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Physical Model in 3 Level Design?

Recall 3 levels of database design
Conceptual model: high level abstract description

Logical model: description of a concrete realization

Physical model: implementation using basic components

Analogy with vehicles 
Conceptual model: mechanisms to move, turn, stop, ...Conceptual model: mechanisms to move, turn, stop, ...

Logical models: 

• Car: accelerator pedal, steering wheel, brake pedal, …

• Bicycle: pedal forward to move, turn handle, pull brakes on handle

Physical models : 

• Car: engine, transmission, master cylinder, break lines, brake pads, …

• Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads

We now go, so to speak, “under the hood”
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What is a Physical Data Model?

What is a physical data model of a database?
Concepts to implement logical data model 

Using current components, e.g. computer hardware, operating systems

In an efficient and fault-tolerant manner

Why learn physical data model concepts?
To be able to choose between DBMS brand namesTo be able to choose between DBMS brand names

• some brand names do not have spatial indices!

To be able to use DBMS facilities for performance tuning

• For example, if a query is running slow, 

– one may create an index to speed it up

• For example, if loading of a large number of tuples takes for ever

– one may drop indices on the table before the inserts

– and recreate index after inserts are done!
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Concepts in a Physical Data Model

Database concepts
Conceptual data model - entity, (multi-valued) attributes, relationship, …

Logical model - relations, atomic attributes, primary and foreign keys

Physical model - secondary storage hardware, file structures, indices, …

Examples of physical model concepts from relational DBMS
Secondary storage hardware: disk drivesSecondary storage hardware: disk drives

File structures - sorted

Auxiliary search structure -

• search trees (hierarchical collections of one-dimensional ranges)
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An Interesting Fact about Physical Data Model

Physical data model design is a trade-off between
Efficiently support a small set of basic operations of a few data types 

Simplicity of overall system

Each DBMS physical model
Choose a few physical DM techniques

Choice depends on chosen sets of operations and data typesChoice depends on chosen sets of operations and data types

Relational DBMS physical model 
Data types: numbers, strings, date, currency 

• one-dimensional, totally ordered

Operations: 

• search on one-dimensional totally order data types

• insert, delete, ...
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Physical Data Model for SDBMS

Is relational DBMS physical data model suitable for spatial data?
Relational DBMS has simple values like numbers

Sorting, search trees are efficient for numbers

These concepts are not natural for spatial data (e.g. points in a plane) 

Reusing relational physical data model concepts
Space filling curves define a total order for pointsSpace filling curves define a total order for points

This total order helps in using ordered files, search trees

But may lead to computational inefficiency!

New spatial techniques
Spatial indices, e.g. grids, hierarchical collection of rectangles

Provide better computational performance
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Common Assumptions for SDBMS Physical Model

Spatial data 
Dimensionality of space is low, e.g. 2 or 3

Data types: OGIS data types

Approximations for extended objects (e.g. linestrings, polygons)

• Minimum Orthogonal Bounding Rectangle (MOBR or MBR) 

• MBR(O) is the smallest axis-parallel rectangle enclosing an object O• MBR(O) is the smallest axis-parallel rectangle enclosing an object O

Supports filter and refine processing of queries

Spatial operations
OGIS operations, e.g. topological, spatial analysis

Many topological operations are approximated by “Overlap”

Common spatial queries - listed in next slide
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Common Spatial Queries and Operations

• Physical model provides simpler operations needed by spatial 

queries!

• Common Queries
• Point query: Find all rectangles containing a given point

• Range query: Find all objects within a query rectangle

• Nearest neighbor: Find the point closest to a query point• Nearest neighbor: Find the point closest to a query point

• Intersection query: Find all the rectangles intersecting a query rectangle

• Common operations across spatial queries
• find : retrieve records satisfying a condition on attribute(s)

• findnext : retrieve next record in a dataset with total order

• after the last one retrieved via previous find or findnext

• nearest neighbor of a given object in a spatial dataset
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Scope of Discussion

Learn basic concepts in physical data model of SDBMS

Review related concepts from physical DM of relational DBMS 

Reusing relational physical data model concepts
Space filling curves define a total order for points

This total order helps in using ordered files, search trees

But may lead to computational inefficiency!But may lead to computational inefficiency!

New techniques
Spatial indices, e.g. grids, hierarchical collection of rectangles

Provide better computational performance
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Storage Hierarchy in Computers 

• Computers have several components
• Central Processing Unit (CPU)

• Input, output devices, e.g. mouse, keyword, monitors, printers

• Communication mechanisms, e.g. internal bus, network card, modem

• Storage Hierarchy

• Types of storage Devices• Types of storage Devices
• Main memories - fast but content is lost when power is off

• Secondary storage - slower, retains content without power

• Tertiary storage - very slow, retains content, very large capacity

• DBMS usually manage data 
• On secondary storage, e.g. disks

• Use main memory to improve performance

• User tertiary storage (e.g. tapes) for backup, archival etc.
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Secondary Storage Hardware: Disk Drives

• Disk concepts
• Circular platters with magnetic storage medium

• Multiple platters are mounted on a spindle

• Platters are divided into concentric tracks

• A cylinder is a collection of tracks across platters with common radium

• Tracks are divided into sectors 

• A sector size may a few kilobytes• A sector size may a few kilobytes

• Disk drive concepts
• Disk heads to read and write 

• There is disk head for each platter (recording surface)

• A head assembly moves all the heads together in radial direction

• Spindle rotates at a high speed, e.g. thousands revolution per minute 

• Accessing a sector has three major steps:
• Seek: Move head assembly to relevant track

• Latency: Wait for spindle to rotate relevant sector under disk head

• Transfer: Read or write the sector

• Other steps involve communication between disk controller and CPU
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Using Disk Hardware Efficiently

• Disk access cost are affected by 
• Placement of data on the disk

• Fact than seek cost > latency cost > transfer (See Table 4.2, pp.86)

• A few common observations follow

• Size of sectors
• Larger sector provide faster transfer of large data sets• Larger sector provide faster transfer of large data sets

• But waste storage space inside sectors for small data sets

• Placement of most frequently accessed data items
• On middle tracks rather than innermost or outermost tracks

• Reason: minimize average seek time 

• Placement of items in a large data set requiring many sectors
• Choose sectors from a single cylinder

• Reason: Minimize seek cost in scanning the entire data set.
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Software View of Disks: Fields, Records and File

• Views of secondary storage (e.g. disks)
• Hardware views - discussed in last few slides

• Software views - Data on disks is organized into fields, records, files

• Concepts
• Field presents a property or attribute of a relation or an entity

• Records represent a row in a relational table• Records represent a row in a relational table

• collection of fields for attributes in relational schema of the table

• Files are collections of records

• homogeneous collection of records may represent a relation

• heterogeneous collections may be a union of related relations
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6 records, 80 bytes each

Canada

Mexico

Cuba

Brazil

USA

Figure 4.1

• Records
• Often smaller than a sector

• Many records in a sector

• Files with many records
• Many sectors per file

• File system

Mapping Records and Files to Disk

Table directory block

Country

River

City

6 1

4 1

- 2

.........

.........

Argentina

7 records, 73 bytes each

Havana

Ottawa

4 records, 72 bytes each

Rio Parana

St. Lawrence

Rio Grande

Mississippi

2 records, 73 bytes each

Mexico City

Buenos Aires

• File system
• Collection of files

• Organized into directories

• Mapping tables to disk
• Figure 4.1

• City table takes 2 sectors

• Others take 1 sector each
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Buffer Management

• Motivation
• Accessing a sector on disk is much slower than accessing main memory

• Idea: keep repeatedly accessed data in main memory buffers

• to improve the completion time of queries

• reducing load on disk drive

• Buffer Manager software module decides• Buffer Manager software module decides
• Which sectors stay in main memory buffers?

• Which sector is moved out if we run out of memory buffer space?

• When to pre-fetch sector before access request from users?

• These decision are based on the disk access patterns of queries!
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File Structures

• What is a file structure?
• A method of organizing records in a file

• For efficient implementation of common file operations on disks

• Example: ordered files

• Measure of efficiency
• I/O cost: Number of disk sectors retrieved from secondary storage• I/O cost: Number of disk sectors retrieved from secondary storage

• CPU cost: Number of CPU instruction used

• See Table 4.1 for relative importance of cost components

• Total cost = sum of I/O cost and CPU cost
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File Structures – Selected File Operations

• Common file operations 

• Find: key value --> record matching key values

• Findnext --> Return next record after find if records were sorted
• Insert --> Add a new record to file without changing file-structure

• Nearest neighbor of a object in a spatial dataset

• Examples using Figure 4.1, pp.88• Examples using Figure 4.1, pp.88
• find(Name=Canada) on Country table returns record about Canada

• findnext() on Country table returns record about Cuba

• since Cuba is next value after Canada in sorted order of Name

• insert(record about Panama) into Country table

• adds a new record

• location of record in Country file depends on file-structure

• Nearest neighbor Argentina in country table is Brazil
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Common File Structures

• Common file structures
• Heap or unordered or unstructured 

• Ordered

• Hashed

• Clustered

• Descriptions follow• Descriptions follow

• Basic comparison of common File Structures
• Heap file is efficient for inserts and used for logfiles

• but find, findnext, etc. are very slow

• Hashed files are efficient for find, insert, delete etc.

• but findnext is very slow

• Ordered file organization are very fast for findnext

• and pretty competent for find, insert, etc.
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File Structures: Heap, Ordered

• Heap
• Records are in no particular order (example: Figure 4.1)

• Insert can simple add record to the last sector

• find, findnext, nearest neighbor scan the entire files

• Ordered
• Records are sorted by a selected field (example: Figure 4.3 below)• Records are sorted by a selected field (example: Figure 4.3 below)

• findnext can simply pick up physically next record

• find, insert, delete may use binary search, is very efficient

• nearest neighbor processed as a range query (see pp.95 for details)

2 records

Toronto

Washington DC

Ordered file storing

City table(ordered)

Brasillia

Buenos Aires

Havana

Mexico City

Monterrey

Ottawa

Rosario

7 records, 73 bytes each

....

....

....

....

....

....

....

....

....

Figure 4.3
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File Structure : Hash

.........4 buckets, 9 records

.........

.........

2 records

Havana

Ottawa

2 records	


Rosario

• Components of a Hash file structure 

(Figure 4.2)
• A set of buckets (sectors)

• Hash function : key value --> bucket

• Hash directory: bucket --> sector

• Operations
.........

.........

.........

.........

4 buckets, 9 records

Key ,56

Key 728

Key 9210

1

3 records

Brasillia

Monterrey

Mexico City
.........

.........

2 records

Buenos Aires

Washington DC

Rosario

Toronto

2

3

Key .511 4

Figure 4.2

• Operations
• find, insert, delete are fast

• compute hash function

• lookup directory

• fetch relevant sector

• findnext, nearest neighbor are slow

• no order among records
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Spatial File Structures: Clustering

• Motivation:
• Ordered files are not natural for spatial data

• Clustering records in sector by space filling curve is an alternative

• In general, clustering groups records 

• accessed by common queries

• into common disk sectors• into common disk sectors

• to reduce I/O costs for selected queries

• Clustering using Space filling curves
• Z-curve 

• Hilbert-curve

• Details on following 3 slides
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Z-Curve
x 5 0
 0
 0 0 00 (2,4)

5 (24)

1 1

0 0 0 1 1 00 0

y 5

• What is a Z-curve?
• A space filling curve

• Generated from interleaving bits

• x, y coordinate

• see Figure 4.6

• Alternative generation method

Figure 4.6

A

A A

A A

n50 n51 n52 n53

Figure 4.4

• Alternative generation method

• see Figure 4.5

• Connecting points by z-order

• see Figure 4.4

• looks like Ns or Zs

• Implementing file operations
• similar to ordered files
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Example of Z-values

• Figure 4.7
• Left part shows a map with spatial object A, B, C

• Right part and left bottom part Z-values within A, B and C 

• Note C gets z-values of 2 and 8, which are not close

• Exercise: Compute z-values for B.

Figure 4.7 ����00 01 10 11

00

01

10

11

X

Y
A

B

C

0 4 87 1612

��������� Object Points x y interleave z-value

A 1 00 11 0101 5

B 1

2

3

4

C 1 01 00 0010 2

2 10 00 1000 8
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Hilbert Curve

Figure 4.5

A A A

• A space filling curve
• Example: Figure 4.5

• More complex to generate
• Due to rotations

• See details on pp.92-93

• Illustration on next slide!

n50 n51 n52 n53

11

11

01

00

10

100100

A

A

• Illustration on next slide!

• Implementing file operations
• Similar to ordered files
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Calculating Hilbert Values

y
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0001 0011 1001 1011

0100 0110 1100 1110

0101 0111 1101 1111

00 01 10 11
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10
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00 00 03 30 33

01 02 31 32
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Procedure on pp.92
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x
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00 01 10 11
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Figure 4.8
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Handling Regions with Z-curve
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Figure 4.9
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What is an Index?

7 records, 73 bytes

Havana

Washington DC
9 records, 38 bytes each

....

....

Figure 4.10

• Concept of an index
• Auxiliary file to search a data file

• Example: Figure 4.10

• Index records have
• Key value

• Address of relevant data sector

Buenos Aires

Mexico City

2 records, 73 bytes

Washington DC

Monterrey

Toronto

Brasillia

Rosario

Ottawa

Brasillia

Buenos Aires

Havana

Mexico City

Monterrey

Ottawa

Rosario

Toronto

Washington DC

9 records, 38 bytes each

Secondary index on

city name

Unordered file for city table

....

....

....

....

....

....

....

....

....

• Address of relevant data sector

• see arrows in Figure 4.10

• Index records are ordered 
• find, findnext, insert are fast

• Note assumption of total order
• On values of indexed attributes
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Classifying Indexes

7 records, 73 bytes

Brasillia

Buenos Aires

Havana

Mexico City

Monterrey

....

....

....

....

....
2 records, 38 bytes each

Figure 4.11
• Classification criteria

• Data-file-structure

• Key data type

• Others

• Secondary index
• Heap data file

2 records, 73 bytes

Toronto

Washington DC

....

....

....


....


Ottawa

Rosario

....

....

....

Brasillia

Toronto

2 records, 38 bytes each

Ordered file for city table

Primary index on city name

• Heap data file

• 1 index record / data record

• Example Figure 4.10

• Primary index
• Data file ordered by indexed 

attribute

• 1 index record / data sector

• Example: Figure 4.11

• Q? A table can have at most 

one  primary index. Why?
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Attribute Data Types and Indices

• Index file structure depends on data type of indexed attribute 
• Attributes with total order

• Example, numbers, points ordered by space filling curves

• B-tree is a popular index organization 

• See Figure 1.12 (pp.18) and section 1.6.4

• Spatial objects (e.g. polygons)• Spatial objects (e.g. polygons)

• Spatial organization are more efficient

• Hundreds of organizations are proposed in literature

• Two main families are Grid Files and R-trees
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Ideas Behind Grid Files

50 150 200

50

100

150

200

100

A

B

C

D

Figure 4.12
• Basic idea - Divide space into cells by a grid

• Example: Figure 4.12

• Example: latitude-longitude, ESRI Arc/SDE

• Store data in each cell in distinct disk sector

• Efficient for find, insert, nearest neighbor

• But may have wastage of disk storage space

Figure 4.14

• But may have wastage of disk storage space

• non-uniform data distribution over space

• Refinement of basic idea into Grid Files
• Use non-uniform grids (Figure 4.14)

• Linear scale store row and column boundaries

• Allow sharing of disk sectors across grid cells

• See Figure 4.13 on next slide
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Grid Files

1

1

1

1

5 5

7

• Grid File component
• Linear scale - row/column boundaries

• Grid directory: cell --> disk sector address

• Data sectors on disk

• Operation implementation
• Scales and grid directory in main memory

......

1

5 7

Figure 4.13

• Scales and grid directory in main memory

• Steps for find, nearest neighbor

• search linear scales

• identify selected grid directory cells

• retrieve selected disk sectors

• Performance overview
• Efficient in terms of I/O costs

• Needs large main memory for grid directory
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R-Tree Family

• Basic Idea
• Use a hierarchical collection of rectangles to organize spatial data

• Generalizes B-tree to spatial data sets

• Classifying members of R-tree family
• Handling of large spatial objects

• allow rectangles to overlap - R-tree• allow rectangles to overlap - R-tree

• duplicate objects but keep interior node rectangles disjoint - R+tree

• Selection of rectangles for interior nodes

• greedy procedures - R-tree, R+tree

• procedure to minimize coverage, overlap - packed R-tree

• Other criteria exist

• Scope of our discussion
• Basics of R-tree and R+tree

• Focus on concepts not procedures!
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Spatial Objects with R-Tree

x

y

a b

c d

e

f

g

1
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8 9

10

11

12 13

14

15
 16


1

• Properties of R-trees 

• Balanced 

• Nodes are rectangle

• child’s rectangle within parent’s

• possible overlap among rectangles!

• Other properties in section 4.2.2 e g

Figure 4.15
R

x y

a b c d
[1,2,3] [6,7] [4,5] [8,9] [10,11]

gfe
[12,13,14] [15,16]

Figure 4.16

• Other properties in section 4.2.2

• Implementation of find operation
• Search root to identify relevant children

• Search selected children recursively

• Example: find record for rectangle 5
• Root search identifies child x

• Search of x identifies children b and c

• Search of b does not find object 5

• Search of c find object 5
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R+tree

x

a b


c
 d

f
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1

2• Properties of R+trees 
• Balanced 

• Interior nodes are rectangle

• child’s rectangle within parent’s

• disjoint rectangles

• Leaf nodes - MOBR of polygons or lines
y

e g
15
 16


Figure 4.18

X Y

a b c d e f g

R

[1,2,3] [10,11][5,6,7] [4,5] [8,9]  [12,13,14] [15,16]

Figure 4.17

• Leaf nodes - MOBR of polygons or lines

• leaf’s rectangle overlaps with parent’s

• Data objects may be duplicated across leafs

• Other properties in section 4.2.2

• find operation - same as R-tree
• But only one child is followed down

• Example: find record for rectangle 5
• Root search identifies child x

• Search of x identifies children b and c

• Search either b or c to find object 5
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Trends

• New developments in physical model
• Use of intra-object indexes

• Support for multiple concurrent operations

• Index to support spatial join operations

• Use of intra-object indexes
• Motivation: large objects (e.g. polygon boundary of USA has 1000s of edges)• Motivation: large objects (e.g. polygon boundary of USA has 1000s of edges)

• Algorithms for OGIS operations (e.g. touch, crosses) 

• often need to check only a few edges of the polygon

• relevant edges can be identified by spatial index on edges

• example: Figure 4.19, pp.105, section 4.3.1

• Uniqueness

• intra-object index organizes components within a large spatial object

• traditional index organizes a collection of spatial objects
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Trends – Concurrency support

• Why support concurrent operations?
• SDBMS is shared among many users and applications

• Simultaneous requests from multiple users on a spatial table

• serial processing of request is not acceptable for performance

• concurrent updates and find can provide incorrect results

• Concurrency control idea for R-tree index• Concurrency control idea for R-tree index
• R-link tree: Add links to chain nodes at each level

• Use links to ensure correct answer from find operations

• Use locks on nodes to coordinate conflicting updates

• Details in section 4.3.2 and Figure 4.20, pp.107
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Trends: Join Index

• Spatial join is a common operation. Expensive to compute using 

traditional indexes

• Spatial join index pre-computes and stores id-pairs of matched 

rows across tables

• Example in Figure 4.21
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Figure 4.21

• Example in Figure 4.21

• Speeds up computation of spatial join 
• details in section 4.3.3
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Spatial Join-index Details
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Figure 4.22

(d) Spatial join(c) Spatial join(a) Equi-join (b) Equi-join
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Figure 4.23
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Summary

Physical DM efficiently implements logical DM on computer 

hardware

Physical DM has file-structure, indexes

Classical methods were designed for data with total ordering

Fall short in handling spatial dataFall short in handling spatial data

Because spatial data is multi-dimensional

Two approaches to support spatial data and queries

Reuse classical method 

• use Space-Filling curves to impose a total order on 

multi-dimensional data

Use new methods

• R-trees, Grid files
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