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Abstract

The problem of ordering expensive predicates (or filter ordering) has recently received renewed at-
tention due also to emerging computing paradigms such as processing engines for queries over remote
Web Services, and cloud and grid computing. The optimization of pipelined plans over services differs
from traditional optimization significantly, since execution takes place in parallel and thus the query re-
sponse time is determined by the slowest node in the plan, which is called the bottleneck node. Although
polynomial algorithms have been proposed for several variants of optimization problems in this setting,
the fact that communication links are typically heterogeneous in wide-area environments has been largely
overlooked. Our proposal is the first attempt, to the best of our knowledge, that tries to optimize linear
orderings of services when the services communicate directly with each other and the communication
links are heterogeneous. We propose a novel optimal algorithm to solve this problem efficiently, which is
thoroughly evaluated through detailed experiments.

1 Introduction

Nowadays, technologies such as grid and cloud computing infrastructures and service-oriented architectures
have become adequately mature and have been adopted by a large number of enterprises and organizations.
This trend has altered, to an extent, the way complex tasks are formulated, giving rise to approaches that
rely on composition of services to be executed in a parallel and distributed manner (e.g., [19, 1, 22]). As a
consequence, there is a growing interest in systems that arecapable of processing complex tasks formulated
as Web Service (WS) workflows utilizing remote computational resources. In [24], the notion of Web
Service Management System (WSMS) is introduced as a generalpurpose system, which possesses such
capabilities.

In a WSMS, processing of data takes place through (remote) calls to WSs. The latter provide an interface
of the formWS : X → Y, whereX andY are sets of attributes, i.e. given values for attributes inX , WS
returns values for the attributes inY, as shown in the following example adapted from [24]. In the generic
case, the input tuples may have more attributes thanX , while attributes inY are appended to the existing
ones.

Example 1 Suppose that a company wants to obtain a list of email addresses of potential customers se-
lecting only those who have a good payment history for at least one card and a credit rating above some
threshold. The company has the right to use the following WSsthat may belong to third parties, the first of
which contains a database of person ids.

WS1 : ∅ → SSN id (ssn)
WS2 : SSN id (ssn, threshold)→ credit rating (cr)
WS3 : SSN id (ssn)→ credit card numbers (ccn)
WS4 : card number (ccn, good)→ good history (gph)
WS5 : SSN id (ssn) → email addresses (ea) There are multiple valid orderings to perform this

task, although several precedence constraints exist:WS1 must always be at the beginning andWS3 must
precedeWS4. �

In many cases, the problem of optimizing queries over WSs becomes equivalent to that of an optimal
ordering of a query’s WS calls. Usually, the goal of the optimization is to minimize the response time of
queries, even though there may be other metrics of interest,such as total time, monetary cost and aggregate
resource utilization. In this work, we focus on the minimization of query response time, exclusively.

In one aspect, the problem of optimal ordering of WS with a view to minimizing the response time
may resemble the problem of ordering commutative filters in pipelined queries with conjunctive predicates
[15, 11], in the sense that the calls to WSs may be treated in the same way as expensive predicates. Note
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that ordering some types of relational joins can be reduced to the same problem, as well [3]. However, there
are also many substantial differences given that there may exist precedence constraints between the WSs,
selectivities may be higher than 1 (e.g.,WS3 in the example) and, typically, the execution of queries over
WSs takes place in a both distributed and parallel manner. More specifically, each WS is executed on a
different node and the results of one WS may immediately be passed on to the next service in a pipelined
fashion, so that the tuples already processed by a WS are processed by the subsequent WS in the plan at the
same time as the former processes new input tuples.

According to the pipelined execution model, when no tuples are dropped or new tuples are generated, the
maximum rate at which input tuples can be processed through asingle plan equals the minimum processing
rate of all services; the corresponding service, i.e., the WS that spends, on average, the most time per input
tuple, is termed the bottleneck WS. This model imposes new optimization challenges. For example, the
query response time is no longer the sum of the cost in time units of all the WSs in the pipelined plan, but
is determined by the slowest node [8, 5, 24].

The problem of minimizing the bottleneck cost has received significant attention recently. In [24], along
with the introduction of WSMSs, an efficient optimization algorithm is presented that considers precedence
constraints among the WSs. Another characteristic of this work is that it can deal with any selectivity values
and build plans where the output of a service is fed to multiple services simultaneously. The proposals in
[8, 5] introduce faster algorithms that maximize the data flow by defining the set of interleaving plans
along with the proportion of tuples routed to each plan in order to maximize the aggregate processing rate;
nevertheless, all the plans are linear, i.e., each WS has at most one input service and one output. More
detailed discussion of the related work is deferred to Section 5. However, a common feature of all these
algorithms is that they do not take the potentially heterogeneous communication links between the services
into account, which is significant when the execution is decentralized given also that the communication cost
may be the dominant cost. This is in line with the WSMS in [24],which assumes that the output of a service
is fed to the subsequent service indirectly through a central management component thus annihilating the
need to consider the different communication costs explicitly. As such, in existing proposals, the bottleneck
cost depends solely on the service costs and selectivities,instead of taking also into account the inter-service
communication cost, especially when the execution occurs in a wide are environment. In the previous
example, the optimal ordering may differ when all services are at a single place, when they are all at a
different place, and when, for instance, onlyWS1 andWS5 are co-located.

The main contribution of this work is that it addresses the afore-mentioned limitation by proposing an
efficient algorithm for the single optimal ordering of services when the services communicate directly with
each other and the communication costs between the servicesmay differ. Our algorithm is based upon the
branch and bound optimization paradigm and operates regardless of any precedence constraints. It can be
deemed as an extension to [24] accounting for decentralizedexecution, except that we are only interested
in linear orderings. The thorough evaluation of the proposal shows that it is efficient and can result in
significant reductions of the response time up to an order of magnitude in many realistic scenarios.

The remainder of this paper is structured as follows. The problem we deal with is formally introduced
in Section 2. Section 3 presents the algorithm in detail discussing its main concept, correctness proofs, and
implementation issues. The evaluation results appear in Section 4. Section 5 discusses the related work,
and Section 6 concludes the paper.

2 Problem formulation

In our parallel execution model, each WS runs on a different node in a separate thread that processes input
tuples and sends output tuples to the next service sequentially; our solution however can be applied to
the case when separate threads are responsible for data processing and transmission in a straight-forward
manner. Letci be the average time needed byWSi to process an input tuple (also referred to as the cost
of WSi), σi the selectivity ofWSi andti,j the time needed to transfer a tuple fromWSi to WSj

1. We
assume thatci, σi andti,j are constants and independent of the input attribute values. We further assume
that the selectivities of WSs are independent of each other,and, in the generic case, can be greater than 1.

1In practice, tuples are transmitted in blocks [10, 24];ti,j is the cost to transmit a block divided by the number of tuplesit contains.
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A constrained serviceWSi has at least one prerequisite serviceWSj, which is denoted asWSj ≺ WSi.
The precedence constraints are part of the input (e.g, in theform of a DAG).

A plan S consists of a linear ordering of the WSs, which respects any precedence constraints and its
response time is given by the bottleneck cost metric, in accordance to [24]:

cost(S) = max
i|WSi∈S

{

∏

k|WSk∈Pi(S)

σk(ci + σiti,i+1)

}

(1)

wherePi(S) is the set of WSs that are invoked beforeWSi in the planS. Throughout the paper we will
refer toTi,j = ci + ti,jσi as the aggregate cost ofWSi with respect toWSj . If ti,j is equal for all service
pairs, the problem can be solved in polynomial time, as shownin [24]. Here we deal with the generic –and
more realistic– case, whereti,j may differ, for which to the best of out knowledge, there is nopolynomial
solution. More specifically, the problem we deal with in thiswork is formulated as follows:

Problem Formulation 1 Given a setW of N WSsW = {WS0,WS1, . . . ,WSN−1}, where each one of
them is allocated on a host machine, find the linear planS, which minimizes the bottleneck cost metric
given by Eq. (1)2.�

3 Optimal linear plan construction algorithm

3.1 Our approach in brief

The proposed algorithm is based on the branch-and-boundoptimization approach. LetC = WSk(0)WSk(1)

. . .WSk(n) be a partial linear plan.k is used throughout the paper to denote the mapping from positions in
the WSs to the indices of the WSs at those positions.

Two cost metrics guide the plan building process,ǫ and ǫ respectively. The former corresponds to
the bottleneck cost ofC, while the latter is the maximum possible cost that may be incurred by WSs not
currently included inC. Costǫ is utilized to speed up the algorithm. For simplicity, we will first discuss the
case where the selectivities are not greater than 1.ǫ andǫ are given by the following equations:

ǫ = max







Tk(0),k(1), max
1≤i<n











i−1
∏

j=0

σk(j)



Tk(i),k(i+1)













, (2)

ǫ = max
l,r







(

∏n
j=0 σk(j)

)

Tl,r, WSl 6∈ C
(

∏n−1
j=0 σk(j)

)

Tl,r, WSl = WSk(n)







(3)

WSr 6∈ C in both cases.
The algorithm proceeds in two phases, namely theexpansionand thepruningone. During expansion,

new WSs are appended to a partial planC, while during the latter phase WSs are pruned fromC with a view
to exploring additional orderings. If, for a partial planC, the conditionǫ < ǫ is met, this means that the
bottleneck cost of the plan beginning withC depends on the ordering of the services not yet included; so
a newWSr is appended toC. On the other hand, if conditionǫ ≥ ǫ is met, then the order in which the
rest WSs may be appended toC does not affect its bottleneck costǫ, since the maximum possible costǫ
that may be incurred cannot be higher thanǫ. In that case, the linear planC is essentially a solution and
the pruning step is triggered. Partial plans are also prunedwhen they cannot form a prefix of an optimal
solution. LetC = WSk(0)WSk(1) . . .WSk(n), where0 ≤ n < N andWSk(i) be the bottleneck WS ofC,
where0 ≤ i ≤ n. ThenC is pruned as follows:

C =

{

∅, i = 0,
WS0WS1 . . .WSi−1, 0 < i ≤ n < N

(4)

2
tN−1,N is always set to 0.
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Inputs
N : Number of input WSs.
T: An [N x N] matrix, whereTi,j = ci + ti,jσi.

Outputs
S: optimal linear plan

1: S ← ∅; {S is the current best linear plan}
2: ρ←∞; {ρ is the bottleneck cost ofS}
3: V ← ∅; {V is a list of partial linear plans.}
4: C ← ∅;
5: F (C)← {WSi|Mi = ∅} ;
6: while truedo
7: Estimateǫ using Eq. (2);
8: Estimateǫ using Eq. (3);
9: if ǫ ≥ ρ then

10: V .push(C
′

);
11: Trim C following Eq. (4);
12: else ifǫ < ǫ ∧ ǫ < ρ then
13: if C = ∅ then
14: Find servicesWSl andWSr using Eq. (6);
15: C = WSlWSr;
16: else if C 6= ∅ then
17: Find aWSr using Eq. (7);
18: if no such WS can be foundthen
19: Trim C using Eq. (4), where the bottleneck WS is set toWSk(n);

20: V .push(C
′

);
21: else
22: Append theWSr to C;
23: end if
24: end if
25: else ifǫ ≤ ǫ < ρ then
26: V .push(C

′

);
27: S ← C;
28: Trim C using Eq. (4);
29: ρ← ǫ;
30: end if
31: UpdateF (C) using Eq. (5);
32: if Termination Condition 1 is truethen
33: return S;
34: end if
35: end while

Figure 1: The proposed algorithm.

To further improve the efficiency of the algorithm, the prefixes up to the bottleneck serviceWSk(i)

(denoted asC
′

) of the plans for which the expansion phase has been completed are stored in a listV .
To avoid investigating the same solutions multiple times, the functionπ(X ) is employed, whereX is a
(potentially partial) plan. This function returnstrue if no WS plan stored inV is prefix ofX . As will be
discussed later, the plans considered must satisfy theπ() function thus yielding better running times without
compromising the optimality of the algorithm.

3.2 Detailed Algorithm Description

The complete algorithm is shown in Fig. 1, whereS denotes the best linear plan found so far andρ its
bottleneck cost. In every iteration of the algorithm, the cost metricsǫ andǫ are evaluated.F (C) is the set of
all WSs for which all the prerequisite WSs have already been added toC. More formallyF (C) is given by:

F (C) = {WSi|WSi 6∈ C ∧Mi ⊆ C} (5)

andMi is the set of all WSs that must appear beforeWSi, i.e.,Mi = {WSj|WSj ≺ WSi}. Obviously,
for unconstrained services,Mi = ∅.
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i \ j 1 2 3 4 5 6 7 8 9 10
1 - 10.43 21.89 13.80 29.01 15.35 23.56 21.65 14.63 20.30
2 16.58 - 28.82 21.28 34.15 33.30 42.69 33.97 24.19 32.30
3 34.88 31.96 - 23.21 32.33 32.06 32.51 29.58 42.60 15.23
4 20.52 20.86 20.87 - 31.48 34.93 33.71 32.58 28.62 33.32
5 22.47 21.05 19.94 20.73 - 20.97 19.52 19.31 19.45 17.37
6 18.19 23.51 21.26 25.09 23.76 - 20.50 21.93 22.73 27.31
7 39.60 50.49 34.66 41.50 32.27 32.47 - 31.38 40.49 42.13
8 24.33 27.74 19.41 27.62 18.86 23.41 19.10 - 30.95 13.22
9 14.32 15.46 22.59 18.27 16.89 19.39 20.66 21.96 - 18.97
10 27.08 30.48 10.34 33.14 13.90 39.98 34.23 18.22 28.98 -

Table 1: Aggregate cost matrixT.

WSi 1 2 3 4 5 6 7 8 9 10
σi 0.61 0.79 0.92 0.73 0.17 0.40 0.93 0.91 0.41 0.89

Table 2: Selectivities of WSs inW .

There are three cases depending on the values ofǫ, ǫ andρ in a partial planC:

• ǫ < ǫ, ǫ < ρ (lines 12-24): ifC is empty, e.g., it is the initial iteration, the algorithm searches for the
most promising WS pair that has not been considered yet. Sucha WS pair must satisfy the following
equation

Tl,r = min
i,j|Mi=∅∧Mj⊆{WSi}∧π(WSiWSj)=true

{Tij} (6)

If the partial plan is not empty, the algorithm searches for anew WSWSr, such that:

Tk(n),r = min
WSj∈F (C)∧π(CWSj)=true

{Tk(n),j}, (7)

These subcases comprise the expansion case. In case where noWSr can be found, the last WS of
C is pruned (lines 18-20) to support cases in which no service can be appended, e.g., all plans with
prefixC have been examined. Note that the conditionǫ < ρ is considered along withǫ < ǫ, because
it is worth performing the expansion phase only for plans with ǫ < ρ.

• ǫ ≤ ǫ < ρ (lines 25-30): the current best linear planS is set toC and its bottleneck costρ is updated.
Conditionǫ ≥ ǫ ensures that the bottleneck cost ofC, which is lower than the current lowest cost, will
not increase if new WSs are appended. After that,C is pruned following the Eq. (4) and the algorithm
continues. The intuition behind Eq. (4) is as follows.WSk(i+1) in Eq. (4) satisfies either Eq. (6), or
(7), i.e. it is the WS such thatWSk(i) has the minimum costTk(i),k(i+1). Thus, the cost that may be
incurred by any other WS appended toWSk(i), will be higher than the current bottleneck cost, i.e., it
is worthless to investigate plans with prefixWSk(0)...WSk(i).

• ǫ ≥ ρ (lines 9-11):C cannot yield an optimal solution, since its bottleneck costis higher than the
bottleneck cost ofS. Thus,C is pruned following Eq. (4).

The algorithm can safely terminate when the less expensive pair of WSs satisfying theπ function cannot
improve the current bottleneck cost, which means that the best possible linear plan not yet visited has at
least as high bottleneck costǫ asρ.

Termination Condition 1 Let ρ be the minimum bottleneck cost found so far. The algorithm terminates,
when there are no two servicesWSl andWSr such that:

Tl,r ≥ ρ, Ml = ∅ ∧Mr ⊆ {WSl} ∧ π(WSlWSr) = true (8)

The proof of the algorithm’s correctness is in a subsequent section.
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1
st

iteration (at the beginning ǫ = 0, ǫ = 50.4958, ρ = ∞ )

WS10 WS3

2
nd

iteration (at the beginning ǫ = 10.3425, ǫ = 41.5973, ρ = ∞ )

WS10 WS3 WS4

3
rd

iteration (at the beginning ǫ = 20.7436, ǫ = 30.7074, ρ = ∞ )

WS10 WS3 WS4 WS1

4
th

iteration (at the beginning ǫ = 20.7436, ǫ = 18.8983, ρ = ∞ )

WS10

5
th

iteration (at the beginning ǫ = 0, ǫ = 45.1255, ρ = 20.7436 )

WS10 WS5

6
th

iteration (at the beginning ǫ = 13.9069, ǫ = 20.0812, ρ = 20.7436 )

WS10 WS5 WS8

7
th

iteration (at the beginning ǫ = 17.2575, ǫ = 7.29314, ρ = 20.7436 )

WS10

8
th

iteration (at the beginning ǫ = 0, ǫ = 45.1255, ρ = 17.2575 )

WS10 WS8

9
th

iteration (at the beginning ǫ = 18.2236, ǫ = 41.3758, ρ = 17.2575 )

C = ∅

10
th

iteration (at the beginning ǫ = 0, ǫ = 50.4958, ρ = 17.2575 )

WS1 WS2

11
th

iteration(at the beginning ǫ = 10.4372, ǫ = 26.2738, ρ = 17.2575 )

WS1 WS2 WS4

12
th

iteration(at the beginning ǫ = 13.0996, ǫ = 17.0269, ρ = 17.2575 )

WS1 WS2 WS4 WS3

13
th

iteration (at the beginning ǫ = 13.0996, ǫ = 15.33, ρ = 17.2575 )

WS1 WS2 WS4 WS3 WS10

14
th

iteration (at the beginning ǫ = 13.0996, ǫ = 13.2628, ρ = 17.2575 )

WS1 WS2 WS4 WS3 WS10 WS5

15
th

iteration (at the beginning ǫ = 13.0996, ǫ = 6.21801, ρ = 17.2575 )
WS1

Figure 2: An example of the proposed algorithm.
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3.3 An example

In the following, an example for building an optimal plan forunconstrained WSs employing the proposed
algorithm is presented. LetW = {WS1, . . . ,WS10} be a set of 10 services with corresponding aggregate
costs and selectivities shown in Table 1 and 2, respectively. The values in the tables follow a gaussian
distribution. Fig. 2 shows the partial plans at the end of each iteration.

Initially, ǫ = 0 < ǫ = T7,2 = 50.4958, ǫ < ρ =∞, andC = ∅. The algorithm starts by identifying the
WS pair, which incurs the minimum cost, see lines 13-15 of Fig. 1. The corresponding WSs areWS10WS3.
After that,C = WS10WS3. In the second iteration, sinceǫ = 10.3425 < ǫ = σ10 × σ3 × T7,2 = 41.5973,
ǫ < ρ = ∞, andC 6= ∅, a new WS is appended toC, which must satisfy the Eq. (7); that service isWS4.
In the third iteration, sinceǫ = 20.7436 < ǫ = σ10 × σ3 × σ4 × T7,2 = 30.7074, ǫ < ρ = ∞, and
C = ∅, the serviceWS1 is appended toC forming the partial planC = WS10WS3WS4WS1. Now, since
ǫ = 20.7436 > ǫ = σ10 × σ3 × σ4 × σ1 × T7,2 = 18.8983 andǫ < ρ =∞, a solution is found. According
to steps in lines 25-30 of Fig. 1,S is set toC, ρ = 20.7436 andC is pruned following the Eq.(4). After the
pruningC = WS10 (the bottleneck WS isWS3). The Termination Condition 1 is not triggered given that
there exists a two service prefix that satisfiesπ and its cost is lower thanρ: T1,2 = 10.43.

In the fifth iteration, sinceǫ = 0 < ǫ = 45.1255, ǫ = 0 < ρ = 20.7436, andC 6= ∅, a new WS
is appended toC = WS10; that isWS5. A new WS is also appended in the sixth iteration forming the
partial planC = WS10WS5WS8. In the seventh iteration, sinceǫ = 17.2575 > ǫ = 7.29314 and
ǫ < ρ = 20.7436, another solution is found:S = WS10WS5WS8, and its bottleneck cost updatesρ;
subsequently,C is pruned following Eq.(4) so thatC = WS10. In the above iterations, the Termination
Condition 1 is not triggered because the costT1,2 is lower than theρ values. In the eight iteration,WS8 is
appended toC = WS10, since it satisfies the Eq.(7). However, in the ninth iteration, the partial plan is set
to C = ∅, asǫ = 18.2236 > ρ = 17.2575 and the bottleneck WS is the first one, i.e.,WS10. As a result,
any plan starting withWS10 no longer satisfies theπ function.

In the tenth iteration, the WSs which satisfy the Eq.(6) formthe partial planC, sinceǫ = 0 < ǫ =
T7,2 = 50.4958, ǫ < ρ = 17.2575, andC = ∅. The result is the orderingC = WS1WS2. In the iterations
11-14 new WSs are appended toC, forming the partial planC = WS1WS2WS4WS3WS10WS5. In the
fifteenth iteration, a new solution is found, sinceǫ = 13.0996 > ǫ = 6.21801 andǫ < ρ = 17.2575.
Following the steps in lines 25-30,S = WS1WS2WS4WS3WS10WS5, the bottleneck service isWS2

andρ is set to13.0996. After the pruningC = WS1. However, the Termination Condition 1 is now
triggered, since the cost of the less expensive WS pair satisfying π, which isWS8WS10, is now higher
thanρ: T8,10 = 13.2293 > ρ = 13.0996. So the algorithm terminates, after having essentially explored all
the10! orderings in just 15 iterations.

3.4 Proof of Correctness

Lemma 1 If ǫ is the bottleneck cost ofC, any plan with prefixC cannot have a lower bottleneck cost.

This non-decreasing property ofǫ with regards to the size of the partial plan derives directlyfrom Eq. (1).
Also, as explained in the previous subsections, the following lemma holds:

Lemma 2 If for a partial planC, ǫ ≥ ǫ, then, any plan with prefixC has costǫ.

This derives from Eq. (2) and (3) and the fact that selectivities are not greater than 1.

Lemma 3 No planC with prefix any of the plans stored inV can have bottleneck costǫ < ρ, whereρ is the
minimum bottleneck cost found so far.

The plans inV fall into two categories. Firstly,V includes prefixes of partial plans up to and including
their bottleneck service; the cost of at least one of such bottleneck services isρ while the costs of other
bottlenecks are higher. However, for any plan used to construct V , the service appended to the plan just
after the bottleneck service during the expansion phase must have satisfied either Eq. (6), or (7), resulting
in bottleneck costǫ ≥ ρ. Because of Eq. (6) and (7), any planC produced by appending a service toV
has costǫ ≥ ρ, too. So, with the help of the first lemma, this lemma holds as well. Secondly,V includes
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partial plans for which no new services can be appended, due to either precedence constraints or the fact
that all combinations have been already explored (line 20 ofFig. 1). The former subcase cannot lead to
any solutions, whereas the latter is similar to the first case. This completes the proof of the lemma, and also
shows the correctness of using theπ() function, which builds upon this lemma.

Theorem 1 The algorithm finds the optimal solution.

A sketch of the proof is as follows. In order to prove the correctness of the algorithm, we must prove that
all possible orderings have been checked, either directly or indirectly, the termination condition is correct
and the output is a valid solution. The algorithm, with the help of theπ() function does not explore plans
the prefix of which is storedV . We have proven that this does not compromise its optimality. The algorithm
exits when any WS pair that is a valid beginning of a plan does not have a cost lower than the currently
lowest bottleneck cost. In general, there aren! orderings, wheren is the number of services; of course this
can be reduced due to precedence constraints. However, there are at mostn(n− 1) prefixes of size two. If
all these prefixes satisfy the termination condition, with the help of the first lemma we can show that alln!
orderings cannot have a bottleneck cost that is lower thanρ. Finally,S in Fig. 1 is a partial plan, but, as the
second lemma shows, any plan with prefixS can form a complete optimal ordering.

Note that the termination condition can be reduced to simpler statements in some specific cases. For
example, when there are precedence constraints such that only a single WS can be at position0, e.g., it
is the service responsible for source data generation, thenthe termination condition can be reduced to the
statement that the algorithm can exit if the bottleneck position reaches the first positionWSk(0).

3.5 Proliferative Services

Thus far, we have discussed the case when service selectivities are not higher than 1. If there existσi > 1,
then the same algorithm is still valid; the only change is in the wayǫ is computed in Eq. (3). More
specifically,ǫ in Eq. (3) is multiplied by the product of allσi > 1 such thatWSi 6∈ C. The proof of
correctness is similar to the case when WSs are selective.

3.6 Implementation issues

In the current subsection, we will discuss some implementations issues. We have employed some simple
data structures in order to speed up the execution of expensive operations, namely the identification of
the next WS to be appended to a partial plan (Eq. (7)), the evaluation ofǫ and the check of the termination
condition. Note that the computation of the bottleneck costǫ of C and the detection of the bottleneck service
require linear time; alsoπ() can be efficiently implemented with the help of a prefix tree.

To speed up the identification of the next WS, a preprocessingstep takes place before the algorithm
execution. According to this step, for each serviceWSi a doubly-linked listLi of all servicesWSj in
increasing order of the corresponding aggregate costTi,j is constructed. Thus, the next WS to be added
afterWSk(n) is found using the following simple search approach: we start from the head of listLk(n). If
the current WS is not included inC and all its prerequisites services are included inC, then the desirable WS
is found, otherwise the search continues. The computation of ǫ is performed using an analogous approach.
For everyWSi that it is either the last WS ofC or does not belong toC, the search starts from the end ofLi,
since the maximum possible process/transfer cost must be found. The search in everyLi stops when the
first WS not currently included inC is found and the maximum aggregate cost among those found in every
Li is returned.

Finally, the check of the termination condition can be efficiently done with the help of a min heap. The
contents of this heap vary depending on whether the WSs are constrained or not. In the former case, the
min heap contains all WS couples(WSiWSj), while in the latter case, it contains only the couples that can
constitute a valid prefix of a plan. The values of the heap are the costsTi,j of the corresponding couples.
Every time we check whether the termination condition is met, the root of the min heap is accessed and the
planX = WSiWSj is formed from the WS couple(WSiWSj) stored in the root of the min heap. If the
partial planX satisfies theπ(X ), then the corresponding cost is kept. Otherwise the root of the min heap
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is deleted and the next new root element is accessed. From theabove, it follows that the complexity of this
operation isO(log k), wherek ≤ N2, while the complexity of naive approach isO(N2).

4 Evaluation

4.1 Experimental Setting

In the current section, we experimentally evaluate the proposed algorithm, which will be referred to as Opti-
mal Linear Plan Constructor (OLPC). The evaluation is conducted to investigate firstly the algorithm’s per-
formance, and secondly, the algorithm’s efficiency. The performance of the algorithm is evaluated through
the comparison of the response times of a wide range of query plans produced by OLPC and theGreedy
algorithm in [24]. The efficiency is measured in terms of the absolute time needed to construct the plans
and of the number of iterations in OLPC, when implemented exactly as shown in Fig. 1.

The simulation environment is defined by a five-dimensional vectorA = [Gc(c, σc),Gt(λc, γλc),
Uσ(l, u), p,N ]. Gc corresponds to the distribution of the processing cost values (ci) of the input services.
More specifically, throughout the evaluation, we assume that the processing costs of WSs follow a gaussian
distribution with mean valuec and standard deviationσc. The data transmission coststi,j follow a gaussian
distribution, too (denoted asGt(λc, γλc)). The mean value ofGt is related toc, in order to enable the
investigation of the impact of the ratio of computation costto the communication cost on the performance.
More precisely, the mean value ofti,j , t is given byt = λc whereλ ∈ {0.25, 0.5, 0.75, 1, 1.25, . . . , 10}.
Its standard deviation is given byσt = γt whereγ ∈ {0.1, 0.2, 0.3, . . . , 0.9}.

Uσ(l, u) represents the uniform distribution of the services’ selectivity values. l andu are the corre-
sponding lower and the upper bounds, respectively. Finally, p andN are single-valued parameters. The
former is used to create precedence constraints and corresponds to the probability for one serviceWSi

to have a randomWSj, i < j as its prerequisite; for unconstrained WSs,p = 0. N is the number of
input WSs; we have experimented with values ofN ∈ {10, 20, 30, . . . , 250}. An example of a simulation
environment is[Gc(10, 5),Gt(20, 2),Uσ(0, 1), 0, 10], which corresponds to the case where there are 10
unconstrained services, with selectivities uniformly distributed between 0 and 1. The processing costs of
these WSs follow a gaussian distribution with mean valuec = 10 and standard deviationσc = 5. The com-
munication costs follow a gaussian distribution with mean valuet = 20 (i.e.,λ = 2 and standard deviation
σt = 2 (i.e.,γ = 0.1).

Each simulation instance is a random realization of the simulation environment, so that five-dimensional
vectors of the form[c, t,σ, p,N ] are generated, wherec, t andσ are matrices populated according to
Gc(c, σc),Gt(λc, γλc),Uσ(l, u), respectively.

Finally, ρA andρ′A denote the response times of the plan produced by OLPC and Greedy respectively,
when they are executed on the same simulation instance ofA. ζA is the number of iterations that OLPC
performs. In the experiments, we fixc to 10 andσc to 5 and we vary only theλ andγ variables in order to
generate settings with a wide range of different ratios between mean processing and communication costs.
Note that we have chosen a not very low standard deviation value, since we want our environment to better
simulate heterogeneous, wide area settings. Also, we do notcompare plans with service selectivities higher
than 1, because, for such services, the Greedy algorithm builds parallel plans, whereas OLPC builds only
linear plans [24]; extending OLPC to support parallel plansis left for future work.

The general remarks of the evaluation can be summarized in the following lines: OLPC outperforms
Greedy by several factors. In many realistic scenarios the performance improvements are of an order of
magnitude, whereas we have noticed improvements by a factoras high as 164 (Table 3). Furthermore, the
algorithm is very efficient, as it requires negligible running time and a limited number of iterations.

4.2 No precedence constraints

We first investigate scenarios with no precedence constraints. Since the selectivity of each WS is between
0 and1, the plans that Greedy algorithm produces are linear orderings of the WSs by increasing processing
time ignoring selectivities. The following experiments are conducted in order to study the convergence
between the response times of plans produced by Greedy and the response times of OLPC plans. The
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λ\N 10 40 70 100 130 160 190 220 250

γ = 0.1

0.5 1.00 1.07 1.01 1.03 2.20 1.02 1.61 4.64 1.08
1.5 1.79 1.72 1.10 1.40 7.05 2.98 2.35 3.08 1.20
2.5 2.66 1.21 2.00 4.22 1.21 3.99 2.65 13.88 20.13
3.5 1.16 6.09 1.54 2.38 1.28 2.47 1.33 2.80 3.90
4.5 1.17 3.71 1.00 3.13 6.48 11.29 9.18 14.97 4.57
5.5 2.65 1.65 2.12 2.67 1.27 4.72 1.94 3.09 1.19
6.5 1.20 1.96 6.36 6.76 4.08 5.01 1.63 29.49 13.18
7.5 3.98 6.76 3.98 1.38 5.71 11.99 2.79 4.92 9.27
8.5 3.33 1.23 6.55 10.65 10.50 1.48 4.39 20.40 14.68
9.5 5.42 10.36 4.70 11.69 8.12 4.58 6.98 14.75 2.00

γ = 0.4

0.5 1.21 1.31 4.27 1.35 1.23 1.41 1.36 3.21 5.24
1.5 2.23 1.39 3.43 2.64 3.11 3.58 1.69 22.25 5.22
2.5 1.26 2.73 3.57 6.57 4.49 26.11 2.86 3.34 41.43
3.5 1.25 3.21 7.52 5.52 1.00 2.80 5.35 16.50 6.11
4.5 3.42 1.77 4.80 8.81 16.69 13.48 2.62 22.20 27.90
5.5 3.56 6.50 2.65 9.02 15.37 41.44 16.87 34.64 77.79
6.5 3.02 1.75 16.28 2.37 17.28 10.32 41.97 41.46 4.13
7.5 1.04 7.08 40.05 18.08 8.41 4.51 20.31 26.49 13.39
8.5 1.54 45.49 32.24 12.80 1.87 164.04 12.87 5.88 18.70
9.5 3.50 14.20 5.95 22.68 31.77 16.06 23.15 11.59 9.14

γ = 0.7

0.5 1.00 1.50 1.40 4.96 1.56 2.43 2.69 4.25 7.28
1.5 2.01 2.06 5.62 3.35 2.45 5.79 1.41 12.21 5.26
2.5 1.97 5.19 5.19 3.20 4.87 28.52 6.81 2.85 16.75
3.5 3.54 17.68 7.98 9.97 8.43 6.20 8.01 43.74 40.68
4.5 3.52 1.03 20.75 4.30 17.94 6.41 19.85 2.23 39.76
5.5 1.24 4.09 8.23 11.29 17.45 16.77 36.87 23.95 13.17
6.5 2.99 7.08 5.39 14.58 7.54 6.34 11.00 24.89 50.57
7.5 8.17 6.96 11.81 10.06 39.66 24.75 75.61 16.55 20.20
8.5 7.08 7.88 14.15 42.45 66.46 37.90 23.04 13.01 63.03
9.5 13.32 14.31 21.61 41.20 9.86 50.32 8.93 85.37 64.13

Table 3: Experiment I: results.

response time is given by Eq. (1). OLPC always produces the optimal serial WS plan. As such, all the
experiments that follow deal with the extent to which the response times of the Greedy plans are higher
than the response times of the OLPC plans, for a given simulation instance. Intuitively, the performance
is affected by various parameters. In our work we concentrate on four of them, namely the ratio between
processing and transferring costs of tuples, the network heterogeneity, the WS selectivities and the number
of input services.

Experiment I: impact of the number of WSs on performance. Here we compare the performance
of OLPC and Greedy when the number of input WSs varies. This isdone with the help of the following
response time ratio metric

r(λ,N) =
ρ′[Gc(10,5),Gt(10λ,10λγ),Uσ(0,1),0,N ]

ρ[Gc(10,5),Gt(10λ,10λγ),Uσ(0,1),0,N ]

The experimental results for different values ofN andλ are shown in Table 3. Whenr(λ,N) = 1, a
Greedy plan has exactly the same response time as a plan builtby OLPC for the same simulation instance.
In general, we observe that (i) OLPC can yield significant performance improvements of several factors
(up to 164); and (ii) for fixedλ, γ andσ values, the response times of the plans built by Greedyρ′ tend
to increasingly deflect from the response times of the OLPC plansρ as the number of the input services
increases. For example, in the lower part of Table 3, forN = 250 WSs, the maximum response time ratio
is 64.13 times, while forN = 10 WSs it is 13.32 times.

Experiment II: impact of heterogeneity on performance. Now, we turn our attention to two other
parameters, namely the ratio between the processing and thetransferring costs of tuples and the network
heterogeneity. A closer look to Table 3 shows that for fixed values ofγ andN , the response time deviations
between Greedy and OLPC plans tend to increase as parameterλ increases. For example, in the third part
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Figure 3: Results for (a)Experiment II and (b)Experiment III . The dashed horizontal line corresponds to
the case where OLPC and Greedy exhibit similar performance.

of Table 3,r(0.5, 10) = 1.00, while r(9.5, 10) = 13.32. The response time deviations increase withγ, as
well. On average, ther(λ,N) values in Table 3 that correspond toγ = 0.1 are lower than the values for
γ = 0.4, which, in turn, are lower than the values forγ = 0.7 in Table 3.

The aforementioned observations are further confirmed by the following experiment, the results of
which are shown in Fig. 3(a). In the figure, the x-axis corresponds to theλ values,λ ∈ {0.25, 0.5, . . . , 10},
while the y-axis corresponds to the aggregate response timeratio valuesr. For everyλ ∈ {0.25, 0.5, . . . , 10}
andN ∈ {10, 20, 30, . . . , 250} value, a simulation instance is set up. In this instance,γ = 0.1 and
σ ∼ Uσ(0, 1), i.e. the resulting instances are of the form[Gc(10, 5),Gt(10λ, 10λ0.1),Uσ(0, 1), 0, N ].
The aggregate response time ratiorγ=0.1(λ) values are given by:

rγ=0.1(λ) =

∑

∀N ρ′[Gc(10,5),Gt(10λ,10λ0.1),Uσ(0,1),0,N ]
∑

∀N ρ[Gc(10,5),Gt(10λ,10λ0.1),Uσ(0,1),0,N ]

The same procedure is repeated forγ = 0.4 andγ = 0.7. In essence,r(λ) = 1 means that all plans built
by Greedy have exactly the same response times as the plans built by OLPC. From Fig. 3(a) we observe
that the aggregate response time ratio values, and consequently, the response time deviations between the
Greedy and OLPC plans, increase as the value of parameterλ increases, i.e., as the communication costs
become more dominant. For example, consider therγ=0.1(λ) values. Fig. 3(a) shows that the plans built by
Greedy have up to 4.9 times higher response time than the onesbuilt by OLPC forλ ∈ {0.25, 0.5, . . . , 5}.
On the other hand, forλ ∈ {5, 5.25, . . . , 10}, this deviation reaches 7.8 times. Recall that an increase in λ
entails a deviation oft from c. Analogous observations can be drawn forrγ=0.4(λ) andrγ=0.7(λ), too.

In summary, from Fig. 3(a) and Table 3, we can see that, for fixed γ, the plans built by Greedy have
response time very close to the response time of the plans built by OLPC when the mean transferring cost
per tuplet is lower than (or close to) the mean processing cost per tuplec, independently of the number of
input services. Furthermore, we can observe that as the standard deviationσt of t increases, i.e. the network
heterogeneity increases, the response time deviations between the Greedy and the OLPC plans increase, as
well. For example, whenσt = 0.4t, the response times of Greedy plans are at most 16.7 times higher than
the response time of OLPC plans. On the other hand, whenσt = 0.7t the maximum deviation is up to 26.1
times, while fort = 0.1c, the maximum deviation does not exceed the 7.8 times. The explanation is that
when the network heterogeneity is limited, the costs neededto transfer tuples between any pair of WSs are
approximately the same. As mentioned in a previous section,the Greedy algorithm can optimally solve a
special case of Problem 1.1, when one WS sends tuples to the rest WSs with the same speed. However, as
heterogeneity increases, the performance of the Greedy algorithm degrades significantly.

Experiment III: impact of selectivities on performance. In the previous experiments, the WSs se-
lectivitiesσi were uniformly distributed in the interval(0 1). To investigate the impact of the selectivity
values in more detail, we conduct the following experiment.For eachλ andN value a simulation instance
(γ is set to0.7) is set up. We test four cases forσ: Uσ(0, 1),Uσ(0, 0.5),Uσ(0.5, 0.8) andUσ(0.8, 1). The
corresponding aggregate response time ratio valuesr(λ) are shown in Fig. 3(b). Whenσ ∼ Uσ(0.8, 1),

11



λ \ N 10 40 70 100 130 160 190 220 250

Min-Greedy

0.5 1.00 1.50 1.40 3.41 1.56 2.43 2.69 4.25 7.28
1.5 2.01 4.86 3.05 18.81 8.61 11.40 17.56 12.21 4.57
2.5 1.00 6.26 7.07 5.22 2.49 13.93 8.64 33.08 44.65
3.5 1.60 4.93 15.84 7.17 13.69 23.76 19.47 27.37 3.75
4.5 3.47 3.91 3.71 16.57 9.47 4.57 14.89 46.84 30.81
5.5 7.03 2.38 8.23 9.69 21.51 30.95 19.43 103.76 42.75
6.5 7.59 15.48 56.04 30.22 6.47 76.85 20.75 21.48 50.57
7.5 5.12 8.22 29.89 14.29 39.66 6.00 1.91 25.24 14.63
8.5 2.57 14.83 13.48 37.79 28.22 5.26 8.81 13.70 63.03
9.5 4.39 12.96 15.88 55.24 49.81 5.76 27.40 14.23 58.48

Max-Greedy

0.5 1.83 3.73 2.24 3.98 1.35 2.07 3.28 5.52 6.78
1.5 1.00 1.53 2.35 16.52 8.47 3.96 42.45 10.72 2.84
2.5 7.54 4.43 4.98 4.39 7.39 19.15 6.06 13.25 19.32
3.5 3.01 4.70 9.86 45.94 13.81 30.67 30.43 9.63 22.28
4.5 5.39 19.59 6.59 13.68 32.32 10.02 13.61 129.64 7.12
5.5 2.44 9.49 21.09 18.40 7.19 13.91 7.01 42.79 34.81
6.5 3.79 8.61 31.23 47.17 109.76 22.47 6.31 7.86 89.57
7.5 5.12 7.31 28.75 17.56 17.02 12.88 10.16 39.32 175.40
8.5 8.05 11.86 16.17 38.99 102.79 56.71 50.19 45.93 106.83
9.5 3.82 10.51 9.57 58.59 8.87 37.89 42.72 41.93 44.21

Mean-Greedy

0.5 1.00 1.50 1.40 2.92 1.56 2.43 2.69 4.25 5.46
1.5 1.69 2.06 8.01 22.37 2.45 5.47 17.56 5.54 24.78
2.5 1.20 4.59 5.19 2.80 9.49 6.03 9.02 3.71 39.62
3.5 3.09 4.37 2.33 5.20 6.61 17.60 4.36 18.97 64.05
4.5 5.39 11.93 8.02 2.72 18.67 20.16 25.13 2.15 12.07
5.5 1.46 16.56 2.90 11.29 9.63 2.86 27.77 60.51 23.46
6.5 2.75 6.04 14.37 39.74 7.23 104.20 3.30 3.21 3.30
7.5 5.12 6.15 5.73 9.61 16.64 22.52 1.37 22.12 30.54
8.5 5.16 6.33 10.64 48.34 3.77 14.32 25.76 82.70 5.99
9.5 5.08 11.97 10.34 42.75 18.33 22.94 11.86 82.50 84.97

Table 4: Experiment IVa: experiment I (γ = 0.7) is redone for all variants.

Var. \ λ 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
Greedy 1.80 4.82 6.58 6.62 8.93 9.54 9.89 11.68 11.40 15.24
Min- 1.89 4.71 6.23 7.75 7.71 7.02 11.96 12.29 15.54 17.34
Max- 2.31 5.42 6.38 8.64 12.93 9.06 11.54 15.59 16.04 18.52
Mean- 1.88 4.44 6.15 5.65 7.97 7.78 9.08 11.75 13.24 14.25

Table 5: Experiment IVb: experiment II (γ = 0.4) is redone for all variants.

Var. \ λ 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
σ ∼ Uσ(0.8 1)

Greedy 2.38 4.22 5.75 7.35 7.61 8.40 9.98 11.20 12.68 13.18
Min- 2.45 4.27 6.51 7.05 7.55 9.06 9.70 10.55 12.47 13.69
Max- 2.28 4.43 5.60 7.17 7.69 8.91 10.34 11.70 12.50 12.91
Min- 2.37 4.12 5.33 7.01 7.09 8.34 8.52 10.93 10.28 11.86

σ ∼ Uσ(0 1)

Greedy 2.44 4.84 7.43 10.21 10.37 13.89 14.24 17.33 23.09 19.37
Min- 2.40 5.78 8.44 10.15 10.75 14.55 16.40 13.59 18.91 20.08
Max- 2.64 5.95 11.03 9.89 14.60 16.30 16.97 16.26 25.90 18.77
Min- 2.54 5.02 7.70 7.61 12.08 11.67 12.72 12.39 19.49 16.25

Table 6: Experiment IVc: experiment III (γ = 0.7) is redone for all variants.

the maximum deviation reaches 14.4 times, while whenσ ∼ Uσ(0, 1) it reaches 26.1 times. In general,
the results of this experiment show that whenσ ∼ Uσ(0, 0.5), σ ∼ Uσ(0.5, 0.8) or σ ∼ Uσ(0.8, 1) the
response time deviations are similar. However, whenσ ∼ Uσ(0, 1) the deviations become much higher.
Thus, for fixedλ, γ andN values, the deviation of the response time of the Greedy algorithm from the
optimal increases as the range of the services’ selectivities increases.

Experiment IV: comparison against variants of the Greedy algorithm . Since the Greedy algorithm
considers only the processing costs of tuples in order to build a plan, we have implemented three simple
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λ\N 10 40 70 100 130 160 190 220 250

γ = 0.4

0.5 3 65 91 61 11 114 74 12 335
1.5 4 3 18 45 24 139 86 49 28
2.5 3 7 7 35 22 45 22 20 16
3.5 4 14 12 5 9 13 37 25 22
4.5 3 3 23 19 16 29 19 31 66
5.5 18 3 5 10 6 4 12 33 5
6.5 3 3 3 5 14 29 6 4 8
7.5 3 16 4 6 15 4 20 32 43
8.5 4 3 4 4 4 4 15 8 16
9.5 4 12 5 10 10 5 31 4 16

γ = 0.7

0.5 6 72 58 111 12 117 325 105 201
1.5 8 4 21 6 8 73 3 110 52
2.5 4 16 37 26 8 47 26 9 58
3.5 7 5 18 15 18 53 43 35 6
4.5 10 5 17 68 64 53 146 7 32
5.5 5 20 10 49 46 24 6 25 54
6.5 7 45 9 17 20 11 49 19 73
7.5 4 6 4 51 17 14 6 49 40
8.5 13 4 28 22 25 19 21 21 25
9.5 3 13 6 4 33 4 30 17 47

Table 7: Experiment V: number of iterations for different values of N and λ.
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Figure 4: Results for Experiment V. (a)Average number of iterations for different values ofλ and (b)average
number of iterations for different distributions ofσ.

variants that do take into consideration the transferring costs of tuples. A simple way to expand Greedy is
to tweak the processing costs of tuples for each input WS. Letvi be the new processing cost per tuple of the
serviceWSi. In the first variant of Greedy, the Min-Greedy, the per tupleprocessing costvi of the service
WSi is set tovi = ci + minj{ti,j}. Similarly, in Max-Greedy and Mean-Greedy variants, the per tuple
processing costs ofWSi is set tovi = ci +maxj{ti,j} andvi = ci +

∑

j 6=i ti,j/(N − 1), respectively. We
have repeated experiments I, II, and III and the results are shown in Tables 4, 5 and 6, respectively. We will
not move to a detailed analysis of the experimental results due to lack of space. However, it must be noted
that none of the three variants can significantly improve theperformance of Greedy and that Max-Greedy
may lead to more severe performance degradations.

Experiment V: absolute running time and number of iterations. For all the experiments, we used
a machine with a dual core processor. The CPU clock of each core is at 2.00 GHz and the total memory
2GB. The mean running time per simulation instance is only 0.3 sec, which can be deemed as negligible3

and constitutes a strong proof of the efficiency of the algorithm.
The claim about the efficiency of the algorithm is further supported by the following experiments

that aim at studying the number of iterations under different conditions. Following the same approach
as in Experiments I-III, we vary the number of services, the ratio of processing and communication cost

3WSs typically spend time in the order of seconds when processing chunks of data; see, for example, the real measurements
mentioned in [10].
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λ\N 10 40 70 100 130 160 190 220 250

γ = 0.4, σ ∼ Uσ(0.8 1)

0.5 903 675 1176 979 2221 2414 1420 3450 3246
1.5 80 346 265 564 553 532 1119 829 899
2.5 38 437 278 624 443 875 1016 692 1089
3.5 111 256 137 264 441 420 455 628 798
4.5 187 244 354 175 500 649 543 645 1074
5.5 258 166 247 130 250 454 800 673 447
6.5 51 246 393 346 537 354 545 469 797
7.5 740 215 298 446 412 379 381 523 823
8.5 97 235 189 449 447 307 596 714 707
9.5 93 232 231 244 399 487 424 409 341

γ = 0.7, σ ∼ Uσ(0.8 1)

0.5 164 1424 529 2687 5089 1605 2049 4143 3738
1.5 66 403 400 579 897 1040 923 2246 2088
2.5 162 191 510 716 510 1328 1316 916 1995
3.5 536 325 179 526 485 1062 1200 769 1124
4.5 59 308 313 587 458 615 903 986 981
5.5 65 254 553 322 756 687 1181 607 932
6.5 1149 383 196 482 374 852 524 500 1094
7.5 175 371 325 371 684 626 933 501 832
8.5 107 400 183 395 424 459 558 624 925
9.5 200 191 271 795 691 608 841 849 1441

Table 8: Experiment V: number of iterations for different values of N and λ when selectivity is
high.

and the selectivity values. First, we conduct an experimentin an environment similar to that of Experi-
ment I. As such, for eachλ andN , the OLPC algorithm is executed in simulation instances of the form
[Gc(10, 5),Gt(10λ, 10λγ), Uσ(0, 1), 0, N ]. After every simulation, the number of iterationsζ(λ,N) is
counted. Theζ(λ,N) values forλ ∈ {0.5, 1.5, . . . , 9.5}, N ∈ {10, 40, . . . , 250}, andγ ∈ {0.4, 0.7} are
shown in Table 7. In general, we observe that for fixedλ andγ, the number of iterations that the OLPC
algorithm performs is correlated with the number of the input services, but, on average, it increases slowly.
Also, in cases where it happens the costs of some services to lie at the left tail of the distribution and their
selectivities to be low, the number of iterations is very small, since it suffices to examine a few of orderings
of only these services. This explains the very low values appearing in Table 7.

The network heterogeneity which relates to the values ofγ has an impact, too. For example, on average,
ζ(λ,N) values of the upper part of the Table 7 are lower than the values of lower part of the table. Similar
observations can be drawn from Fig. 4(a). This figure shows the mean number of iterationsζ(λ) for
λ ∈ {0.25, 0.5, . . . , 10} for all values ofN ∈ {10, 20, 30, . . . , 250}. Theζ(λ) values are given by:

ζ(λ) =

∑

∀N ζ[Gc(10,5),Gt(10λ,10λγ),Uσ(0,1),0,N ]

|N |

From Fig. 4(a), we see that the mean number of iterations decreases as the ratiot/c increases. For
example, the mean number of iterations is 192 whenλ = 0.25 andγ = 0.7, while this value rapidly
decreases asλ approaches 10. Also, from the figure it is clear that the number of iterations increases as the
network heterogeneity (i.e., parameterγ) increases.

Finally, we check the impact of the distribution of the WS selectivitiesσi on the number of iterations
performed by OLPC. To this end, an experiment similar to Experiment III is executed; however, the output
of interest is the mean number of iterationsζ(λ). The experimental results are shown in Fig. 4(b). We
see that the number of iterations seems to depend, to a large extent, on the selectivities’ distribution. When
σ ∼ Uσ(0.8, 1) the number of iterations is higher than any other selectivities distribution for a given
simulation environment. For the rest threeσ distributions the number of iterations is approximately the
same. This phenomenon can be explained by the following fact: whenσ ∼ Uσ(0.8, 1) the value of
variableǫ decreases at a slower rate, so that the expansion phase needsmore iterations. As a result, the
algorithm converges to the optimal in more iterations. Table 8 shows the number of iterations for examples
with high selectivities in more detail. For fixed values ofλ, the average increase in the number of iteration
with regards to the number of services is still linear.
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λ \ N 10 40 70 100 130 160 190 220 250

p = 0.4

0.5 1.02 1.27 1.11 1.03 1.24 1.13 1.07 1.75 1.06
1.5 1.61 1.70 1.38 1.47 2.01 1.57 1.59 1.21 1.49
2.5 2.31 1.38 1.06 4.09 6.19 3.86 2.17 1.01 1.84
3.5 1.37 1.14 3.38 8.31 2.62 3.09 1.21 3.44 4.21
4.5 1.57 1.62 3.41 3.79 6.79 24.38 1.97 2.40 4.17
5.5 12.68 4.47 2.34 6.40 2.20 6.78 1.95 6.10 6.75
6.5 1.44 1.44 4.76 4.14 1.44 3.61 1.21 1.20 4.56
7.5 1.00 4.76 3.23 5.23 2.08 1.40 8.87 2.32 1.57
8.5 3.12 2.65 2.55 10.63 2.77 1.85 1.06 14.73 4.92
9.5 1.61 1.25 9.52 5.89 2.37 2.37 8.01 1.43 5.92

p = 0.6

0.5 1.28 1.00 1.16 1.00 1.01 1.01 1.00 1.00 1.00
1.5 2.39 1.00 1.19 1.29 1.00 3.41 1.42 1.03 1.00
2.5 2.65 1.00 1.00 1.15 1.06 1.00 1.00 1.15 1.50
3.5 1.32 1.89 1.02 1.00 1.01 2.55 1.12 1.13 1.18
4.5 1.00 1.00 1.12 1.00 1.00 1.29 1.00 1.15 1.00
5.5 1.80 1.40 1.00 1.00 1.00 1.41 1.00 1.13 1.08
6.5 1.00 1.00 1.65 1.12 1.00 2.19 1.45 1.00 1.89
7.5 4.48 1.92 1.00 1.27 1.00 2.41 1.34 1.00 2.79
8.5 1.00 1.83 1.21 2.41 1.76 2.66 1.00 1.04 1.00
9.5 1.00 1.37 1.12 1.00 1.58 1.00 1.04 1.78 1.13

Table 9: Experiment VI: results for the same environment as Experiment I.

γ / λ 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

p = 0.4

0.4 1.13 1.58 1.85 2.15 2.14 2.34 3.18 2.67 2.91 3.42
0.7 1.28 1.65 2.22 2.63 3.57 4.45 3.26 3.92 3.76 3.81

p = 0.6

0.4 1.09 1.19 1.14 1.14 1.24 1.29 1.25 1.22 1.53 1.33
0.7 1.08 1.11 1.26 1.39 1.21 1.26 1.44 1.67 1.53 1.20

Table 10: Experiment VI: part of the results for the same environment as Experiment II.

4.3 Precedence constraints

The last part of the evaluation consists of experiments withWSs for the case when there are precedence
constraints among them. In [24], it is described how WS plansrespecting any such constraints are built
in O(n5) time. We re-execute the experiments of the previous subsection after having modified the values
of parameterp. We experiment with two values ofp, p = 0.4 andp = 0.6, both of which result in a
high number of precedence constraints; results for lower values ofp, e.g., 0.1, are omitted because they
are very similar to the results for the case without precedence constraints. In all constrained plans, a single
WS plays the role of data generator, i.e., that WS must precede all other WSs. As explained earlier, that
parameterp controls the probability according to which a random serviceWSi is prerequisite for another
serviceWSj , i < j.

Experiment VI: impact of p on performance. Table 9 shows the experimental results derived from
Experiment I whenp = 0.4 andp = 0.6 (γ = 0.7). Although the response time deviations increase as
the number of input WSs increases, as the value of parameterp increases, they tend to diminish. This is
actually expected and is explained by the fact that the number of possible plans that can be constructed
shrinks with highp probabilities. In fact, in highly constrained environments, the plan construction process
is essentially determined by the constraints. This becomesmore clear whenp = 0.6, where the Greedy
algorithm tends to produce equivalent plans with OLPC, despite the network disparity and the processing
and the transferring costs of the simulation instances. Forp = 0.4 andN = 250, the maximum value ofr
is 6.75, while forp = 0.6 andN = 250, the maximum value ofr decreases to 2.79. In other words, OLPC
can still improve the performance by several factors. However, the maximum value ofr for γ = 0.7 and
N = 250 whenp = 0 (unconstrained case) is 64.1, as shown in Table 3.
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γ \ λ 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

p = 0.4

0.4 3.16 5.12 8.52 21.44 3.76 3.88 24.64 3.36 19.6
0.7 14.93 13.44 5.57 27.13 24.16 23.96 4.48 4.56 5.12

p = 0.6

0.4 5.64 6.68 6.83 6.40 5.84 6.64 7.52 6.72 7.21
0.7 6.72 7.12 7.38 6.76 7.36 7.72 6.72 6.96 6.83

Table 11: Experiment VII: number of iteration for different values of λ and γ when p = 0.4 and
p = 0.6.

λ \ N 10 40 70 100 130 160 190 220 250

p = 0.4

0.5 12 13 16 30 13 8 15 76 10
1.5 15 99 11 18 19 19 229 26 32
2.5 8 28 58 55 14 494 15 132 18
3.5 75 66 308 86 56 20 22 130 28
4.5 11 33 22 21 46 53 54 47 45
5.5 10 17 194 19 25 25 52 75 29
6.5 860 21 24 17 462 32 51 113 28
7.5 24 24 246 363 106 79 24 29 35
8.5 10 21 168 46 31 102 33 32 64
9.5 64 45 163 60 99 32 25 132 25

p = 0.6

0.5 11 5 9 7 15 13 22 9 21
1.5 25 17 30 13 14 18 18 15 31
2.5 19 35 34 10 24 19 13 27 15
3.5 10 132 55 17 21 10 31 16 18
4.5 10 73 45 21 26 13 29 61 24
5.5 8 22 18 52 14 20 14 10 20
6.5 12 22 12 18 33 18 48 31 30
7.5 9 14 20 21 11 20 30 104 11
8.5 12 17 9 42 31 150 16 19 89
9.5 10 11 99 16 29 12 25 40 39

Table 12: Experiment VII: number of iteration for different values of λ and N when p = 0.4 or
p = 0.6, γ = 0.7 and σ ∼ Uσ(0.8, 1).

We also regenerate the environment of Experiment II. The aggregate response time ratio values are
similar to the results shown in Figure 3(a), i.e. the response time deviations between theGreedy and the
OLPC plans increase, as the network heterogeneity increases (the figure is omitted). A part of the results
is presented in Table 10. Forp = 0.4 andγ = 0.4, r(8.5) = 2.91, while for p = 0.4 andγ = 0.7, r(8.5)
increases to3.76. The corresponding values forp = 0 (unconstrained case) are 11.2 and 23.9, forγ = 0.4
andγ = 0.7, respectively (see Fig. 3(a)).

Experiment VII: impact of p on efficiency. We conclude are experiments with the investigation of
the impact ofp on the number of iterations. As expected, the iterations theOLPC algorithms performs
in order to complete decreases as parameterp increases. The reason behind that fact is quite clear. As
stated in the previous paragraph, the number of possible plans is much lower in a constrained environment.
Related to that, the termination condition of the OLPC algorithm checks fewer plans, as some WS couples
are not valid plan prefixes. Recall that in these experiments, a source WS always exist, which corresponds
to the source of input data, so that it is must be first service in every planC. Thus, the number of WS
couples(WSl,WSr) that can be placed in the first two positions of a serial planC, i.e. WSl = WSk(0)

andWSr = WSk(1), isN − 1. In contrast, in an unconstrained environment the number ofsuch possible
couples isN(N − 1), i.e., the plan search space is significantly narrower.

Table 11 presents the experimental results after we rerun Experiment V forp = 0.4 andp = 0.6. It
is clear, that the latter have many similarities with the results of Fig. 4(a), i.e. the number of performed
iterations increases when the network disparity increases; however, it decreases as parameterp increases.
For example, forp = 0.4 andγ = 0.4, ζ(9.5) = 19.6, while for p = 0.6 andγ = 0.4, ζ(9.5) decreases to
7.21. However, the number of iterations is generally higher forp = 0 (see Fig. 4(a)). We also experiment
with the impact of the selectivity values. The corresponding number of iterationsζ(λ,N) are shown in
Table 12. The number of iterations increases when the numberof input WSs increases, too. However, as
explained above, this number is much smaller, comparably with the results of the second part of Table 8.
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5 Related Work

Our work relates to the broader areas of distributed query optimization and pipelined operator ordering.
Distributed query optimization algorithms differ from their centralized counterparts in that communication
cost must be considered and there is a trade-off between total work optimization and the harder problem
of response time optimization [9]. Proposals for the lattercase either employ more sophisticated dynamic
programming techniques (e.g., [14]) or resort to heuristics. Response time optimization is largely affected
by the types of parallelism in the query plan; nevertheless,typically only independent parallelism is inves-
tigated in wide area settings (e.g., [13, 7]), whereas our focus is on pipelined parallelism. There is a lot of
work for different settings than the one assumed in this work(e.g., P2P networks [21, 12]); however such
proposals do not share the same goals and cannot be applied toour problem.

Pipelined operator ordering has been examined for both centralized and distributed environments. In a
centralized single-node environment, the problem of minimizing the response time can be optimally solved
in polynomial time only if the selectivities are independent [15, 11]; note that if the independence as-
sumption does not hold the problem becomes intractable. In awide-area environment, the response time
optimization problem is transformed to bottleneck cost minimization. In this setting, Srivastavaet al [24]
proposed an algorithm for optimizing select-project-joinqueries over WSs. However, they assume that the
query execution process is simplified through a WSMS which orchestrates data exchange among the ser-
vices, so that joins can be computed and the heterogeneity ofcommunication costs does not impact on the
bottleneck cost metric. As such, our algorithm can be deemedas an extension to [24] for the case when
decentralized sequential plans are examined; note that [24] support parallel plans as well, which outperform
sequential ones when service selectivities are higher than1. Bragaet al [4] deal with a slightly different
problem, where IR-style tasks are combined with accurate search tasks in the same query; the goal is to pro-
duce a WS invocation plan (either sequential or parallel) inorder to obtain the bestk answers of a query in
the presence of access limitations but the algorithm they employ involves exhaustive search of the candidate
plans. Deshpandeet al [6] consider correlated selective attributes but they aim at minimizing the total cost
for acquiring the values of the attributes, since they assume that each attribute is assigned an acquisition
cost. The plan constructed is a conditional one in the form ofa binary decision tree. All these proposals
are static. In [3], the goal is to develop solutions for the ordering of selective operators that are tailored
to online, dynamic scenarios. However, the approximate algorithm in [3] applies only to the problem of
minimizing the total work and assumes selectivities not higher than 1. Complementarily to the above, the
algorithm in [23] tackles the problem of allocating services on host machines with respect to a fixed plan.
The algorithm can determine the number of hosts that may execute a WS with a view to minimizing the
response time of the submitted query.

None of these works consider the communication costs. Existing solutions for multi-query optimization
neglect the communication costs, as well. E.g., [20, 18] assume a single-node execution environment,
where all operators are selective, potentially correlatedand unconstrained. The optimization metric is the
minimization of the sum of the operator costs, as in a distributed version of the same problem discussed in
[17].

A common characteristics of the proposals mentioned so far is that they build a single plan. For com-
pleteness, we mention techniques that define a set of interleaving plans in order to maximize the data flow,
which is equivalent to minimizing the bottleneck cost. In [5], such a tuple routing algorithm is proposed in
order to maximize the flow of tuples processed by the filters ofthe input query. The filters are all selective
and unconstrained. The output is a set of serial plans. Each serial plan is assigned a probability weight and
when a new tuple enters the system, it is assigned to one of these serial plans with a probability depending
on its weight. It must be noted that the flow maximization algorithm considers only the process rates of
the filters (i.e., the number of tuples per unit of time) and the potentially heterogeneous communication
costs are disregarded. This work is extended in [8] to also support proliferative operators and precedence
constraints. However, [8] is characterized by the limitation of not considering communication costs, too.
Note that interleaving plans are not the same as eddies [2, 25]; the former deal with multiple static plans,
whereas the latter refer to a single plan that is continuously adapted to changes in the environment.

Finally, a recent work that takes data transmission into account has appeared in [16], which deals with
processing of multiple, overlapping, non-parallel queries. The input data is in sources stored on different
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host machines, while the cost to transfer data between any two hosts varies, as in our problem. Nevertheless,
the optimization goal is different; the algorithm in [16] aims to minimize the total cost to transfer data across
overlapping queries, whereas we focus on minimizing the response time of a pipelined parallel query.

6 Conclusions and Directions for Future Work

In this work, we deal with the optimization of decentralizedqueries over Web Services. More specifically,
we present an algorithm for finding the optimal ordering of pipelined services when the services commu-
nicate directly with each other and the communication costsvary. The goal is to minimize query response
time, which, due to parallelism, depends on the bottleneck service in the plan. Our algorithm operates
regardless of any precedence constraints and selectivity values can be higher than 1. To the best of our
knowledge, it is the first attempt to solve this intractable problem. Our algorithm is provably optimal,
i.e., always finds the optimal plan, and particularly efficient in terms of running time, as the results of the
thorough evaluation reveal. It follows the branch and boundoptimization approach and adopts a novel
pruning technique in order to reduce the search space. It canyield performance improvements of an order
of magnitude in realistic scenarios.

Our work has been motivated by emerging paradigms of distributed data management and can be ex-
tended towards several directions in order to fully fulfill modern needs. In the future, we plan to investigate
solutions that support more generic plans rather than more simple sequential orderings of operators. In such
plans, each service can have multiple inputs and disseminate its results to multiple services simultaneously.
The investigation of correlated selectivities and the development of adaptive flavors of the algorithm is also
left for future work. Finally, we believe that, in distributed settings, operator ordering solutions must be
coupled with resource allocation and scheduling algorithms in order to produce a complete solution. We
plan to work to this end in the future, too.
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