmptxxt === 5.0)(,)(

The Extended Pyramid-Technique

Performance
– Speed up : about 10 ~ 40%
– Loss of performance not too high

• Compare to high speed-up factors over other index
structures

Experimental Evaluation

Using Synthetic Data
– Performance behavior over database size (16-

dimension)

– Performance behavior over data space dimension
• 1,000,000 objects

879.2

2500.7

Experimental Evaluation

Using Real Data Sets
– Query processing on text data (16-dimension)

– Query processing on warehousing data (13 attributes)

505.18

51

Conclusions

For almost hypercube shaped queries
– Outperforms any competitive technique

• Including linear scan
– Holds even for skewed, clustered and categorical data

For queries having a bad selectivity
– Outperforms competitive index structures
– However, a linear scan is faster

Fin.

pyramid T.: 2.6

Sequ. Scan: 2.48

<For 1-dimensional queries>

Nearest Neighbor Queries

N. Roussopoulos, S. Kelly, and F. Vincent:
“Nearest Neighbor Queries”,
ACM SIGMOD Conference, 1995.

Introduction

A frequently encountered type of query in MMDB
and GIS is to find the k nearest neighbor objects
(k NNs) to a given point in space.

Efficient branch-and-bound R-tree traversal
algorithm to find k NNs to a point is presented.

Introduction

Example k-NN queries
– “Find k images most similar to a query image”
– “Find k nearest hotels from this point”

Efficient processing of k-NN queries requires spatial data
structures which capitalize on the proximity of the objects to
focus the search of potential neighbors only.

An efficient branch-and-bound search algorithm for processing
exact k-NN queries for the R-trees.

k-NN Search Using R-trees

R-tree example
– Minimum bounding rectangle (MBR)

Metrics for k-NN Search

Fan-out (branching factor)
– The maximum number of entries that a node can have
– Performance of an R-tree search is measured by the number of disk

accesses (reads) necessary to find (or not found) the desired objects
in the database.

Two metrics for ordering the k-NN search
– Given a query point P and an object O enclosed in its MBR
1. The minimum distance (MINDIST) of the object O from P
2. The minimum of the maximum possible distance (MINMAXDIST)

from P to a face (or vertex) of the MBR containing O.
Offer a lower and an upper bound on the actual distance of O from P
respectively.
Used to order and efficiently prune the paths of the search space in
an R-tree.

Minimum Distance (MINDIST) - 1/2

Def. 1. A Rectangle R in Euclidean space E(n) of dimension n, is defined by the
2 endpoints S and T of its major diagonal:

R = (S, T)
where S = {s1, s2, …, sn} and T = {t1, t2, …, tn}

and si ≤ ti for 1 ≤ i ≤ n

Def. 2. MINDIST(P, R)
The distance of a point P in E(n) from a rectangle R in the same space, denoted
MINDIST(P,R), is:

If the point is inside the rectangle, the distance between them is 0. If the point
is outside, we use the square of the Euclidean distance between the point and the
nearest edge of the rectangle.

∑
=

−=
n

i
ii rpR,PMINDIST

1

2)(
si if pi < si

ri = ti if pi > si

pi otherwise
, where

Minimum Distance (MINDIST) - 2/2

Lemma 1. The distance of Def. 2 is equal to the square of the minimal
Euclidean distance from P to any point on the perimeter of R.

Def. 2. The minimum distance of a point P from a spatial object o, denoted by
||(P,o)|| is:

Theorem 1. Given a point P and an MBR R enclosing a set of objects O = {oi,
1 ≤ i ≤ m}, the following is true:

∀o∈O, MINDIST(P,R) ≤ ||(P,o)||

Lemma 2. The MBR Face Property
Every face (i.e., edge in dimension 2, rectangle in dimension 3 and hyperspace in
higher dimensions) of any MBR (at any level of the R-tree) contains at least one point
of some spatial object in the DB (See Figs. 3 and 4).

)][,()(1
1

2 Ox,...,xXxpmino,P n

n

i
ii ∈=∀−= ∑

=

MBR Face Property

Minimax Distance (MINMAXDIST) - 1/2

Upper bound (MINMAXDIST) of
the NN distance to any object inside
an MBR
Minimum value of all the maximum
distances between the query point
and points on the each of the n axes
Allows to prune MBRs that have
MINDIST › upper bound
Guarantees there is an object within
the distance(MBR) ≤
MINMAXDIST.

MINMAXDIST – 2/2

Theorem 2. Given a point P and an MBR R enclosing a set of objects O =
{oi, 1 ≤ i ≤ m}, the following property holds:

∃∈O, ||(P, o)|| ≤ MINMAXDIST(P,R)
Guarantees the presence of an object O in R whose distance from P is
within this distance.

MINDIST and MINMAXDIST

Search Ordering
– MINDIST ordering is the optimistic choice.
– MINMAXDIST metric is the pessimistic one.
– MINDIST metric ordering is not always the best choice.

Strategies for Search Pruning

1. An MBR M with MINDIST(P,M) greater than the
MINMAXDIST(P,M') of another MBR M' is discarded
because it cannot contain the NN.

2. An actual distance from P to a given object O which is
greater than the MINMAXDIST(P,M) for an MBR M can
be discarded because M contains an object O' which is
nearer to P.

3. Every MBR M with MINDIST(P,M) greater than the actual
distance from P to a given object O is discarded because it
cannot enclose an object nearer than O.

Nearest Neighbor Search Algorithm (1/2)

Ordered depth first traversal

1. Begins with the R-tree root node and proceeds down the tree.
2. During the descending phase, at each newly visited nonleaf node, computes

the ordering metric bounds (MINDIST/MAXDIST) for all its MBRs and
sorts them into an Active Branch List.

3. Applies pruning strategies to the ABL to remove unnecessary branches.
4. The algorithm iterates on this ABL until the ABL empty: For each iteration,

the algorithm selects the next branch in the list and applies itself recursively
to the node corresponding to the MBR of this branch.

5. At a leaf node (DB objects level), the algorithm calls a type specific distance
function for each object and selects the smaller distance between current
value of Nearest and each computed value and updates Nearest appropriately.

6. At the return from the recursion, we take this new estimate of the NN and
apply pruning strategy 3 to remove all branches with MINDIST(P,M) >
Nearest for all MBRs M in the ABL.

Nearest Neighbor Search Algorithm (2/2)

Generalization: Finding k NNs

The differences from 1-NN algorithm are:
– A sorted buffer of at most k current NNs is needed.
– The MBRs pruning is done according to the distance of the

farthest NN in this buffer.

Experimental Results (1/2)

TIGER data files for Long Brach and Montgomery.

Experimental Results (2/2)

Synopsis

We have discussed:
The R-tree and R*-tree
The X-tree
The Pyramid technique
An algorithm for k-NN search

There are other methods such as:
TV-tree, SS-tree, SR-tree, VA-File.

Bibliography

+++

	Multimedia Database Systems
	Outline
	Motivation
	Examples of 2D Data Sets
	Requirements
	The R-tree�
	R-tree Index Structure
	Properties of the R-tree
	R-Tree Example
	R-tree Search Algorithm
	R-Tree Search Example (1/7)
	R-Tree Search Example (2/7)
	R-Tree Search Example (3/7)
	R-Tree Search Example (4/7)
	R-Tree Search Example (5/7)
	R-Tree Search Example (6/7)
	R-Tree Search Example (7/7)
	R-tree Insertion
	Algorithm ChooseLeaf
	Algorithm AdjustTree
	R-tree Deletion
	Algorithm CondenseTree
	Node Splitting
	Node Split Algorithms
	Algorithm Quadratic Split
	Algorithms PickSeeds & PickNext
	A Linear-Cost Algorithm
	Performance (Insert/Delete/Search)
	Performance (Search/Space)
	Conclusions
	The R*-tree�
	Introduction
	Parameters for Retrieval Performance
	Trade-offs in Performance Parameters
	Algorithm ChooseSubtree
	Split of the R*-tree
	Three Goodness Values
	The Split Process
	Forced Reinsert
	Insertion
	Reinsert
	Performance Comparison
	Conclusions
	The X-tree �
	Motivation
	Introduction
	Problems of R-tree-based Index Structures
	Overlap of R*-tree Directory Nodes
	Definition of Overlap
	Multi-overlap of an R-tree Node
	X-tree (eXtended node tree)
	Structure of the X-tree
	X-tree shapes in different dimensions
	X-tree Insertion
	Split Algorithm
	Supernodes
	Determining the Overlap-Minimal (Overlap-Free) Split
	Split History
	Performance Evaluation (1/2)
	Performance Evaluation (2/2)
	The Pyramid-Technique
	Contents
	Introduction
	Analysis of Balanced Splits
	Analysis of Balanced Splits
	The Pyramid-Technique
	Data Space Partitioning
	Data Space Partitioning
	Data Space Partitioning
	Index Creation
	Query Processing
	Query Processing
	Query Processing
	Query Processing
	Analysis of the Pyramid-Technique
	The Extended Pyramid-Technique
	The Extended Pyramid-Technique
	Experimental Evaluation
	Experimental Evaluation
	Conclusions
	Nearest Neighbor Queries
	Introduction
	Introduction
	k-NN Search Using R-trees
	Metrics for k-NN Search
	Minimum Distance (MINDIST) - 1/2
	Minimum Distance (MINDIST) - 2/2
	MBR Face Property
	Minimax Distance (MINMAXDIST) - 1/2
	MINMAXDIST – 2/2
	MINDIST and MINMAXDIST
	Strategies for Search Pruning
	Nearest Neighbor Search Algorithm (1/2)
	Nearest Neighbor Search Algorithm (2/2)
	Generalization: Finding k NNs
	Experimental Results (1/2)
	Experimental Results (2/2)
	Synopsis
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

