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1 Introduction

Nowadays, technologies such as grid and cloud computing infrastructures and
service-oriented architectures have become adequately mature and have been
adopted by a large number of enterprizes and organizations [2,19,36]. A Web
Service (WS) is a software system designed to support interoperable machine-to-
machine interaction over a network and is implemented using open standards and
protocols. WSs became popular data management entities; some of their benefits
are interoperability and reuseability.

Seeking to benefit from the above opportunities, the web and grid data manage-
ment infrastructures are moving towards a service oriented architecture by putting
their databases behind WSs, thereby providing a well-documented, interoperable
method of interacting with their data (e.g., [5,32]). Furthermore, data not stored in
traditional databases can be made available via WSs. As a consequence, there is
a growing interest in systems that are capable of processing complex queries (i.e.,
tasks) spanning services deployed on remote resources. The services can perform
two operations; they either perform processing of data, or they play the role of a
wrapper that retrieves data from a resource.

Currently, two classes of infrastructures that employ WSs to process data have
been developed, namely the WS query infrastructures and the workflow manage-
ment systems (WfMSs). The former process SQL-like queries or search queries over
information sources (e.g. [5,4,42]). Like traditional database management systems,
they perform the following tasks in order to answer a submitted query: query trans-
lation, service selection and query optimization. In the first two steps, the appro-
priate services that can correctly answer the submitted query are selected (either
with or without user interaction), while the final step, which is the main topic of
this chapter, aims to provide an efficient service execution plan. The other category
comprises WfMSs, where the workflow components are services (e.g., [33,23]). In
WfMSs the user has to select the services to process the data of interest, the location
of the input data (which are either extracted by a service that polls a resource or they
form a data stream) and the service invocation order, which is fixed. Languages such
as BPEL4WS have emerged for specifying WS composition in workflow-oriented
scenarios [1].
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An example of a problem of optimization queries over WSs is given below. We
assume that WSs provide an interface of the form WS : X → Y , where X and Y are
sets of attributes, i.e., given values for attributes in X , W S returns values for the
attributes in Y , as shown in the following example adapted from [42]. In the generic
case, the input tuples may have more attributes than X , while attributes in Y are
appended to the existing ones.

Example 1. Suppose that a company wants to obtain a list of email addresses of
potential customers selecting only those who have a good payment history for at
least one card and a credit rating above some threshold. The company has the right
to use the following WSs that may belong to third parties, the first of which contains
a database of person ids.

W S1 : /0 → SSN id (ssn)
W S2 : SSN id (ssn,threshold) → credit rating (cr)
W S3 : SSN id (ssn) → credit card numbers (ccn)
W S4 : card number (ccn,good)→ good history (gph)
W S5 : SSN id (ssn) → email addresses (ea)

There are multiple valid orderings to perform this task, although several precedence
constraints exist: WS1 must always be at the beginning and WS3 must precede W S4.
The optimization process aims at deciding on the optimal (or near optimal) order-
ing under given optimization goals. When there are multiple logically equivalent
services for the same task (e.g., there are two services containing email addresses
at distinct places) or the physical placement of a service is flexible, then the problem
becomes more complex. �

In this chapter we will discuss several different flavors of queries over WSs and
the corresponding optimization algorithms. Note that some of these cases can be
reduced to problems that have been examined in the context of traditional database
queries in a straightforward manner. Traditional database solutions for such cases
can be easily transferred to our setting by replacing database operators with WSs;
for this reason, throughout the text, we will use the terms operators and services
interchangeably. For example, the problem of optimal ordering of centralized WSs
with a view to minimizing the response time may resemble the problem of order-
ing commutative filters in pipelined queries with conjunctive predicates [24,22], in
the sense that the calls to WSs may be treated in the same way as expensive predi-
cates. Note that ordering some types of relational joins can be reduced to the same
problem, as well [7].

However, reducing the problem of optimizing queries over WSs to the problem
of optimizing traditional queries is not always feasible because there are also many
substantial differences, and, as such, several optimization problems encountered in
queries over WSs have not been investigated in traditional query processing. These
differences stem from the fact that, in queries over WSs, there may exist precedence
constraints between the WSs, selectivities may be higher than 1 (e.g., WS3 in the
example can return more than one tuple) and, typically, the execution of queries
over WSs typically takes place in a both distributed and parallel manner.
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1.1 Optimization Problems of Queries over WSs

In this chapter, we examine several distinct query optimization problems that can
be broadly classified into four main categories, namely operator ordering, operator
scheduling, tuple routing and data transfer planning. For each problem, we present
some of the known solutions. Note that these solutions are not directly comparable
with each other since they deal with different problems.

Operator ordering where the goal is to build an operator (or WS) execution plan
that minimizes a pre-defined criterion by defining an appropriate partial or total
ordering of the operators. In other words, the optimization decisions relate to the
ordering of operators in the execution plan exclusively and issues such as allocation
of operators to resources do not apply. Note that the ordering need not be linear.
Problems that fall into this category assume that necessary metadata (e.g., operator
cost per input tuple, selectivity, etc.) are available and in addition, the operators
are pre-allocated on host machines. A well-known problem is the min-cost operator
ordering problem. Given a set of operators, the aim is to define an ordering of the
operators so that all input queries are evaluated with the minimum total execution
cost of operators. Optimization criteria will be discussed in more detail in Sec. 2.

Tuple routing which is a generalization of operator ordering in the sense that
not only a single operator plan to be followed by all input tuples is created. The
alternative approach, advocated by tuple routing techniques, may route input tuples
through different plans, which are also termed as interleaving plans [13]. A set of
interleaving plans consists of multiple simultaneously active operator plans, each
of which processes different partitions of the original input tuple set. When a new
tuple enters the system it is routed to one of these plans, according to a probability
weight.

Operator scheduling where the goal is to decide the processor on which each
service is evaluated. Problems of this category appear when the system is also re-
sponsible for resource allocation. It is assumed that the system is capable of per-
forming dynamic service deployment before the execution of the query and there
are multiple choices regarding the host nodes for each service. Operator scheduling
can be examined either in conjunction with operator ordering or in isolation. In the
latter case, operator ordering has been fixed in a previous step.

Data transfer planning where the focus is shifted to data transmission. The
aforementioned query optimization problems are operation centric, i.e., they de-
fine the operator execution order and/or the operator location. In the data transfer
problems, the primary concern is to optimize data transmissions. As such, these
problems emphasize more on scheduling the data transmission operations, or on the
specification of the amount of data exchanged between the hosts. Obviously, op-
erator scheduling and data transfer planning problems are met only in parallel or
distributed environments, whereas operator ordering and tuple routing problems are
encountered in centralized settings, as well.
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1.2 Chapter Contributions and Structure

The contribution of this chapter is twofold. First, it presents a detailed overview of
the problems encountered in the optimization of queries over WSs. The problems
do not differ only in their nature as detailed above, but also in regard to the type
of queries, type of services or operators and the exact execution environment to
which they are tailored. This discussion results in the development of a taxonomy-
like classification of the problems in WS queries that appears in Sec. 2. Second,
this chapter discusses state-of-the-art solutions to distinct flavors of the problem of
optimizing queries over WSs in Sec. 3. Especially for the problem of minimizing
the response time in decentralized pipelined queries, a novel algorithm is presented.
A comparison of the key properties of the different solutions appears in Sec. 3.6,
while Sec. 4 concludes the chapter.

2 Different Aspects of the Problem of Optimizing WS Queries

Before probing into advanced query optimization algorithms that are relevant to
queries over WSs, we must first discuss the factors of the problem, which greatly
affect its complexity. These factors refer to the execution environment, the type of
input queries, the type of operators involved and the query optimization criteria and
are common to all kinds of problems mentioned in Sec. 1. The taxonomy presented
here aims at providing a complete view of these factors in a systematic way.

2.1 Execution Environment

We are mainly interested in queries in parallel and distributed query execution en-
vironments, like those in [35], since these environments are more common in WS
queries. However, a great number of algorithms originally proposed for central-
ized environments are still relevant. In such single-processor systems, only a central
node evaluates input queries, although the queries may process data from multi-
ple distributed resources. A distributed environment, such as the Internet and the
grid [19], consists of multiple, possible heterogeneous, independent and potentially
autonomous sites that are loosely connected via a wide-area network. On the other
hand, a parallel environment consists of multiple, homogeneous processors and data
resources spread over a local network. As such, the communication cost may dom-
inate the query execution process in a distributed environment, which, usually, is
not the case in a parallel setting. Nevertheless, the similarities between parallel and
distributed systems are more significant compared to their differences; so, we pre-
fer to distinguish between centralized and non-centralized (i.e., either parallel or
distributed) systems, only.

A parallel or distributed environment may be either static or dynamic. In the latter
case, the environmental characteristics, such as the number of available processors,
the processor workload, the network traffic, etc., may change over time rendering
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the problem of query optimization more challenging. Query optimization in dy-
namic environments, also called adaptive query processing [15], has been a topic
of investigation since late 70s [18]; however, the problem has received renewed at-
tention in the last decade. The vast majority of works on adaptive query processing,
like those mentioned above, deal with changes in the operator characteristics and the
input data rather than changes in the execution environment; only a few exceptions
to this are known (e.g., [20]). Centralized environments are considered to be static;
of course this is not always true, e.g., the amount of available memory may be sub-
ject to unpredictable changes, but the dynamicity of the environment can be safely
overlooked when the resource characteristics we are mostly interested in, such as
processing cost per tuple, usually play a minor role in optimization.

In addition, a distributed or parallel environment may utilize parallelism with
a view to speeding up and scaling up query execution [17]. Three types of paral-
lelism have been identified in parallel query processing, namely independent, parti-
tioned and pipelined parallelism. In independent parallelism, query operators none
of which use data produced by the others, may run simultaneously on distinct ma-
chines. In pipelined parallelism, data already processed by an operator may be pro-
cessed by a subsequent operator in the pipeline, at the same time as the sender
operator processes new data. Finally, partitioned parallelism refers to running sev-
eral instances of the same operator on different machines concurrently, with each
instance only processing a partition of the same original data set.

The three aforementioned forms of parallelism can co-exist within a single query
execution plan. For instance, in the introductory example, WS2 and W S3 can pro-
cess in parallel output data items of WS1; this corresponds to independent paral-
lelism. Also, W S1 and WS3 can be active simultaneously, i.e., WS3 processes out-
put tuples of WS1, while the latter keeps generating new tuples; this corresponds to
pipelined parallelism. Finally, consider a scenario where WS3 is physically deployed

Execution
environment

Centralized

Parallel/Distributed

Static

Dynamic

Independent / Partitioned / Pipelined

No parallelism

Centralized data
transfers

Decentralized data
transfers

Dynamicity

Parallelism

Data transfers

Fig. 1. Diagram of the different aspects regarding the execution environment
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on two nodes, each processing half of the tuples of WS1; in that case, partitioned
parallelism is applied, as well. Obviously, parallelism can yield significant benefits
only in multi-processor, parallel or distributed environments.

Distributed environments are also differentiated regarding the type of manage-
ment of intermediate data transfers. In multi-processor systems, query operators
can be placed and evaluated anywhere across the network. Regarding the interme-
diate data transfers, in a centralized data transfer approach, the intermediate data is
transferred between resources via a central point. On the other hand, in a decentral-
ized managed data transfer approach, processors exchange data directly. Since data
is transferred from the source resource to the destination directly, the bottleneck
problem caused in centralized approaches is ameliorated and these approaches are
characterized by lower transmission times. Fig. 1 summarizes the different aspects
regarding the execution environment.

2.2 Input Queries

The optimization algorithms that apply to queries over WSs either optimize each in-
put query separately or optimize multiple queries simultaneously. In the latter case,
they try to benefit from the overlap regarding the data resources they access, or
even the constituent predicates. Multi-query optimization algorithms try to lever-
age this overlap in order to minimize the execution, communication and I/O cost.
Additionally, input queries can be classified with respect to their time duration into
continuous or non-continuous. Continuous queries are persistent queries that allow
users to receive new results when they become available [43]. They are mainly met
in streaming environments, where new data is continuously supplied and passed
to WS sets for further processing. On the other hand, the non-continuous ad-hoc
queries are executed on finite data. Optimization techniques that treat each tuple
separately can be applied to both continuous and ad-hoc finite queries. An example
of a continuous query over WSs is the following (adapted from [12]), where it is
assumed that separate WSs are responsible for checking the price variations of Dell,
Micron and Intel stocks:

“Notify me whenever the price of Dell or Micron stock drops by more than 5% and
the price of Intel stock remains unchanged over the next three months.”

Regarding their type, input queries can be expressed as traditional SQL-like database
queries in the form of select-project-join (SPJ) and aggregates, or as search, infor-
mation retrieval queries over information resources. Search queries are typically
unstructured and often ambiguous; users submit one or more keywords to a search
engine and the search engine returns approximate, i.e., incomplete answers with in-
formation that is related to the keywords provided in decreasing order of relevance.
Fig. 2 provides a diagram of the different query aspects.
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Fig. 2. Diagram of the different aspects regarding input queries

2.3 Input Operators

The type of input queries is also strongly correlated to the type of operators in the
query execution plan. The operator attributes that are of interest include selectivity
and precedence constraints (see Fig. 3). Selectivity is defined as the average ratio
of output and input tuples. A WS that receives as input a country name and re-
turns a list of major cities has average selectivity above one, and another service
that, for the same input, returns just the capital has selectivity equal to one. Sim-
ilarly, a service that may receive the name of any city in the world and returns
airport codes only if the given city is nearby an airport has average selectivity be-
low one, since, worldwide, there are fewer airports than cities. The operators in a
query can be selective, i.e., their selectivity is between 0 and 1, or proliferative, i.e.,
their selectivity is greater than 1. IR-style services are typically characterized by
high average selectivity values: given a single tuple containing a keyword, multiple
data items are returned.

Input Operators

Constrained

Unconstrained

Correlated

Independent

Selective

Proliferative

Selectivity

Correlation

Constraints

Fig. 3. Diagram of the different aspects regarding input operators
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Moreover, the operators are considered to be correlated when their selectivity
depends on the operators upstream in the query plan. If the selectivities are inde-
pendent of the ordering, then the operators are called independent. Note that the
selectivity of an independent operator may be correlated with the values of the input
attributes, which is the case in [9]. A last parameter that categorizes the operators
is the existence or not of prerequisite operators. More specifically, a constrained
operator cannot be executed before the completion of its prerequisite operators, in
contrast to an unconstrained one. The prerequisite operator O j of an operator Oi is
denoted by O j ≺ Oi.

2.4 Optimization Criteria

A critical factor in the optimization process is the exact optimization goal. Multi-
ple criteria exist, such as maximizing query throughput, minimizing monetary cost,
energy consumption, etc. In this chapter, we focus on two aspects, namely the min-
imization of the total query execution cost and the minimization of the query re-
sponse time. Minimization of the total execution cost can be split in two parts. In
centralized environments, execution cost encapsulates the cost for processing the
operators and the disk I/Os. In distributed environments, the cost for transferring
data among the operators is also considered. The minimization of execution cost
aims at minimizing the sum of the processing and transmission cost for all opera-
tors in the query plan.

However, the opportunities imposed by parallelization have moved the interest to
the optimization of other criteria, such as the response time, i.e., the time needed to
produce the full result set. In a pipelined parallel environment, all operators process
data simultaneously. As such, minimizing the query response time is equivalent to
the minimization of the execution time of the longest running operator (often re-
ferred to as the bottleneck operator) instead of the sum of the execution times of all
operators. When the query is evaluated with the help of interleaving plans (see Sec.
1.1), then the minimization of response time can be expressed as the maximization
of the tuple flow [13]. These optimization criteria are depicted in Fig. 4.

Optimization
criteria

Total operator
processing cost

Total data
transfer cost

Response time

Tuple  flow

Fig. 4. Optimization criteria
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3 Optimization Approaches

This section studies state-of-the-art algorithms for the problems presented in Sec.
1.1. The section starts by presenting some operator ordering problems in both static
and adaptive execution environments and continues with tuple routing, scheduling
and data transfer planning problems.

Independently of the execution environment, in the problems that are presented,
except the data transfer planning ones, the data to be processed is either streamed
by a single data resource or extracted from a database and then sent to subsequent
services for processing. On the other hand, in the presented data transfer planning
problems, we consider two different data resource models. In the first case, multiple
data resources transfer data to a centralized processing component, while in the
second case, data reside on traditional databases that are disparate across a network.

In order to answer a query involving calls to multiple services, the following ac-
tions must be performed by a query management component. First, the candidate
services that may take place during the query execution phase must be selected. Af-
ter that, statistics, regarding the per-tuple processing cost and the selectivity of the
services, as well as the network status, must be gathered. This data is utilized by
an optimization component that builds a feasible and efficient (in terms of a pre-
selected optimization criterion) service ordering. It is assumed that the algorithms
that deal with operator ordering and tuple routing problems exploit such query man-
agement components.

3.1 Operator Ordering Problems in a Static Environment

The operator ordering problems that are studied in the current subsection deal with
static execution environments. In Sec. 3.1.1, we study problems, where the opti-
mization objective is the query response time minimization, while in Sec. 3.1.2,
we present problems, where the objective is the minimization of the per tuple total
execution cost.

The services in Sec. 3.1 are considered to provide an interface of the form W S :
X →Y , where X and Y are sets of input and output attributes, respectively. Each WS
typically performs operations such as filtering out data items that are not relevant
to the query, transforming data items, or appending additional information to each
input tuple.

3.1.1 Minimizing the Response Time

Srivastava et al. are among the pioneers that deal with query optimization when the
data resources and the operators that process data are implemented as WSs. They
consider a parallel and static execution environment, in which data is pipelined
among services that are placed in arbitrary places. To this end, they propose a
WSMS that, given an SQL-like input query, undertakes the task to produce an appro-
priate ordering of the services, in order to minimize the query response time. Query
execution proceeds as follows. The output of one WS is returned to the WSMS
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and the latter redirects the received tuples to a subsequent WS, finally producing
the query results. After giving a brief description of the execution environment, we
present a formal problem definition utilizing the term operator instead of service.

More specifically, given an ad-hoc SPJ query Q that is defined over a set of N
operators O = {O1,O2, . . . ,ON}, the goal is to identify an operator ordering P for
all input tuples that minimizes the response time of the query, in a parallel and static
execution environment in which data is pipelined among the operators. Since the
operators are executed in parallel, the maximum rate at which input tuples can be
processed through the pipelined plan P is determined by the bottleneck operator (see
Sec. 2.4). For every input tuple to P, the average number of tuples that an operator
Oi needs to process is given by

Ri(P) = ∏
k|Ok∈Pi(P)

σk (1)

where Pi(P) is the set of operators that are invoked before Oi in the plan P and σi

is the service selectivity. The average processing time required by operator Oi per
input tuple is Ri(P)ci, where ci is the per tuple processing cost of Oi. Since the cost
of a plan is determined by the operator with the maximum processing time per input
tuple, the bottleneck cost of a plan P is given by

cost(P) = max
1≤i≤N

(Ri(P) · ci) (2)

Srivastava et al. have proposed a greedy algorithm for the special case where the
intermediate data transfers are centralized [42]. The operators are assumed to be
independent, whereas arbitrary selectivity values and existence of precedence con-
straints are supported. In the produced plans, the output of an operator may be fed
to multiple operators simultaneously. Starting from an empty operator plan, in every
iteration of the algorithm, the next operator Or to be appended to P is the one that
incurs the minimum processing cost per tuple. In order to find the minimum cost
of appending Or to P, the best cut in P is found, such that on placing edges from
the operators in the cut to Or, the incurred cost is minimized. As such, the problem
is reduced to a network flow problem [11]. The worst case complexity of the algo-
rithm is O(N5) and the algorithm is provably optimal. For selective operators, the
complexity is significantly lower since the optimal plan P is a linear ordering of the
operators by increasing cost, ignoring their selectivity. For proliferative services, the
produced plans may be parallel, i.e., a partial ordering is produced.

Example 2. Let O = {O1, . . . ,O10} be a set of 10 operators with corresponding costs
and selectivities shown in Table 1 and 2, respectively. Since all operators are se-
lective, the proposed algorithm orders them by increasing processing cost. Thus,
the optimal ordering that minimizes Eq.(2) according to [42] is
P = {O1O5O2O7O4O10O8O9O3O6}. �

A drawback of this algorithm is that it does not take the potentially heterogeneous
communication links between the operators into account. This is significant when
the execution is decentralized, given also that the communication cost may be the
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Table 1. Costs of operators in Example 2

Oi 1 2 3 4 5 6 7 8 9 10
ci 2 7 12 8 4 16 7 10 10 9

Table 2. Selectivities of operators in Example 2

Oi 1 2 3 4 5 6 7 8 9 10
σi 0.8 0.7 0.9 0.3 0.5 0.6 0.4 0.1 0.6 0.7

dominant cost. In [42], it is assumed that the output of an operator is fed to the sub-
sequent operators indirectly, through a central management component thus annihi-
lating the need to consider the different communication costs explicitly. Tsamoura et
al. address the afore-mentioned limitation by proposing a novel efficient algorithm
for the optimal total ordering of operators, when the intermediate result transfers are
decentralized and the communication costs between the operators may differ [46].

Let ti, j be the time needed to transfer a tuple from operator Oi to O j. Similarly
to [42], there is no limitation regarding the operator selectivities and the existence
of precedence constraints; however, the selectivities are assumed to be independent,
as well. The response time of a linear operator ordering S is given by the bottleneck
cost metric in accordance to [42] with ti, j factored in:

cost(S) = max
1≤i≤N

Ri(S)(ci + σiti,i+1), (3)

where tN,N+1 = 0. Ti, j = ci + ti, jσi is the aggregate cost of Oi with respect to O j. The
above formula implies that in general Ti, j �= Tj,i, since ci and σi values may differ
from c j and σ j values. Note that if ti, j is equal for all service pairs, the problem can
be solved in polynomial time, as shown in [42].

The proposed algorithm is based on the branch-and-bound optimization approach.
It proceeds in two phases, namely the expansion and the pruning one. During ex-
pansion, new operators are appended to a partial operator ordering C, while during
the latter phase, operators are pruned from C with a view to exploring additional
orderings. The decision whether to append new operators or prune existing ones
from a partial plan C is guided by two cost metrics, ε and ε respectively. The for-
mer corresponds to the bottleneck cost of C, and is given by Eq. (3), while the
latter is the maximum possible cost that may be incurred by operators not currently
included in C:

ε = max
l,r

⎧
⎨

⎩

(

∏ j|Oj∈C σ j

)
Tl,r, Ol �∈C, Or �∈C

(

∏l−1
j=0 σ j

)
Tl,r, Ol : last operator in C, Or �∈C

⎫
⎬

⎭
(4)

The algorithm consists of the following simple steps. Starting with an empty plan C
and an empty optimal linear plan S with infinity bottleneck cost, in every iteration
of the algorithm, the parameters ε and ε are computed. If the bottleneck cost ε of
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C is lower than ε , then a new operator is appended to C; this operator is the one
having the minimum aggregate cost with respect to the last operator in C. If the
bottleneck cost ε of the current plan C is higher than or equal to the bottleneck cost
ρ of the best plan found so far S, then the operators in C after the bottleneck service,
including the latter, are pruned. Finally, whenever the condition ε ≤ ε < ρ is met, a
new solution is found. That condition implies that the ordering of the services that
are not yet included in C does not affect its bottleneck cost. As a consequence, all
plans with prefix the partial plan C have the same bottleneck cost. So, a candidate
optimal solution S is found that consists of the current plan C followed by the rest
of the services in any order. The bottleneck cost ρ of the best plan found so far S
is set to ρ = ε . The last solution is the optimal one. The detailed description of the
algorithm, along with the proofs of correctness and optimality can be found in [46].
Furthermore, detailed real-world ([45]) and simulation ([46]) evaluation has shown
that the proposed algorithm can yield significant performance improvements (of an
order of magnitude in many cases).

The following example demonstrates the steps of the algorithm proposed in [46]
for minimizing the response time in a distributed and static environment, which
employs pipelining during query execution.

Example 3. Let us assume that the operators in Example 2 are allowed to commu-
nicate directly with each other and the network connections are heterogeneous. The
corresponding aggregate costs of the operators are shown in Table 3. For example,
the cell T1,2 of Table 3 is evaluated as T1,2 = c1 + t1,2σ1 = 2 + 65 ∗ 0.8, where 0.8 is
the per cost to transfer an tuple from O1 directly to O2.

Fig. 5 shows the partial plans at the end of each iteration. Initially, the plans C
and S are empty and the bottleneck cost of S is set to ∞. The algorithm starts by
identifying the operator pair, which incurs the minimum bottleneck cost. The cor-
responding operators are O1 and O7. After that, C = O1O7. In the second iteration,
since ε = 8 < ε = σ1 ×T7,3 = 36 and ε < ρ = ∞, a new operator is appended to C,
the one having the minimum aggregate cost with respect to O7; that operator is O9.

Table 3. Aggregate cost matrix T

i \ j 1 2 3 4 5 6 7 8 9 10
1 - 54 35 42 14 50 8 33 17 10
2 52 - 18 33 47 40 69 37 42 43
3 49 26 - 60 68 74 98 40 66 57
4 23 19 24 - 17 46 21 9 42 27
5 11 33 35 19 - 10 40 52 14 32
6 52 44 57 91 23 - 44 22 72 46
7 10 43 45 24 36 26 - 35 17 19
8 14 15 14 11 20 11 17 - 17 16
9 21 40 46 78 22 66 25 48 - 79

10 16 45 44 53 48 44 29 47 90 -
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1st iteration (at the beginning ε = 0, ε = 98, ρ = ∞ )

O1 O7

2nd iteration (at the beginning ε = 8, ε = 36, ρ = ∞ )

O1 O7 O9

3rd iteration (at the beginning ε = 13.6, ε = 25.28, ρ = ∞ )

O1 O7 O9 O5

4th iteration (at the beginning ε = 13.6, ε = 9.984, ρ = ∞ )

O1

5th iteration (at the beginning ε = 0, ε = 78.4, ρ = 13.6 )

O1 O10

6th iteration (at the beginning ε = 10, ε = 72, ρ = 13.6 )

O1 O10 O7

7th iteration (at the beginning ε = 23.2, ε = 25.2, ρ = 13.6 )

O1

8th iteration (at the beginning ε = 0, ε = 78.4, ρ = 13.6 )

O1 O5

9th iteration (at the beginning ε = 14, ε = 41.6, ρ = 13.6 )

C = ∅

10th iteration (at the beginning ε = 0, ε = 98, ρ = 13.6 )

O4 O8

11th iteration (at the beginning ε = 9, ε = 6, ρ = 13.6 )

C = ∅

Fig. 5. The steps in Example 3

In the third iteration, since ε = 13.6 < ε = σ1 ×σ7 ×T9,10 = 25.28 and ε < ρ = ∞
the operator O5 is appended to C forming the partial plan C = O1O7O9O5. Now,
since ε = 13.6 > ε = σ1 ×σ7 ×σ9 × T5,8 = 9.984, and ε < ρ = ∞, a solution is
found. Thus, S is set to C, ρ = 13.6 and C is pruned. After the pruning, C = O1

(the bottleneck operator is O7). The termination condition, see [46], is not triggered
given that there exists a two operator prefix that has not been investigated and its
cost is less than ρ : T4,8 = 9.
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In the fifth iteration, since ε = 0 < ε = 78.4 and ε = 0 < ρ = 13.6, a new operator
is appended to C = O1; that is O10. A new operator is also appended in the sixth
iteration forming the partial plan C = O1O10O7. In the seventh iteration, the partial
plan is set to C = O1, as ε = 23.2 > ρ = 13.6 and the bottleneck operator is the
second one, i.e., O10. In the eight iteration, O5 is appended to C = O1, while in
the ninth iteration, the partial plan is set to C = /0, as ε = 14 > ρ = 13.6 and the
bottleneck operator is the first one, i.e., O1. As a result, any other plan starting
with O1 can be safely ignored. Since the plan C is empty, the algorithm searches
for the pair of operators with the minimum aggregate cost. In our example, this
pair consists of O4 and O8. In the eleventh iteration, a new solution is found, since
ε = 9 > ε = 6 and ε < ρ = 13.6. Thus, S = O4O8, the bottleneck operator is O4

and ρ is set to 9. After the pruning C = /0, and the algorithm safely ignore plans
starting with O4O8. This causes the algorithm to terminate, since the cost of the less
expensive operator pair except those beginning with O1, which is O5O6, is higher
than ρ : T5,6 = 10 > ρ = 9. So the algorithm terminates, after having essentially
explored all the 10! orderings in just 11 iterations. �

The characteristics of these two state-of -the-art algorithms for the optimization
of queries over WSs in a pipelined parallel environment are summarized in Table 4.

Table 4. Operator ordering algorithms for minimizing the response time

Work Execution environment Input queries Input operators

[42] Parallel/distributed, static,
centralized data transfers,
pipelined parallelism

Single, ad-hoc, SQL-
like

Independent, both selective
and proliferative, both con-
strained and unconstrained

[46] Distributed, static, de-
centralized data transfers,
pipelined parallelism

Single, ad-hoc, SQL-
like

Independent, both selective
and proliferative, both con-
strained and unconstrained

3.1.2 Minimizing the Total Processing Time

In previous sections we saw that the query response time equals the maximum ex-
ecution cost spent by an operator in order to process an input tuple and/or to send
them to a subsequent operator. On the other hand, in a min-cost operator ordering
problem, the goal is to minimize the total operator execution cost (processing and
or transferring) that is incurred per input tuple. From now on, the term execution
cost, unless clarified otherwise, encapsulates both the processing and transferring
cost spent by an operator.

Ordering operators with a view to minimizing the per tuple total execution cost,
a problem also commonly referred to as the min-cost operator ordering problem,
is essential for achieving good system throughput. In general, solutions to the min-
cost problem initially proposed for single-node settings may be applied to parallel
settings characterized by resource homogeneity in a straightforward manner.
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The min-cost ordering problem comes in several flavors. One of the most in-
teresting ones refers to a parallel and static execution environment, where data is
directly exchanged between the operators through pipelining; data communication
can occur via a coordinator as well, without essentially modifying the problem, as
long as homogeneous network links are assumed. If the operators are independent,
then well-established fast solutions apply (e.g., [24,22]). However, correlated oper-
ators pose a more challenging problem. More specifically, given an ad-hoc select
query Q that is defined over a set of unconstrained, correlated and selective opera-
tors O = {O1,O2, . . . ,ON} with fixed processing cost ci and selectivity σi, the goal
is to find an operator linear ordering S that minimizes the total execution cost of
operators per input tuple. This cost encapsulates only the processing cost of tuples
and is formally given by the following equation:

cost(S) = c1 +
N

∑
i=2

ciDi, Di =
i−1

∏
j=1

(1−d( j| j−1)) (5)

d(i| j) is the conditional probability that the operator Oi will drop a tuple that has
not been dropped by any of the operators that precede Oi in S , and d(i|0) = 1−σi

is the unconditional probability that operator Oi will drop a tuple. Any drop prob-
ability is linearly related to selectivity, given that d(i| j) = 1−σ(i| j). Babu et al.
have proved that this problem is equivalent to the pipelined set cover problem [7].
The pipelined set cover problem is MAX SNP-Hard [30], which implies that any
polynomial operator ordering algorithm can at best provide a constant-factor ap-
proximation guarantee for this problem. In [30], a 4-times approximation algorithm
is introduced to solve this problem. According to that algorithm, the operators must
be ordered in a way that satisfies the following condition (termed greedy invariant):

d(i|i−1)
ci

≥ d( j|i−1)
c j

,1 ≤ i ≤ j ≤ N (6)

Example 4. We continue Example 2, aiming now at minimizing the total execution
time (only the processing time is considered). In this example, the selectivities of the
operators are independent, so the algorithm in [7] is reduced to those in [24,22] and
the operators are ordered in decreasing order of (1−σi)/ci. As such, first O5 is se-
lected, followed by O1, O8 and so on. If the operators were correlated, then, after se-
lecting O5, the conditional selectivities σ(i|5) of all other operators would have to be
estimated, in order to detect the second operator. �
Next, the min-cost operator ordering problem is studied in a multi-query setting.
This problem is also known as the shared min-cost operator ordering problem. More
formally, let Q = {Q1,Q2, . . . ,QM} be a set of M, potentially continuous select
queries that are evaluated over a set of N selective, unconstrained and correlated
operators O. Each query is a conjunction of the operators in O. For each input tuple,
operator Oi ∈ O either returns a tuple or rejects it. The proportion of rejected tuples
is defined by the operator selectivity. The goal is, given an input tuple t, to find the
ordering that identifies the queries satisfied by t with the minimum cost. Note that an
input tuple satisfies a query if it is not rejected by none of its constituent operators.
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Obviously, if a query is satisfied, then all of its constituent operators must be
evaluated. On the other hand, if an operator of a query rejects a tuple, then we do
not have to evaluate the rest operators belonging to the same query (and are not
evaluated so far). Thus, in a produced ordering, only a subset of operators O′ ⊆ O
have to be evaluated, in order to determine the queries that are satisfied, and thus,
the per tuple total processing cost is given by:

cost(S) = ∑
i|Oi∈O′

ci (7)

Munagala et al. have proved the equivalence of this problem to the minimum set
cover problem, and proposed an approximate greedy algorithm as a solution [31].
More formally, at any stage of the algorithm, the next operator to be evaluated is
expected to resolve the maximum number of unresolved queries per unit cost. We
say that for a given tuple t, a query is resolved if all its constituent operators return
t or the currently evaluated operator rejects t. Let pi be the number of unresolved
queries the operator Oi is part of and 1− σi the probability that the operator Oi

rejects an input tuple. Then, the expected number of queries resolved by Oi is pi(1−
σi). The next operator to be evaluated is the one that minimizes the ratio ranki =
ci/pi(1−σi). Oi is then removed independently from filtering out or not an input
tuple. In addition, the queries that have been resolved due to the operator evaluation,
and any other operator, which is not part of at least one not yet resolved query, is
also removed. The algorithm terminates when all submitted queries are resolved.

Example 5. This example presents the steps of the algorithm proposed by Munagala
et al. for the shared min-cost operator ordering problem. Suppose that the following
queries are available Q1={O1,O3,O7,O10}, Q2={O4,O5,O8}, Q3 = {O2,O4,O10},
Q4 = {O1,O7,O9,O10}, Q5 = {O3,O6,O7,O9}. Let t be an input tuple, which is not
rejected by any operator (except O1, O5 and O9 ). As a consequence, only the query
Q3 is satisfied for t, since none of its constituent operators rejects this tuple. Figure 6
shows the results after every iteration of the algorithm. The algorithm starts by iden-
tifying the operator which minimizes the ratio ranki = ci/pi(1−σi), which is O7

with rank7 = 3.88 (see also Tables 1 and 2). Since O7 does not reject the input tuple,
no query is resolved. After that, operator O1 is selected with rank1 = 5. Operator O1

rejects t, thus resolving queries Q1 and Q4. None of the not yet evaluated operators
is removed, since they are included in at least one of the not yet resolved queries, i.e.,
Q2, Q3 and Q5. The next two operators are O4 and O5 with rank4 = 5.71 and rank5 =
8, respectively. Since O5 rejects t, query Q2 is also resolved. The next operator is
O2 with rank2 = 23.33. After evaluating operator O2, operator O9 is evaluated with
rank9 = 25. Since O9 rejects input tuple t, query Q5 is also resolved. Apart from that,
operators O3 and O6 do not have to be evaluated, since they are not part of any un-
resolved query. Finally, the remaining operator, i.e., O10 is evaluated, and thus query
Q3 is satisfied. �

Liu et al. have proposed an edge-coverage-based approximate greedy algorithm for
the same problem that achieves a better approximation ratio [28]. In [31], the shared
min-cost operator ordering problem is viewed as the problem of covering the input
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Q1 Q2 Q3 Q4 Q5

O1, O3

O7, O10

O4, O5

O8

O2, O4

O10

O1, O7

O9, O10

O3, O6

O7, O9

Q1 Q2 Q3 Q4 Q5

O1, O3

O10

O4, O5

O8

O2, O4

O10

O1

O9, O10

O3, O6

O9

1st iteration O7 is selected (rank7 = 3.88)

Q2 Q3 Q5

O4, O5

O8

O2, O4

O10

O3, O6

O9

2nd iteration O1 is selected (rank1 = 5)

Q2 Q3 Q5

O5

O8

O2

O10

O3, O6

O9

3rd iteration O4 is selected (rank4 = 5.71)

Q3 Q5

O2

O10

O3, O6

O9

4th iteration O5 is selected (rank5 = 8)

Q3 Q5

O10

O3, O6

O9

5th iteration O2 is selected (rank2 = 23.33)

Q3

O10

6th iteration O9 is selected (rank9 = 25)

7th iteration O10 is selected
Q3

Fig. 6. The steps in Example 5, where each box corresponds to an unresolved query contain-
ing its remaining operators
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queries through a suitable choice of operators. However, in [28], the same problem
is viewed as the problem covering the connections between queries and operators
through a suitable choice of operators, rather than covering the queries themselves.

The algorithm makes use of a bipartite graph. A bipartite graph G = (O,Q,E)
consists of two partitions, the set of the not yet evaluated operators (initially O)
and the set of the not yet resolved queries (initially Q); an edge e = (Oi,Q j) ∈ E
between an operator and a query indicates the fact that the operator is present in
the corresponding query. Given an input tuple t, the next operator to be evaluated
in each step is the one that covers the maximum number of edges in the bipartite
graph with the minimum processing cost. For an operator Oi, the expected number
of edges covered is the sum of the expected number of the queries that Oi evaluates
to true1 plus the expected number of the operators that do not have to be evaluated if
operator Oi evaluates to false (these are the not yet evaluated operators that belong to
the not yet evaluated queries, where Oi is part of). More formally, the next operator
to be evaluated, given a tuple t, is the one that minimizes the ratio

unit − pricei =
ci

σiδ (Oi)+ (1−σi)∑∀Qk|(Oi,Qk)∈Ei
δ (Qk)

(8)

where Ei is the remaining set of edges in the current iteration, δ is the degree of an
operator or a query respectively in the bipartite graph and Qk is any query involving
Oi. After each operator evaluation, the bipartite graph is updated with the performed
actions being identical to those in [31].

Example 6. We reconsider the problem in Example 5 employing the edge-coverage
based algorithm proposed in [28]. Figure 7 shows the operator-query bipartite graph
after every iteration of the algorithm. Let t be the current input tuple. In the first iter-
ation, operator O1 is selected for evaluation with unit-price = 2/(0.8∗2+0.2∗ (4+
4)) = 0.625. After that, queries Q1 and Q4 are removed from the graph along with
operator O1, since O1 rejects t. In the second iteration, the operator O4 is selected
with unit-price = 8/(0.3 ∗ 2 + 0.7 ∗ (3 + 3)) = 1.66. In the third iteration, O7 is se-
lected, while in the fourth iteration we evaluate O5 with unit-price = 4/(0.5+0.5∗
2) = 2.66. Since operator O5 rejects the input tuple, query Q2 is removed from the
graph along with operator O8. The latter is removed as it is not part of any unresolved
query. In the fifth iteration, O2 is selected for evaluation, while in the sixth iteration,
O9 is selected with unit-price=10/(0.6 + 0.4 ∗3)= 5.55. After evaluating operator
O9, query Q5 along with operators O3 and O6 are removed from the graph. Finally,
operator O10 is evaluated, since it is the only remaining operator. �

A common problem with the performance of WSs is that they may be too slow or
prohibitively expensive in some cases. In that case, if there exist some additional
highly selective operators that are inexpensive and correlated to the expensive ones,
it is beneficial to incorporate them early in the plan. This is the main rationale in

1 We say that, given a tuple t, an operator Oi evaluates to true a query Qi if Oi ∈ Qi and Oi

returns t. Otherwise, we say that Oi evaluates Qi to false.
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1st  iteration: O 1  is selected (unit-price=0.625)

Q3

O10

Q3 Q5

O3 O6 O9 O10

Q3 Q5

O2 O3 O6 O9 O10

Q2 Q3 Q5

O2 O3 O5 O6 O8 O9 O10

Q2 Q3 Q5

O2 O3 O5 O6 O7 O8 O9 O10

Q2 Q3 Q5

O2 O3 O4 O5 O6 O7 O8 O9 O10

Q1 Q2 Q3 Q4 Q5

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

2nd  iteration: O 4  is selected (unit-price=1.66)

3rd  iteration: O 7  is selected (unit-price=2.5)

4th  iteration: O 5  is selected (unit-price=2.66)

5th  iteration: O 2  is selected (unit-price=5.38)

6th  iteration: O 9  is selected (unit-price=5.55)

Q3 7th  iteration: O 10  is selected

Fig. 7. The steps in Example 6
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[14]. More specifically, the work in [14] exploits the fact that some additional low-
cost operators Oi �∈ O can be evaluated so as to reject tuples at lower cost avoiding
the cost of evaluating expensive operators. In this work, the proposed solution is
a conditional plan. A conditional plan is a decision tree where each interior node
corresponds to an operator that splits the plan into several conditional plans, in turn.
During evaluation, the tree is traversed. At every node, the query processor evaluates
the corresponding operator and follows one of the sub-plans depending on its output.

Lazaridis and Mehrota in [25] deal with a problem similar to [14]. Let Q be
an ad-hoc, select query evaluated over a set of N independent, unconstrained and
selective operators O. The goal is to find an operator ordering that minimizes the
total operator processing cost per tuple, in order to decide whether an input tuple is
rejected by any of the operators or not. In [25], as in [14], this is done by inserting
additional lower cost operators that are not part of the original operators mentioned
in the query explicitly.

A motivation example is as follows. Suppose a query that uses an expensive face
identifier method, which compares input images with stored images containing faces
of criminals:

SELECT * FROM Camera, Criminals
WHERE FaceIdentifier(Camera.image, Criminals.image)

Suppose also that the user has access to two additional, less expensive methods,
ObjectDetector and FaceDetector which detect foreign objects and human faces,
respectively. By using these methods we can reject some input images at lower cost:
if an image does not contain an object or a face, then there is no reason to test
whether it contains a particular face of a criminal. We infer a negative result for
FaceIdentifier from a negative result by either of the two methods ObjectDetector
and FaceDetector.

Table 5 summarizes the main characteristics of the proposed solutions to dif-
ferent flavors of the min-cost operator ordering problem. As already explained, al-
though some of these solutions were originally proposed for centralized settings,

Table 5. Algorithms for flavors of the min-cost operator ordering problem

Work Execution environment Input queries Input operators

[7] Parallel, decentralized data
transfers, pipelined paral-
lelism

Single, continuous,
SQL-like

Correlated, selective and
unconstrained

[31] Centralized Multiple, continuous,
SQL-like

Correlated, selective and
unconstrained

[28] Centralized Multiple, continuous,
SQL-like

Independent, selective and
unconstrained

[14] Centralized Single, ad-hoc, SQL-
like

Correlated, selective and
unconstrained

[25] Centralized Single, ad-hoc, SQL-
like

Independent, selective and
unconstrained
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their results can be easily transferred to parallel settings or distributed settings with
centralized data transmission, and, as such, they can be employed to optimize queries
over potentially remote WSs. Also, techniques proposed for continuous queries may
be applicable to ad-hoc queries on finite data, too.

3.2 Operator Ordering Problems in Dynamic Environments

Wide area settings hosting WSs are typically subject to changes, which may have
significant impact on queries. Babu et al. have extended their work in [7] to address
the more general problem where the execution environment is dynamic. This is
achieved by utilizing two components, a so-called “profiler” and a “re-optimizer”.
The profiler maintains a time-based sliding window of tuples dropped in the recent
past. A profile tuple is created for every tuple in the sliding window and shows which
operators have unconditionally rejected it. The re-optimizer can then compute any
selectivity estimates that it requires from the profile tuples. The re-optimizer’s job is
to ensure that the current operator ordering satisfies Eq. (6). Similarly, the operator
costs can be monitored, as well. The above render the algorithm proposed in [7]
robust to environmental changes.

In the context of adaptive query processing [15], Avnur and Hellerstein have pro-
posed the eddies execution model for minimizing the response time of ad-hoc SPJ
queries at runtime [6]. The operators can be of arbitrary type, i.e., both selective and
proliferative, both constrained and unconstrained, and both correlated and indepen-
dent. In the eddies model, every tuple may follow a different plan. The original eddy
implementation employed two main approaches to routing. The first one, called
back-pressure, causes more tuples to be routed to fast operators early in query exe-
cution. The second approach augments back-pressure with a ticket scheme, whereby
the eddy gives a ticket to an operator whenever it consumes a tuple and takes a ticket
away whenever it sends a tuple back to the eddy. In this way, higher selectivity op-
erators accumulate more tickets. When choosing an operator to which a new tuple
should be routed, the ticket-routing policy conducts a lottery between the operators,
with the chances of a particular operator winning being proportional to the num-
ber of tickets it owns. In this way, higher selectivity operators tend to receive more
tuples early in their path through the eddy. The algorithm in [7] can also be incorpo-
rated into eddies routing policies. Several extensions to eddies have been proposed,
including the works in [9,38,29,44]. The work of Tian and DeWitt [44] explicitly
considers distributed execution environments supporting decentralized data trans-
ferring. In a distributed eddy, each operator, instead of returning processed tuples
back to a central eddy, it redirects them to a subsequent operator. The operators
learn query execution statistics and exchange them with other operators periodi-
cally. Based on these statistics, each operator makes its own routing decisions with-
out consulting the central eddy or any other operator. By employing such eddies in
distributed queries over WSs, the need of an optimizer that constructs an execution
plan becomes obsolete.
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3.3 Tuple Routing and Scheduling Problems

WSs can usually process many requests concurrently due to multi-threading. Each
server hosting a WS has limited capacity though, so an optimizer has to build plans
that respect the capacity constraints. Allowing multiple concurrent calls to operators
is considered in tuple routing problems. These problems deal with the selection of
one or more operator orderings, in order to maximize the number of tuples processed
per unit time, this is why they are also called flow maximization problems. Their
main rationale is to benefit from as much capacity of the processors hosting the
operators as possible.

Condon et al. have proposed a solution for the special case where the orderings
are linear, the execution environment is parallel and static, the data transfers are
decentralized and pipelined parallelism is employed [13]. Let Q be an ad-hoc select
query consisting of calls to N independent, unconstrained and selective operators
O. ri is the rate limit of each operator and is measured in tuples per time unit. Each
tuple can be routed individually, so that different tuples can follow distinct routes.
The problem is to find one or more operator orderings in order to maximize the
tuple flow per unit time. More formally, suppose that a set of M different linear
operator orderings are available, {π1,π2, . . . ,πM} that process different subsets of
input tuples in parallel. Let fi be the number of tuples sent through linear plan πi per
unit time. Then, the total number of tuples processed per unit time by the different
linear orderings is given by

F = ∑
πi

fi, fi > 0 ∀ πi (9)

The goal is to find the set of fi and πi values that maximize Eq. (9) without violating
the rate limits ri of the operators.

Condon et al. proposed a recursive algorithm for this problem, which is detailed
in [13]. Operators are initially ordered (from N to 1) in a way that satisfies the
following condition:

riσi ≤ ri+1∀i,1 ≤ i ≤ N −1, (10)

After that, the flow of tuples along each ordering is increased until either (i) an
operator is saturated, i.e., it processes the maximum possible number of input tuples
according to its rate limits, or (ii) the residual capacity of Oi, 1 ≤ i ≤ N times its
selectivity σi becomes equal to the residual capacity of Oi+1. In [13], it is shown that
if stopping condition (i) is satisfied, the constructed flow is optimal. On the other
hand, if stopping condition (ii) is satisfied, the operator Oi+1 is immediately placed
after Oi and the operators Oi+1 Oi are replaced by a single operator Oi,i+1 with rate
limit equal to the residual capacity of Oi and selectivity equal to the product σiσi+1.
The resulting smaller problem is then solved recursively.

Example 7. Let O2 = {O1,O2,O3,O4,O5} be a set of five operators with rate limit
and selectivity values {12,8,7,4,2} and {0.9,0.3,0.7,0.5,0.8}, respectively. Ini-
tially, the operators are sorted in descending rate limit order, i.e., O3 O4 O2 O5 O1;
this ordering satisfies Eq. (10). The minimum flow of tuples that triggers either of
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the two conditions (see [13]) is f3,4,2,5,1 = 4.36. If f3,4,2,5,1 = 4.36 tuples per time
unit are sent through the ordering O3 O4 O2 O5 O1, then the residual capacity of
O2 times its selectivity is equal to the residual capacity of O4. After that, the or-
dering O3 O4 O2 O5 O1 is kept and a new operator ordering is created. To this
end, operators O2 and O4 are merged into a single operator with residual capacity
r2,4 = 5.82 (the residual capacity of O2) and selectivity σ2,4 = σ2 ×σ4. The new
smaller sub-problem is solved recursively. In the second iteration, f3,2,4,5,1 = 5.25
is the minimum flow of tuples that triggers stoping condition (2), while none of the
operators becomes saturated with less flow. Thus, the ordering O3 O2,4 O5 O1 is
kept and the operators O2,4 and O5 are merged into an operator O5,2,4 with residual
capacity equal to the residual capacity of O5 and selectivity σ5,2,4 = 0.105, forming
a new ordering O3 O5,2,4 O1. The problem is again solved recursively. The algo-
rithm terminates in the fifth iteration, where a single operator O1,5,2,4,3 has been
left with residual capacity r1,5,2,4,3 = 0.2316, i.e., f1,5,2,4,3 = 0.2316 tuples per time
unit must be sent along this ordering, in order to saturate the single operator. To-
gether, the flows constructed in the aforesaid five stages yield the following optimal
solution to the max-throughput tuple routing problem for the given input instance:
f3,4,2,5,1 = 4.36, f3,2,4,5,1 = 5.25, f3,5,2,4,1 = 1.58, f3,5,2,4,1 = 1.58, f3,1,5,2,4 = 0.79,
f1,5,2,4,3 = 0.2316 and fπ = 0 for all other π orderings. The steps of the algorithm
are shown in Figure 8. �
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[16] extends the algorithm in [13] so that precedence constraints among operators
and arbitrary selectivities are supported.

Liu et al. deal with the joint problem of flow maximization and scheduling in a
heterogeneous, multi-query, parallel-processor environment [27]. More formally, let
Q = {Q1,Q2, . . . ,QK} be a set of K ad-hoc select queries and O = {O1,O2, . . . ,ON}
be a set of N, potentially correlated, unconstrained and selective operators. Each
query is a conjunction of the operators in O. For every input tuple t, operator Oi ∈ O
either returns a tuple or rejects it. Furthermore, let M be a set of heterogeneous pro-
cessors and yi(Mk) be the cost of evaluating operator Oi on processor Mk. The goal
is to find, for each input tuple t, one or more operator orderings and an associated
allocation scheme so that the flow of tuples processed per unit time is maximized.
In the proposed algorithm, each operator Oi is always evaluated on the processor Mk

for which the incurred load yi(Mk) is minimized (for simplicity we denote yi(Mk)
by yi). For the operator ordering problem, Liu et al. leverage the fact that the flow
maximization problem in heterogeneous processing environments is equivalent to
the problem of min-cost operator ordering in centralized environments, where the
cost of each operator Oi is given by yi. The problem addressed is a generalized case
of the shared min-cost operator problem introduced in [31] and [28]. Other operator
scheduling problems are studied in [47,8,41,3,37].

The main characteristics of the algorithms are summarized in Table 6.

Table 6. Solutions to tuple routing problems (first row) and scheduling problems (second
row)

Work Execution environment Input queries Input operators

[13,16] Parallel, static, decen-
tralized data transfers,
pipelined parallelism

Single, ad-hoc, SQL-
like

Independent, both selective
and proliferative, both con-
strained and unconstrained

[27] Parallel, static, heteroge-
neous processors, pipelined
parallelism

Multiple, ad-hoc,
SQL-like

Both independent and corre-
lated, both selective and un-
constrained

3.4 Data Transfer Planning Problems

Consider a dynamic environment, where multiple data sources stream data to a cen-
tral processing node through heterogeneous communication links, in order to eval-
uate aggregate queries. These queries combine data from multiple data sources and
their answers must be re-computed as data updates arrive to the sources. It is as-
sumed that each data source stores the values of a single data attribute. The goal
is to minimize the total communication cost, in order to evaluate multiple (possi-
bly overlapping) aggregate continuous queries. No parallelism is employed during
queries execution.
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Olston et al. have provided a solution for this problem exploiting the fact that
the precise answer of a continuous query may not always be necessary [34]. In such
cases, approximate answers of sufficient precision may be computed from a small
fraction of the input stream items. Users need to submit quantitative precision con-
straints along with continuous queries, which the processing node uses to filter stream
items at the remote data sources. Each query is associated with a pair of real values,
L and H that define an interval [L H] in which the precise answer is guaranteed to lie.
The reasoning behind the algorithm is quite simple: a data source does not need to
stream the data that does not affect the answer, according to the previously defined
precision requirements. For example, if the current exact answer is 10 and the preci-
sion interval is [7 13], then data sources holding updated data with values from 7 to
13 do not have to proceed to data transmission. The heuristic algorithm for filtering
the stream items on the remote resources, called filter tuning, consists of an iterative
two-step procedure. In the first step, each data resource shrinks the bound width peri-
odically at a predefined rate. Each time the bound width of a data source shrinks, the
so-called “leftover” width is reallocated to other data sources, ensuring all precision
constraints are still satisfied. In the second step, the data sources that increase their
bound widths are heuristically selected; the algorithm selects the ones that stream
data at high rates and are connected with expensive communication links.

Li et al. in [26] deal with another data transfer planning problem. In this work,
it is assumed that the data resources are spread across a wide-area distributed envi-
ronment, and there is a single data resource per host. The links between hosts are
heterogeneous, while the data resources can directly transfer data to other resources.
Any SQL-like query can be submitted, and there is no limitation regarding the type
of operators. For every submitted query, a query plan is provided in the form of a
rooted tree. The plan specifies the operators to be evaluated on each data resource
and the evaluation order. The aim is to schedule the data transfers across the queried
data resources, in order to minimize the total data transferring cost when evaluating
the query plans. It is proven that the problem is NP-hard for arbitrary communi-
cation networks by a reduction from the Steiner tree problem in graphs [39]. Li
et al. proposed a polynomial time algorithm for this problem, which relies on the
weighted hyper-graph minimum cut algorithm [26]. The produced data movement
plan is optimal for tree-shaped communication networks, while it is an approxima-
tion to the optimal one for more general communication networks.

3.5 Other Problems Related to Queries over WSs

Thus far we have dealt with problems in which the services provide exact answers.
Search queries belong to a different paradigm. In [10], Braga et al. deal with the
joint problem of finding a WSs plan and an access pattern for each service for search
query optimization. The execution environment is distributed and static, while the
services can exchange data directly through pipelining. The proposed algorithm ex-
plores the space of plans using a heuristic, branch and bound strategy and it is ap-
plicable, under some modifications, for the optimization of both the total service
processing cost and the response time criteria. Another common problem with WSs
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is that they are slow and the communication cost may well dominate the process-
ing cost. Block-based data transmission may alleviate this problem, as proposed in
[42,21]. Finally, [40] explore adaptive approaches to parallelizing calls to WSs.

3.6 Discussion and Open Issues

The purpose of the current section is to summarize the problems that have been
studied for query optimization over WSs and the state-of-the-art algorithms that
have been proposed.

Concerning the operator ordering problem in static execution environments, we
have presented several algorithms that aim to minimize either the response time of
the submitted query, or the per tuple total processing cost. Srivastava et al. intro-
duced a general purpose WSMS for query optimization in a parallel environment
that utilizes pipelined parallelism during query execution [42]. The major assump-
tions that are made are the following. The services do not exchange data directly, but
a central component undertakes the intermediate data transfers. Also, the selectivity
and the processing cost of the operators are constant and independent of the input
attribute values. Under these assumptions, a provably optimal algorithm has been
proposed that schedules parallel invocations of the operators, in order to minimize
the response time of the submitted queries. The work of Tsamoura et al. comprises
an extension of the work in [42] for distributed execution environments, where the
operators exchange data directly over non-negligible and heterogeneous commu-
nication links [46]. The pipelined execution model is also applied. However, the
proposed algorithm builds only linear operator orderings. A problem of significant
importance that has not been addressed is the generalization of the latter algorithm
for building parallel operator invocations. Furthermore, it would be very interesting
to study the query response time minimization problem in a dynamic environment,
where the per tuple processing and transferring costs, change significantly over time.

After that, we have presented several flavors of the min-cost ordering problem
both in centralized [31,28,14,25] and parallel execution environments [7]. The above
min-cost operator ordering problems deal with select queries, while the cost needed
to transfer tuples from one service to another is negligible. In [7], given an in-
put query that is evaluated through a set of correlated, unconstrained and selec-
tive operators, the goal is to build a linear operator ordering that minimizes the
total cost of processing operators per input tuple.The proposed algorithm provides
a 4-times approximation solution, while an heuristic technique has been introduced
for the generalization of the above algorithm when the wide-area settings are sub-
ject to changes. Furthermore, Munagala et al. [31] and Liu et al. [28] deal with a
multi-query flavor of the min-cost ordering problem in a centralized execution en-
vironment. In particular, given a set of one or more queries that consist of a set of
independent, selective and unconstrained operators, the goal is to find an optimal
operator ordering, in order to answer all input queries with the minimum total pro-
cessing cost. The last two works that are studied try to minimize the per tuple total
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processing cost for an input query by utilizing additional, lower cost and highly se-
lective operators [14,25]. Those operators need not be part of the initial operator set.
To summarize, for operator ordering in a static execution environment, the following
problems have been addressed:

• Response time minimization of single SPJ queries employing pipelined paral-
lelism and independent operators both in a parallel and distributed execution
environment. Decentralized data transfers have been considered, as well.

• Total operator execution cost minimization. Three different problem flavors that
consider unconstrained operators are discussed; namely, (i) optimization of a
single-query that employs parallelism and assumes correlated operators in a
parallel environment, (ii) optimization of a single query with correlated opera-
tors in a centralized environment both for correlated and independent operators
and (iii) optimization of multiple queries with both independent and correlated
operators in a centralized environment.

Regarding the response time minimization, no work has been done for multi-query
optimization or correlated operators. Furthermore, other types of parallelism (such
as partitioned) have not been considered. The above works deal with SQL-like
queries. The only work that deals with IR-like queries is presented in [10]. [10]
deals with the joint problem of selecting the more appropriate services to invoke,
when multiple services have the same functionality but different binding patterns,
and of ordering the selected services in a distributed and static execution environ-
ment that employees pipelined parallelism. However, no performance guarantees
have been provided.

In the context of adaptive operator ordering for minimizing the response time
of a query, eddies [6] and distributed eddies [44] try to overcome the “hassle” of
varying processing and communication costs in a dynamic execution environment
by routing each tuple independently.

In Sec. 3.3, we have presented two throughput maximization problems [13,27].
Both of them employ inter-operator parallelism in order to maximize the tuple
throughput, i.e., the number of tuples processed by the operators per unit time. The
work in [16] deals with single query optimization, imposing only the independent
assumption on input operators. On the other hand, the work in [27] deals with mul-
tiple select queries and unconstrained, selective operators. It also performs operator
scheduling. For both proposals, the underlying execution environment is static and
parallel. In general, adaptive query processing is in its infancy.

We have dedicated the last part of Sec. 3 to the description of two data transfer
planning problems in a static and dynamic execution environment. Both of them
deal with multiple input queries, while the communication links are heterogeneous.
The work of Olston et al. deals with a centralized execution environment, where
multiple continuous aggregate queries are evaluated in a central processing com-
ponent [34]. There the data resources are disparate in a wide-area network and
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periodically stream data to the central component. Considering that the precise an-
swer is not always necessary for some or all input queries, the goal is to appropri-
ately tune the amount of data sent by each remote data resource, in order to minimize
the total communication cost for answering input queries. Li et al. deal with another
data transfer planning problem. As in [26], the data resources are disparate in a
wide-area heterogeneous environment, while the latter can directly exchange data.
Given a plan that specifies the operations to be performed on input data the goal is to
appropriate schedule the data exchanges among the resources, in order to minimize
the total data transferring cost when evaluating the input queries. Both works do not
encapsulate the processing cost in order to answer the submitted queries. A limi-
tation of the problem considered in [34] is that it handles only aggregate queries,
while a limitation of [26] is that it requires a plan that specifies the operator in-
vocation order. As both works deal with the min-cost metric, an interesting aspect
would be the exploration of problems having other optimization criteria, such as the
response time of the submitted queries. For example, regarding the problem in [26],
the objective might be to minimize the maximum response time of the submitted
queries. The characteristics of the proposed algorithms are summarized in Tables 4,
5 and 6.

The following remarks arise from the above discussion. The data transfer cost and
the network heterogeneity issue are largely overlooked. In the majority of the works,
the state-of-the-art operator ordering and tuple routing algorithms consider paral-
lel and/or centralized execution environments, where the processing cost dominates.
Another important issue that needs more attention is dynamicity. The presented prob-
lems mainly deal with static execution environments which is not the case in wide-
area infrastructures such as the grid. The operator independence assumption must be
reconsidered, since, in a real setting, the processing cost and the selectivity of uti-
lized operators may be tightly related with the input attributes values. Another prob-
lem that should be investigated in the future is the combination of different forms of
parallelism. Finally, the majority of presented problems deal with SQL-like queries.
Extending current approaches or investigating new ones for IR queries optimization
is crucial, since querying information sources is an important part of information
management in Web and other distributed wide-area organizations.

4 Conclusion

This chapter discussed queries over WSs focusing on their optimization. Queries
over WSs are becoming increasingly common due to the proliferation of publicly
available WSs and remote and decentralized computing infrastructures such as grid
and cloud computing. We presented a taxonomy of the problems encountered in
the optimization of such queries taking into account the type of the optimization
problems, the type of queries, the type of services or operators and the exact ex-
ecution environment to which the queries are tailored. Some of the problems can
be efficiently solved by utilizing known algorithms from the database community,
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whereas, for some others, novel algorithms have been proposed. This chapter dis-
cussed the state-of-the-art solutions that apply to the problem of optimizing queries
over WSs, explaining their main characteristics. Especially for the problem of min-
imizing the response time in decentralized pipelined queries, a novel algorithm was
presented.
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