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Automatic Color Based Reassembly of
Fragmented Images and Paintings
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Abstract—The problem of reassembling image fragments arises
in many scientific fields, such as forensics and archaeology. In the
field of archaeology, the pictorial excavation findings are almost al-
ways in the form of painting fragments. The manual execution of
this task is very difficult, as it requires great amount of time, skill
and effort. Thus, the automation of such a work is very important
and can lead to faster, more efficient, painting reassembly and to a
significant reduction in the human effort involved. In this paper, an
integrated method for automatic color based 2-D image fragment
reassembly is presented. The proposed 2-D reassembly technique
is divided into four steps. Initially, the image fragments which are
probably spatially adjacent, are identified utilizing techniques em-
ployed in content based image retrieval systems. The second op-
eration is to identify the matching contour segments for every re-
tained couple of image fragments, via a dynamic programming
technique. The next step is to identify the optimal transformation
in order to align the matching contour segments. Many registra-
tion techniques have been evaluated to this end. Finally, the overall
image is reassembled from its properly aligned fragments. This is
achieved via a novel algorithm, which exploits the alignment an-
gles found during the previous step. In each stage, the most ro-
bust algorithms having the best performance are investigated and
their results are fed to the next step. We have experimented with
the proposed method using digitally scanned images of actual torn
pieces of paper image prints and we produced very satisfactory re-
assembly results.

I. INTRODUCTION

T HE problem of reassembling image fragments arises in
many scientific fields, such as forensics and archaeology.

In the field of archaeology, the pictorial excavation findings are
almost always in the form of painting fragments. For example,
they can be fragments of painted pottery, murals, or mosaics,
which must be assembled to form the original painting. A re-
lated aspect of the problem is the development of a generative
model for cracks and fractures as proposed in [1]. More rarely,
there are cases where the form of the original object (e.g., mo-
saic) is known but has to be reassembled because of a destruc-
tion. In [2], a pattern matching algorithm for the comparison of
digital images is implemented using discrete circular harmonic
expansions. The manual execution of the above tasks is very dif-
ficult, as it requires great amount of time, skill and effort. Thus,
the automation of such a work is very important and can lead to
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faster, more efficient, painting reassembly and to a significant
reduction in the human effort involved.

In our work, the automated reassembly of images from frag-
ments follows a four step model, similar to the one presented
in [3] for 3-D object reconstruction. The first step of our ap-
proach is the identification of probable adjacent image frag-
ments, in order to reduce the computational burden of the sub-
sequent steps. There, several color-based techniques are em-
ployed. However, as stated in a following section, this step can
be omitted sacrificing the lower running time of the image re-
assembly procedure, for higher performance.

The second operation is the identification of the matching
contour segments of the image fragments. The corresponding
step employs a neural network based color quantization ap-
proach for the representation of the image contours, followed
by a dynamic programming technique that identifies their
matching image contour segments. In [4], an analogous algo-
rithm is presented, for the discovery of the matching contour
segments of 2-D fragmented objects. However, the fragment
contour comparison is based on the shape of the input 2-D
object fragments, while a dynamic programming technique
is employed in order to identify their matching segments.
Aminogi et al. [5], presented an algorithm based on both the
shape and the color characteristics of the input 2-D image
fragments contours. There, one contour pixel sequence is
overlaid on another one and, for each such “placement”, the
curvature and color differences of the corresponding contour
pixels are estimated. If their total sum is less than a user defined
threshold, the contour segments are considered to match. In the
experimental results section, the latter approach is compared
with the one proposed here. The results show that the latter has
better performance.

Once the matching contour segments are identified, a third
operation takes place. Here, the geometrical transformation,
which best aligns two fragment contours along their matching
segments, is found. Several such approaches exist, e.g., [6]–[8],
however, most of them are either not robust to matching errors
and/or have high computational complexity. A very popular
registration technique is the Iterative Closest Point (ICP)
method [9]. New modified versions of the ICP have been pro-
posed, which are robust to noise [10]–[12]. These approaches
limit the effects of noise on the registration performance by
outlier trimming based on a least squares distance criterion. In
our work, the above ICP variants were experimentally evaluated
and the best one among them is selected for integration with
the proposed four stage image reassembly algorithm.

The last step in solving the fragment reassembly problem
is the reassembly of the overall image from its constituent
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fragments. Here, a novel algorithm is proposed. The novelty
of our algorithm lies on the fact that employs both the contour
matching results and the alignement angles of the fragments,
found during the second and the third step, respectively. The
majority of the algorithms in this step, as will be presented in
the related work section, utilize only criteria that are based on
the contour matchings, e.g., the length of the matching. It is
clear that it is essential that each step of the algorithm feeds the
next one with correct results, otherwise the image reassembly
may contain errors, or may even fail completely. Our goal
is to investigate and propose the most robust techniques in
order to produce accurate results at each intermediate step. To
summarize, the main steps of the proposed method are shown
in Fig. 1 and can be described as follows.

1) Discovery of spatial adjacent image fragments. The
identification of probable spatially adjacent image frag-
ments is done by utilizing techniques that are widely em-
ployed in content based image retrieval (CBIR) systems.
The purpose of this step is to reduce the computational
burden of the steps that follow. Once this step is finished,
we select to retain, for every image fragment, a list of the
most probable adjacent fragments.

2) Discovery of matching contour segments of adjacent
image fragments. A novel approach based on the Smith-
Waterman algorithm [13] is employed in order to match
the colors appearing in the contours of adjacent image frag-
ments. Various color similarity criteria are being evaluated.
Based on such similarity criteria, for each image fragment,
one matching contour segment with other image frag-
ments is retained.

3) Image fragments contour alignment. The purpose of this
step is to find the appropriate geometrical transformation
of one fragment relative to its adjacent one, in order to
align them along their matching contour segments. Many
variants of the ICP algorithm are employed and evaluated
to this end.

4) Overall image assembly. Once the matching contour seg-
ments of couples of input image fragments are identified
and properly aligned, the remaining step is the reassembly
of the overall image. Since the criteria that are based on
the contour matchings do not suffice for the overall image
reassembly, a novel feature, namely the alignment angles
found during step 3, is introduced.

In this paper, an integrated method for automatic color based
2-D image fragment reassembly is presented. This paper is or-
ganized as follows. Section II discusses the related work. Sec-
tion III describes the discovery of the spatial adjacent fragments.
Section IV presents the identification of the matching contour
segments of the spatial adjacent image fragments, while Sec-
tion V describes the derivation of the optimal geometrical trans-
formation that aligns contours along their matching segments.
Section VI presents the overall image assembly algorithm. Ex-
perimental results are presented in Section VII, while conclu-
sions are drawn in Section VIII.

Fig. 1. Overall image reassembly approach.

II. RELATED WORK

A. Two-Dimensional Paper Document Reassembly

Similar to 2-D image fragment reassembly, in paper docu-
ment reassembly, torn paper fragments must be assembled to
form the image of an entire page of a paper document. Work on
this area was conducted in [14]–[16]. The above employ shape
representations of the paper fragments, in order to reassembly
the original documents. In [15], polygonal approximation is
initially applied to reduce the complexity of the paper frag-
ment contours and geometrical features are extracted from
these polygonal curves. Then, a method based on [4] is used
to assemble the entire document from its constituent paper
fragments. In [16], shape features, namely turning functions,
are estimated from every fracture contour and are utilized to
discover matching contour segments. After that, each matching
is assigned a confidence score. The alignment transformation
of the fragments is simultaneously found during matching.
After the discovery of matching contour segments, the final
reassembly step performs two actions, namely matching re-
laxation and fragments merging. During matching relaxation,
every pair of aligned input fragments is checked for overlap
along their matching contour segments. If they overlap, this
matching is discarded. Otherwise, the neighboring fragments
of this pair are identified. A score, called support, is assigned to
the neighborhood of each pair of non-overlapping fragments.
This score increases as the number of neighboring fragments as
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well as the matching confidence assigned to pairs of fragments
increase. The fragments that have neighborhoods with max-
imum support are merged into new fragments and the whole
procedure starts again, i.e., the matching contour segments are
identified for all pairs of fragments, and so on.

B. Two-Dimensional Puzzle Assembly

Many methods were also proposed for the 2-D puzzle re-
assembly problem. In [17], color and textural features of the
puzzle pieces are utilized. The matching and alignment of
puzzle pieces is carried out using an FFT-based image registra-
tion technique. In [18], the puzzle reassembly process consists
of two steps; frame and interior assembly. A traveling salesman
problem is formulated for frame assembly, while
backtracking and branch&bound techniques are employed for
interior assembly. The puzzle pieces are matched employing
the distance of their contours curves. An improvement of
this method is presented in [19]. In [20], the overall puzzle
assembly is done using a Best-First procedure. There, two
criteria are utilized to sort matching contour segments. The
first one is the residual error of corresponding contour pixels
after the discovery of the optimal geometrical transformation,
while the second criterion is the arc-length of the matching
contour segments. It is clear that the problem of 2-D puzzle
assembly does not meet the major difficulty of the image and
object reconstruction problems; that is the missing or highly
damaged image (or) object fragments. Thus, in general, the
algorithms proposed in this field would be inadequate to solve
such problems.

C. Three-Dimensional Object Reconstruction

Regarding 3-D object reconstruction, an automatic method
for matching and alignment of 3-D, free-form archaeological
fragments is proposed in [21]. The input fragments are not
pre-processed. The matching is performed utilizing only the
3-D points of the whole surfaces of the objects. The output
matching-alignment minimizes the distance between the 3-D
surface points of the two fragments. Andrews et al. [22]
propose an automatic method for the reconstruction of pairs
or triplets of 3-D symmetric archaeological fragments. The
matching is found through a two-phase method. During the first
phase several matchings-alignments are estimated for every
pair of fragments. The 3-D points of the fracture curves in the
outer and inner surface of the fragments as well as the axis of
rotation of the fragments are utilized to this end. In the second
phase, these matchings are refined using the quasi-Newton
method, and evaluated according to several criteria namely the
angle formed by the fragments rotation axes, the perpendicular
distance between the rotation axes and the distance of the
matched fracture curves points. Eventually, one matching is
retained for every pair of fragments. Finally, in the overall
object reconstruction step, a greedy merge strategy selects
pairs of fragments to form triplets In [23], a human-supervised
collaborative reconstruction system is described. The aim of
the system is to propose a potential matching between any pair
of input fragments. The matching is found by utilizing shape
features (curvature and torsion) estimated from all 3-D points
in the fracture curves of the fragments. The shape similarity of

the fracture curves is ranked with a cyclic distance algorithm.
Each matching defines correspondences between 3-D points
in the fracture curves. Then the users select to merge or not
the proposed fragments. The fragments alignment is performed
interactively (in a VRML environment) by the users. The object
reconstruction procedure follows the merge-update paradigm.
Significant work on this area is also done in the Digital Forma
Urbis Romae project [24]. The latter seeks to reconstruct a
giant marble map of ancient Rome dating back to 200 AD,
while only a small portion of fragments of the original map still
exist. The reconstruction process in [24] is not automatic and
is guided by expert users. Information and details about other
3-D object reconstruction methods can be found in [3].

Finally, in [25], a method is introduced to measure the average
amount of information contained in a 2-D ceramic tile fragment
contour, in terms of its curvature. This parameter shows how
many false contour matches are expected to be found among a
given set of ceramic tile fragments.

III. DISCOVERY OF SPATIAL ADJACENT IMAGE FRAGMENTS

The purpose of this step is the spatial adjacent image frag-
ments identification by using their probable high color simi-
larity. We have utilized techniques that are widely employed in
CBIR systems in order to identify these similarities [26]. In this
section, we briefly mention the descriptors and the measures we
have experimented with.

Color quantization can be based on a commercial color
palette, e.g., the Gretag Macbeth Color Checker [26]. The
Macbeth Palette can be used to evaluate color reproduction
systems and it consists of 24 different colors that are scien-
tifically chosen to represent a variety of naturally occurring
colors. Color quantization is used to find the normalized quan-
tized color image histograms, which can be used for color
image retrieval. We have also experimented with the Spatial
Chromatic Histogram [27], which provides information both
of color presence and color spatial distribution. The Spatial
Chromatic Histogram of image having quantized colors
is given by , . In the
above equation denote the normalized color histogram, i.e.,

is defined as the number of pixels having color i divided
by the total number of pixels, is a 2-D vector expressing
the center of mass and is the standard deviation of the
color label, respectively [27]. We have used modified versions
of the , and Histogram Intersection measures and scaled
them to the range [0, 1], with 1 denoting a perfect similarity. In
the following equations and denote the normalized color
histograms extracted from images and , respectively. The
utilized matching measures are the following.

1) Scaled norm

(1)

2) Scaled norm

(2)

3) Scaled Histogram Intersection
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Fig. 2. First step of the proposed 2-D image reassembly approach.

(3)
4) Spatial Chromatic distance [27]

(4)

Once this step is finished, we select to retain, for every image
fragment, a list of the most chromatically similar fragments.
The first step is shown in Fig. 2. It must be emphasized that this
step is not prerequisite for the correct reassembly of an image
and can be easily skipped, if the number of image fragments is
rather small. The purpose of this task is to reduce the computa-
tional burden of the steps that follow.

IV. DISCOVERY OF MATCHING CONTOUR SEGMENTS OF

ADJACENT IMAGE FRAGMENTS

Let us suppose that we have a set of image fragments where
we have to find their matching contour segments. This set may
contain the image fragment pairs identified by the previous
step or all the image fragment pairs (if the first step has been
skipped). This operation is performed on image fragment pairs.
In this section, we present a novel algorithm for identifying
matching contour segments of couples of input fragments. Our
approach to fragment contour matching is based exclusively on
information regarding the color of their contours.

In order to avoid comparing directly contour pixel colors that
may contain noise, a color quantization preprocessing step is uti-
lized, which takes pixel samples from the contours of all image
fragments. Many color quantization methods exist [28]. For ex-

ample, quantization can be done using ready made palettes, such
as the Gretagh Macbeth palette [26]. The Mean Shift algorithm
[29] is a popular solution for color image quantization. Its ad-
vantage is that the number of the color clusters is automatically
defined. However, the Mean Shift algorithm exhibits a severe
local maxima sensitivity. This drawback may result to signifi-
cant misplacements of color cluster centers, as will be shown in
the experimental results section.

In the following, we employ Kohonen neural networks
(KNNs) [30] for color quantization purposes. KNNs belong
in the class of unsupervised neural networks. They can cluster
input vectors without any external information, following an
iterative procedure based on competitive learning [30]. KNNs
consist of two node layers; the input and the output layer. In
the former, the number of nodes equals the dimension of input
vectors, while in the latter the number of nodes equals the
amount of produced clusters. The nodes in the output layer are
organized by means of a lattice [30]. In KNNs, each node in
the input layer has a connection with every node in
the output layer. For a network with input nodes, the weight
vector ending at an output node ,
is the center of a cluster. In KNNs, given an input vector, the
output node with the highest response (winning node) for that
as well as all “neighboring” nodes that belong to an area around
it, update their weight vectors.

In the following, we shall describe the KNN variant em-
ployed to perform color quantization of image fragments. First,
a random number of pixels is sampled from the input image
fragments and mapped to color space. The number of
sampled pixels that are required to successfully quantize the
color space, is a minimal portion of the total image fragments’
pixels, as it will be demonstrated in the experimental results
section. After that a KNN is defined, where 3 corre-
sponds to the dimension of the input space and to the
predefined number of color clusters. Let , be
one of the sampled pixels, after mapping to the color
space. The following learning procedure is iteratively applied.

1) A winning node is selected, i.e., output node whose
weight vector has the highest similarity with the input
vector , than any other output node

(5)

Euclidean distance is utilized in our experiments as the
similarity criterion.

2) A neighborhood function is utilized to estimate the weight
vectors updates. Thus, the weight vector of an output
node is updated under

(6)

where , is the learning pa-
rameter , denotes the spread of the “neigh-
borhood” around the winning node and , corre-
spond to places inside the lattice of an output node and
the winning , respectively.

For better convergence, the learning parameter and the stan-
dard deviation of the neighborhood function gradually de-
crease after an iteration (epoch in neural networks terminology).
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The learning procedure stops, when several criteria are met, e.g.,
when a predefined number of epochs have finished, or when the
changes of clusters’ centers are very small. After training
the network, the weight vector of every output node corresponds
to a cluster center. Details about the above parameters, as well as
a comparison of the above color quantization techniques can be
found in Section VII. Following one of the previously described
approaches, the color of every contour pixel is represented by its
color cluster label , .

Let and be two pixel sequences
that follow the entire contours of two different image fragments.
Once the color clustering has been achieved for the input image
fragments, sequences and are assigned to and

respectively. and are two color cluster labels, where the
former is estimated at pixel and the latter at pixel . Then
and have the same color, if . We define a similarity
function of the two contour pixels as follows:

(7)

Given and and their label lists and , we
search for the contour pixel mapping function , such that:

• for every and , ;
• .
The first condition means that more than one contour pixels in
can be mapped to the same contour pixel in . However, the

former contour pixels must be strictly consecutive. This con-
dition guarantees that no “folding” of the contour pixel se-
quence, in order to match it with the corresponding matching
contour segment in , will take place. The second condition en-
sures that every contour pixel in is mapped to a contour pixel
in . The algorithm that is used to identify the mapping function

is a variant of the Smith Waterman dynamic programming
algorithm [13], which is a local sequence matching algorithm:
given two input sequences, it can identify the mapping func-
tion between their segments. Each mapping between segments
of input sequences is assigned with a score ; as the score

increases, the color similarity becomes higher. A similarity
matrix is set up, where the row of matrix corre-

sponds to , while the column corresponds to . is the
best mapping score of the pair of every sub-sequences ending
at and pixels. The algorithm gradually fills matrix and
forms the mapping function . During filling, each matrix cell
is assigned with the highest possible value, as our purpose is to
maximize the mapping score .

As in a typical dynamic programming algorithm, the solution
to an instance of the problem is given in terms of solutions to its
smaller sub-instances. Thus

(8)

where . is assigned the maximum value of the right
hand terms in (8). Let be the estimated mapping of
and subsequences. If ,
then the relation is appended to . On the other
hand, if or is selected,

Fig. 3. (a) Color similarity matrix. (b) Matching based on color information.
Common contour segments are denoted by blue.

then or is appended to . A gap
is formed, when either the second or the third case occurs in
(8). Generally, a gap is formed when one or more contour pixels
of the first fragment are mapped to the same contour pixel of
another fragment. The percentage of mapping gaps is a mea-
sure of the dissimilarity between the input contour segments; a
high gap percentage reveals contours with many dissimilarities.
The parameter is negative, in order to penalize mappings with
many gaps. When this stage is completed, we identify an area
in with high similarity values . Diagonal patterns are pre-
ferred, since they correspond to mappings without many gaps.
Let and be the lowest right and highest left bor-
ders of this area. In the implemented experimental modification,

is the maximum value of , while . Then we
select the mapping starting from and ending at ,
which is formed during filling . The Smith Waterman algo-
rithm steps are shown in Fig. 4.

A basic question is how to select , and . These param-
eters are strongly correlated with the desired characteristics of
the contour matching. Specifically, if a matching without many
gaps is desirable, then a high absolute value is selected for .
Otherwise, the value of must be close to . The complexity of
the proposed method for a pair of fragments is , where

and are the lengths of the two pixel contour sequences.
For an image that is partitioned among into fragments, the
worst case computational complexity scenario (omitting the first
step) is , where is the average contour length of
input image fragments. Such a similarity matrix is shown in
Fig. 3(a). The horizontal axis of the matrix corresponds to the
quantized contour pixels color sequence of the first image, while
the columns correspond to the quantized contour pixels color
sequence of the second image. High values correspond to con-
tour segments with a high degree of similarity (deep red col-
ored areas). The correctly matched color contour sequences are
shown in Fig. 3(b).

After completing the second step, for each image fragment
, one matching contour segment with other

image fragments is retained, producing the set of true adjacent
image fragments couples .

V. IMAGE FRAGMENTS CONTOUR ALIGNMENT

In this section, we investigate methods for finding the best
geometrical transformation that aligns fragment contours along
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Fig. 4. Second step of the proposed reassembly approach.

their matching segments. All matching contour segments iden-
tified during the previous steps must be properly aligned, be-
fore the reassembly of the overall image. The disadvantages of
the alignment algorithms found in the literature (as discussed
in the introduction) have led us to use variants of the ICP algo-
rithm [9] for contour alignment. The ICP algorithm generally
starts with two point sets (contour segments in our case) and
an initial guess of their relative rigid body geometrical transfor-
mation. It then refines the transformation parameters, by itera-
tively generating pairs of point correspondences and by mini-
mizing an error metric. Given two curves
and , the following steps are performed.

1) Compute the subset of pairs of closest points

(9)

2) Compute a Least Squares estimate of the geometrical trans-
formation mapping onto

(10)

where .
3) Apply the transformation to the data points

(11)

4) If stopping criterion is satisfied exit; else, go to step 1.
The original form of the ICP algorithm is not robust to outliers,
since it does not trim noisy data. Such outliers, coming from er-
rors during the contour segment matching, create serious prob-
lems to alignment, if not properly handled. In order to obtain
ICP versions that are robust to outliers, many ICP variants have
been proposed in the literature. In [31], these variants have been
classified into six categories. In order to develop a robust con-
tour alignment procedure, we have studied three popular robust
versions of ICP and have evaluated their performance.

A. Robust ICP (RICP)

The first variant that we studied is RICP [10]. It trims outliers
in the second step (10) of the ICP and computes an error
norm, which is, hopefully, free from outlier influence. Outliers
are rejected, according to the following procedure. Let be
points from the first curve and be their corresponding closest
points on the second curve. Select randomly two points from
each of the 2-D input curves and execute their registration, by
solving the linear system

(12)

where is a rotation matrix. Compute the residuals
. The above procedure is repeated for a sufficient number

of iteration [10]. Once all potential registrations are evaluated,
the one that minimizes the median of the residuals is chosen.
The correspondences having residual error larger than a fixed
threshold are removed. The least squares error norm is com-
puted using only the remaining contour points.

B. Trimmed ICP and Picky ICP

The main steps of both trimmed and picky algo-
rithms are the following [11].

1) For each point of , find the closest point in and com-
pute the individual distances .

2) Sort in ascending order, select the least values and
calculate their sum .

3) If any of the stopping conditions is satisfied, exit; other-
wise, set and continue.

4) For the selected pairs, compute the optimal geomet-
rical transformation that minimizes .

5) Transform according to and go to step 1.
This algorithm terminates either if (a) the maximum number of
iterations is reached, or (b) the trimmed mean squared error

is less than a user defined threshold, or (c)
the relative change of the trimmed mean squared error ,
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where is the trimmed mean squared error found in the pre-
vious iteration, is less than a user defined threshold. Despite
their good performance, the above algorithms, namely RICP,
trimmed IC and picky ICP have the disadvantage that the outlier
percentage in the input curves, must not exceed 20%. Otherwise,
the computed transformation is wrong.

C. ICP Registration Using Invariant Features (ICPIF)

ICPIF is another ICP variant proposed in [32]. New features
were introduced in order to improve the correspondence selec-
tion, such as the second order moments and the spherical har-
monics. After the computation of the above features for every
point of and , the traditional distance, computed during
the second step of ICP (10), is replaced by the weighted sum of
the old distance and distances based on the introduced fea-
tures. The goal is to estimate point correspondences that are not
only based on the Euclidean metrics but also incorporate new
shape invariant features.

VI. OVERALL IMAGE REASSEMBLY

Once the true adjacent image fragments couples and their
matching contour segments are identified and properly aligned,
as described in Sections IV and V, the remaining step is the re-
assembly of the overall image. However, the mapping scores
of the matching contour segments do not suffice for image re-
assembly, since they are not always well correlated with the true
ones. Thus, the approaches that focus only on using the map-
ping scores, such as [20], are inadequate for producing the true
overall image. For this reason, we have developed a novel so-
lution to this problem, which is based on the introduction of
new use of the alignment angle, that best aligns the matching
contour segments of two image fragments, as described in Sec-
tion V. Consider three image fragments , and each one
having one matching contour segment with the rest ones. We
denote by the rotation angle by which the individual frag-
ment must be rotated, in order to be correctly placed inside
the overall reassembled image. The alignment angle, by which
we must rotate fragment to align it with the matching contour
segment of fragment (before fragment is rotated by ), is
denoted by . In order to align fragments and with re-
spect to each other and place them correctly in the reassembled
image, the following steps must be performed:

1) Rotate fragment by to correctly orient it in the assem-
bled image.

2) Rotate fragment by to correctly align its
matching contour segment with the corresponding
matching contour segment of fragment .

This procedure will simultaneously align fragment with frag-
ment and provide its correct orientation inside the entire
image. We can then state that the matching contour segments
of pairs and are compatible, if and only if

(13)

Following this logic, in our approach we consider that an image
is fully reconstructed, if all its matching contour segments are
compatible, according to (13); this image is called valid. It
should be noted that a valid image is not always the “correct”

one, since the contour segments of two image fragments can be
mis-matched or mis-aligned. However, the experimental evalu-
ation of the technique shows that such flaws do not significantly
affect the reassembly performance of the proposed technique.

Contour segments that match may become incompatible, if
the following errors occurred in the previous steps:

1) the fragment color similarities found in Section III;
2) the matching segments of two fragment contours are dif-

ferent from the true ones (see Section IV);
3) wrong alignment transformation was estimated (see Sec-

tion V).
Based on (13), we can define the so-called relative alignment

angle, which will direct the image reassembling procedure. The
relative alignment angle of a fragment regarding a frag-
ment is evaluated by the formula:

(14)

where is the alignment angle by which we must rotate frag-
ment to align it with the matching contour segment of frag-
ment and is the rotation angle of the individual fragment

so that it is correctly placed inside the overall reassembled
image. It can be easily deduced from the above analysis, that
for a set of fragments placed in the reassembled image and a
fragment having matching contour segments with a subset
of the above image fragments, i.e., , the
above matching contour segments are compatible, if

(15)

Consequently, if a new fragment is to be matched with an
image that it consists of image fragments, then the amount of
the new valid images is equal to the cardinality of the rela-
tive alignment angle set, . We have devel-
oped a reassembly algorithm that utilizes the aforementioned
assumptions to produce a user-defined number of possible re-
assembled images. The algorithm is initialized by taking
couples of input fragments, where and is the
number of input image fragments. These couples have the
highest matching scores of the corresponding matching contour
segments. These couples are reassembled (correctly aligned) to
produce a number of input images that will be further ex-
tended by inserting one fragment each time. The selection of
the initial number of image couples is crucial for the algo-
rithm performance, since the involvement of an erroneous input
pair of fragments would inevitably lead to a wrong image recon-
struction. The reliability of the proposed initialization is both
intuitionally expected and experimentally proven.

The set of input images is iteratively updated in order to
include further image fragments. At every step and for every
input image (initially consisting of a couple of image frag-
ments), the fragment having the maximum mapping score with
an image fragment that belongs in the reconstructed image, is
added. After computing the relative alignment angles of this
fragment regarding the input image parts, a number of images,
equal to the cardinality of these relative aligned angles, are
reassembled for each input image. Those images compose the
new set of input reassembled images (replacing the previous
ones), that will be included in the next iteration. Consequently,
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Fig. 5. Overall image reassembly step.

in the next step a new fragment will be involved in the update
procedure of the input images. This iterative algorithm is final-
ized when no more image fragments are left to be inserted into
the reassembled images. The steps of the algorithm are shown
in Fig. 5.

The proposed method differs from other ones found in the
literature, as it is based on the alignment angles. Thus, it is sen-
sitive to errors in the relative alignment angle estimations. How-
ever, we overcome this drawback, by setting a threshold when
comparing the relative alignment angles. We regard two relative

Fig. 6. Scanned paper pieces at 300-dpi resolution.

TABLE I
RECALL PERCENTAGE OF THE CORRECT COUPLES OF ADJACENT IMAGE

FRAGMENTS FOR � � ��

TABLE II
EFFECT OF COLOR QUANTIZATION METHODS IN CONTOUR

SEGMENT MATCHING

TABLE III
ERFORMANCE OF THE PROPOSED ICP VARIANTS IN CORRECTLY MATCHED

CONTOUR SEGMENT ALIGNMENT

alignment angles and to be equal if , where
is a decision threshold. Of course, a backup approach is to add

manual intervention to the system, and ask the user to select the
correct alignment transformation.

VII. IMAGE REASSEMBLY EXPERIMENTS

The performance of the proposed method was evaluated using
70 paper image prints. Each paper image print had size 25 cm
20 cm and was torn into paper pieces that were scanned
at 300 dpi resolution, as shown in Fig. 6. We selected such a low
scanning resolution in order to create a challenging image frag-
ments dataset. Experiments are conducted in a 4 kernel PC with
4 GB RAM. The algorithm has been implemented in C++. The
first step of the proposed method, as described in Section III,
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TABLE IV
OVERALL IMAGE REASSEMBLY PERFORMANCE

is the discovery of similarly colored image fragments. We se-
lected to retain for every image fragment the 15 most probable
adjacent fragments . In Table I, the mean recall per-
centage of the correct couples of adjacent image fragments for

is shown for various histogram similarity measures.
These results are averaged over all the image fragments of the
entire image fragments dataset. The measure exhibits the
highest performance.

Whether executing (or not) the first step of the proposed
method, the contour segment matching for every input couple of
image fragments must be done. When the first step is executed,
the matching contour segments are identified only for retained
image couples, otherwise it is executed for all possible input
fragment couples. We have experimented by combining the
dynamic programming algorithm with several color quantiza-
tion methods, described in Section IV. We have also evaluated
the performance of the matching contour algorithm introduced
in [5]. Each time, random pixels were sampled from all
fragments that constitute the overall image, in order to perform
color quantization either by using the Kohonen neural nets
or the Mean Shift algorithm. In both cases was set equal
to 0.25% of the total image fragment pixels. We have chosen
Kohonen nets having color clusters, while the learning
procedure took 750 epochs. Nodes in the output layer of the
neural network were organized under a random lattice. The
spread parameter of Mean Shift algorithm [29] was set to 5.5,
thus producing color clusters. Following one from
the previously described color quantization techniques, each
contour pixel is represented by its color cluster label (
utilizing the Gretag Macbeth Checker). The parameters of the
Smith Waterman algorithm were set to , and

. The contour matching results are shown in the last
row of Table II. The second column refers to the percentage of
unidentified matching contour pixels (false negative error rate),
while the third column refers to the percentage of identified
pixels that do not belong in true matching contour segments
(false positive rate). The selection of the specific performance
metrics is justified by the fact that most of the contour matching
approaches, [5], [26], [29], lead to the extraction of “estimate”
matching contour segments that overlap with the “correct”
matching contour segments. The matching performance de-
pends on the quality of the overlap, which is estimated by
the ratio of unidentified and mis-identified contour pixels, or
false negative and false positive rate. After this step, for each
image fragment, one matching contour segment to
image fragments is retained, as described in Section IV. Color
quantization using the Kohonen nets provides the best solution,
identifying correctly more than 70% of the contour segment

pixels, while minimizing the amount of misidentified contour
pixels.

All matching contour segments identified in Section IV must
be properly aligned, before the reassembly of the overall image.
Such segments were produced by combining the dynamic pro-
gramming algorithm with color quantization using the Kohonen
nets. We have evaluated the performance of the proposed ICP
variants by aligning the correct matching contour segments,
i.e., the contour segments that really match in the reassembled
image. These contour matchings may contain misidentified
pixels or erroneously non-identified contour pixels. Each
ICP variant was executed 1000 times. Implementation details
concerning parameter selection, as well as computational
complexity, can be found in [9]–[11] and [32] respectively.
A complexity analysis of the ICP algorithm is presented in
[33]. According to [33], the worst-case lower bound on the
number of iterations performed by the ICP algorithm in order
to converge is , where is the size of the input
data points set and is the dimensionality of the input data,
while the smoothed [33] upper bound of the ICP algorithm is
polynomial, independent of the dimensionality of the data. In
Table III, the performance (percentage of visually correctly
identified alignments over correctly matched contour segments)
is shown. According to Table III, ICPIF outperforms the rest of
the ICP variants.

The final step is the overall image reassembly. We evaluated
the proposed method with/without employing the first step (the
discovery of probably adjacent image fragments) and compared
it with the manually (human) reassembly. The performance was
estimated as follows. The performance of the method was esti-
mated as follows. Let be a manually reassembled image and

be the set of automatically reassembled
images generated by the algorithm. The reassembly is defined
to be correct, when there is a for which is
declared similar to by a human observer.

In Table IV, the mean performance and computational time
characteristics of the presented approach, regarding images
fragmented into 10 and 20 pieces respectively, are shown.
In both cases the image reassembly is performed employing
exactly the same techniques in every step, while and
parameters in the first case are set to 7 and 5, respectively. The
first two columns show the percentage of correctly reassem-
bled images, as described above, for the case of 10 fragments
and 20 fragments, respectively. The last two columns show
the respective mean computational time. The last row shows
mean manually reassembly time efficiency (the performance
of manually reassembly is not measured). Eight people of
ages between 23 to 31 participated in this experiment. We
have averaged the time needed for each person to correctly
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Fig. 7. Automatically reassembled image produced from the fragments of
Fig. 6.

Fig. 8. New fragments created by aligning and assembling original fragments
along their matching contour segments.

reassemble each fragmented image. As expected, the overall
performance will be higher when the first stage is omitted.
However, in this case the computation cost is higher, since both
the second and the third step are executed for every couple of
input image fragments. In the first case, where the the amount
of fragments is somewhat small (10 fragments), the reassembly
time efficiency is high in every case (with/without first step,
manually reassembly). As the amount of fragments per input
image increases, the time efficiency deviations become higher.
Table IV shows that the choice whether to employ the first
step on the reassembly process depends on the computational
cost that is associated within the input image fragments. As
the amount of image fragments increases, the higher overall
performance of the variation that omits the first step gives way
to the higher computational cost that is associated with it. Fig. 8
displays aligned couples of image fragments produced during
the second and the third stages. The overall reassembled image
is shown in Fig. 7. It can be seen that its reconstruction is nearly
perfect. The white region in the middle of the reassembled
image is due to missing pieces of paper that were not scanned.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel integrated color-
based image fragments reassembly method that consists of sev-
eral distinct novel algorithms, which try to overcome inherent
deficiencies, burdens and limitations. The overall assembly per-
formance has proven to be particularly satisfactory. The exper-
iments were conducted with 70 paper image prints. We plan to

further improve the performance of the proposed method. Im-
provements can be done in each step of the proposed method.
For example, the step of the discovery of spatial adjacent image
fragments may be improved by employing not only color but
textual or semantic features as well. Another possible extension
is to utilize both the color and the shape of the fragments con-
tours in order to perform matching. Furthermore, more sophis-
ticated algorithms for faster contour matching, such as the one
presented in [4], will be investigated. Another interesting idea
would be to interchange the steps used in the proposed method,
e.g., a shape alignment algorithm could provide a first set of
coarse fragments shape matching results that would be further
refined by employing color matching. Finally, the evaluation of
the proposed method in a realistic fragmented image database,
such as archaeological data, is worth exploring.
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Automatic Color Based Reassembly of
Fragmented Images and Paintings

Efthymia Tsamoura and Ioannis Pitas, Fellow, IEEE

Abstract—The problem of reassembling image fragments arises
in many scientific fields, such as forensics and archaeology. In the
field of archaeology, the pictorial excavation findings are almost al-
ways in the form of painting fragments. The manual execution of
this task is very difficult, as it requires great amount of time, skill
and effort. Thus, the automation of such a work is very important
and can lead to faster, more efficient, painting reassembly and to a
significant reduction in the human effort involved. In this paper, an
integrated method for automatic color based 2-D image fragment
reassembly is presented. The proposed 2-D reassembly technique
is divided into four steps. Initially, the image fragments which are
probably spatially adjacent, are identified utilizing techniques em-
ployed in content based image retrieval systems. The second op-
eration is to identify the matching contour segments for every re-
tained couple of image fragments, via a dynamic programming
technique. The next step is to identify the optimal transformation
in order to align the matching contour segments. Many registra-
tion techniques have been evaluated to this end. Finally, the overall
image is reassembled from its properly aligned fragments. This is
achieved via a novel algorithm, which exploits the alignment an-
gles found during the previous step. In each stage, the most ro-
bust algorithms having the best performance are investigated and
their results are fed to the next step. We have experimented with
the proposed method using digitally scanned images of actual torn
pieces of paper image prints and we produced very satisfactory re-
assembly results.

I. INTRODUCTION

T HE problem of reassembling image fragments arises in
many scientific fields, such as forensics and archaeology.

In the field of archaeology, the pictorial excavation findings are
almost always in the form of painting fragments. For example,
they can be fragments of painted pottery, murals, or mosaics,
which must be assembled to form the original painting. A re-
lated aspect of the problem is the development of a generative
model for cracks and fractures as proposed in [1]. More rarely,
there are cases where the form of the original object (e.g., mo-
saic) is known but has to be reassembled because of a destruc-
tion. In [2], a pattern matching algorithm for the comparison of
digital images is implemented using discrete circular harmonic
expansions. The manual execution of the above tasks is very dif-
ficult, as it requires great amount of time, skill and effort. Thus,
the automation of such a work is very important and can lead to
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sociate editor coordinating the review of this manuscript and approving it for
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faster, more efficient, painting reassembly and to a significant
reduction in the human effort involved.

In our work, the automated reassembly of images from frag-
ments follows a four step model, similar to the one presented
in [3] for 3-D object reconstruction. The first step of our ap-
proach is the identification of probable adjacent image frag-
ments, in order to reduce the computational burden of the sub-
sequent steps. There, several color-based techniques are em-
ployed. However, as stated in a following section, this step can
be omitted sacrificing the lower running time of the image re-
assembly procedure, for higher performance.

The second operation is the identification of the matching
contour segments of the image fragments. The corresponding
step employs a neural network based color quantization ap-
proach for the representation of the image contours, followed
by a dynamic programming technique that identifies their
matching image contour segments. In [4], an analogous algo-
rithm is presented, for the discovery of the matching contour
segments of 2-D fragmented objects. However, the fragment
contour comparison is based on the shape of the input 2-D
object fragments, while a dynamic programming technique
is employed in order to identify their matching segments.
Aminogi et al. [5], presented an algorithm based on both the
shape and the color characteristics of the input 2-D image
fragments contours. There, one contour pixel sequence is
overlaid on another one and, for each such “placement”, the
curvature and color differences of the corresponding contour
pixels are estimated. If their total sum is less than a user defined
threshold, the contour segments are considered to match. In the
experimental results section, the latter approach is compared
with the one proposed here. The results show that the latter has
better performance.

Once the matching contour segments are identified, a third
operation takes place. Here, the geometrical transformation,
which best aligns two fragment contours along their matching
segments, is found. Several such approaches exist, e.g., [6]–[8],
however, most of them are either not robust to matching errors
and/or have high computational complexity. A very popular
registration technique is the Iterative Closest Point (ICP)
method [9]. New modified versions of the ICP have been pro-
posed, which are robust to noise [10]–[12]. These approaches
limit the effects of noise on the registration performance by
outlier trimming based on a least squares distance criterion. In
our work, the above ICP variants were experimentally evaluated
and the best one among them is selected for integration with
the proposed four stage image reassembly algorithm.

The last step in solving the fragment reassembly problem
is the reassembly of the overall image from its constituent

1057-7149/$26.00 © 2010 IEEE
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fragments. Here, a novel algorithm is proposed. The novelty
of our algorithm lies on the fact that employs both the contour
matching results and the alignement angles of the fragments,
found during the second and the third step, respectively. The
majority of the algorithms in this step, as will be presented in
the related work section, utilize only criteria that are based on
the contour matchings, e.g., the length of the matching. It is
clear that it is essential that each step of the algorithm feeds the
next one with correct results, otherwise the image reassembly
may contain errors, or may even fail completely. Our goal
is to investigate and propose the most robust techniques in
order to produce accurate results at each intermediate step. To
summarize, the main steps of the proposed method are shown
in Fig. 1 and can be described as follows.

1) Discovery of spatial adjacent image fragments. The
identification of probable spatially adjacent image frag-
ments is done by utilizing techniques that are widely em-
ployed in content based image retrieval (CBIR) systems.
The purpose of this step is to reduce the computational
burden of the steps that follow. Once this step is finished,
we select to retain, for every image fragment, a list of the
most probable adjacent fragments.

2) Discovery of matching contour segments of adjacent
image fragments. A novel approach based on the Smith-
Waterman algorithm [13] is employed in order to match
the colors appearing in the contours of adjacent image frag-
ments. Various color similarity criteria are being evaluated.
Based on such similarity criteria, for each image fragment,
one matching contour segment with other image frag-
ments is retained.

3) Image fragments contour alignment. The purpose of this
step is to find the appropriate geometrical transformation
of one fragment relative to its adjacent one, in order to
align them along their matching contour segments. Many
variants of the ICP algorithm are employed and evaluated
to this end.

4) Overall image assembly. Once the matching contour seg-
ments of couples of input image fragments are identified
and properly aligned, the remaining step is the reassembly
of the overall image. Since the criteria that are based on
the contour matchings do not suffice for the overall image
reassembly, a novel feature, namely the alignment angles
found during step 3, is introduced.

In this paper, an integrated method for automatic color based
2-D image fragment reassembly is presented. This paper is or-
ganized as follows. Section II discusses the related work. Sec-
tion III describes the discovery of the spatial adjacent fragments.
Section IV presents the identification of the matching contour
segments of the spatial adjacent image fragments, while Sec-
tion V describes the derivation of the optimal geometrical trans-
formation that aligns contours along their matching segments.
Section VI presents the overall image assembly algorithm. Ex-
perimental results are presented in Section VII, while conclu-
sions are drawn in Section VIII.

Fig. 1. Overall image reassembly approach.

II. RELATED WORK

A. Two-Dimensional Paper Document Reassembly

Similar to 2-D image fragment reassembly, in paper docu-
ment reassembly, torn paper fragments must be assembled to
form the image of an entire page of a paper document. Work on
this area was conducted in [14]–[16]. The above employ shape
representations of the paper fragments, in order to reassembly
the original documents. In [15], polygonal approximation is
initially applied to reduce the complexity of the paper frag-
ment contours and geometrical features are extracted from
these polygonal curves. Then, a method based on [4] is used
to assemble the entire document from its constituent paper
fragments. In [16], shape features, namely turning functions,
are estimated from every fracture contour and are utilized to
discover matching contour segments. After that, each matching
is assigned a confidence score. The alignment transformation
of the fragments is simultaneously found during matching.
After the discovery of matching contour segments, the final
reassembly step performs two actions, namely matching re-
laxation and fragments merging. During matching relaxation,
every pair of aligned input fragments is checked for overlap
along their matching contour segments. If they overlap, this
matching is discarded. Otherwise, the neighboring fragments
of this pair are identified. A score, called support, is assigned to
the neighborhood of each pair of non-overlapping fragments.
This score increases as the number of neighboring fragments as
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well as the matching confidence assigned to pairs of fragments
increase. The fragments that have neighborhoods with max-
imum support are merged into new fragments and the whole
procedure starts again, i.e., the matching contour segments are
identified for all pairs of fragments, and so on.

B. Two-Dimensional Puzzle Assembly

Many methods were also proposed for the 2-D puzzle re-
assembly problem. In [17], color and textural features of the
puzzle pieces are utilized. The matching and alignment of
puzzle pieces is carried out using an FFT-based image registra-
tion technique. In [18], the puzzle reassembly process consists
of two steps; frame and interior assembly. A traveling salesman
problem is formulated for frame assembly, while
backtracking and branch&bound techniques are employed for
interior assembly. The puzzle pieces are matched employing
the distance of their contours curves. An improvement of
this method is presented in [19]. In [20], the overall puzzle
assembly is done using a Best-First procedure. There, two
criteria are utilized to sort matching contour segments. The
first one is the residual error of corresponding contour pixels
after the discovery of the optimal geometrical transformation,
while the second criterion is the arc-length of the matching
contour segments. It is clear that the problem of 2-D puzzle
assembly does not meet the major difficulty of the image and
object reconstruction problems; that is the missing or highly
damaged image (or) object fragments. Thus, in general, the
algorithms proposed in this field would be inadequate to solve
such problems.

C. Three-Dimensional Object Reconstruction

Regarding 3-D object reconstruction, an automatic method
for matching and alignment of 3-D, free-form archaeological
fragments is proposed in [21]. The input fragments are not
pre-processed. The matching is performed utilizing only the
3-D points of the whole surfaces of the objects. The output
matching-alignment minimizes the distance between the 3-D
surface points of the two fragments. Andrews et al. [22]
propose an automatic method for the reconstruction of pairs
or triplets of 3-D symmetric archaeological fragments. The
matching is found through a two-phase method. During the first
phase several matchings-alignments are estimated for every
pair of fragments. The 3-D points of the fracture curves in the
outer and inner surface of the fragments as well as the axis of
rotation of the fragments are utilized to this end. In the second
phase, these matchings are refined using the quasi-Newton
method, and evaluated according to several criteria namely the
angle formed by the fragments rotation axes, the perpendicular
distance between the rotation axes and the distance of the
matched fracture curves points. Eventually, one matching is
retained for every pair of fragments. Finally, in the overall
object reconstruction step, a greedy merge strategy selects
pairs of fragments to form triplets In [23], a human-supervised
collaborative reconstruction system is described. The aim of
the system is to propose a potential matching between any pair
of input fragments. The matching is found by utilizing shape
features (curvature and torsion) estimated from all 3-D points
in the fracture curves of the fragments. The shape similarity of

the fracture curves is ranked with a cyclic distance algorithm.
Each matching defines correspondences between 3-D points
in the fracture curves. Then the users select to merge or not
the proposed fragments. The fragments alignment is performed
interactively (in a VRML environment) by the users. The object
reconstruction procedure follows the merge-update paradigm.
Significant work on this area is also done in the Digital Forma
Urbis Romae project [24]. The latter seeks to reconstruct a
giant marble map of ancient Rome dating back to 200 AD,
while only a small portion of fragments of the original map still
exist. The reconstruction process in [24] is not automatic and
is guided by expert users. Information and details about other
3-D object reconstruction methods can be found in [3].

Finally, in [25], a method is introduced to measure the average
amount of information contained in a 2-D ceramic tile fragment
contour, in terms of its curvature. This parameter shows how
many false contour matches are expected to be found among a
given set of ceramic tile fragments.

III. DISCOVERY OF SPATIAL ADJACENT IMAGE FRAGMENTS

The purpose of this step is the spatial adjacent image frag-
ments identification by using their probable high color simi-
larity. We have utilized techniques that are widely employed in
CBIR systems in order to identify these similarities [26]. In this
section, we briefly mention the descriptors and the measures we
have experimented with.

Color quantization can be based on a commercial color
palette, e.g., the Gretag Macbeth Color Checker [26]. The
Macbeth Palette can be used to evaluate color reproduction
systems and it consists of 24 different colors that are scien-
tifically chosen to represent a variety of naturally occurring
colors. Color quantization is used to find the normalized quan-
tized color image histograms, which can be used for color
image retrieval. We have also experimented with the Spatial
Chromatic Histogram [27], which provides information both
of color presence and color spatial distribution. The Spatial
Chromatic Histogram of image having quantized colors
is given by , . In the
above equation denote the normalized color histogram, i.e.,

is defined as the number of pixels having color i divided
by the total number of pixels, is a 2-D vector expressing
the center of mass and is the standard deviation of the
color label, respectively [27]. We have used modified versions
of the , and Histogram Intersection measures and scaled
them to the range [0, 1], with 1 denoting a perfect similarity. In
the following equations and denote the normalized color
histograms extracted from images and , respectively. The
utilized matching measures are the following.

1) Scaled norm

(1)

2) Scaled norm

(2)

3) Scaled Histogram Intersection
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Fig. 2. First step of the proposed 2-D image reassembly approach.

(3)
4) Spatial Chromatic distance [27]

(4)

Once this step is finished, we select to retain, for every image
fragment, a list of the most chromatically similar fragments.
The first step is shown in Fig. 2. It must be emphasized that this
step is not prerequisite for the correct reassembly of an image
and can be easily skipped, if the number of image fragments is
rather small. The purpose of this task is to reduce the computa-
tional burden of the steps that follow.

IV. DISCOVERY OF MATCHING CONTOUR SEGMENTS OF

ADJACENT IMAGE FRAGMENTS

Let us suppose that we have a set of image fragments where
we have to find their matching contour segments. This set may
contain the image fragment pairs identified by the previous
step or all the image fragment pairs (if the first step has been
skipped). This operation is performed on image fragment pairs.
In this section, we present a novel algorithm for identifying
matching contour segments of couples of input fragments. Our
approach to fragment contour matching is based exclusively on
information regarding the color of their contours.

In order to avoid comparing directly contour pixel colors that
may contain noise, a color quantization preprocessing step is uti-
lized, which takes pixel samples from the contours of all image
fragments. Many color quantization methods exist [28]. For ex-

ample, quantization can be done using ready made palettes, such
as the Gretagh Macbeth palette [26]. The Mean Shift algorithm
[29] is a popular solution for color image quantization. Its ad-
vantage is that the number of the color clusters is automatically
defined. However, the Mean Shift algorithm exhibits a severe
local maxima sensitivity. This drawback may result to signifi-
cant misplacements of color cluster centers, as will be shown in
the experimental results section.

In the following, we employ Kohonen neural networks
(KNNs) [30] for color quantization purposes. KNNs belong
in the class of unsupervised neural networks. They can cluster
input vectors without any external information, following an
iterative procedure based on competitive learning [30]. KNNs
consist of two node layers; the input and the output layer. In
the former, the number of nodes equals the dimension of input
vectors, while in the latter the number of nodes equals the
amount of produced clusters. The nodes in the output layer are
organized by means of a lattice [30]. In KNNs, each node in
the input layer has a connection with every node in
the output layer. For a network with input nodes, the weight
vector ending at an output node ,
is the center of a cluster. In KNNs, given an input vector, the
output node with the highest response (winning node) for that
as well as all “neighboring” nodes that belong to an area around
it, update their weight vectors.

In the following, we shall describe the KNN variant em-
ployed to perform color quantization of image fragments. First,
a random number of pixels is sampled from the input image
fragments and mapped to color space. The number of
sampled pixels that are required to successfully quantize the
color space, is a minimal portion of the total image fragments’
pixels, as it will be demonstrated in the experimental results
section. After that a KNN is defined, where 3 corre-
sponds to the dimension of the input space and to the
predefined number of color clusters. Let , be
one of the sampled pixels, after mapping to the color
space. The following learning procedure is iteratively applied.

1) A winning node is selected, i.e., output node whose
weight vector has the highest similarity with the input
vector , than any other output node

(5)

Euclidean distance is utilized in our experiments as the
similarity criterion.

2) A neighborhood function is utilized to estimate the weight
vectors updates. Thus, the weight vector of an output
node is updated under

(6)

where , is the learning pa-
rameter , denotes the spread of the “neigh-
borhood” around the winning node and , corre-
spond to places inside the lattice of an output node and
the winning , respectively.

For better convergence, the learning parameter and the stan-
dard deviation of the neighborhood function gradually de-
crease after an iteration (epoch in neural networks terminology).
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The learning procedure stops, when several criteria are met, e.g.,
when a predefined number of epochs have finished, or when the
changes of clusters’ centers are very small. After training
the network, the weight vector of every output node corresponds
to a cluster center. Details about the above parameters, as well as
a comparison of the above color quantization techniques can be
found in Section VII. Following one of the previously described
approaches, the color of every contour pixel is represented by its
color cluster label , .

Let and be two pixel sequences
that follow the entire contours of two different image fragments.
Once the color clustering has been achieved for the input image
fragments, sequences and are assigned to and

respectively. and are two color cluster labels, where the
former is estimated at pixel and the latter at pixel . Then
and have the same color, if . We define a similarity
function of the two contour pixels as follows:

(7)

Given and and their label lists and , we
search for the contour pixel mapping function , such that:

• for every and , ;
• .
The first condition means that more than one contour pixels in
can be mapped to the same contour pixel in . However, the

former contour pixels must be strictly consecutive. This con-
dition guarantees that no “folding” of the contour pixel se-
quence, in order to match it with the corresponding matching
contour segment in , will take place. The second condition en-
sures that every contour pixel in is mapped to a contour pixel
in . The algorithm that is used to identify the mapping function

is a variant of the Smith Waterman dynamic programming
algorithm [13], which is a local sequence matching algorithm:
given two input sequences, it can identify the mapping func-
tion between their segments. Each mapping between segments
of input sequences is assigned with a score ; as the score

increases, the color similarity becomes higher. A similarity
matrix is set up, where the row of matrix corre-

sponds to , while the column corresponds to . is the
best mapping score of the pair of every sub-sequences ending
at and pixels. The algorithm gradually fills matrix and
forms the mapping function . During filling, each matrix cell
is assigned with the highest possible value, as our purpose is to
maximize the mapping score .

As in a typical dynamic programming algorithm, the solution
to an instance of the problem is given in terms of solutions to its
smaller sub-instances. Thus

(8)

where . is assigned the maximum value of the right
hand terms in (8). Let be the estimated mapping of
and subsequences. If ,
then the relation is appended to . On the other
hand, if or is selected,

Fig. 3. (a) Color similarity matrix. (b) Matching based on color information.
Common contour segments are denoted by blue.

then or is appended to . A gap
is formed, when either the second or the third case occurs in
(8). Generally, a gap is formed when one or more contour pixels
of the first fragment are mapped to the same contour pixel of
another fragment. The percentage of mapping gaps is a mea-
sure of the dissimilarity between the input contour segments; a
high gap percentage reveals contours with many dissimilarities.
The parameter is negative, in order to penalize mappings with
many gaps. When this stage is completed, we identify an area
in with high similarity values . Diagonal patterns are pre-
ferred, since they correspond to mappings without many gaps.
Let and be the lowest right and highest left bor-
ders of this area. In the implemented experimental modification,

is the maximum value of , while . Then we
select the mapping starting from and ending at ,
which is formed during filling . The Smith Waterman algo-
rithm steps are shown in Fig. 4.

A basic question is how to select , and . These param-
eters are strongly correlated with the desired characteristics of
the contour matching. Specifically, if a matching without many
gaps is desirable, then a high absolute value is selected for .
Otherwise, the value of must be close to . The complexity of
the proposed method for a pair of fragments is , where

and are the lengths of the two pixel contour sequences.
For an image that is partitioned among into fragments, the
worst case computational complexity scenario (omitting the first
step) is , where is the average contour length of
input image fragments. Such a similarity matrix is shown in
Fig. 3(a). The horizontal axis of the matrix corresponds to the
quantized contour pixels color sequence of the first image, while
the columns correspond to the quantized contour pixels color
sequence of the second image. High values correspond to con-
tour segments with a high degree of similarity (deep red col-
ored areas). The correctly matched color contour sequences are
shown in Fig. 3(b).

After completing the second step, for each image fragment
, one matching contour segment with other

image fragments is retained, producing the set of true adjacent
image fragments couples .

V. IMAGE FRAGMENTS CONTOUR ALIGNMENT

In this section, we investigate methods for finding the best
geometrical transformation that aligns fragment contours along
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Fig. 4. Second step of the proposed reassembly approach.

their matching segments. All matching contour segments iden-
tified during the previous steps must be properly aligned, be-
fore the reassembly of the overall image. The disadvantages of
the alignment algorithms found in the literature (as discussed
in the introduction) have led us to use variants of the ICP algo-
rithm [9] for contour alignment. The ICP algorithm generally
starts with two point sets (contour segments in our case) and
an initial guess of their relative rigid body geometrical transfor-
mation. It then refines the transformation parameters, by itera-
tively generating pairs of point correspondences and by mini-
mizing an error metric. Given two curves
and , the following steps are performed.

1) Compute the subset of pairs of closest points

(9)

2) Compute a Least Squares estimate of the geometrical trans-
formation mapping onto

(10)

where .
3) Apply the transformation to the data points

(11)

4) If stopping criterion is satisfied exit; else, go to step 1.
The original form of the ICP algorithm is not robust to outliers,
since it does not trim noisy data. Such outliers, coming from er-
rors during the contour segment matching, create serious prob-
lems to alignment, if not properly handled. In order to obtain
ICP versions that are robust to outliers, many ICP variants have
been proposed in the literature. In [31], these variants have been
classified into six categories. In order to develop a robust con-
tour alignment procedure, we have studied three popular robust
versions of ICP and have evaluated their performance.

A. Robust ICP (RICP)

The first variant that we studied is RICP [10]. It trims outliers
in the second step (10) of the ICP and computes an error
norm, which is, hopefully, free from outlier influence. Outliers
are rejected, according to the following procedure. Let be
points from the first curve and be their corresponding closest
points on the second curve. Select randomly two points from
each of the 2-D input curves and execute their registration, by
solving the linear system

(12)

where is a rotation matrix. Compute the residuals
. The above procedure is repeated for a sufficient number

of iteration [10]. Once all potential registrations are evaluated,
the one that minimizes the median of the residuals is chosen.
The correspondences having residual error larger than a fixed
threshold are removed. The least squares error norm is com-
puted using only the remaining contour points.

B. Trimmed ICP and Picky ICP

The main steps of both trimmed and picky algo-
rithms are the following [11].

1) For each point of , find the closest point in and com-
pute the individual distances .

2) Sort in ascending order, select the least values and
calculate their sum .

3) If any of the stopping conditions is satisfied, exit; other-
wise, set and continue.

4) For the selected pairs, compute the optimal geomet-
rical transformation that minimizes .

5) Transform according to and go to step 1.
This algorithm terminates either if (a) the maximum number of
iterations is reached, or (b) the trimmed mean squared error

is less than a user defined threshold, or (c)
the relative change of the trimmed mean squared error ,
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where is the trimmed mean squared error found in the pre-
vious iteration, is less than a user defined threshold. Despite
their good performance, the above algorithms, namely RICP,
trimmed IC and picky ICP have the disadvantage that the outlier
percentage in the input curves, must not exceed 20%. Otherwise,
the computed transformation is wrong.

C. ICP Registration Using Invariant Features (ICPIF)

ICPIF is another ICP variant proposed in [32]. New features
were introduced in order to improve the correspondence selec-
tion, such as the second order moments and the spherical har-
monics. After the computation of the above features for every
point of and , the traditional distance, computed during
the second step of ICP (10), is replaced by the weighted sum of
the old distance and distances based on the introduced fea-
tures. The goal is to estimate point correspondences that are not
only based on the Euclidean metrics but also incorporate new
shape invariant features.

VI. OVERALL IMAGE REASSEMBLY

Once the true adjacent image fragments couples and their
matching contour segments are identified and properly aligned,
as described in Sections IV and V, the remaining step is the re-
assembly of the overall image. However, the mapping scores
of the matching contour segments do not suffice for image re-
assembly, since they are not always well correlated with the true
ones. Thus, the approaches that focus only on using the map-
ping scores, such as [20], are inadequate for producing the true
overall image. For this reason, we have developed a novel so-
lution to this problem, which is based on the introduction of
new use of the alignment angle, that best aligns the matching
contour segments of two image fragments, as described in Sec-
tion V. Consider three image fragments , and each one
having one matching contour segment with the rest ones. We
denote by the rotation angle by which the individual frag-
ment must be rotated, in order to be correctly placed inside
the overall reassembled image. The alignment angle, by which
we must rotate fragment to align it with the matching contour
segment of fragment (before fragment is rotated by ), is
denoted by . In order to align fragments and with re-
spect to each other and place them correctly in the reassembled
image, the following steps must be performed:

1) Rotate fragment by to correctly orient it in the assem-
bled image.

2) Rotate fragment by to correctly align its
matching contour segment with the corresponding
matching contour segment of fragment .

This procedure will simultaneously align fragment with frag-
ment and provide its correct orientation inside the entire
image. We can then state that the matching contour segments
of pairs and are compatible, if and only if

(13)

Following this logic, in our approach we consider that an image
is fully reconstructed, if all its matching contour segments are
compatible, according to (13); this image is called valid. It
should be noted that a valid image is not always the “correct”

one, since the contour segments of two image fragments can be
mis-matched or mis-aligned. However, the experimental evalu-
ation of the technique shows that such flaws do not significantly
affect the reassembly performance of the proposed technique.

Contour segments that match may become incompatible, if
the following errors occurred in the previous steps:

1) the fragment color similarities found in Section III;
2) the matching segments of two fragment contours are dif-

ferent from the true ones (see Section IV);
3) wrong alignment transformation was estimated (see Sec-

tion V).
Based on (13), we can define the so-called relative alignment

angle, which will direct the image reassembling procedure. The
relative alignment angle of a fragment regarding a frag-
ment is evaluated by the formula:

(14)

where is the alignment angle by which we must rotate frag-
ment to align it with the matching contour segment of frag-
ment and is the rotation angle of the individual fragment

so that it is correctly placed inside the overall reassembled
image. It can be easily deduced from the above analysis, that
for a set of fragments placed in the reassembled image and a
fragment having matching contour segments with a subset
of the above image fragments, i.e., , the
above matching contour segments are compatible, if

(15)

Consequently, if a new fragment is to be matched with an
image that it consists of image fragments, then the amount of
the new valid images is equal to the cardinality of the rela-
tive alignment angle set, . We have devel-
oped a reassembly algorithm that utilizes the aforementioned
assumptions to produce a user-defined number of possible re-
assembled images. The algorithm is initialized by taking
couples of input fragments, where and is the
number of input image fragments. These couples have the
highest matching scores of the corresponding matching contour
segments. These couples are reassembled (correctly aligned) to
produce a number of input images that will be further ex-
tended by inserting one fragment each time. The selection of
the initial number of image couples is crucial for the algo-
rithm performance, since the involvement of an erroneous input
pair of fragments would inevitably lead to a wrong image recon-
struction. The reliability of the proposed initialization is both
intuitionally expected and experimentally proven.

The set of input images is iteratively updated in order to
include further image fragments. At every step and for every
input image (initially consisting of a couple of image frag-
ments), the fragment having the maximum mapping score with
an image fragment that belongs in the reconstructed image, is
added. After computing the relative alignment angles of this
fragment regarding the input image parts, a number of images,
equal to the cardinality of these relative aligned angles, are
reassembled for each input image. Those images compose the
new set of input reassembled images (replacing the previous
ones), that will be included in the next iteration. Consequently,
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Fig. 5. Overall image reassembly step.

in the next step a new fragment will be involved in the update
procedure of the input images. This iterative algorithm is final-
ized when no more image fragments are left to be inserted into
the reassembled images. The steps of the algorithm are shown
in Fig. 5.

The proposed method differs from other ones found in the
literature, as it is based on the alignment angles. Thus, it is sen-
sitive to errors in the relative alignment angle estimations. How-
ever, we overcome this drawback, by setting a threshold when
comparing the relative alignment angles. We regard two relative

Fig. 6. Scanned paper pieces at 300-dpi resolution.

TABLE I
RECALL PERCENTAGE OF THE CORRECT COUPLES OF ADJACENT IMAGE

FRAGMENTS FOR � � ��

TABLE II
EFFECT OF COLOR QUANTIZATION METHODS IN CONTOUR

SEGMENT MATCHING

TABLE III
ERFORMANCE OF THE PROPOSED ICP VARIANTS IN CORRECTLY MATCHED

CONTOUR SEGMENT ALIGNMENT

alignment angles and to be equal if , where
is a decision threshold. Of course, a backup approach is to add

manual intervention to the system, and ask the user to select the
correct alignment transformation.

VII. IMAGE REASSEMBLY EXPERIMENTS

The performance of the proposed method was evaluated using
70 paper image prints. Each paper image print had size 25 cm
20 cm and was torn into paper pieces that were scanned
at 300 dpi resolution, as shown in Fig. 6. We selected such a low
scanning resolution in order to create a challenging image frag-
ments dataset. Experiments are conducted in a 4 kernel PC with
4 GB RAM. The algorithm has been implemented in C++. The
first step of the proposed method, as described in Section III,
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TABLE IV
OVERALL IMAGE REASSEMBLY PERFORMANCE

is the discovery of similarly colored image fragments. We se-
lected to retain for every image fragment the 15 most probable
adjacent fragments . In Table I, the mean recall per-
centage of the correct couples of adjacent image fragments for

is shown for various histogram similarity measures.
These results are averaged over all the image fragments of the
entire image fragments dataset. The measure exhibits the
highest performance.

Whether executing (or not) the first step of the proposed
method, the contour segment matching for every input couple of
image fragments must be done. When the first step is executed,
the matching contour segments are identified only for retained
image couples, otherwise it is executed for all possible input
fragment couples. We have experimented by combining the
dynamic programming algorithm with several color quantiza-
tion methods, described in Section IV. We have also evaluated
the performance of the matching contour algorithm introduced
in [5]. Each time, random pixels were sampled from all
fragments that constitute the overall image, in order to perform
color quantization either by using the Kohonen neural nets
or the Mean Shift algorithm. In both cases was set equal
to 0.25% of the total image fragment pixels. We have chosen
Kohonen nets having color clusters, while the learning
procedure took 750 epochs. Nodes in the output layer of the
neural network were organized under a random lattice. The
spread parameter of Mean Shift algorithm [29] was set to 5.5,
thus producing color clusters. Following one from
the previously described color quantization techniques, each
contour pixel is represented by its color cluster label (
utilizing the Gretag Macbeth Checker). The parameters of the
Smith Waterman algorithm were set to , and

. The contour matching results are shown in the last
row of Table II. The second column refers to the percentage of
unidentified matching contour pixels (false negative error rate),
while the third column refers to the percentage of identified
pixels that do not belong in true matching contour segments
(false positive rate). The selection of the specific performance
metrics is justified by the fact that most of the contour matching
approaches, [5], [26], [29], lead to the extraction of “estimate”
matching contour segments that overlap with the “correct”
matching contour segments. The matching performance de-
pends on the quality of the overlap, which is estimated by
the ratio of unidentified and mis-identified contour pixels, or
false negative and false positive rate. After this step, for each
image fragment, one matching contour segment to
image fragments is retained, as described in Section IV. Color
quantization using the Kohonen nets provides the best solution,
identifying correctly more than 70% of the contour segment

pixels, while minimizing the amount of misidentified contour
pixels.

All matching contour segments identified in Section IV must
be properly aligned, before the reassembly of the overall image.
Such segments were produced by combining the dynamic pro-
gramming algorithm with color quantization using the Kohonen
nets. We have evaluated the performance of the proposed ICP
variants by aligning the correct matching contour segments,
i.e., the contour segments that really match in the reassembled
image. These contour matchings may contain misidentified
pixels or erroneously non-identified contour pixels. Each
ICP variant was executed 1000 times. Implementation details
concerning parameter selection, as well as computational
complexity, can be found in [9]–[11] and [32] respectively.
A complexity analysis of the ICP algorithm is presented in
[33]. According to [33], the worst-case lower bound on the
number of iterations performed by the ICP algorithm in order
to converge is , where is the size of the input
data points set and is the dimensionality of the input data,
while the smoothed [33] upper bound of the ICP algorithm is
polynomial, independent of the dimensionality of the data. In
Table III, the performance (percentage of visually correctly
identified alignments over correctly matched contour segments)
is shown. According to Table III, ICPIF outperforms the rest of
the ICP variants.

The final step is the overall image reassembly. We evaluated
the proposed method with/without employing the first step (the
discovery of probably adjacent image fragments) and compared
it with the manually (human) reassembly. The performance was
estimated as follows. The performance of the method was esti-
mated as follows. Let be a manually reassembled image and

be the set of automatically reassembled
images generated by the algorithm. The reassembly is defined
to be correct, when there is a for which is
declared similar to by a human observer.

In Table IV, the mean performance and computational time
characteristics of the presented approach, regarding images
fragmented into 10 and 20 pieces respectively, are shown.
In both cases the image reassembly is performed employing
exactly the same techniques in every step, while and
parameters in the first case are set to 7 and 5, respectively. The
first two columns show the percentage of correctly reassem-
bled images, as described above, for the case of 10 fragments
and 20 fragments, respectively. The last two columns show
the respective mean computational time. The last row shows
mean manually reassembly time efficiency (the performance
of manually reassembly is not measured). Eight people of
ages between 23 to 31 participated in this experiment. We
have averaged the time needed for each person to correctly
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Fig. 7. Automatically reassembled image produced from the fragments of
Fig. 6.

Fig. 8. New fragments created by aligning and assembling original fragments
along their matching contour segments.

reassemble each fragmented image. As expected, the overall
performance will be higher when the first stage is omitted.
However, in this case the computation cost is higher, since both
the second and the third step are executed for every couple of
input image fragments. In the first case, where the the amount
of fragments is somewhat small (10 fragments), the reassembly
time efficiency is high in every case (with/without first step,
manually reassembly). As the amount of fragments per input
image increases, the time efficiency deviations become higher.
Table IV shows that the choice whether to employ the first
step on the reassembly process depends on the computational
cost that is associated within the input image fragments. As
the amount of image fragments increases, the higher overall
performance of the variation that omits the first step gives way
to the higher computational cost that is associated with it. Fig. 8
displays aligned couples of image fragments produced during
the second and the third stages. The overall reassembled image
is shown in Fig. 7. It can be seen that its reconstruction is nearly
perfect. The white region in the middle of the reassembled
image is due to missing pieces of paper that were not scanned.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel integrated color-
based image fragments reassembly method that consists of sev-
eral distinct novel algorithms, which try to overcome inherent
deficiencies, burdens and limitations. The overall assembly per-
formance has proven to be particularly satisfactory. The exper-
iments were conducted with 70 paper image prints. We plan to

further improve the performance of the proposed method. Im-
provements can be done in each step of the proposed method.
For example, the step of the discovery of spatial adjacent image
fragments may be improved by employing not only color but
textual or semantic features as well. Another possible extension
is to utilize both the color and the shape of the fragments con-
tours in order to perform matching. Furthermore, more sophis-
ticated algorithms for faster contour matching, such as the one
presented in [4], will be investigated. Another interesting idea
would be to interchange the steps used in the proposed method,
e.g., a shape alignment algorithm could provide a first set of
coarse fragments shape matching results that would be further
refined by employing color matching. Finally, the evaluation of
the proposed method in a realistic fragmented image database,
such as archaeological data, is worth exploring.
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