
Multimedia Database Systems

Top-k and Skyline Computation

Outline of Presentation

� Introduction

�Top-k computation

– Algorithm FA (Fagin’s algorithm)

– Algorithm TA (threshold algorithm)

– Advanced topics

2

– Advanced topics

� Skyline computation

– Introduction to R-trees

– Algorithm BBS (branch-and-bound skyline)

– Advanced topics

�Conclusions

�Bibliography

Introduction

In a database management system queries are
usually expressed by using SQL. For example,
to find the hotel names whose distance from the
beach is at most 1km, we can write the
following SQL statement:

3

following SQL statement:

SELECT hotels.name

FROM hotels

WHERE hotels.distance <= 1;

Introduction

In the previous query we specify exactly what we

want, by stating that “hotels.distance <= 1”.

However, in many cases it is more convenient to

4

However, in many cases it is more convenient to

let the system give the best possible answers it

can get for us. This is even more helpful when

multiple criteria are given by the user.

Introduction

Who is the best NBA player?

According to points: Tracy McGrady, score 2003
According to rebounds: Shaquille O'Neal, score 760
According to points+rebounds: Tracy McGrady, score 2487

5

Name Points Rebounds Assists Steals ……

Tracy McGrady 2003 484 448 135 ……

Kobe Bryant 1819 392 398 86 ……

Shaquille O'Neal 1669 760 200 36 ……

Yao Ming 1465 669 61 34 ……

Dwyane Wade 1854 397 520 121 ……

Steve Nash 1165 249 861 74 ……

…… …… …… …… …… ……

Introduction

Assume we are interested in hotels that are close

to the beach AND close to a conference center.

For a hotel x let Dbeach(x) denote the distance

to the beach and Dconf(x) the distance to the

conference center.

6

conference center.

Assume further that we want the value

Dbeach(x)+Dconf(x) to be the minimum

possible.

Introduction
0

1

2

 3

 4

 5

 6

Dconf

a (1,6)

id Dbeach Dconf Score

a 1 6 7

b 3 4 7

c 4 3 7

Object ranking based on Dbeach(x)+Dconf(x)

7

0 1 2 3 4 5 6

0

1

2

 3

 4

 5

 6

Dbeach

b (3,4)

c (4,3)

d (3,1) e (5,1)

f (2,2)

g (1,4)

c 4 3 7

d 3 1 4

e 5 1 6

f 2 2 4

g 1 4 5

Best hotels: d, f

Second best: g

Third best: e

Next best: a, b, c

Introduction – Top-k

Top-k Query

Given a database D of n objects, a scoring function F

(according to which we rank the objects in D) and the

number of expected answers k, a Top-k query returns

the k objects with the best score (rank) in D.

8

the k objects with the best score (rank) in D.

In our hotel example, the scoring function F(x) is simply

the sum of Dbeach(x)+Dconf(x).

Introduction – Top-k

Monotonicity property

Assume we have two vectors X and Y

X = (x1, x2, …, xm) and Y = (y1, y2, …, ym)

9

X = (x1, x2, …, xm) and Y = (y1, y2, …, ym)

A scoring function F() is called monotone

increasing if it preserves the order:

x1 <= y1, …, xm < ym � F(X) <= F(Y)

Examples: min, max, sum

Introduction – Top-k

Remarks

�The number of objects in the answer (k) is user-

defined.

�The “best” score is either the lowest or the

10

�The “best” score is either the lowest or the

highest depending on user preferences.

�The ranking function F, may involve more than

two attributes.

Introduction – Top-k

Top-k query in SQL

SELECT hotels.name

FROM hotels

11

FROM hotels

ORDER BY (hotels.Dbeach+hotels.Dconf)

STOP AT 3

This is a Top-3 query.

Introduction – Top-k

In a Top-k query the ranking function F as well as

the number of answers k must be provided by

the user.

In many cases it is difficult to define a meaningful

12

In many cases it is difficult to define a meaningful

ranking function, especially when the attributes

have different semantics (e.g., find the cheapest

hotel closer to the beach).

Introduction – Skyline

To avoid the drawbacks of Top-k queries, Skyline

queries have been proposed as an alternative to

satisfy user preferences.

13

The Skyline query

– does not require a ranking function

– does not need the integer k

Introduction - Skyline

The Skyline of a set of objects (records)
comprises all records that are not dominated by
any other record.

A record x dominates another record y if x is as
good as y in all attributes and strictly better in at

14

good as y in all attributes and strictly better in at
least one attribute.

Again, in some cases we are interested in
minimizing attribute values (e.g., price) and in
other cases maximizing them (e.g., floor
number)

Introduction - Skyline

Domination examples:

g dominates b because 1<3 and 4=4

f dominates c because 2<4 and 2<3

d dominates e because 3<5 and 1=1

0

1

2

 3

 4

 5

 6

Dconf

a (1,6)

b (3,4)g (1,4)

dominated

15

The Skyline is the set: { g, f, d }

These objects are not dominated

by any other object.

0 1 2 3 4 5 6

0

1

2

 3

 4

 5

 6

Dbeach

c (4,3)

d (3,1) e (5,1)

f (2,2)

not dominated

Introduction - applications

E-commerce

“I want to buy a PDA which is as cheap as
possible, has large memory capacity and it is
light-weighted”

16

light-weighted”

For Top-k queries we should also provide the
number k (how many PDAs we want in the
answer) and the ranking function.

Introduction - applications

Multimedia Databases

“Give me the 3 images that have the highest

resolution, they are red and depict flowers”

17

resolution, they are red and depict flowers”

Introduction - applications

Web Information Retrieval

Let M be a meta search engine which uses yahoo

and google. Both search engines return a set of

results ranked by relevance.

18

results ranked by relevance.

id score id score

a 0.9 b 0.8

c 0.7 d 0.7

b 0.6 a 0.6

yahoo google

The challenge is to combine the

results of all search engines in

order to give a total ranking of the

documents.

Introduction – naïve methods

It is possible to process Top-k and Skyline queries

by using simple algorithmic techniques.

However, although these techniques are easily

implemented, they suffer from performance

degradation due to their large complexities.

19

degradation due to their large complexities.

Introduction – naïve methods

Top-k processing

• Apply the ranking function F to all objects

• Sort the objects with respect to their score

• Return the k best objects

20

Disadvantages:

Sorting is an expensive operation requiring a complexity
of O(n logn) for n elements. Usually, k is very small in
comparison to the number of objects, so we pay too
much!

Introduction – naïve methods

Skyline processing

• For each object, check if it is dominated by any other

object

• Return the objects that are not dominated

21

Disadvantages:

Requires scanning the whole database for each object.

Complexity O(n^2). This is not convenient in systems

with large volumes of data.

Introduction - motivation

Since naïve methods do not perform well for large

sets of objects, the challenge is to devise new

algorithms in order to process Top-k and

Skyline queries efficiently.

22

Goals:

– avoid sorting operations in Top-k

– avoid scanning the whole database in Skyline

Outline of Presentation

� Introduction

�Top-k computation

– Algorithm FA (Fagin’s algorithm)

– Algorithm TA (threshold algorithm)

– Advanced topics

23

– Advanced topics

� Skyline computation

– Introduction to R-trees

– Algorithm BBS (branch-and-bound skyline)

– Advanced topics

�Conclusions

�Bibliography

Top-k Computation

Application: multimedia information retrieval

�We have an image database composed of n image
objects O1, O2, …, On.

�Each object Oi is described by m attributes ai1, ai2, …,

24

�Each object Oi is described by m attributes ai1, ai2, …,
aim.

�Therefore, each object is a vector in the m-th
dimensional space.

�We assume that the total score of an image is the sum
of the individual scores of all attributes.

Top-k Computation

A user issues a Top-2 query:

“Given the query image Q, retrieve the 2 images

from the database that best match the query”

25

from the database that best match the query”

(This is a typical query in content-based retrieval

of images)

Top-k Computation

Assume that the database contains only 5 image

objects O0, O1, O2, O3 and O4.

query image Q
Image Database

26

O1

O2

O3

O4 O0

?
Top-2

images

Top-k Computation

The database can be considered as an n x m score

matrix, storing the score values of every object

in every attribute.

a1 a2 a3 a4 a5

27

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

Note that, for each attribute scores are sorted in descending order.

Top-k Computation – FA algorithm

Fagin’s Algorithm (FA) is the first

important contribution in the area.

28

The algorithm is based on two types of accesses:

Sorted access on attribute ai: retrieves the next object in the sorted
list of ai

Random access on attribute ai: gives the value of the i-th attribute
for a specific object identifier.

Top-k Computation – FA algorithm

Outline of FA

Step 1:

•Read attributes from every sorted list using sorted access.

•Stop when k objects have been seen in common from all lists.

29

Step 2:

•Use random access to find missing scores.

Step 3:

•Compute the scores of the seen objects.

•Return the k highest scored objects.

Top-k Computation – FA algorithm

Step 1:

• Read attributes from every sorted list using sorted access

• Stop when k objects have been seen in common from all lists

a1 a2 a3 a4 a5 id a1 a2 a3 a4 a5

30

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5

O3 99 90 75 74 67

O1 66 91 92 56 58

O4 70 67

O0 63 61 56

No more sorted accesses are required, since we have determined k=2

objects contained in all lists (objects O1 and O3).

Top-k Computation – FA algorithm

Step 2:

• Use random access to find missing scores

a1 a2 a3 a4 a5 id a1 a2 a3 a4 a5

31

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5

O3 99 90 75 74 67

O1 66 91 92 56 58

O4 70 67

O0 63 61 56

44 07 19

01 35

All missing values for seen objects have been determined.

Therefore, no more random accesses are required.

Top-k Computation – FA algorithm

Step 3:

• Compute the scores of the seen objects.

• Return the k highest scored objects.

id a1 a2 a3 a4 a5
Total Score

405

32

O3 99 90 75 74 67

O1 66 91 92 56 58

O4 70 67

O0 63 61 56

44 07 19

01 35

405

363

207

216

Top-2

Therefore, the two images that best match the query image are:

O3 with score 405 and O1 with score 363.

Top-k Computation – TA algorithm

Fagin and his colleagues performed some

enhancements to FA, leading to algorithm TA

(Threshold Algorithm).

33

The main contribution of this new algorithm is the

incorporation of a threshold to determine when

to stop scanning the sorted lists.

Top-k Computation – TA algorithm

Outline of TA

Step 1:
•Read attributes from every sorted list using sorted access.

•For each object seen x:
•Use random access to find missing values.

•Determine the score F(x) of object x.

34

•Determine the score F(x) of object x.

•If the object is among the top-k keep it in buffer.

Step 2:
•Determine threshold value T based on objects currently seen under sorted access.

T = a1(p) + a2(p) + … + am(p) where p is the current sorted access position.

•If there are k objects with total scores >= T then STOP and report answers

else p = p + 1 and GOTO Step1.

Top-k Computation – TA algorithm

Step 1:
• Read attributes from every sorted list using sorted access.
• For each object seen x:

• Use random access to find missing values.
• Determine the score F(x) of object x.
• If the object is among the top-k keep it in buffer.

BUFFER:

(O3, 405)

(O1, 363)

35

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5 F

O3 99 90 75 74 67 405

O1 66 91 92 56 58 363

p=1

Top-k Computation – TA algorithm

Step 2:
• Determine threshold value T based on objects currently seen under

sorted access. T = a1(p) + a2(p) + … + am(p) where p is the current
sorted access position.

• If there are k objects with total scores >= T then STOP and report
answers else p = p + 1 and GOTO Step1.

BUFFER:

(O3, 405)

(O1, 363)

36

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5 F

405

363

O3 99 90 75 74 67

O1 66 91 92 56 58

T = 99+91+92+74+67 = 423

p=1

There are NO k objects with a score >= T, GOTO Step1 …

Top-k Computation – TA algorithm

Step 1 (second execution):
• Read attributes from every sorted list using sorted access.

• For each object seen x:
• Use random access to find missing values.

• Determine the score F(x) of object x.

• If the object is among the top-k keep it in buffer.

BUFFER:

(O3, 405)

(O1, 363)

37

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5 F

O3 99 90 75 74 67 405

O1 66 91 92 56 58 363
p=2

O4 44 07 70 19 67 207

Top-k Computation – TA algorithm

Step 2 (second execution):
• Determine threshold value T based on objects currently seen

under sorted access. T = a1(p) + a2(p) + … + am(p) where p is
the current sorted access position.

• If there are k objects with total scores >= T then STOP and
report answers else p = p + 1 and GOTO Step1.

BUFFER:

(O3, 405)

(O1, 363)

38

a1 a2 a3 a4 a5

O3, 99 O1, 91 O1, 92 O3, 74 O3, 67

O1, 66 O3, 90 O3, 75 O1, 56 O4, 67

O0, 63 O0, 61 O4, 70 O0, 56 O1, 58

O2, 48 O4, 07 O2, 16 O2, 28 O2, 54

O4, 44 O2, 01 O0, 01 O4, 19 O0, 35

id a1 a2 a3 a4 a5 F

O3 99 90 75 74 67 405

O1 66 91 92 56 58 363
p=2

O4 44 07 70 19 67 207

T = 66+90+75+56+67 = 354

Both objects in the buffer have scores higher than T. STOP and report answers.

Top-k Computation - FA vs TA

� TA sees less objects than FA

• TA stops at least as early as FA

• When we have seen k objects in common in FA, their scores are

higher or equal than the threshold in TA.

� TA may perform more random accesses than FA

• In TA, (m-1) random accesses for each object.

39

• In TA, (m-1) random accesses for each object.

• In FA, random accesses are done at the end, only for missing scores.

� TA requires only bounded buffer space (k) at the expense of more random

seeks.

� FA makes use of unbounded buffers.

Top-k Computation – other methods

Fagin et al proposed two significant variations:

�The NRA algorithm (No Random Access): the

method uses only sorted accesses and never use

40

method uses only sorted accesses and never use

random accesses.

�The CA algorithm (Combined Algorithm): this

method is a combination of TA and NRA and

yields better performance.

Top-k Computation - advanced topics I

Distributed Top-k computation

Data are frequently distributed across a number of

machines. The challenge in such an environment is to

determine the Top-k answers trying to minimize the

41

determine the Top-k answers trying to minimize the

network traffic and the latency.

Specialized algorithms have been proposed that work

efficiently in a distributed environment.

Top-k Computation - advanced topics II

Complex Top-k queries

In some cases the Top-k ranking function should be

evaluated only on records that satisfy a join condition.

The challenge is to provide the Top-k joining records

42

The challenge is to provide the Top-k joining records

without scanning the whole database.

Top-k Computation - advanced topics III

Top-k queries on probabilistic data

In several applications there is uncertainty in the data. For

example, values may be missing or we are not sure

about an existing value. A challenging research

43

about an existing value. A challenging research

direction is to investigate algorithms for Top-k

computation in such a case.

Outline of Presentation

� Introduction

�Top-k computation

– Algorithm FA (Fagin’s algorithm)

– Algorithm TA (threshold algorithm)

– Advanced topics

44

– Advanced topics

� Skyline computation

– Introduction to R-trees

– Algorithm BBS (branch-and-bound skyline)

– Advanced topics

�Conclusions

�Bibliography

Skyline Computation

Remember that:

Top-k query processing requires a user-defined
ranking function F and an integer k to declare
the number of best objects in the answer.

45

the number of best objects in the answer.

On the other hand, Skyline query processing does
NOT require any of these.

Skyline Computation
0

1

2

 3

 4

 5

 6

Dconf

a (1,6)

b (3,4)g (1,4)

0

1

2

 3

 4

 5

 6

Dconf

a (1,6)

b (3,4)g (1,4)

Top-k Skyline

46

0 1 2 3 4 5 6

0

1

2

 3

 4

 5

 6

Dbeach

c (4,3)

d (3,1) e (5,1)

f (2,2)

0 1 2 3 4 5 6
0

1

2

 3

 4

 5

 6

Dbeach

c (4,3)

d (3,1) e (5,1)

f (2,2)

f, d (best objects)

g (next best)

e (next best)

Skyline objects: g, f, d

Skyline Computation

Some techniques:

�Nested Block Loop (NBL): perform a nested loop over

all blocks of the data.

47

�Divide and Conquer (DC): partition the space in

subspaces, solve the problem in the subspaces and then

synthesize the solution in the whole space.

�Nearest-Neighbor based (NN): uses an R-tree index

and performs a sequence of nearest-neighbor queries

until all Skyline objects have been found.

Introduction to R-trees

�Many real-life applications require the organization and
management of multidimensional data (e.g., each
image is represented as a point in the 5-dimensional
space).

�To enable efficient query processing, data should be

48

�To enable efficient query processing, data should be
organized by means of an indexing scheme which is
used to speed-up processing.

�The index helps in reducing the number of inspected
objects significantly, avoiding the sequential scan of
the whole database.

� Indexing schemes for multidimensional data work in a
similar manner to access methods for simple numeric
data (e.g., B-trees and Hashing).

Introduction to R-trees

One of the most important contributions
in the area of multidimensional
indexing is due to Antonin Guttman
which invented the R-tree.

49

His work:

“R-trees: a dynamic index structure for spatial searching”,

ACM SIGMOD Conference 1984

has received more than 2,900 citations

(source google scholar)

Introduction to R-trees

The R-tree can be viewed as an extension of the B+-tree to handle

multiple dimensions. Recall that, a B+-tree is used to organize

numeric data in one dimension only.

root

B+ tree example with 6 nodes:
Each node

corresponds

to a disk page

50

8 17 24 30

2 3 5 7 8 14 16 19 20 22 24 27 29 33 34 38 39

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5

Introduction to R-trees

R-trees have been extensively used in spatial

databases to organize points and rectangles.

They show excellent performance in processing

interesting queries such as:

51

Range query: return the points that are contained

in a specified region.

K-nearest-neighbor: given a point p and an integer

k return the k objects closer to p.

Introduction to R-trees

52

range query example:

which cities are within distance R from Amsterdam

k-NN query example:

Find the 3 cities closer to Utrecht (k = 3)

Introduction to R-trees

4

6

8

10

y axis

d

e f

g h

i j

k

l

m

region of interest

Example:

13 points in

2 dimensions

53

20 4 6 8 10

2

4

x axis

b

c

a

Range query example: “find the objects in a given region”.

E.g. find all hotels in Utrecht.

No index: scan through all objects. NOT EFFICIENT!

region of interest

Introduction to R-trees – structure

4

6

8

10

y axis

b a
E3

d

e f

g h

i j

k

l

m

Minimum Bounding Rectangle (MBR)

54

20 4 6 8 10

2

x axis

b

c

a

a b c d e

E
1

E
2

E
3

E
4

E
5

Root

E
1 E

2

E
3

E
4

f g h

E
5

l m

E
7

i j k

E
6

E
6

E
7

Minimum Bounding Rectangle (MBR)

Each node

corresponds

to a disk page

Introduction to R-trees – structure

4

6

8

10

y axis

b a
E3

d

e f

g h

i j

k

l

m

E4

E5

E6

E7

55

20 4 6 8 10

2

x axis

c

a b c d e

E
1

E
2

E
3

E
4

E
5

Root

E
1 E

2

E
3

E
4

f g h

E
5

l m

E
7

i j k

E
6

E
6

E
7

Introduction to R-trees – structure

4

6

8

10

y axis

b a

E1d

e f

g h

i j

k

l

m

E2

E3

E4

E5
E6

E7

56

20 4 6 8 10

2

x axis

c

a b c d e

E
1

E
2

E
3

E
4

E
5

Root

E
1 E

2

E
3

E
4

f g h

E
5

l m

E
7

i j k

E
6

E
6

E
7

E3

Introduction to R-trees – range query

4

6

8

10

y axis

b a

E1d

e f

g h

i j

k

l

m

E2

E3

E4

E5
E6

E7

57

20 4 6 8 10

2

x axis

b

c

a

a b c d e

E
1 E2

E
3

E
4

E
5

Root

E
1 E2

E3
E4

f g h

E
5

l m

E7

i j k

E
6

E
6

E
7

E3

Introduction to R-trees – range query

4

6

8

10

y axis

b a

E1d

e f

g h

i j

k

l

m

E2

E4

E5
E6

E7

58

20 4 6 8 10

2

x axis

b

c

a

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3
E4

f g h

E
5

l m

E7

i j k

E6

E6 E7

E3

BBS Algorithm – Basic Properties

Any Branch-and-Bound method requires two

decisions:

1. How to branch: which part of the space needs to

59

1. How to branch: which part of the space needs to

be investigated next?

2. How to bound: which parts of the search space

can be safely eliminated.

BBS Algorithm – basic properties

The algorithm uses a priority queue, where R-tree entries
are prioritized by the mindist value. The mindist value
of an entry e, is the cityblock (L1) distance of its
MBR’s (e.mbr) lower-left corner to the origin.

For example:

60

For example:

e.mbr

mindist(e.mbr) = x + y

x

y

BBS Algorithm – basic properties

�The algorithm in every step chooses the best R-
tree entry to check, according to the mindist
measure. Upon visiting a node, the mindist of its
entries is calculated and entries are inserted into
the priority queue.

61

the priority queue.

�The algorithm keeps the discovered skyline
points in the set S.

�If the top of the queue is a data point, it is tested
if it is dominated by any point in S. If yes it is
rejected, otherwise it is inserted into S.

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

• Assume all points are

indexed in an R-tree.

• mindist(MBR) = the L1
distance between its lower-

62

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

distance between its lower-

left corner and the origin.

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

action heap contents S

access root <e7,4><e6,6> ∅

• Each heap entry keeps the
mindist of the MBR.

BBS Algorithm - example

63

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

• Process entries in ascending
order of their mindists.

64

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

expand e3 <i,5><e6,6><e5,8> <e4,10> {i}

65

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

expand e3 <i,5><e6,6><e5,8> <e4,10> {i}

expand e6 <e5,8><e1,9><e4,10> {i}

66

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

n

N5m {i} remove e5 <e1,9><e4,10>

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

expand e3 <i,5><e6,6><e5,8> <e4,10> {i}

expand e6 <e5,8><e1,9><e4,10> {i}

67

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

BBS Algorithm - example

y

b
a

k

N2
N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

{i} remove e5 <e1,9><e4,10>

expand 1e <a,10><e4,10> {i,a}

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

expand e3 <i,5><e6,6><e5,8> <e4,10> {i}

expand e6 <e5,8><e1,9><e4,10> {i}

68

x

i kN3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

{i,a}

BBS Algorithm - example

k

y

b
a N2

N1

N4

h

N6

N7

g

d

f

e

c

l

2

3

4

5

6

7

8

9

10

m

n

N5

{i} remove e5 <e1,9><e4,10>

expand 1e <a,10><e4,10> {i,a}
expand e4 {i,a,k}

action heap contents S

access root <e7,4><e6,6> ∅

expand e7 <e3,5><e6,6><e5,8><e4,10> ∅

expand e3 <i,5><e6,6><e5,8> <e4,10> {i}

expand e6 <e5,8><e1,9><e4,10> {i}

<k,10>

69

k

x

i N3

o
1 2 3 4 5 6 7 8 9 10

1

2

a b c d e f g h i l k

e
1

e
2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

expand e4 {i,a,k}<k,10>

BBS Algorithm - performance

BBS performs better than previously proposed Skyline

algorithms, regarding CPU time and I/O time.

70

(source: Papadias et al TODS 2005)

Number of R-tree node accesses vs dimensionality

Skyline Computation - advanced topics I

Skylines in subspaces

When the number of attributes (dimensions) increases,

the number of points contained in the Skyline increases

substantially. This happens because the probability that

71

substantially. This happens because the probability that

a point dominates another decreases.

Solution: find the Skyline on a subset of the attributes

instead of using the whole set of attributes.

Skyline Computation - advanced topics I

72(source: Borzonyi et al ICDE 2001)

independent correlated anticorrelated

100,000 points

Skyline Computation - advanced topics II

Distributed Skylines

In several applications, data are distributed across

different sites (e.g., web applications, P2P). A

73

different sites (e.g., web applications, P2P). A

number of research contributions deal with

efficient processing of Skyline queries in such

an environment.

Skyline Computation - advanced topics III

Most important Skyline objects

The number of Skyline points may be large in

some cases. The challenge is to rank the Skyline

74

some cases. The challenge is to rank the Skyline

points according to a score. For example, each

Skyline point may be ranked according to the

number of points it dominates. The highly-

ranked points are presented to the user.

Conclusions

� Preference queries are very important in database

systems.

� Preferences are expressed by minimization or

maximization criteria on the attributes (dimensions).

� Important queries: Top-k and Skylines

75

� Important queries: Top-k and Skylines

�Top-k query: requires a scoring function F() and an

integer k and returns the k best objects according to F().

� Skyline query: requires the preferences regarding

minimization or maximization and returns the

dominant objects (not dominated by others).

Conclusions

�For Top-k we discussed part of Fagin’s work
(FA, TA, NRA and CA algorithms). These
methods require that attributes are sorted in
decreasing score order.

�For Skylines we discussed the Branch-and-

76

�For Skylines we discussed the Branch-and-
Bound Skyline (BBS) algorithm which requires
an R-tree index to operate.

�Both Top-k and Skylines offer a convenient way
to select the best objects from a database, when
multiple criteria are considered.

Conclusions

Current Trends

�Find efficient indexing schemes to speed-up the

processing of Top-k and Skyline queries.

77

processing of Top-k and Skyline queries.

�Algorithms to process approximate answers

(less accurate but faster).

�Preference queries in distributed environments.

Bibliography

1. S. Borzsonyi, D. Kossmann, K. Stocker. “The Skyline Operator”. Proceedings of
the International Conference on Data Engineering, pp.421-430, 2001.

2. R. Fagin, Amnon Lotem, Moni Naor. “Optimal Aggregation Algorithms for
Middleware”. J. Comput. Syst. Sci. 66(4), pp. 614-656, 2003.

3. R. Fagin. “Combining Fuzzy Information from Multiple Systems”. Proceedings of
the 15th ACM Symposium on principles of database systems, pp. 216-226,

78

the 15th ACM Symposium on principles of database systems, pp. 216-226,
Montreal Canada, 1996.

4. R. Fagin. “Fuzzy Queries in Multimedia Database Systems”. Proceedings of the
17th ACM Symposium on principles of database systems, pp. 1-10, Seattle USA,
1998.

5. A. Guttman. “R-trees: A Dynamic Index Structure for Spatial Searching”,
Proceedings of the ACM SIGMOD Conference, 1984.

6. D. Papadias, Y. Tao, G. Fu, B. Seeger. “Progressive Skyline Computation in
Database Systems”, ACM Transactions on Database Systems, Vol.30, No.1, pp.41-
82, 2005.

