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Abstract

The problem of ordering expensive predicates (or filter ondg has recently received renewed at-
tention due also to emerging computing paradigms such aggsing engines for queries over remote
Web Services, and cloud and grid computing. The optiminadiopipelined plans over services differs
from traditional optimization significantly, since exeicut takes place in parallel and thus the query re-
sponse time is determined by the slowest node in the plarchasicalled the bottleneck node. Although
polynomial algorithms have been proposed for several ntriaf optimization problems in this setting,
the fact that communication links are typically heterogereein wide-area environments has been largely
overlooked. Our proposal is the first attempt, to the bestuofkmowledge, that tries to optimize linear
orderings of services when the services communicate tiradth each other and the communication
links are heterogeneous. We propose a novel optimal adhgotid solve this problem efficiently, which is
thoroughly evaluated through detailed experiments.

1 Introduction

Nowadays, technologies such as grid and cloud computinggtrfictures and service-oriented architectures
have become adequately mature and have been adopted bg alanper of enterprises and organizations.
This trend has altered, to an extent, the way complex tagkoamulated, giving rise to approaches that
rely on compoasition of services to be executed in a parafididistributed manner (e.g., [19, 1, 22]). As a
consequence, there is a growing interest in systems thadpeble of processing complex tasks formulated
as Web Service (WS) workflows utilizing remote computatiaesources. In [24], the notion of Web
Service Management System (WSMS) is introduced as a gepemnabse system, which possesses such
capabilities.

Ina WSMS, processing of data takes place through (remoiteYo&VSs. The latter provide an interface
of the formW S : X — Y, whereX and) are sets of attributes, i.e. given values for attribute®’jiv’ S
returns values for the attributesjn as shown in the following example adapted from [24]. In teaeyic
case, the input tuples may have more attributes thiawhile attributes in)y are appended to the existing
ones.

Example 1 Suppose that a company wants to obtain a list of email addsesspotential customers se-
lecting only those who have a good payment history for attleas card and a credit rating above some
threshold. The company has the right to use the following t8smnay belong to third parties, the first of
which contains a database of person ids.

WSy :0— SSN id (ssn)

WSy : SSN id (ssn,threshold) — credit rating (cr)

WSs: SSNid (ssn) — credit card numbers (ccn)

WSy : card number (cen, good) — good history (gph)

WSs : SSNid (ssn) — email addresses (ea) There are multiple valid orderings to perform this
task, although several precedence constraints eXist; must always be at the beginning aldS; must
precedelV S,. O

In many cases, the problem of optimizing queries over WSsethes equivalent to that of an optimal
ordering of a query’s WS calls. Usually, the goal of the ojtiation is to minimize the response time of
gueries, even though there may be other metrics of intevesh as total time, monetary cost and aggregate
resource utilization. In this work, we focus on the minintiaa of query response time, exclusively.

In one aspect, the problem of optimal ordering of WS with awie minimizing the response time
may resemble the problem of ordering commutative filterspelned queries with conjunctive predicates
[15, 11], in the sense that the calls to WSs may be treateckisdime way as expensive predicates. Note



that ordering some types of relational joins can be reduz#ust same problem, as well [3]. However, there
are also many substantial differences given that there miay grecedence constraints between the WSs,
selectivities may be higher than 1 (e.§/,S5 in the example) and, typically, the execution of queriesove
WSs takes place in a both distributed and parallel mannereMpecifically, each WS is executed on a
different node and the results of one WS may immediately Issgzhon to the next service in a pipelined
fashion, so that the tuples already processed by a WS aregs®d by the subsequent WS in the plan at the
same time as the former processes new input tuples.

According to the pipelined execution model, when no tupfesiaopped or new tuples are generated, the
maximum rate at which input tuples can be processed throsgigé& plan equals the minimum processing
rate of all services; the corresponding service, i.e., ti®tifat spends, on average, the most time per input
tuple, is termed the bottleneck WS. This model imposes neimagation challenges. For example, the
guery response time is no longer the sum of the cost in timis vfiall the WSs in the pipelined plan, but
is determined by the slowest node [8, 5, 24].

The problem of minimizing the bottleneck cost has receivgdiicant attention recently. In [24], along
with the introduction of WSMSs, an efficient optimizatiogatithm is presented that considers precedence
constraints among the WSs. Another characteristic of thikwe that it can deal with any selectivity values
and build plans where the output of a service is fed to mdtgarvices simultaneously. The proposals in
[8, 5] introduce faster algorithms that maximize the datavfly defining the set of interleaving plans
along with the proportion of tuples routed to each plan ireotd maximize the aggregate processing rate;
nevertheless, all the plans are linear, i.e., each WS ha®ostt ome input service and one output. More
detailed discussion of the related work is deferred to 8acdii. However, a common feature of all these
algorithms is that they do not take the potentially hetenegeis communication links between the services
into account, which is significant when the execution is déedized given also that the communication cost
may be the dominant cost. This is in line with the WSMS in [24fjch assumes that the output of a service
is fed to the subsequent service indirectly through a cemtamagement component thus annihilating the
need to consider the different communication costs exjglids such, in existing proposals, the bottleneck
cost depends solely on the service costs and selectivitisad of taking also into account the inter-service
communication cost, especially when the execution ocaus wide are environment. In the previous
example, the optimal ordering may differ when all services a a single place, when they are all at a
different place, and when, for instance, omlyS; andWW S5 are co-located.

The main contribution of this work is that it addresses tt@eimentioned limitation by proposing an
efficient algorithm for the single optimal ordering of se@$ when the services communicate directly with
each other and the communication costs between the semaeesliffer. Our algorithm is based upon the
branch and bound optimization paradigm and operates riegardf any precedence constraints. It can be
deemed as an extension to [24] accounting for decentragizedution, except that we are only interested
in linear orderings. The thorough evaluation of the propskaws that it is efficient and can result in
significant reductions of the response time up to an orderaginitude in many realistic scenarios.

The remainder of this paper is structured as follows. Thélpra we deal with is formally introduced
in Section 2. Section 3 presents the algorithm in detailudising its main concept, correctness proofs, and
implementation issues. The evaluation results appeardtidded. Section 5 discusses the related work,
and Section 6 concludes the paper.

2 Problem formulation

In our parallel execution model, each WS runs on a differedenn a separate thread that processes input
tuples and sends output tuples to the next service segligntiar solution however can be applied to
the case when separate threads are responsible for dagsgirgg and transmission in a straight-forward
manner. Let; be the average time needed BS; to process an input tuple (also referred to as the cost
of W), o; the selectivity ofi¥'.S; andt; ; the time needed to transfer a tuple frais; to WSjl. We
assume that;, o; andt; ; are constants and independent of the input attribute valvesfurther assume
that the selectivities of WSs are independent of each adimek, in the generic case, can be greater than 1.

1in practice, tuples are transmitted in blocks [10, 24]; is the cost to transmit a block divided by the number of tujilesntains.



A constrained servicé/ S; has at least one prerequisite servites;, which is denoted ab/’.S; < W.S;.
The precedence constraints are part of the input (e.qg, ifotheof a DAG).

A plan S consists of a linear ordering of the WSs, which respects aeggulence constraints and its
response time is given by the bottleneck cost metric, in @zwe to [24]:

cost(S) =  max { H Uk(ci+0iti,i+l)} (1)

||\W S, €S
AW k|W S1LEP:(S)

whereP;(S) is the set of WSs that are invoked befd#ésS; in the planS. Throughout the paper we will
refertoT; ; = ¢; + t;,;0; as the aggregate cost bf.S; with respect toV'S;. If ¢; ; is equal for all service
pairs, the problem can be solved in polynomial time, as shiajp4]. Here we deal with the generic —and
more realistic— case, whetg; may differ, for which to the best of out knowledge, there ispadynomial
solution. More specifically, the problem we deal with in thigrk is formulated as follows:

Problem Formulation 1 Given a sef? of N WSsW = {W Sy, WSy, ..., WSy_1}, where each one of
them is allocated on a host machine, find the linear pfarwhich minimizes the bottleneck cost metric
given by Eq. (BO

3 Optimal linear plan construction algorithm

3.1 Our approach in brief

The proposed algorithm is based on the branch-and-bouimdiaption approach. L&t = W .Sy )W Sy(1)
... WSk be apartial linear plark is used throughout the paper to denote the mapping fromiposiin
the WSs to the indices of the WSs at those positions.

Two cost metrics guide the plan building processnde respectively. The former corresponds to
the bottleneck cost af, while the latter is the maximum possible cost that may berirezl by WSs not
currently included irC. Coste is utilized to speed up the algorithm. For simplicity, welviilst discuss the
case where the selectivities are not greater tharahde are given by the following equations:

—1
€ = max {Tk(o),k(l)a max { H ki) | Thi) k(i) } } ; (2

=0

[T Uk(.j)) Tir, WS EC

n—1 (3)
Hj:o Uk(j)) Tl.,rv WS, = WSk(n)

€ = max
Lr

WS, ¢ C in both cases.

The algorithm proceeds in two phases, namelyekgansiorand thepruningone. During expansion,
new WSs are appended to a partial pfanvhile during the latter phase WSs are pruned ftbwith a view
to exploring additional orderings. If, for a partial plé&pnthe conditionc < € is met, this means that the
bottleneck cost of the plan beginning withdepends on the ordering of the services not yet included; so
a newlV S, is appended t¢. On the other hand, if condition > € is met, then the order in which the
rest WSs may be appendeddaloes not affect its bottleneck castsince the maximum possible cast
that may be incurred cannot be higher tharin that case, the linear plahis essentially a solution and
the pruning step is triggered. Partial plans are also pruvtezh they cannot form a prefix of an optimal
solution. LetC = WSy 0)WSk(1) - - - WSg(n), whered < n < N andW Sy, be the bottleneck WS df,
where0 < i < n. ThenC is pruned as follows:

[0, i=0,
C_{WSQWS1W511, O0<i1<n<N (4)

2tn_1, N is always set to 0.



Inputs

N: Number of input WSs.

T: An [N x N] matrix, whereT} ; = ¢; + t; jo;.
Outputs

S: optimal linear plan

: § + 0; {S is the current best linear plan
: p < oo; {pis the bottleneck cost &}
.V« 0; {Visalist of partial linear plans.
C « 0;

: F(C) + {WS;|M; =0} ;

: while truedo

Estimater using Eq. (2);

Estimateg using Eq. (3);

if ¢ > pthen

10: V.push(C);

11: Trim C following Eq. (4);

12:  elseife <€Ae < pthen

W NOOE WN R

©

13: if C =0 then

14: Find servicesV S; andW' S, using Eq. (6);
15: C=WSWS,;

16 else if C # () then

17: Find aW'sS,. using Eq. (7);

18: if no such WS can be fouritlen

19: Trim C using Eq. (4), where the bottleneck WS is SeNtS), ()5
20: V.push(C');

21: else

22: Append thelV' S,. to C;

23: end if

24: end if

25:  elseife < e < pthen
26: V.push(C);

27: S« C;

28: Trim C using Eq. (4);
29: p€

30:  endif

31:  UpdateF(C) using Eq. (5);
32:  if Termination Condition 1 is truthen

33: return S;
34:  endif
35: end while

Figure 1: The proposed algorithm.

To further improve the efficiency of the algorithm, the prefixup to the bottleneck servid€ Sy ;)
(denoted ag?’) of the plans for which the expansion phase has been comphetestored in a lisv.
To avoid investigating the same solutions multiple timég, functionz(X) is employed, wheret is a
(potentially partial) plan. This function returnsue if no WS plan stored iV is prefix of X'. As will be
discussed later, the plans considered must satisfy {hfinction thus yielding better running times without
compromising the optimality of the algorithm.

3.2 Detailed Algorithm Description

The complete algorithm is shown in Fig. 1, wh&elenotes the best linear plan found so far antb
bottleneck cost. In every iteration of the algorithm, thetaoetricsc ande are evaluatedF'(C) is the set of
all WSs for which all the prerequisite WSs have already beleled toC. More formally £(C) is given by:

F(C) ={WS;|WS; ¢ CAM,; CC} (5)

and}M; is the set of all WSs that must appear beftre;, i.e., M; = {WS;|WS; < WS;}. Obviously,
for unconstrained serviced/f; = (.



2

3

1

5

7

8

10.43

21.89

13.80

29.01

23.56

21.65

14.63

16.58

28.82

21.28

34.15

42.69

33.97

24.19

34.88

31.96

23.21

32.33

32.51

29.58

42.60

20.52

20.86

20.87

31.48

33.71

32.58

28.62

22.47

21.05

19.94

20.73

19.52

19.31

19.45

18.19

23.51

21.26

25.09

23.76

20.50

21.93

22.73

39.60

50.49

34.66

41.50

32.27

31.38

40.49

24.33

27.74

19.41

27.62

18.86

19.10

0| oo| ~1| | w1 k| wo| pof =[]

14.32

15.46

22.59

18.27

16.89

20.66

21.96

30.95

—_
o

27.08

30.48

10.34

33.14

13.90

34.23

18.22

28.98

Table 1:

Aggregate cost matrik.

[WS;[ 1 [ 2 ]3] 456789 ]10]
[ o [0.61]0.79]0092]0.73] 0.17] 0.40] 0.93] 0.91[ 0.41] 0.89

Table 2: Selectivities of WSs inV.

There are three cases depending on the values@indp in a partial plarC:

e ¢ < €< p(lines 12-24): ifC is empty, e.g., it is the initial iteration, the algorithmasehes for the
most promising WS pair that has not been considered yet. &M¢8 pair must satisfy the following

equation
Ty = i Tij 6
b i,j|Mi:@/\MjQ{ngl/l\ﬂ(WSiWSj):true{ j} ( )
If the partial plan is not empty, the algorithm searches foea WSW S,., such that:
Tk(n),r min {Tk(n),j}a (7)

a WS;eF(C)AT(CW S;)=true

These subcases comprise the expansion case. In case whiéf§,ncan be found, the last WS of
C is pruned (lines 18-20) to support cases in which no senacebe appended, e.g., all plans with
prefixC have been examined. Note that the conditicn p is considered along with < €, because

it is worth performing the expansion phase only for plan$iwit p.

e € < e < p(lines 25-30): the current best linear pl&ris set toC and its bottleneck cogtis updated.
Conditione > € ensures that the bottleneck costofvhich is lower than the current lowest cost, will
notincrease if new WSs are appended. After tias, pruned following the Eqg. (4) and the algorithm
continues. The intuition behind Eq. (4) is as followg.S;; 1) in Eq. (4) satisfies either Eq. (6), or
(7), i.e. itis the WS such that’ Sy ;) has the minimum cosf, ;) i+1)- Thus, the cost that may be
incurred by any other WS appendedtaS;,;), will be higher than the current bottleneck cost, i.e., it
is worthless to investigate plans with prefixSy,gy... WS-

e ¢ > p (lines 9-11):C cannot yield an optimal solution, since its bottleneck ésstigher than the
bottleneck cost of. Thus,C is pruned following Eq. (4).

The algorithm can safely terminate when the less expenaiv@pWSs satisfying the function cannot
improve the current bottleneck cost, which means that tis¢ @ssible linear plan not yet visited has at
least as high bottleneck casasp.

Termination Condition 1 Let p be the minimum bottleneck cost found so far. The algorithmitetes,
when there are no two servic&8S; and W S,. such that:
Ty >p, My =0AM, C{WS}Ar(WSWS,) = true (8)

The proof of the algorithm’s correctness is in a subsequestian.
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Figure 2: An example of the proposed algorithm.



3.3 Anexample

In the following, an example for building an optimal plan farconstrained WSs employing the proposed
algorithm is presented. Lev = {WWS,...,WSio} be a set of 10 services with corresponding aggregate
costs and selectivities shown in Table 1 and 2, respectivEhe values in the tables follow a gaussian
distribution. Fig. 2 shows the partial plans at the end ohetaration.

Initially, e = 0 < € = T7 2 = 50.4958, € < p = oo, andC = (). The algorithm starts by identifying the
WS pair, which incurs the minimum cost, see lines 13-15 of Eigrhe corresponding WSs diésS;, W Ss.
After that,C = W S1oW Ss. In the second iteration, sinee= 10.3425 < € = 019 X 03 X 179 = 41.5973,
€ < p = o0, andC # (), a new WS is appended & which must satisfy the Eq. (7); that servicdiss,.

In the third iteration, since = 20.7436 < € = 019 X 03 X 04 X T7r o = 30.7074, ¢ < p = oo, and

C = (), the servicdV S; is appended t@ forming the partial pla€ = W .S1oW S3W S, W S1. Now, since

€ =20.7436 > € = 019 X 03 X 04 X 01 X T7 9 = 18.8983 ande < p = oo, a solution is found. According
to steps in lines 25-30 of Fig. &, is set toC, p = 20.7436 andC is pruned following the Eq.(4). After the
pruningC = W .Sy, (the bottleneck WS i$V/S3). The Termination Condition 1 is not triggered given that
there exists a two service prefix that satisfiesnd its cost is lower thap: T} » = 10.43.

In the fifth iteration, since = 0 < € = 45.1255, ¢ = 0 < p = 20.7436, andC # (), a new WS
is appended t@ = W .Syp; that isWSs. A new WS is also appended in the sixth iteration forming the
partial planC = W.S;,W . S5W Ss. In the seventh iteration, since = 17.2575 > € = 7.29314 and
e < p = 20.7436, another solution is foundS = W.S;,W S5W Sg, and its bottleneck cost updates
subsequently¢ is pruned following Eq.(4) so that = 1W.Sy,. In the above iterations, the Termination
Condition 1 is not triggered because the cBgst is lower than the values. In the eight iteratiofi}/ Ss is
appended t@ = WSy, since it satisfies the Eq.(7). However, in the ninth itematthe partial plan is set
toC = (), ase = 18.2236 > p = 17.2575 and the bottleneck WS is the first one, i8/S19. As a result,
any plan starting with’ .51y no longer satisfies the function.

In the tenth iteration, the WSs which satisfy the Eq.(6) faha partial plarC, sincee = 0 < € =
T7 0 = 50.4958, € < p = 17.2575, andC = (). The result is the ordering = WS, W S,. In the iterations
11-14 new WSs are appendedipforming the partial pla® = WS, W SoW S, W S3W S10W Ss. In the
fifteenth iteration, a new solution is found, since= 13.0996 > € = 6.21801 ande < p = 17.2575.
Following the steps in lines 25-36, = WS, W SaW S, W SsW S10W S5, the bottleneck service 8.5,
andp is set t013.0996. After the pruningC = W.S;. However, the Termination Condition 1 is now
triggered, since the cost of the less expensive WS pairf@atism, which is W SgW Sy, is now higher
thanp: Ts 10 = 13.2293 > p = 13.0996. So the algorithm terminates, after having essentiallyarepl all
the 10! orderings in just 15 iterations.

3.4 Proof of Correctness

Lemma 1 If e is the bottleneck cost @f, any plan with prefiXC cannot have a lower bottleneck cost.

This non-decreasing property ofvith regards to the size of the partial plan derives direfttyn Eq. (1).
Also, as explained in the previous subsections, the foligiémma holds:

Lemma 2 If for a partial planC, € > &, then, any plan with prefi€ has cost.

This derives from Eq. (2) and (3) and the fact that sele@diviare not greater than 1.

Lemma 3 No planC with prefix any of the plans stored hcan have bottleneck cosk p, wherep is the
minimum bottleneck cost found so far.

The plans iny fall into two categories. Firstly) includes prefixes of partial plans up to and including
their bottleneck service; the cost of at least one of suchdmack services i while the costs of other
bottlenecks are higher. However, for any plan used to coaistt, the service appended to the plan just
after the bottleneck service during the expansion phasé nawe satisfied either Eq. (6), or (7), resulting
in bottleneck cost > p. Because of Eq. (6) and (7), any pl@mproduced by appending a servicelto
has cost > p, too. So, with the help of the first lemma, this lemma holds al.vBecondly)V includes



partial plans for which no new services can be appended,aattter precedence constraints or the fact
that all combinations have been already explored (line 2Bi@f 1). The former subcase cannot lead to
any solutions, whereas the latter is similar to the first c@ibés completes the proof of the lemma, and also
shows the correctness of using thg function, which builds upon this lemma.

Theorem 1 The algorithm finds the optimal solution.

A sketch of the proofis as follows. In order to prove the comess of the algorithm, we must prove that
all possible orderings have been checked, either directiydirectly, the termination condition is correct
and the output is a valid solution. The algorithm, with théptef the () function does not explore plans
the prefix of which is store. We have proven that this does not compromise its optimdltg algorithm
exits when any WS pair that is a valid beginning of a plan dagshave a cost lower than the currently
lowest bottleneck cost. In general, there at@rderings, where is the number of services; of course this
can be reduced due to precedence constraints. Howeve gtreeat most.(n — 1) prefixes of size two. If
all these prefixes satisfy the termination condition, witl help of the first lemma we can show thatll
orderings cannot have a bottleneck cost that is lower th&inally, S in Fig. 1 is a partial plan, but, as the
second lemma shows, any plan with prefixan form a complete optimal ordering.

Note that the termination condition can be reduced to singiktements in some specific cases. For
example, when there are precedence constraints such tlyad single WS can be at positidn e.g., it
is the service responsible for source data generation,ttieetermination condition can be reduced to the
statement that the algorithm can exit if the bottlenecktpmsreaches the first positidiy Sy, o).

3.5 Proliferative Services

Thus far, we have discussed the case when service seliestiare not higher than 1. If there exist> 1,
then the same algorithm is still valid; the only change ishia tvaye is computed in Eq. (3). More
specifically,e in Eq. (3) is multiplied by the product of alt; > 1 such that's; ¢ C. The proof of
correctness is similar to the case when WSs are selective.

3.6 Implementation issues

In the current subsection, we will discuss some implemantatissues. We have employed some simple
data structures in order to speed up the execution of exmeogierations, namely the identification of
the next WS to be appended to a partial plan (Eq. (7)), thaiatiah ofe and the check of the termination
condition. Note that the computation of the bottleneck e@s$tC and the detection of the bottleneck service
require linear time; alsa() can be efficiently implemented with the help of a prefix tree.

To speed up the identification of the next WS, a preprocesstieyg takes place before the algorithm
execution. According to this step, for each servi€es; a doubly-linked listZ; of all servicesiWsS; in
increasing order of the corresponding aggregate €psis constructed. Thus, the next WS to be added
afterW.Sy,(,, is found using the following simple search approach: wet $tam the head of list.,,,. If
the current WS is not included thand all its prerequisites services are included,ithen the desirable WS
is found, otherwise the search continues. The computafiamsgperformed using an analogous approach.
For everylV S; that it is either the last WS @f or does not belong t6, the search starts from the endiof
since the maximum possible process/transfer cost mustufoThe search in every; stops when the
first WS not currently included i@ is found and the maximum aggregate cost among those founeiy e
L; is returned.

Finally, the check of the termination condition can be efiintly done with the help of a min heap. The
contents of this heap vary depending on whether the WSs aigtramned or not. In the former case, the
min heap contains all WS coupléd’.5;WS;), while in the latter case, it contains only the couples that ¢
constitute a valid prefix of a plan. The values of the heap lsgecosts; ; of the corresponding couples.
Every time we check whether the termination condition is,riet root of the min heap is accessed and the
planX = WS,WS; is formed from the WS coupl@¥ S; W S;) stored in the root of the min heap. If the
partial planX’ satisfies ther(X'), then the corresponding cost is kept. Otherwise the rodtefiin heap



is deleted and the next new root element is accessed. Froabtwe, it follows that the complexity of this
operation isD(log k), wherek < N2, while the complexity of naive approachy N?).

4 Evaluation

4.1 Experimental Setting

In the current section, we experimentally evaluate the @sed algorithm, which will be referred to as Opti-
mal Linear Plan Constructor (OLPC). The evaluation is caeldito investigate firstly the algorithm’s per-
formance, and secondly, the algorithm’s efficiency. Thégrerance of the algorithm is evaluated through
the comparison of the response times of a wide range of quang produced by OLPC and ti@reedy
algorithm in [24]. The efficiency is measured in terms of theaute time needed to construct the plans
and of the number of iterations in OLPC, when implementedtyxas shown in Fig. 1.

The simulation environment is defined by a five-dimensioeator A = [G.(¢, o), Gt (\¢, YAT),

U, (l,u),p, N]. G corresponds to the distribution of the processing costesmf) of the input services.
More specifically, throughout the evaluation, we assumettteaprocessing costs of WSs follow a gaussian
distribution with mean value and standard deviatiarn.. The data transmission cogts follow a gaussian
distribution, too (denoted &6+ (¢, yA¢)). The mean value o6 is related toc, in order to enable the
investigation of the impact of the ratio of computation dosthe communication cost on the performance.
More precisely, the mean value of;, ¢ is given byt = A¢ where\ € {0.25,0.5,0.75,1,1.25,...,10}.

Its standard deviation is given ly = vt wherey € {0.1,0.2,0.3,...,0.9}.

U, (I, u) represents the uniform distribution of the services’ dalég values. I andw are the corre-
sponding lower and the upper bounds, respectively. Finaland N are single-valued parameters. The
former is used to create precedence constraints and cor@so the probability for one servid&' S;
to have a randonil’'S;,7 < j as its prerequisite; for unconstrained Wgs= 0. N is the number of
input WSs; we have experimented with values\of {10, 20, 30, ...,250}. An example of a simulation
environment i§G.(10, 5), G¢(20,2), U, (0, 1), 0, 10], which corresponds to the case where there are 10
unconstrained services, with selectivities uniformiytidlimited between 0 and 1. The processing costs of
these WSs follow a gaussian distribution with mean valee10 and standard deviatian. = 5. The com-
munication costs follow a gaussian distribution with meatue? = 20 (i.e., A = 2 and standard deviation
op =2(i.e.,y =0.1).

Each simulation instance is a random realization of the kitimin environment, so that five-dimensional
vectors of the formc,t, o, p, N| are generated, wheket and o are matrices populated according to
G (T, 0.), G¢(Ae,vA¢), U, (1, u), respectively.

Finally, p4 andp’, denote the response times of the plan produced by OLPC aretigrespectively,
when they are executed on the same simulation instance @f; is the number of iterations that OLPC
performs. In the experiments, we fixo 10 ando, to 5 and we vary only the. and~ variables in order to
generate settings with a wide range of different ratios betwmean processing and communication costs.
Note that we have chosen a not very low standard deviatiareyalnce we want our environment to better
simulate heterogeneous, wide area settings. Also, we doongpare plans with service selectivities higher
than 1, because, for such services, the Greedy algorithitshppérallel plans, whereas OLPC builds only
linear plans [24]; extending OLPC to support parallel plesnsft for future work.

The general remarks of the evaluation can be summarizecifotlowing lines: OLPC outperforms
Greedy by several factors. In many realistic scenarios &@réopnance improvements are of an order of
magnitude, whereas we have noticed improvements by a fastbigh as 164 (Table 3). Furthermore, the
algorithm is very efficient, as it requires negligible rumgtime and a limited number of iterations.

4.2 No precedence constraints

We first investigate scenarios with no precedence consiraBince the selectivity of each WS is between
0 and1, the plans that Greedy algorithm produces are linear argeiof the WSs by increasing processing
time ignoring selectivities. The following experimentg aronducted in order to study the convergence
between the response times of plans produced by Greedy anmgshonse times of OLPC plans. The



[A\~ [10 J40 [70 [100 [130 [160 [190 [220 [250 |
\ y=0.1

05 [1.00 [1.07 [1.01 [1.08 220 [1.02 [1.61 [4.64 [1.08
15 [179 [172 [110 [140 [705 [298 [235 [3.08 [120
25 266 [121 [200 |[422 [121 [3.99 [2.65 |13.88[20.13
35 | 116 [609 [154 [2.38 [1.28 [247 [1.33 [2380 [3.90
45 | 117 |371 [1.00 [313 |648 [11.29 [9.18 | 1497 [ 457
55 265 165 [212 [2.67 [127 [472 [194 [3.09 [ 119
65 120 [196 [636 | 676 [408 [501 [1.63 [29.49 | 1318
75 ]398 [676 [398 |138 [571 [11.99 [279 [492 [927
85 [333 [123 [655 [10.65]10.50 | 148 | 4.39 | 20.40 | 14.68
95 |542 [1036[470 [11.69 812 [458 [698 |14.75]2.00
v=0.4
05 [121 [131 [427 [135 [123 [141 [136 [3.21 [5.24
15 [223 [139 [343 [264 [311 [358 [1.69 [2225[522
25 | 126 |273 [357 [ 657 |449 [2611 [286 |334 [4143
35 | 125 [321 [752 |552 [1.00 [2.80 [5.35 |16.50 | 6.11
45 342 [177 1480 |881 |16.69 1348 [2.62 | 22.20 | 27.90
55 [356 | 650 [2.65 [9.02 | 1537 [41.44 [ 16.87 | 34.64 | 77.79
65 [302 [1.75 [ 1628237 |17.28 | 1032 | 41.97 | 4146 | 413
75 [1.04 [7.08 [40.05]18.08 841 [451 2031 | 26.49 | 13.39
85 | 154 [4549 3224|1280 [ 1.87 [164.04 | 12.87 [ 588 | 18.70
95 350 [ 1420595 |22.68 [31.77 | 16.06 | 23.15 | 11.59 | 9.14
v=0.7
05 [1.00 [150 [140 [496 [156 [243 [2.69 [425 [728
15 201 [206 562 [335 [245 [579 141 [1221]526
25 197 [519 [519 [320 |487 [2852 [6.81 |2.85 [16.75
35 |354 |17.68[798 [997 |843 [620 |[801 |43.74]40.68
45 352 [1.03 2075|430 |17.94 641 [19.85]2.23 [39.76
55 | 124 [409 [823 |11.29 | 1745 [16.77 |36.87 | 23.95 | 13.17
65 [299 [708 [539 | 1458754 [634 [11.00 | 24.89 [ 50.57
75 [817 [696 | 11.81]10.06 | 39.66 | 2475 | 75.61 | 16.55 | 20.20
85 [7.08 [7.88 | 14.15] 4245 | 66.46 | 37.90 | 23.04 | 13.01 | 63.03
95 |1332]14.31[21.61 [ 4120]9.86 [5032 [893 |8537 6413

Table 3: Experiment I: results.

response time is given by Eq. (1). OLPC always produces ttienapserial WS plan. As such, all the
experiments that follow deal with the extent to which thepmsse times of the Greedy plans are higher
than the response times of the OLPC plans, for a given siialaistance. Intuitively, the performance
is affected by various parameters. In our work we concemwatfour of them, namely the ratio between
processing and transferring costs of tuples, the netwadrbgeneity, the WS selectivities and the number
of input services.

Experiment I: impact of the number of WSs on performance Here we compare the performance
of OLPC and Greedy when the number of input WSs varies. Thieiee with the help of the following
response time ratio metric

/
P[Gc(10,5),Ge(10A,100),U, (0,1),0,N]

r(\,N) =
P[Gc(10,5),G¢(10X,10\7),U,(0,1),0,N]

The experimental results for different valuesifand\ are shown in Table 3. Wher(A\,N) = 1, a
Greedy plan has exactly the same response time as a plaby@lt PC for the same simulation instance.
In general, we observe that (i) OLPC can yield significanfgrenance improvements of several factors
(up to 164); and (ii) for fixed\, v ando values, the response times of the plans built by Gregdgnd
to increasingly deflect from the response times of the OLR@$) as the number of the input services
increases. For example, in the lower part of Table 3No& 250 WSs, the maximum response time ratio
is 64.13 times, while fo’V = 10 WSs it is 13.32 times.

Experiment II: impact of heterogeneity on performance Now, we turn our attention to two other
parameters, namely the ratio between the processing artdhtieferring costs of tuples and the network
heterogeneity. A closer look to Table 3 shows that for fixddesofy and NV, the response time deviations
between Greedy and OLPC plans tend to increase as parakiatgeases. For example, in the third part
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Figure 3: Results for (a)Experiment Il and (b)Experimeht The dashed horizontal line corresponds to
the case where OLPC and Greedy exhibit similar performance.

of Table 3,7(0.5,10) = 1.00, while #(9.5,10) = 13.32. The response time deviations increase witlas
well. On average, the(\, N) values in Table 3 that correspondo= 0.1 are lower than the values for
~ = 0.4, which, in turn, are lower than the values fpe= 0.7 in Table 3.

The aforementioned observations are further confirmed byfdlowing experiment, the results of
which are shown in Fig. 3(a). In the figure, the x-axis coroegjs to the\ values )\ € {0.25,0.5,...,10},
while the y-axis corresponds to the aggregate responsediime/alues:. For every € {0.25,0.5,...,10}
and N € {10,20,30,...,250} value, a simulation instance is set up. In this instances 0.1 and
o ~ U,(0,1), i.e. the resulting instances are of the foi@.(10,5), G¢(10A,10X0.1), U,(0,1),0, N].
The aggregate response time ratia 1 (\) values are given by:

F o1 (N) = DN pEGC(10,5),Gt(10>\,10)\0.1),UU(0,1),0,N]

Y WN P[Ge(10,5),G¢(10A,1010.1),U,(0,1),0,N]

The same procedure is repeatedfos 0.4 andy = 0.7. In essence;(\) = 1 means that all plans built
by Greedy have exactly the same response times as the plidtnsybOLPC. From Fig. 3(a) we observe
that the aggregate response time ratio values, and congggulee response time deviations between the
Greedy and OLPC plans, increase as the value of pararhétereases, i.e., as the communication costs
become more dominant. For example, consideFthg ; () values. Fig. 3(a) shows that the plans built by
Greedy have up to 4.9 times higher response time than theboileby OLPC for\ € {0.25,0.5,...,5}.

On the other hand, fox € {5,5.25,...,10}, this deviation reaches 7.8 times. Recall that an increase i
entails a deviation of from . Analogous observations can be drawnifor, 4(\) and7,—o.7(A), too.

In summary, from Fig. 3(a) and Table 3, we can see that, fodfixehe plans built by Greedy have
response time very close to the response time of the plaitdhpuDLPC when the mean transferring cost
per tuplet is lower than (or close to) the mean processing cost per @)jimelependently of the number of
input services. Furthermore, we can observe that as théasthdeviationr; of t increases, i.e. the network
heterogeneity increases, the response time deviationgbetthe Greedy and the OLPC plans increase, as
well. For example, when; = 0.4¢, the response times of Greedy plans are at most 16.7 timbsitiigan
the response time of OLPC plans. On the other hand, when 0.7 the maximum deviation is up to 26.1
times, while fort = 0.1¢, the maximum deviation does not exceed the 7.8 times. Thiamsaion is that
when the network heterogeneity is limited, the costs ne¢al&@dnsfer tuples between any pair of WSs are
approximately the same. As mentioned in a previous sedt@nGreedy algorithm can optimally solve a
special case of Problem 1.1, when one WS sends tuples toshé/f&s with the same speed. However, as
heterogeneity increases, the performance of the Greedyithlign degrades significantly.

Experiment 1lI: impact of selectivities on performance. In the previous experiments, the WSs se-
lectivities o; were uniformly distributed in the intervél 1). To investigate the impact of the selectivity
values in more detail, we conduct the following experiméiat: each\ and N value a simulation instance
(v is setto0.7) is set up. We test four cases far U, (0, 1), U, (0,0.5), U,(0.5,0.8) andU,(0.8,1). The
corresponding aggregate response time ratio vatgesare shown in Fig. 3(b). Whear ~ U, (0.8,1),
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s~ |10 [40 J70 [100 [130 [160 190 ][220 [250
Min-Greedy

05 | 100|150 |140 |341 | 156 243 269 | 425 7.28
15 [ 201 [486 |305 | 1881 ] 8.61 1140 | 1756 | 1221 | 457
25 100|626 |7.07 |522 [249 13.93 | 8.64 | 33.08 | 44.65
35 | 160|493 |1584 | 717 | 13.69 | 23.76 | 1947 | 2737 | 3.75
45 |347[391 |371 | 1657|947 4.57 14.89 | 46.84 | 30.81
55 [7.03 238 [823 |9.69 |2151 |3095 |19.43 | 103.76 | 42.75
65 | 759 | 1548 | 56.04 | 30.22 | 6.47 76.85 | 20.75 | 2148 | 50.57
75 | 512|822 |29.89 | 1429 | 39.66 | 6.00 191 | 2524 | 14.63
8.5 | 257 |14.83 | 1348 | 37.79 | 2822 [ 5.26 8.81 | 13.70 | 63.03
95 [ 4391296 | 15.88 | 55.24 | 4981 | 5.76 27.40 | 14.23 | 58.48
Max-Greedy
05 | 183373 |[224 |398 |[135 2.07 328 | 552 6.78

15 | 1.00 | 1.53 | 235 | 16.52 | 8.47 3.96 4245 | 1072 | 2.84

25 [ 754443 [498 439 [739 19.15 | 6.06 | 1325 | 19.32
35 [3.01 470 [9.86 |4594 | 1381 | 30.67 | 30.43 | 9.63 22.28
45 539 | 1959 | 659 | 13.68 | 32.32 | 10.02 | 13.61 | 129.64 | 7.12

55 [ 244949 [21.09 | 1840719 1391 | 701 | 4279 | 3481
65 [ 379861 |31.23 4717 |109.76 | 2247 | 6.31 | 7.86 89.57
75 | 512|731 | 2875|1756 | 17.02 | 12.88 | 10.16 | 39.32 | 175.40
85 | 805 | 11.86 | 16.17 | 38.99 | 102.79 | 56.71 | 50.19 | 45.93 | 106.83
9.5 |3.82] 1051|957 | 5859 |8.87 37.89 [ 4272|4193 |44.21
Mean-Greedy
05 | 100|150 |140 |292 | 156 243 269 | 425 5.46
15 | 1.69 | 206 | 8.01 | 2237 | 245 5.47 17.56 | 5.54 24.78
25 [ 120459 [519 280 [949 6.03 9.02 | 371 39.62
35 [3.09437 [233 |520 |6.61 17.60 | 436 | 18.97 | 64.05
45 1539|1193 |8.02 |272 |18.67 |20.16 | 2513|215 12.07
55 | 1.46 [ 1656 [ 290 | 11.29 [ 9.63 2.86 27.77 | 60.51 | 23.46
65 | 275]6.04 |1437[39.74 723 10420 | 330 | 3.21 3.30
75 | 512|615 | 573 | 961 |16.64 |2252 | 137 |2212 | 3054
85 | 516 | 6.33 | 10.64 | 48.34 | 3.77 1432 | 25.76 | 82.70 | 5.99
95 [5.08]11.97 [ 10.34 | 42.75 | 1833 | 22.94 | 11.86 | 82.50 | 84.97

Table 4: Experiment IVa: experiment I (y = 0.7) is redone for all variants.

Var.\A |05 |15 |25 |35 |45 55 |65 7.5 8.5 9.5

Greedy | 1.80 | 4.82 | 6.58 | 6.62 | 893 | 9.54 | 9.89 | 11.68 | 11.40 | 15.24
Min- 1.89 | 471 | 623 | 775|771 | 7.02 | 11.96 | 12.29 | 15.54 | 17.34
Max- 231 | 542 | 6.38 | 8.64 | 12.93 | 9.06 | 11.54 | 15.59 | 16.04 | 18.52
Mean- | 1.88 | 444 | 6.15 | 5.65 | 797 | 7.78 | 9.08 | 11.75 | 13.24 | 14.25

Table 5: Experiment IVb: experiment II (y = 0.4) is redone for all variants.

Var \N[05 [15 [25 [35 [45 [55 [65 [75 [85 [95 |

o ~U,(081) |
Greedy | 2.38 [ 422 [ 5.75 | 735 | 761 | 840 | 9.98 [ 11.20 | 12.68 | 13.18
Min- 245|427 [ 651 | 705 | 755 [9.06 |9.70 |10.55 | 12.47 | 13.69
Max- | 2.28 | 443|560 |7.17 |7.69 | 891 [ 1034 | 11.70 | 1250 | 12.91
Min- 237 | 412|533 | 701 |7.09 |834 | 852 |10.93 | 10.28 | 11.86
o~U,01)
Greedy [ 2.44 [ 484 [ 743 [10.21 [ 10.37 | 13.89 [ 14.24 | 17.33 | 23.09 | 19.37
Min- 240 | 578 | 844 [ 10.15 | 10.75 | 14.55 | 16.40 | 13.59 | 18.91 | 20.08
Max- | 2.64 [ 5.95 [ 11.03 | 9.89 | 14.60 | 16.30 | 16.97 | 16.26 | 25.90 | 18.77
Min- 254 [5.02 | 770 | 761 | 12.08 | 11.67 | 1272 | 12.39 | 19.49 | 16.25

Table 6: Experiment IVc: experiment III (y = 0.7) is redone for all variants.

the maximum deviation reaches 14.4 times, while when U, (0, 1) it reaches 26.1 times. In general,
the results of this experiment show that when- U, (0,0.5), o ~ U,(0.5,0.8) or o ~ U,(0.8,1) the
response time deviations are similar. However, whern U, (0, 1) the deviations become much higher.
Thus, for fixed\, v and NV values, the deviation of the response time of the Greedyritthgo from the
optimal increases as the range of the services’ seleetyviiticreases.

Experiment IV: comparison against variants of the Greedy afjorithm. Since the Greedy algorithm
considers only the processing costs of tuples in order ti lauplan, we have implemented three simple
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[~ [ 10 [ 40 [ 70 [ 700 [ 130 ] 160 ] 190 | 220 | 250 ]
[ v=0.4 |

0.5 3 65 [ 91 | 61 11 114 | 74 12 335
1.5 4 3 18 | 45 24 139 | 86 49 28
2.5 3 7 35 22 45 22 20 16
3.5 4 14 [ 12 | 5 9 13 37 25 22
4.5 3 3 23 | 19 16 29 19 31 66
5.5 18] 3 5 10 6 4 12 33 5
6.5 3 3 3 5 14 29 6 4 8
7.5 3 16 | 4 6 15 4 20 32 43
8.5 4 3 4 4 4 4 15 8 16
9.5 4 12 | 5 10 10 5 31 4 16
v = 0.7

0.5 6 72 | 58 | 111 | 12 117 | 325 | 105 | 201
1.5 8 4 21 | 6 8 73 3 110 | 52
2.5 4 16 | 37 | 26 8 47 26 9 58
3.5 7 5 18 | 15 18 53 43 35 6
45 10 | 5 17 | 68 64 53 146 | 7 32
5.5 5 20 [ 10 | 49 46 24 6 25 54
6.5 7 45 1 9 17 20 11 49 19 73
7.5 4 6 4 51 17 14 6 49 40
8.5 13 | 4 28 | 22 25 19 21 21 25
9.5 3 136 4 33 4 30 17 47
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Figure 4: Results for Experiment V. (a)Average number aéiiens for different values of and (b)average
number of iterations for different distributions ef

variants that do take into consideration the transferroggof tuples. A simple way to expand Greedy is
to tweak the processing costs of tuples for each input WSuLlet the new processing cost per tuple of the
servicelV.S;. In the first variant of Greedy, the Min-Greedy, the per typlecessing cost; of the service
WS, is set tov; = ¢; + min;{¢; ;}. Similarly, in Max-Greedy and Mean-Greedy variants, thetpple
processing costs 6¥5; is set tov; = ¢; +max;{t; ;} andv; = ¢; + 3, ti /(N — 1), respectively. We
have repeated experiments |, Il, and Il and the resultstzoes in Tables 4, 5 and 6, respectively. We will
not move to a detailed analysis of the experimental resukstd lack of space. However, it must be noted
that none of the three variants can significantly improvepidormance of Greedy and that Max-Greedy
may lead to more severe performance degradations.

Experiment V: absolute running time and number of iterations. For all the experiments, we used
a machine with a dual core processor. The CPU clock of eaghisat 2.00 GHz and the total memory
2GB. The mean running time per simulation instance is orysec, which can be deemed as negligible
and constitutes a strong proof of the efficiency of the athari

The claim about the efficiency of the algorithm is further poged by the following experiments
that aim at studying the number of iterations under diffel@nditions. Following the same approach
as in Experiments I-1ll, we vary the number of services, thi@orof processing and communication cost

3WSs typically spend time in the order of seconds when prangsshunks of data; see, for example, the real measurements
mentioned in [10].
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NN [10 [40 [70 [100 [130 [ 160 [190 [220 [ 250
7 =04,0~U,(081)
05 |903 | 675 | 1176 | 979 | 2221 | 2414 | 1420 | 3450 | 3246
T5 |80 | 336 | 265 | 564 | 553 | 532 | 1119 | 829 | 899
25 |38 | 437 | 278 | 624 | 443 | 875 | 1016 | 692 | 1089
35 | 111 | 256 | 137 | 264 | 441 | 420 | 455 | 628 | 798
45 | 187 | 244 | 354 | 175 | 500 | 649 | 543 | 645 | 1074
55 | 258 | 166 | 247 | 130 | 250 | 454 | 800 | 673 | 447
65 |51 | 246 | 393 | 346 | 537 | 354 | 545 | 469 | 797
75 | 740 | 215 | 298 | 446 | 412 | 379 | 381 | 523 | 823
85 |97 | 235 | 189 | 449 | 447 | 307 | 596 | 714 | 707
95 |93 | 232 | 231 |244 | 399 |487 | 424 | 409 | 341
=070 ~U,081)
05 | 164 | 1424 | 529 | 2687 | 5089 | 1605 | 2049 | 4143 | 3738
T5 |66 | 403 | 400 | 579 | 897 | 1040 | 923 | 2246 | 2088
25 | 162 | 191 | 510 | 716 | 510 | 1328 | 1316 | 916 | 1995
35 | 536 | 325 | 179 | 526 | 485 | 1062 | 1200 | 769 | 1124
45 |59 | 308 | 313 |587 | 458 | 615 | 903 | 986 | 981
55 |65 | 254 | 553 | 322 | 756 | 687 | 1181 | 607 | 932
65 | 1149 | 383 | 196 | 482 | 374 | 852 | 524 | 500 | 1094
75 | 175 | 371 | 325 | 371 | 684 | 626 | 933 | 501 | 832
85 | 107 | 400 | 183 | 395 | 424 | 459 | 558 | 624 | 925
95 | 200 | 191 | 271 | 795 | 691 | 608 | 841 | 849 | 1441

Table 8: Experiment V: number of iterations for different values of N and A when selectivity is
high.

and the selectivity values. First, we conduct an experinrean environment similar to that of Experi-
ment I. As such, for each and N, the OLPC algorithm is executed in simulation instancesefform
[Gc(10,5), G¢(10X,10My), U,(0,1),0, N]. After every simulation, the number of iteratiogg\, V) is
counted. The& (), N) values for\ € {0.5,1.5,...,9.5}, N € {10,40,...,250}, andy € {0.4, 0.7} are
shown in Table 7. In general, we observe that for fixeand~, the number of iterations that the OLPC
algorithm performs is correlated with the number of the trgmrvices, but, on average, it increases slowly.
Also, in cases where it happens the costs of some servicesabthe left tail of the distribution and their
selectivities to be low, the number of iterations is very Bpsance it suffices to examine a few of orderings
of only these services. This explains the very low valuegappg in Table 7.

The network heterogeneity which relates to the valuesltds an impact, too. For example, on average,
¢(X\, V) values of the upper part of the Table 7 are lower than the salfitower part of the table. Similar
observations can be drawn from Fig. 4(a). This figure showsnlean number of iteration§\) for
A € {0.25,0.5,...,10} for all values of N € {10, 20, 30,...,250}. The(()\) values are given by:

Z0yy >N $[Ge(10,5),Ge(10A,10A7), U, (0,1),0,N]

From Fig. 4(a), we see that the mean number of iterationsedses as the ratige increases. For
example, the mean number of iterations is 192 whea- 0.25 andy = 0.7, while this value rapidly
decreases asapproaches 10. Also, from the figure it is clear that the nurabiéerations increases as the
network heterogeneity (i.e., paramet@iincreases.

Finally, we check the impact of the distribution of the WSes#ivitieso; on the number of iterations
performed by OLPC. To this end, an experiment similar to Expent Ill is executed; however, the output
of interest is the mean number of iteratiof(s\). The experimental results are shown in Fig. 4(b). We
see that the number of iterations seems to depend, to a letigye ,eon the selectivities’ distribution. When
o ~ U,(0.8,1) the number of iterations is higher than any other sele@witlistribution for a given
simulation environment. For the rest threedistributions the number of iterations is approximately th
same. This phenomenon can be explained by the following fabeno ~ U, (0.8,1) the value of
variablee decreases at a slower rate, so that the expansion phasemessigerations. As a result, the
algorithm converges to the optimal in more iterations. @abshows the number of iterations for examples
with high selectivities in more detail. For fixed valuesXofthe average increase in the number of iteration
with regards to the number of services is still linear.
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A NTJ10 TJ40 [70 [100 [130 [160 [190 [220 250 |

p=04 |
0.5 1.02 [127]111]1.03 [124 113 [1.07] 175 | 1.06
15 161 |[1.70] 138 [ 147 [201 157 |[159] 121 |1.49
25 231 | 1.38]1.06|4.09 |6.19 386 |217]1.01 | 1.84
35 137 114338831 |262|309 | 121|344 |421
45 157 [1.62 (341379 [679 |2438 197|240 |4.17
5.5 12.68 | 447 | 2.34 | 640 | 220|678 [1.95|6.10 |6.75
6.5 144 | 144|476 | 414 | 144|361 |121]120 |456
75 1.00 |4.76[323]523 | 208|140 |887 232 |157
8.5 312 [ 265|255 1063|277 185 | 1.06 | 14.73 | 492
9.5 1.61 | 1.25]952 589 | 237|237 [801|143 |592
p=0.6
0.5 128 [1.00 [1.16[1.00 [ 1.01]1.01 [1.00[1.00 [ 1.00
15 239 [1.00 [1.19 [ 129 [ 1.00 [ 341 | 1.42|1.03 |1.00
25 265 |[1.001.00| 115 |1.06|1.00 |1.00]|1.15 | 1.50
3.5 132 [1.89]1.02 [1.00 [ 1.01 [255 |[1.12] 113 |1.18
45 1.00 |[1.00 | 1.12 [1.00 | 1.00 | 1.29 |1.00|1.15 | 1.00
5.5 1.80 [ 1.40 [ 1.00 [ 1.00 | 1.00 | 1.41 | 1.00 | 1.13 | 1.08
6.5 100 | 1.00 | 1.65 | 1.12 | 1.00 | 219 | 1.45 | 1.00 | 1.89
75 448 11921100127 |1.00]241 |[134]1.00 |279
85 1.00 |1.83 | 121|241 | 176|266 |1.00]| 1.04 | 1.00
9.5 100 [1.37[1.12]1.00 |[158]1.00 |1.04 178 |1.13

Table 9: Experiment VI: results for the same environment as Experiment I.

v/X[05 J15 [25 [35 [45 [55 [65 [75 [85 [95 ]

p=04 |
04 [113]158]1.85[2.15[2.14[234[318]267][291]342
0.7 [128]1.65[222]263[357]445]326[392]3.76 ]38l
p=20.6
04 [1.09][119]114[1.14[124[129[125]122[153]133
0.7 [1.08]1.11[126[ 139 [1.21[ 126|144 [ 167153120

Table 10: Experiment VI: part of the results for the same environment as Experiment II.

4.3 Precedence constraints

The last part of the evaluation consists of experiments Wits for the case when there are precedence
constraints among them. In [24], it is described how WS plaspecting any such constraints are built
in O(n®) time. We re-execute the experiments of the previous subsegfter having modified the values
of parametep. We experiment with two values @f, p = 0.4 andp = 0.6, both of which result in a
high number of precedence constraints; results for lowkregofp, e.g., 0.1, are omitted because they
are very similar to the results for the case without preced@onstraints. In all constrained plans, a single
WS plays the role of data generator, i.e., that WS must peeadidbther WSs. As explained earlier, that
parametep controls the probability according to which a random seVic.S; is prerequisite for another
servicelV S;,i < j.

Experiment VI: impact of p on performance Table 9 shows the experimental results derived from
Experiment | wherp = 0.4 andp = 0.6 (v = 0.7). Although the response time deviations increase as
the number of input WSs increases, as the value of paramétereases, they tend to diminish. This is
actually expected and is explained by the fact that the numbpossible plans that can be constructed
shrinks with highp probabilities. In fact, in highly constrained environm&rihe plan construction process
is essentially determined by the constraints. This becam@e clear whemn = 0.6, where the Greedy
algorithm tends to produce equivalent plans with OLPC, dlespe network disparity and the processing
and the transferring costs of the simulation instancespFer0.4 and N = 250, the maximum value of
is 6.75, while forp = 0.6 and N = 250, the maximum value of decreases to 2.79. In other words, OLPC
can still improve the performance by several factors. H@xethe maximum value of for v = 0.7 and
N = 250 whenp = 0 (unconstrained case) is 64.1, as shown in Table 3.
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| Y\ A | 1.5 | 2.5 ‘ 35 ‘ 4.5 | 5.5 | 6.5 | 7.5 | 8.5 ‘ 9.5 ‘
| p=04 ‘
0.4 316 | 512 | 8521|2144 |3.76 | 3.88 |24.64|3.36 | 19.6
0.7 1493 | 13.44 | 557 | 27.13 | 24.16 | 2396 | 448 | 456 | 5.12
p=0.6
0.4 564 | 668 | 683|640 |584 |664 |752 |672|721
0.7 6.72 | 712 | 738|676 |736 |772 |672 |696 | 6.83

Table 11: Experiment VII: number of iteration for different values of A and v when p = 0.4 and
p=0.6.

[\~ [ 10 [40 [ 70 [ 100 [ 130 [ 160 [ 190 | 220 | 250 |
[ p=0.4 |
0.5 12 13 16 30 13 8 15 76 10
1.5 15 99 11 18 19 19 229 26 32
25 8 28 58 55 14 494 15 132 18
3.5 75 66 308 86 56 20 22 130 28
4.5 11 33 22 21 46 53 54 47 45
5.5 10 17 194 19 25 25 52 75 29
6.5 860 | 21 24 17 462 | 32 51 113 | 28
7.5 24 24 246 363 106 79 24 29 35

8.5 10 21 168 | 46 31 102 | 33 32 64
9.5 64 45 163 | 60 99 32 25 132 | 25
p=0.6
0.5 11 5 9 7 15 13 22 9 21

Table 12: Experiment VII: number of iteration for different values of A and N when p = 0.4 or
p=0.6,y=0.7and o0 ~ U,(0.8,1).

We also regenerate the environment of Experiment Il. Theeggde response time ratio values are
similar to the results shown in Figure 3(a), i.e. the respdimee deviations between tli¢reedy and the
OLPC plans increase, as the network heterogeneity insdtse figure is omitted). A part of the results
is presented in Table 10. Fpr= 0.4 andy = 0.4, 7(8.5) = 2.91, while forp = 0.4 andy = 0.7, 7(8.5)
increases t8.76. The corresponding values fpr= 0 (unconstrained case) are 11.2 and 23.9;fer 0.4
andy = 0.7, respectively (see Fig. 3(a)).

Experiment VII: impact of p on efficiency We conclude are experiments with the investigation of
the impact ofp on the number of iterations. As expected, the iterationsGhPC algorithms performs
in order to complete decreases as parameiecreases. The reason behind that fact is quite clear. As
stated in the previous paragraph, the number of possibtes damuch lower in a constrained environment.
Related to that, the termination condition of the OLPC athan checks fewer plans, as some WS couples
are not valid plan prefixes. Recall that in these experimangsurce WS always exist, which corresponds
to the source of input data, so that it is must be first serviceviery planC. Thus, the number of WS
couples(W'S;, W S,.) that can be placed in the first two positions of a serial @ane. WS; = WSy,
andWS,. = WSy1), is N — 1. In contrast, in an unconstrained environment the numbsuch possible
couplesisN(N — 1), i.e., the plan search space is significantly narrower.

Table 11 presents the experimental results after we rerperirent V forp = 0.4 andp = 0.6. It
is clear, that the latter have many similarities with theutssof Fig. 4(a), i.e. the number of performed
iterations increases when the network disparity incredsmsever, it decreases as parameta@icreases.
For example, fop = 0.4 andy = 0.4, {(9.5) = 19.6, while forp = 0.6 andy = 0.4, {(9.5) decreases to
7.21. However, the number of iterations is generally higherfot 0 (see Fig. 4(a)). We also experiment
with the impact of the selectivity values. The correspogdinmber of iterationg (A, N) are shown in
Table 12. The number of iterations increases when the nuofbeput WSs increases, too. However, as
explained above, this number is much smaller, comparaltitythié results of the second part of Table 8.
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5 Related Work

Our work relates to the broader areas of distributed quetynigation and pipelined operator ordering.
Distributed query optimization algorithms differ from theentralized counterparts in that communication
cost must be considered and there is a trade-off betwednatotk optimization and the harder problem
of response time optimization [9]. Proposals for the lattese either employ more sophisticated dynamic
programming techniques (e.g., [14]) or resort to heusstiResponse time optimization is largely affected
by the types of parallelism in the query plan; neverthelggscally only independent parallelism is inves-
tigated in wide area settings (e.g., [13, 7]), whereas ocmgas on pipelined parallelism. There is a lot of
work for different settings than the one assumed in this werg., P2P networks [21, 12]); however such
proposals do not share the same goals and cannot be apptiedpgooblem.

Pipelined operator ordering has been examined for bothralea®d and distributed environments. In a
centralized single-node environment, the problem of miriimg the response time can be optimally solved
in polynomial time only if the selectivities are indepentglb, 11]; note that if the independence as-
sumption does not hold the problem becomes intractable.witde-area environment, the response time
optimization problem is transformed to bottleneck costimination. In this setting, Srivastaw al [24]
proposed an algorithm for optimizing select-project-jqureries over WSs. However, they assume that the
guery execution process is simplified through a WSMS whidhestrates data exchange among the ser-
vices, so that joins can be computed and the heterogeneaitynofmunication costs does not impact on the
bottleneck cost metric. As such, our algorithm can be deemseah extension to [24] for the case when
decentralized sequential plans are examined; note thps(@port parallel plans as well, which outperform
sequential ones when service selectivities are higherthd@ragaet al [4] deal with a slightly different
problem, where IR-style tasks are combined with accuratechdasks in the same query; the goal is to pro-
duce a WS invocation plan (either sequential or paralledrater to obtain the begtanswers of a query in
the presence of access limitations but the algorithm thgyl@ninvolves exhaustive search of the candidate
plans. Deshpandet al [6] consider correlated selective attributes but they aimiaimizing the total cost
for acquiring the values of the attributes, since they asstimt each attribute is assigned an acquisition
cost. The plan constructed is a conditional one in the forrma binary decision tree. All these proposals
are static. In [3], the goal is to develop solutions for thdeving of selective operators that are tailored
to online, dynamic scenarios. However, the approximaterélgn in [3] applies only to the problem of
minimizing the total work and assumes selectivities nohbighan 1. Complementarily to the above, the
algorithm in [23] tackles the problem of allocating senga@ host machines with respect to a fixed plan.
The algorithm can determine the number of hosts that mayusec WS with a view to minimizing the
response time of the submitted query.

None of these works consider the communication costs. iBgisblutions for multi-query optimization
neglect the communication costs, as well. E.g., [20, 18lims&sa single-node execution environment,
where all operators are selective, potentially correlated unconstrained. The optimization metric is the
minimization of the sum of the operator costs, as in a disted version of the same problem discussed in
[17].

A common characteristics of the proposals mentioned scsférat they build a single plan. For com-
pleteness, we mention techniques that define a set of iaténlg plans in order to maximize the data flow,
which is equivalent to minimizing the bottleneck cost. I [§ich a tuple routing algorithm is proposed in
order to maximize the flow of tuples processed by the filtethefinput query. The filters are all selective
and unconstrained. The outputis a set of serial plans. E@ plan is assigned a probability weight and
when a new tuple enters the system, it is assigned to one &¥ geial plans with a probability depending
on its weight. It must be noted that the flow maximization ailpon considers only the process rates of
the filters (i.e., the number of tuples per unit of time) and fpotentially heterogeneous communication
costs are disregarded. This work is extended in [8] to alppat proliferative operators and precedence
constraints. However, [8] is characterized by the limitatdf not considering communication costs, too.
Note that interleaving plans are not the same as eddies [2tH&5former deal with multiple static plans,
whereas the latter refer to a single plan that is continyoagépted to changes in the environment.

Finally, a recent work that takes data transmission int@asthas appeared in [16], which deals with
processing of multiple, overlapping, non-parallel queri€he input data is in sources stored on different
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host machines, while the cost to transfer data between anfidsts varies, as in our problem. Nevertheless,
the optimization goal is different; the algorithm in [16ha8 to minimize the total cost to transfer data across
overlapping queries, whereas we focus on minimizing thparese time of a pipelined parallel query.

6 Conclusions and Directions for Future Work

In this work, we deal with the optimization of decentralizpteries over Web Services. More specifically,
we present an algorithm for finding the optimal ordering gfgtined services when the services commu-
nicate directly with each other and the communication cestg. The goal is to minimize query response
time, which, due to parallelism, depends on the bottleneckice in the plan. Our algorithm operates
regardless of any precedence constraints and selectiities can be higher than 1. To the best of our
knowledge, it is the first attempt to solve this intractabtelgbem. Our algorithm is provably optimal,
i.e., always finds the optimal plan, and particularly efiitian terms of running time, as the results of the
thorough evaluation reveal. It follows the branch and boaptimization approach and adopts a novel
pruning technique in order to reduce the search space. fiedthperformance improvements of an order
of magnitude in realistic scenarios.

Our work has been motivated by emerging paradigms of diggitbdata management and can be ex-
tended towards several directions in order to fully fulfibdern needs. In the future, we plan to investigate
solutions that support more generic plans rather than nim@e sequential orderings of operators. In such
plans, each service can have multiple inputs and disseenitsaesults to multiple services simultaneously.
The investigation of correlated selectivities and the tigument of adaptive flavors of the algorithm is also
left for future work. Finally, we believe that, in distrited settings, operator ordering solutions must be
coupled with resource allocation and scheduling algorlmmorder to produce a complete solution. We
plan to work to this end in the future, too.
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