Lifting the burden of history in adaptive ordering
of pipelined stream filters

Efthymia Tsamoura, Anastasios Gounaris, Yannis Manoltmzsou

Department of Informatics, Aristotle University of Thdsséki, Greece
{et sanour | gounari a| manol opo}@sd. aut h. gr

Abstract— Ordering of commutative and correlated pipelined execution environment is dynamic, a filter ordering mustpada
stream filters in a dynamic environment is a problem of high to the changes in the execution environment.
interest due to its application in data stream scenarios and |y order to build filter orderings that are consistent with

its relevance to many query optimization problems. Current th . h teristi fth i . i
state-of-the-art adaptive techniques continuously reopinize fil- e varying characienstics ot the execution environman,

ter orderings utilizing statistics that are collected during the adaptive technique, called A-greedy, is proposed in [2}. Al
execution of the query; however, both the up-to-date and the though this technique collects runtime statistics, it may n

out-of-date collected statistical data may be considered ith always take effective reoptimization decisions, because i

the consequence of not always taking effective reoptimiz&ih .4 ngiders both up-to-date and out-of-date statistical ddten
decisions. In this work, we propose a technique for adaptive . L . .
investigating filter reordering.

filter ordering that tries to lift the burden of out-of-date s tatistical) . .
data after detecting changes in the filter drop probabilities. To In this work, we propose a novel technique for adaptive
this end, we propose a novel drop probability change deteai filter ordering that lifts the burden of out-of-date statiat data

algorithm. The experimental evaluation shows that the propsed when performing adaptive query optimization. The techaiqu
technique can yield significant performance improvements Wile fist |earns the filter drop probabilities based on runtime
decreasing the runtime overhead. collected statistical information. It then checks whetlies
filter drop probabilities have changed. If this is the cabke, t
out-of-date statistical data that have been collected sasfa
Nowadays, an increasing number of applications deals witlhopped, the filter drop probabilities are re-learned usinky
streaming data, e.g., network monitoring, online processi up-to-date statistics, and the algorithm checks whether th
sensor data, etc. Since the queries that are submitted ttaa dhanges have rendered the current filter ordering subolitima
stream management system are usually long-running or exeder to reoptimize it. As such, adaptivity decisions arseoa
continuous, the characteristics of the underlying execution updated data.
environment, as well as the characteristics of the stregmin The proposed technique utilizes a change detection al-
data may be significantly different from those when the quegorithm in order to learn and check for changes the filter
was initiated. This necessitates the development of adaptirop probabilities. Although several state-of-the-arfirnge
query processing techniques [1], which can be deemed detection algorithms can be employed for change detection,
resulting to self-optimizing query processors. The adaptiour technique performs change detection through a novel
techniques employ a three phase procedure, called adgptiglgorithm, called BCS, which is tailored to drop probabilit
loop: (i) they collect runtime statistics (statistics eaffion or learning and change detection. Its high accuracy in detect-
measurement update phase); (ii) they analyze the efficienay drop probability changes and its low run-time overhead
of the current execution plan with respect to the collectasbmpared with state-of-the-art change detection algmsth
statistics (analysis phase); and (iii) they perform reopa- (e.g., [3], [4]) render BCS more suitable for general query
tion if the analysis indicates that the previously seleqitoth processing purposes.
is inefficient (reoptimization phase). We focus on abrupt changes. In many real life applications,
A problem of high interest deals with the ordering omalfunction or malicious system behavior phenomena (e.g.,
commutative filters in a dynamic environment; this problemetwork intrusion) exhibit abrupt change patterns ([5]pr F
relates to additional query optimization problems (e.gultm example, regarding network intrusion detection applioai
way join query optimization [2], [1]). In this work, we deal([5]), many network attacks, such as denial of service, lead
with a flavor of the problem where a single data source streatosa high and abrupt increase in the total number of packets
the input tuples. The input tuples are pipelined among tlieat are transmitted to the victim machine. As such, anyrfilte
filters, while the filters are commutative and associatedh witvith respect to the number of packets may experience abrupt
(i) processing costs and (i) drop probabilities. In the g changes in its drop probability. The evaluation resultswsho
case, the drop probabilities are correlated, i.e., a fltdrop that, in scenarios where abrupt changes in filter drop proba-
probability depends on the filters upstream in the ordefiihg. bilities occur, the proposed technique can significantlgriove
goal is to find a filter ordering, such that the total procegsirthe performance of the resulting filter ordering compared to
cost of the input tuples is minimized. Moreover, since th&-greedy while decreasing the runtime overhead.

I. INTRODUCTION

The paper is organized as follows. Section Il providegrms of statistics, profile tuples can lead to wrong filtespdr
background information related to A-greedy ([2]), definles t probability estimates and subsequently to wrong or delayed
problem that we deal with and gives a motivating examplez-optimization decisions.

Section Ill presents the new change detection algorithm BCSExample 1: Assume that there exist two independent filters
and Section IV presents the complete technique into whidh and F5, for which the drop probabilities change abruptly
BCS is encapsulated. The experimental evaluation is doneainone point (e.g., they depend on a day period). Also assume
Section V. Section VI briefly presents the related work anthat the input stream consists of 100,000 tuples, everytinpu
finally, Section VII concludes the paper. tuple is used for statistics collection and the profile wiwde
large enough to store all tuples. During the first 50,000easipl
filter 7 unconditionally drops a tuple with constant proba-

Let the query to be evaluated be a conjunction Mf bility 0.925, while F, drops a tuple with constant probability
commutative filtersf, ..., Fiy, to be applied to the tuples(.05. A-greedy converges to the optimal orderifigFs, since
from a streaming relation. The execution plan forms a lineakploiting the profile tuples that have been addedifoso
ordering of all filters. We denote the per tuple cost of theffilt far, it can easily be derived that the drop probability /6f
placed in thei-th position of the current ordering by(i), is higher than that of%,. For the last 50,000 tuples the drop
and the probability that a tuple does not satisfy the cooliti probability of F; becomes 0.15 and the drop probability of
of the filter in thei-th position, and thus drops the tuple, byr, becomes 0.6. Although the optimal ordering now becomes
d(i). Since, in most real applications, the drop probabilities ar, I, A-greedy cannot proceed to reoptimization, because the
correlated, we also define the conditional probabilithi—1), out-of-date contents ¥ bias the maintained drop probability
which corresponds to the probability that the filter placéd @stimates towards the initial orderirg.
the i — th position will drop a tuple from the input stream, In the above example, if we were able to detect the stream
given that this tuple was not dropped by any of the filters thpbints where the drop probabilities of the filters have cleahg
are placed up to the — th position in the current ordering. and subsequently erase the tuples of the profile window that
For simplicity, we assume that the per tuple processingscosirived before the change, then an adaptive ordering dhgori
c(i), 1 <14 < n are the same; extensions of our technique t9ould be capable of converging to the optimal ordering. This
the generic case where costs differ are straightforwardaa@d is exactly what our proposal is capable of doing.
omitted due to space restrictions.

. T . 1. THE BCSCHANGE DETECTION ALGORITHM

As shown in [2], minimizing the total cost is recast as the

problem of building an ordering that, for each positibin In this section, we present a new online algorithm dedicated

the ordering, satisfies the so-called greedy invariantrglwe 0 drop probability change detection, called BCS. We first
divide the profile window into non-overlapping segments of

d(ii = 1) 2 d(jli —=1),1<i<j< N size k, and for each new segment, we estimate the drop
Since the actual filter drop probabilities are not known Brobabilities taking into account only the segment corsent

priori, they are estimated after collecting runtime stitis In >inceé we assume fixed sized sliding profile windows, these
estimates are produced periodically and they are fed to the

particular, in A-greedy, which is the most advanced sotutio q . laorith q Hih such esti
to this problem to date, every input tuple that is rejected H§'2"9€ etection algorithm. We denote jith such estimate

at least one of the input filter is probabilistically chosem f Sa;- L .

profiling [2]. If an input tuple is chosen for profiling, it is We start from c_ons_|der|ng an existing method, T‘ame'y the
virtually processed by the input filters and it is recorded iﬁUSUM one, which is one of the_ first methods introduced
an N attribute tuple, callegbrofile tuple which denotes which in the literature for change detection [6]. CUSUM assumes

of the filters eventually drop the specific tuple and which; noﬁhat we know the probability distributions of the data prior

if the 4 — th input filter drops the profiled tuple, then theand after a change in drop probability, and these probislit

i — th attribute is true; otherwise it is false. The profile tupleg's_mbmIOnS are denote_d d$ and Py, respecfu_/ely. CUSUM
relies on the observation that, upon receiving a new drop

probability estimatei,-, if the current distribution isP, then
the probability thatd; is produced undef% is higher than
the drop probabilityi(j|i), 1 <i < j < N is approximated by Py (d;) and the vice versa, and thus the log-likelihood ratio

the total number of the profile tuples that are currentlyeﬂorln(Pl (_d?j)/PO_(Jj)) shows a negative drift befor.e change, gnd
in 1 which are rejected by thg — th filter in the ordering @ positive drift after the change. Thus, every time a new item

and are not rejected by any of the filters that are placed up%o Tives, th.e CUSUM algorithm updates a cumulative sum
the (i + 1) — th position in the current ordering (the reader i’ as follows:

referred to [2] for full details). { S;_1+In g@j) ;.1 +1n Pud;) } W

Il. BACKGROUND AND PROBLEM FORMULATION

are stored in a fixed-size sliding windoi¥’, called profile
window A-greedy utilizes the contents &% to estimate the
conditional drop probabilities of the input filters. For exale,

A problem encountered when selecting a profile window S; = (dj)’ - Poldy)
of static size is that data (i.e., profile tuples) may co4exis otherwise,
for which the same input filters have significantly differenivhere Sy = 0. If a probability distribution change fron#,
drop probabilities. The coexistence of such inconsistent, to P; occurs, then the values of the log-likelihood ratios that

)

are estimated as new data items arrive are positive, and tipusviously found confidence intervals of the beta distidout
the cumulative sund; continuously increases. The CUSUMare estimated using past data items.

method assumes that, if the sum of the log-likelihood ratios Neither CUSUM nor BCS can determine the most prob-
computed so far exceeds a certain threshold- 0, then a able changepoint, i.e., although they are capable of detect
change in the underlying data distribution is detected Bnd ing changes, they cannot provide any information regarding
becomes the new base probability distribution. Otherwitse, the most probable changepoint. In order to overcome this
above procedure continues by cumulating the newly computéditation, we assume that the change is initiated at the
log-likelihood ratios. CUSUM is rather effective in detiect » — th most recent drop probability estimate that has been
changes [6] but it requires the availability of the probiypil supplied, wheres > 0 is an empirically configured parameter.
distributionsP,, P;, which makes it inapplicable to online sce+inally, threshold: is empirically set in order to maximize the
narios. An online variant of the original CUSUM is proposedbility in detecting changes, while keeping the faulty desd

in [7] that is based on the assumption that the and P, changes as low as possible. The impact of these parameters is
distributions are normal. evaluated in Section V-A.

However, in our case, we have strong evidence that dropThe runtime computational complexity of BCS (3(1),
probabilities better fit a beta distribution [8]. Thus we elep as each time a new drop probability estimate is fed to the
an online version of CUSUM that assumes beta distributioralgorithm, the mean value and the standard deviation of the
and we term this method as BCS (for online Beta distributioestimates seen so far are incrementally computed (see)Eq.(2
based Cumulative Sum). In BCS, a training step is firstignd Eq.(3)). As such, BCS’s runtime overhead is signifigantl
adopted to derive the parameters of the base (i.e., priorlower with respect to other state-of-the-art change dietect
change) beta distribution. After that, the original testdg. methods, e.g., [3], [4].

(1) is employed. The exact phases of the BCS algorithm are
as follows:

Train step The training phase requires a sBt of drop The rationale behind the proposed technique is that, when
probability estimates of sizev = |D|. As the number of data at least one filter drop probability changes, then all of the
that is used during the training phase increases, the actpegdfile tuples that are currently stored in the profile window
filter drop probability distribution is learned more acaetg and correspond to data that has arrived before the occurred
at the expense of a longer training period. In that phase wkange is considered to be out-of-date. For this reasomy eve
derive for the parametersand3 of the base beta distribution,time BCS detects a drop probability change, the technique
their single-value estimatesp| and 3| and their associated erases the out-of-date data of the profile window and the filte
confidence intervalda!® o*?] and [3'° 3“r], assuming a drop probabilities are relearned utilizing the data tugédsin
confidence level off. More details are given in Section V-W. Each drop probabilityl(j]i),1 < i < j < N, is checked
A. After finishing the training phase, the cumulative sum ifor changes with the help of a different instance BCS.

Eq.(1) is set to 0. As mentioned already, the drop probability estimates that

Change detection stefEvery time a drop probability es- are fed to the BCS algorithm to perform change detection
timate d7 is supplied to BCS, the mean valyg and the are estimated after dividing the profile WIndOW into non-
standard deviation; of the j > m drop probability estimates overlapping segments of size The estimatel of d(j|i) is
seen so far (including those of the training set) are contput&qual to the proportion of the profile tuples in thesize

segment that are rejected by the- th filter in the ordering

IV. THE PROPOSED ADAPTIVE TECHNIQUE

i = w1+ (dj— pi—1)/J (2) and are not rejected by any of the filters that placed up to
the (i + 1) — th position. To summarize, every time a batch
-1 d d;
o = \/(] o o1+ (s = pi-1)(ds = #5) (3) of k profile tuples is added to the profile window, the drop
J probability estimates are derived from this batch of tupled

and thea; and3; parameters of the beta distribution are the@r® subsequently fed to the BCS algorithm to check the filter

computed by drop probabilities for changes.
The adaptivity loop of the proposed technique is given
o = (ui(1—pi)/o;—1)p, (4) below. In the measurement update phase, the conditional dro
B, = (u(l—p)/o;—1)(1 —py) (5) Probabilities are checked for changes. If a change has mtur

the most probable timepoint where the change in the data
If o; or 3; do not lie within the confidence intervals estimatedharacteristics has started is estimated, as describebein t
during the training step, then it is assumed that the it?gm previous section. In addition, the out-of-date profile agpare
is produced by a different beta distributid®eta(a;, 5;) and removed from the profile window and, second, the change
S is updated following Eq.(1), wherg, = Beta(a|p|, Bjp|) detection algorithms are trained to learn the new condifion
and P, = Beta(oy, ;). If S; exceeds the threshold then a filter drop probabilities from the up-to-date contents 1o,
change is detected and a changepoint is reported. In ordé@en the analysis phase is triggered. In the analysis phase,
for the BCS algorithm to be operational again, a traininthe framework checks for violations of the greedy invariant
phase must be applied with a new training set, since tk¢hen the invariantis violated, then the reoptimizationgghia

executed and the filters are reordered. Compared to A-Gre¢ h=5 1 h=25 1
[2], our approach shares the same analysis and reoptionzal — — % | —
phases, however it enters those phases less often and « §0_5 §0.5 80_5
under the condition that the monitored drop probabilitie & ~ é
have changed; note that the analysis phase in A-Greedy 0 0 0
. : . 4 0p.05. 1 0, 05. 1 0. 05 1
performed continuously, i.e., for each update in the profi Precision Precision Precision
window [2], [1]. (a) (b) (cg
h=100 k=20 k=50
V. EXPERIMENTAL EVALUATION 1 1 1
. . . — — —_ AR
The conducted experiments aim, first, to compare the p— = =
formance and the runtime overhead of the proposed technic $0.5 g0.5 $0.5
with the performance and the runtime overhead of A—gree<Qﬁ ~ o
E3

and, second, to study how does the above criteria char 0, 05 1 % 05 1 % 05 1
with respect to (i) the algorithm that is employed for droj Precision Precision Precision
probability change detection —to this end, we consider tl (d) (e) (f)
martlngale test (MT) [3] and ADWIN2 [4]) change detgctlorhg. 1. (a)-(d)Precision and recall values obtained aftepleying BCS for
algorithms—, and (i) the frequency of the filter drop proitigh attribute selectivity change detection with differentues of thek, v andm

; - (i igarameters and (@) = 5, (b) h = 25, (¢) h = 50 and (d) h = 100.
Changes' The key observations are: (I) the proposed tastani)-(f)Precision and recall values obtained after empigyBCS for attribute

yields Signif_i_cam perfqrmance improvements (Uﬁi%) Over_ selectivity change detection with different values of thandm parameters
A-greedy; (ii) the runtime overhead of the proposed techa@igand (e)k = 20, (f) k = 50. Parametet is set to 25.

when employing BCS is up to 3% lower than that of A-
greedy; and (iii) BCS outperforms MT and ADWINZ2 in terms
of precision and recall, and incurred overhead. All experita 0.05. The BCS algorithm performs change detection on the
were performed on an Intel i5 Linux machine with 3.7 GBelectivity of the single attribute of the produced dataldsp
memory. after samplingl% of the data tuples. It is executed totally
. _ Al x |k| x |v| x |m]| times, where|.| denotes the number

A. Parameter tuning and comparison of change detectigfi the different values that a parameter can take. For every
alternatives BCS execution, we compute its associated precision andl reca

In this section, we present the methodology that we adoptegasures taking into account all of the correctly, errosou
to tune theh, k, v andm parameters of the BCS and the MTand missed detected attribute selectivity changes.
algorithms. The rest of the parameters of MT and ADWIN2 are Figure 1(a) shows the obtained precision and recall values
set according to [3] and [4], respectively. The parameteiny for every possible value combination of thev and m
procedure consists of two steps. In the first step, we perfoparameters and = 5. Similarly, Figures 1(b)-(d) show the
change detection employing the BCS (or the MT) algorithmbtained precision and recall values for every possibleeval
with different values for the: (cumulative sum threshold}, combination of the:, v andm parameters antl = 25, h = 50
(segment size)y (used in changepoint detection) amd(train and h = 100, respectively. We observe that as the value of
set size) parameters. The characteristic that is beingkedecparameterh increases, the precision of the BCS algorithm
for changes is the selectivity of an attribute. From the gean(slightly) increases too, while its recall decreases S$icpmtly.
detection results that are derived, we compute precisiah afhis is attributed to the fact that under highvalues, only
recall. Precision is the probability that a detected chaisgelarge-scale drop probability changes are detected, iggadhie
actually correct, while recall is the probability that artisd small-scale ones. We fik to 25, since, for that configuration,
change is detected. In the second step, we seleckther BCS has the highest recall and, approximately, equal pogcis
andm parameter values that optimize precision and recall. values with respect to the ones derived when= 50 and

The data tuples that are supplied to the BCS and the Mir= 100. Particularly, when, = 5, the precision and recall
algorithms for change detection have the following chamact values range ifi0.25 0.70] and[0.83 1.0}, respectively. When
istics: (i) there is only one attribute per tuple that takedyo h = 25 the precision is in[0.32 0.80] and the recall is in
{0,1} values; (ii) the selectivity of the attribute is given by[0.80 0.92]. The corresponding precision and recall intervals
the proportion of tuples with attribute value equal to 1i) (ii are[0.39 0.70] - [0.36 0.94] for h = 50 and, finally,[0.44 0.84]
the selectivity of the attribute changes every 400K tuples a- [0.02 0.69] for h = 100.
there are 50 changes in total; and (iv) the selectivity ckang Figure 1 also shows the obtained precision and recall values
are random and the smallest change i$:10 for every possible value combination of them parameters

In the following, we present the parameter tuningnd & = 20 (Figure 1(e)) andk = 50 (Figure 1(f)). When
procedure for BCS. The different assignments of thie= 20 the corresponding precision and recall value intervals
h,k,v and m parameters areh = {5,10,25,50,100}, are[0.32 0.63] and [0.89 0.92], respectively. Wherk = 50,
k = {10,20,30,40,50}, v = {5,10,20,30,50}, m = these intervals becom@.34 0.80] and [0.80 0.86]. For both
{5,10,20,30,50}, while N = 15, |W| = 60K and{ = cases, the highest precision and recall values are met when

100 100 101

- 50 50 £ 50

-50

% Performance Improvement
o

% Performance Improvement
o

% Performance Improvement
o

BCS MT . ADWIN2 BCS MT . ADWIN2 BCS MT ADWIN2
Change detection algorithm Change detection algorithm Change detection algorithm
(a) (b) (c)

Fig. 2. Maximum (middle bar) and median (rightmost b&rperformance improvement and maximum performance degoad@éftmost bar) of the change
detection-based techniques over A-greedy. Results of Xpgiment 1, (b,c) Experiment 2.

v = 5, which means that an actual change is being detectieir optimal configuration in terms of precision-recalsbd

after v = 5 segment-wise estimates have been presentedoto the results presented above.

the algorithm after a change has occurred. Wekfbo 20 and In Experiment 1 we study the impact of the different

v to 5, since this parameter combination leads to higherIrecghange detection algorithms on the quality of the orderings

values. compared to A-Greedy. Fifty different data streams havenbee
The only parameter that has not been fixed yetisVe fix produced, where in each stream the total number of attsbute

parametern to 20, since this parameter assignment leads {9 fifteen (and thus fifteen filters are considered), the filter

the highest precision/recall valugsd3 and0.92, respectively) drop probabilities change every 500K tuples and each filter

over the two other choices. To summarize, we have selecti@dp probability changes 5 times in total.

the value combinatioh = 25, k = 20, » = 5 andm = 20, Figure 2(a) shows the maximum (middle bar) and median
which corresponds 10.63 and 0.92 average precision and rightmost bar)% performance improvement, as well as, the
recall values, respectively. maximum performance degradation (leftmost bar) under the

After employing a similar procedure for tuning the paramyifferent filter ordering techniques. The performance iover

ete_rsl(())f the_ I\;I(‘)I’ algorlthtm we .SG|ECt ttHe ? 2h5’I k d290t2502 ment/degradation is estimated b§—°8“(g§;§g“0)), where
v =10, m = 20U parameter assignment, which iea Cost(O) is the cost of processing tuples with a filter ordering

precision and).83 recall values. Performing change detectloErOduceol by A-greedy) and Cost(O') is the cost of pro-

through the ADWINZ2 algorithm over the same testset of da eéssing tuples with a filter ordering produced by the tecied

hat detect change<)() when the drop probability change
etection is done with the BCS, the MT, or the ADWIN2
gorithms. Note that the runtime overhead associated with

tuples we derive thé.35 and0.95 precision and recall values,
respectively. The relatively low precision that the ADWIN
algorithm has is attributed to the fact that, from the tim
since a change in a filter's drop probability is first detect

by ADWIN2 and for a short period, the algorithm is unstable e adaptivity loop of the change detection-based tecksiqu

. X . |% not considered, but will be examined later; the costs abov
and continuously detects changes every time new profile di;\ Bei . .
arrives ake into account only the quality of the orderings selected

The above show that BCS is the most efficient chan%%A main observation is that the maximum performance

. : . nprovement of all the change detection-based techniques
detection for detecting drop probability changes. To sumger A-greedy is approximatelgs%, while the median of

marize, the average precision and recall values of the B . . .
algorithm for its optimal configuration are 0.63 and 0.9 € performance improvement over the different 50 input
data streams is approximatelp% when any of the BCS,

respectively. Regarding the MT algorithm, the precision ar’glﬂ_’ ADWINZ algorithms is employed. The efficiency of an

recall values for its own optimal configuration are 0.52 an . ; L .

0.83, while the precision and recall of ADWIN2 are 0.35 anf gorithm in detecting fllter_drop probability changes !a'gty

0.95, respectively. affects the performance, since, when one or more filter drop
' probability change is not detected, the out-of-date data ar

not eliminated during query reoptimization. From Figurea)2(

we can see that the maximum performance degradation is
In order to produce correlated input tuples, we adopt &6, 66% and 5% when the BCS, the MT, or the ADWIN2
methodology described in [2]. The filter drop probabilitieglgorithm is employed, respectively. The high performance
change randomly every 250K, 500K, or 1000K tuples, whilgegradation when employing the MT algorithm is because
each filter drop probability changes 5 times totally wheff the high number of missed filter drop probability change
processing an input data stream. All changes are abrupt &lfections.
new selectivities are at least 10% different than the previo In Experiment 2we study how the performance is affected
ones. We keeV = 15, |W| = 60K, and¢ = 0.05 and we set by the frequency of the drop probability changes. To this
the rest of the parameters of the change detection alg@itbmend, we have repeated Experiment 1 witheq = 250K

B. Performance analysis

and freq = 1000K. The performance results are shown istatistical data, but mainly emphasize on responding asafas
Figures 2(b) and 2(c), respectively. We can observe that @asssible to changes in the execution environment (e.g]).[12
the frequency of changes increases, the performance improv Regarding the problem of change detection in data streams,
ments decrease, and, on the contrary, as the frequencyseferal other algorithms have been recently proposed in the
changes decreases, the performance improvements increliteeature (e.g., [13], [3], [4]). However, to the best ofrou
This happens due to the fact that a filter drop probabiliynowledge, no algorithm is tailored to detecting changes in
change is not immediately detected after its occurrence, liop probability distributions, which can be approximatgth

after a specific delay, as discussed earlier. As the frequefinc a beta distribution [8]. Additionally, the run-time ovedte
drop probability changes increases (decreases), thergagee of the majority of the change detection algorithms is higher
of tuples that are processed before the next change ocdhen that of the BCS algorithm, e.g., every time a new data
decreases (increases), with a corresponding decreasea@eg item arrives a probability density function or a supportteec

in the obtained performance improvements. machine may have to be adjusted, which is inappropriate for

At the end of this section, and due to lack of space, wanline settings.
present a summary of the runtime overhead characteristics
of the proposed technique. The first observation is that the
runtime overhead of the proposed technique when employingn this work, we propose an adaptive technique for pipelined
the BCS algorithm is lower than that of A-greedy, since therdering of correlated filters. Our main contribution is two
number of conducted reoptimizations is up 36% lower fold. First, we have presented an approach according tohwhic
than of A-greedy. Note that despite the increased number@tly up-to-date statistical data are considered duringtaca
reoptimizations, the performance of A-greedy is lower sindilter ordering by employing an algorithm that learns and
it does not eliminate the out-of-date data from the profilehecks for changes the filter drop probabilities. Second, a
window. On the other hand, the runtime overhead incurré@vel algorithm is proposed that is tailored to drop probgbi
when the other two change detection algorithms are employdigtribution change detection. The evaluation resultsemeed
(i.e., the MT or the ADWIN2 algorithms) is approximately terProvide evidence that the proposed technique can imprave th
times higher than that of A-greedy. The increased overheB@rformance of the resulting filter orderings over stat¢het
is due to the higher complexity of the MT and ADWINZ2art techniques such as A-Greedy while incurring lower run-
algorithms and to the relatively high number of unnecessaijne overhead. As a future work, we intend to conduct more
re-optimizations, because of their low accuracy in distisg- thorough experiments and also evaluate our proposal dgains
ing the actual drop probability changes from temporal drdigal evolving data streams, where drop probability changes
probability fluctuations. may occur gradually rather than abruptly.

In summary, the results above show that (i) BCS can incur
significant performance improvements compared to A-greed) _ o
while being characterized by lower overhead (up to 37 96 & Desnoande, & ues and v Raman, dapive auery sy,
and (ii) BCS algorithm is more appropriate than the other tw@gp] s. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Wid
alternatives to change detection: the cost of the resuiftiiteg “Adaptive ordering of pipelined stream filters,” BIGMOD, 2004, pp.
orderings is approximatgly equal to the cost of the ordesring[s] 481078_4&3) and H. Wechsler, “A martingale framework for efzing
produced when employing ADWIN2 and lower than that of ~ changes in data streams by testing exchangeabil GEE TPAMI

MT, while the runtime overhead of BCS is much lower than[4] XO'-B3]?1 Pp-§1é3—§127|62018 o , haning taewih
. Bifet an . Gavalda, “Learning from time-changing talawit!
that of ADWINZ2. adaptive windowing,” 2007, pp. 443-448.
[5] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. ,Ddhe
VI. RELATED WORK 1999 darpa off-line intrusion detection evaluatio@dmputer Networks

: : : - vol. 34, pp. 579-595, 2000.
The problem that is addressed in this work relates with th] M. Basseville and I. V. Nikiforov,Detection of abrupt changes: theory

problems of operator ordering and adaptive query proc@ssin = and application Prentice-Hall, Incorporation, 1993.
In the area of operator ordering, the majority of the worl7] C. Alippi and M. Roveri, “Just-in-time adaptive classifs-part i: Detect-

assume independent operators (e.g., [9]), while the padpos g‘gog"“Stat'o”ary changes£EE TNN vol. 19, no. 7, pp. 1145-1153,
that deal with correlated operators assume a static ex@cutijg] B. Babcock and S. Chaudhuri, “Towards a robust querynaigér: A
environment (e.g., [10]), with the exception of proposaists principled and practical approach,” BIGMOD, 2005, pp. 119-130.

: ; : 9] J. M. Hellerstein and M. Stonebraker, “Predicate migrat Optimizing
as [2]. Note that in a centralized environment, the problém d queries with expensive predicates.” SIGMOD 1993, pp. 267-276.

pipelined filter ordering can be optimally solved in polyniam [10] K. Munagala, U. Srivastava, and J. Widom, “Optimizatiof continuous
time only if the filter drop probabilities are independent].1 queries with shared expensive filters,” ®ODS 2007, pp. 215 — 224.

: ; : 11] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimikai of nonre-
Several proposals have been presented in the I|teratumagdu1[cursive queries,” inVLDB, 1986, pp. 128-137.

the last decade that introduce adaptive query processig tg12] R. Avnur and J. M. Hellerstein, “Eddies: Continuouslgaative query

nigques [1]. Their common characteristic is that they em@aloy processing,"SIGMOD Recorgvol. 29, no. 2, pp. 261-272, 2000.

s : 13] F. Desobry, M. Davy, and C. Doncarli, “An online kernehange
three step adaptivity loop. However, the techniques prepos™ i n 2l orithm 1EEE TSP vol. 53, no. 8, pp. 29612974, 2005.

so far tend not to pay attention to the statistics collection
phase, e.g., they do not evaluate the freshness of the extlect

VII. CONCLUSIONS

REFERENCES

