
Characterizing the Temporal and Semantic
Coherency of Broadcast-Based Data

Dissemination

Evaggelia Pitoura1�, Panos K. Chrysanthis2��, and Krithi Ramamritham3

1 Department of Computer Science, University of Ioannina, Greece
pitoura@cs.uoi.gr

2 Department of Computer Science, University of Pittsburgh, USA
panos@cs.pitt.edu

3 Department of Computer Science and Engineering, IIT, Bombay, India
krithi@cse.iitb.ac.in

Abstract. In this paper, we develop a general theory of temporal and se-
mantic coherency for an extended client/server architecture in which the
server broadcasts items of interest to a large number of clients without a
specific client request. Such architectures are part of an increasing num-
ber of emerging applications in wireless mobile computing systems; they
also provide a scalable means to deliver information in web-based appli-
cations, for example in publish-subscribe systems. We introduce various
forms of temporal and semantic coherency applicable to such architec-
tures and present a framework to precisely define protocols for enforcing
them.

1 Introduction

While traditionally data is delivered from servers to clients on demand, a wide
range of emerging data-based applications can benefit from a broadcast mode for
data dissemination. In such applications, the server repetitively broadcasts data
to a client population without explicit requests. Clients monitor the broadcast
channel and retrieve the data items they need as they arrive on the broadcast
channel. Such applications typically involve a small number of servers and a
much larger number of clients with similar interests.

For example, in electronic commerce applications, such as auctions, it is
expected that a typical auction might bring together millions of interested parties
even though only a small fraction may actually offer bids. Updates based on the
bids made must be disseminated promptly and consistently. Fortunately, the
relatively small size of the database, i.e., the current state of the auction, makes
broadcasting feasible. But, the communication bandwidth available for a client
to communicate with servers is likely to be quite restricted. Thus, an attractive
approach is to use the broadcast medium to transmit the current state of the
� Work supported in part by IST-2001-32645

�� Work supported in part by NSF award ANI-0123705

D. Calvanese et al. (Eds.): ICDT 2003, LNCS 2572, pp. 410–424, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Characterizing the Temporal and Semantic Coherency 411

auction while allowing the clients to communicate their updates (to the current
state of the auction) using low bandwidth uplinks with the servers. Broadcast-
based data dissemination is also likely to be a major mode of information transfer
in mobile computing and wireless environments [9,1,6]. Many such systems have
been proposed [17,11] and commercial systems such as Vitria [19] already support
broadcasting. Other applications of broadcasting, include stock trading, next
generation road traffic management systems and automated industrial plants
[21].

Motivation. The problem addressed in this paper is motivated by such appli-
cations. In particular, we are concerned with providing readers with consistent
(semantically coherent) and current (temporally coherent) data. By semantic co-
herency we mean the consistency properties of the data, e.g., did the data items
read by a client transaction result from a serializable execution of the update
transactions at the server? By temporal coherency we mean currency related
properties, e.g., when were the data items read by a client transaction current at
the server? Without both semantic and temporal coherency, users may be mak-
ing decisions based on data which even if consistent, may be outdated. Given
the limited amount of bandwidth available for clients to communicate with the
broadcast server in such environments, achieving semantic and temporal co-
herency efficiently is a challenging research issue.

Several protocols have been proposed with the goal of achieving consistency
and currency in broadcast environments. In [1], the authors discuss the tradeoffs
between currency of data and performance issues when some of the broadcast
data items are updated by processes running on the server. However, the updates
do not have transactional semantics associated with them either at the server or
at the clients. Herman et. al. [8] discuss transactional support in the Datacycle
architecture, which is also an asymmetric bandwidth environment. Realizing
that serializability as the correctness criterion may be expensive, and perhaps
unnecessary in such environments, various protocols [16,2,13,12,10] attempt to
cater to less demanding correctness requirements. However, the exact semantic
and temporal coherency properties associated with them is not always clear.
This lack of clarity has motivated the work reported in this paper. So, instead
of proposing specific protocols for broadcast databases, as has heretofore been
the case, we develop a unified framework for correctness in broadcast-based data
dissemination environments.

Overall Goals and Contributions. Our framework allows us to characterize
different semantic and temporal coherency properties of client transactions in
broadcast-based data dissemination environments:

– We introduce the currency interval of an item in the readset of a transaction
as the time interval during which the value of the item is valid. Based on
the currency intervals of the items in the readset of a client transaction, we
develop the notion of temporal spread and lag of the readset and two notions
of currency (overlapping and oldest-value) through which we characterize the
temporal coherency of the readset of a transaction.

412 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

– We identify five notions of semantic coherency of transactions’ readsets.
These are all variations or weakening of the standard serializability crite-
rion.

Along the way we show what type of temporal and semantic coherency properties
are guaranteed by the various protocols introduced in the literature and indicate
how they can be extended to provide different properties.

Paper Organization. In Section 2, we introduce the broadcast model, give
background definitions, and state the assumptions underlying our framework. In
Section 3, after presenting our temporal coherency model, we present currency
control protocols that satisfy different currency properties. In Section 4, we first
define various models of semantic coherency that provide clients with transac-
tion consistent database states and then present consistency control protocols
based on the Read-Test theorem. We also present various propositions that re-
late certain types of temporal and semantic coherency. Finally, in Section 5, we
present our conclusions.

2 The Model

We consider an extended client/server architecture in which a server broadcasts
data items from a database to a large client population without a specific request
from any client. Each client listens to the broadcast and fetches data items
as they arrive. This way data can be accessed concurrently by any number of
clients without the performance degradation that would result if the server were
to transmit to individual clients. However, each client’s access to the data is
strictly sequential, since clients need to wait for the data of interest to appear
on the channel. The broadcast may be periodic or aperiodic. Without loss of
generality, we assume periodic broadcast.

2.1 Model Assumption

Data dissemination protocols take into account the asymmetry that exists be-
tween the communication capacity from the server to the clients, the typically
meager communication capacity of the backchannel from the client to the server,
and the scalability issues arising at the servers. The asymmetry is the result of
the huge disparity in the transmission capabilities of clients and servers as well
as the scale of information flow since a very large number of clients is connected
to a single server. For scalability reasons, it is important to limit the number
of explicit client requests seen by the server as well as individualized processing
of each client request at the server. These reasons along with the need to de-
crease the latency of client transactions justify the use of client-side protocols for
achieving client-specific semantic and temporal coherency requirements. These
considerations motivate the following model assumptions:

1. The server is stateless: it does not maintain any client-specific information.

Characterizing the Temporal and Semantic Coherency 413

2. All updates are performed at the server and up-to-date data is disseminated
from the server.

3. To get semantic and temporal coherency related information, clients do not
contact the server directly instead such information is broadcast along with
the data.

2.2 Update Period

Assume that a read operation on an item x is initiated at time instance tr. The
client must wait for x to appear on the channel, say, at time instance tx. When
we talk about the time of a read operation we refer to tx (i.e., the time instance
the item is actually read) rather than to tr. The value of x that the client reads
is the value placed on the channel at tx − d, where d is the communication delay.

Which value of an item x is broadcast at a time instance depends on the
update broadcast protocol. We consider a periodic update protocol with an up-
date cycle period or update frequency pu. With this protocol, the data values at
the broadcast are updated every pu time units. Items broadcast during the same
update period are said to belong to the same update cycle. We use the nota-
tion begin cycle(t) for a time instance t to denote the beginning of the update
cycle period that includes t. The value of an item that the server puts on the
broadcast at time tx is the value of x at the server database at time instance
begin cycle(tx) which may not be its current value at the database, if x was up-
dated between begin cycle(tx) and tx. An update cycle period equal to 0, means
that for each item the server broadcasts the most up-to-date value. In this case,
begin cycle(t) = t.

Thus, the value that the client reads at tx from the broadcast is the value at
the server database at begin cycle(tx − d). For simplicity, we will assume in the
rest of this paper that the communication delay is negligible (i.e., d = 0).

In the following, we shall use the term cycle, to denote the update cycle. Usu-
ally, the update cycle period is considered equal to the period of the broadcast.

2.3 Preliminary Definitions

Next, we formally define the broadcast content and the transaction readset as
subsets of a database state. A database state is typically defined as a mapping
of every data item of the database to a value in its domain.

Definition 1. (Database State) A databases state, denoted DS, is a set of
(data item, value) pairs. The database state at time instance t is denoted as
DS(t).

Let BSc be the set of (data item, value) pairs that appear on the broadcast
during the cycle that starts at time instance c. BSc is a subset of a database
state, in particular BSc ⊆ DS(c).

We use R to denote a client read-only transaction. Let tbeginR
and tcommitR

be
the time R performs its first read operation and the time it commits, respectively.

414 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

Definition 2. (Lifetime) The lifetime of R, denoted lifetime(R) is the time
interval [tbeginR

, tcommitR
].

Definition 3. (Readset) The readset of a transaction R, denoted RS(R), is
the set of ordered pairs of data items and their values that R read. The readset
includes at most one (data item, value) pair per data item. If a transaction reads
the same item more than once, the readset includes the value read last. A readset
is a subset of database state.

In general, a transaction R may read items from different cycles. In par-
ticular: RS(R) ⊆ ∪c ∈ [t1,t2]BSc, where t1 = begin cycle(tbeginR

) and t2 =
begin cycle(tcommitR

). This says that the readset of R is a subset of all the
data items that are broadcast during the cycles that overlap with the execution
of R.

3 Temporal Coherency

3.1 A Temporal Coherency Framework

We first define the currency of a single item read by a client.

Definition 4. (Currency Interval of an Item) CI(x, R), the currency in-
terval of x in the readset of R is [cb, ce) where cb is the time instance the value
of x read by R was stored in the database and ce is the time instance of the next
change of this value in the database. If the value read by R has not been changed
subsequently, ce is infinity.

The above time instances (cb and ce) correspond to transaction time [18]:
the time that the value is stored in the database. They could as well correspond
to valid time, i.e., the time when the value becomes effective in reality, or to
some user-defined notion of time. The rest of this section holds for all such
interpretations of time.

Based on the CIs of the items in the readset we define properties that char-
acterize the currency of the readset. First, based on whether or not there is a
time instance when the values read by R are concurrently current at the server,
we define two different forms of currency of the readset: overlapping currency
and oldest-value currency.

Definition 5. (Overlapping Currency of a Transaction) A transaction R
is overlapping current if and only if there is an interval of time that is included
in the currency interval of all items in R’s readset: ∩(x,u)∈RS(R) CI(x, R) �= ∅.
Let this overlap correspond to the interval [cb, ce), then
Overlapping Currency(R) = c−

e (where t− refers to the time instance just before
t) if ce is not infinity, else Overlapping Currency(R) = current time.

If a transaction R is overlapping current and the intersection is the interval
[cb, ce), then its readset RS(R) is a subset of an actual database state DS(t) at
the server (RS(R) ⊆ DS(t)) for all t ∈ [cb, ce).

Characterizing the Temporal and Semantic Coherency 415

If a transaction is not overlapping current, we characterize its currency based
on the oldest value read by R which is an indication of the outdatedness of the
data.

Definition 6. (Oldest Value Currency of a Transaction) The oldest-value
currency of a transaction R, denoted OV Currency(R), is equal to c−

e , where ce

is the smallest among the endpoints of the CI(x, R), for every x, (x, u) ∈ RS(R).

For overlapping current transactions, oldest-value currency reduces to over-
lapping currency, that is, if R is overlapping current then OV currency(R) =
Overlapping Currency(R).

In general, if a transaction is not overlapping current, its readset may not
be a subset of a single database state DS at the server. In this case, we are
interested in minimizing the discrepancies in the currency of the items in the
readset. This is captured through the notion of temporal spread.

Definition 7. (Temporal Spread of a Readset) Let mince
be the small-

est among the endpoints and maxcb
the largest among the begin-points of the

currency intervals of items in the readset of a transaction R. The temporal
spread of the readset of R, temporal spread(R), is equal to (maxcb

- mince), if
maxcb

> mince and zero otherwise.

Temporal spread measures the discrepancies among the values read by a
transaction; the larger the spread, the more distant in time the different server
states seen by the transaction. For overlapping current transactions, the temporal
spread is zero.

Example 1. (Fig. 1) Let data items x1, x2, x3 and x4 be in the readset of a
transaction.

(i) Let R1 be a transaction with CI(x1, R1) = [2,∞), CI(x2, R1) = [4, 8),
CI(x3, R1) = [5, 10) and CI(x4, R1) = [2, 18). Then, R1 is overlapping current
Overlapping Currency(R1)=8− (the temporal spread is 0).

(ii) Let R2 be another transaction with CI(x1, R2) = [2,∞), CI(x2, R2) =
[4, 8), CI(x3, R2) = [5, 10) and CI(x4, R2) = [9, 13). In this case, R2 is not
overlapping current, but is oldest-value current with OV Currency(R2) = 8−,
meaning that the oldest value read by R2 corresponds to 8−; all other values re-
main valid even after 8. Temporal spread(R2) = 9−8 = 1, that is the discrepancy
between the database states seen by R2 is 1.

(iii) Finally, let R3 be a transaction R3 with CI(x1, R3) = [2,∞), CI(x2, R3)
= [4, 10), CI(x3, R3) = [5, 10) and CI(x4, R3) = [15, 18). OV Currency(R3) =
9 (i.e., R3 reads less out-dated than R2), however R3’s temporal spread is equal
to 15 − 10 = 5, which is larger than the temporal spread of R2.

We now examine how the currency of the readset relates to the transaction’s
lifetime. To this end, we define transaction-relative currency which relates the
currency of the readset of a transaction R with some time instance during its
lifetime.

416 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

x1 R1CI(,)

R1x2CI(,)

R1

R1xCI(,)3

R2xCI(,)2

x3 RCI(,)2

x1 R3CI(,)

x1 RCI(,)2

6 12 14 16 20

time

xCI(,)4

2 4 8 10 18

(i)

14 16 18 20

time

x RCI(,)24

2 4 86 10 12

(ii)

6 8 12 16 20

time

RxCI(,)2 3

R3CI(,)

R3CI(,)

x3

x4

2 4 10 14 18

(iii)

Fig. 1. Example 1

Definition 8. (Transaction-Relative Currency) A transaction R is relative
overlapping current with respect to some time t, if t ∈ CI(x, R) for all x read
by R. A transaction R is relative oldest-value current with respect to some time
t, if t ≤ OV Currency(R).

For a given R, three possibilities of t are: t ≥ tcommitR
, tbeginR

≤ t < tcommitR
,

and t < tbeginR
. Correspondingly, we may have t to refer to the beginning of the

respective cycle, that is, t ≥ begin cycle(tcommitR
), begin cycle(tbeginR

) ≤ t <
begin cycle(tcommitR

), and t < begin cycle(tbeginR
).

Definition 9. (Temporal Lag) Let tc be the largest t ≤ tcommitR
, with

respect to which R is relative (overlapping or oldest-value) current, then
temporal lag(R) = tcommitR

− tc.

Temporal lag indicates the currency of the values read; temporal lag of zero,
means that the transaction reads items current at its commit time. The smaller
the temporal lag and the temporal spread, the higher the temporal coherency
of a read transaction. Thus, R exhibits the best temporal coherency when it is
overlapping relative current with respect to tcommitR

(then both the time lag
and the temporal spread are zero).

Example 2. (Fig. 2) If the lifetime of transaction R1 in Example 1 is: (i) [3, 7],
then R1 has temporal lag equal to 0, (ii) [4, 12], then R1 has temporal lag equal
to 4 (12 − 8), (iii) [10, 19], then R1 has temporal lag equal to 11 (19 − 8). That
is, although in all cases R1 is overlapping current (i.e., the temporal spread is
zero), R1 in case (i) reads more current data than in case (ii) and this in turn is
more current than in case (iii) (with respect to its lifetime).

Characterizing the Temporal and Semantic Coherency 417

R1

R1xCI(,)3

x1 R1CI(,)

R1x2CI(,)

R1

R1

R1

6 12 14 16 20

time

xCI(,)4

(iii)

(ii)

(i)

188 1042

Fig. 2. Example 2

3.2 Achieving Temporal Coherency

Let us first see what kind of currency is attained when no additional control
information is broadcast. The following proposition shows that we cannot guar-
antee anything better than oldest-value currency, in particular (proof in [14]):

Proposition 1. Let tlastreadR
be the time instance R performs its last read. If

R reads items from the broadcast channel (without any additional information),
then R is relative oldest-value current with respect to begin cycle(tbeginR

), with
temporal lag(R) ≤ tcommitR

− begin cycle(tbeginR
) and temporal spread(R) ≤

tlastreadR
- begin cycle(tbeginR

).

From Proposition 1, we see that: the larger the period of the cycle, the
better (smaller) the temporal spread and the worse (larger) the temporal lag. In
fact, the best lag is attained when the period of the cycle is zero. In this case,
temporal lag(R) ≤ tcommitR

− tbeginR
and temporal spread(R) ≤ tlastreadR

-
tbeginR

.
If a transaction R reads all items from the same cycle, then

temporal spread(R) = 0, R is overlapping current with respect to
begin cycle(tcommitR

) and its temporal lag(R) is equal to the update cycle pe-
riod.

If we want to improve temporal coherency, additional information needs to
be made available to clients. Next, we study some protocols that have appeared
in the literature and formally express and prove their properties. When we say
that a protocol satisfies a property, we mean that all transactions that follow the
protocol have the property. The protocols fall in two broad categories: (a) inval-
idation (which corresponds to broadcasting the endpoints (ces) of the currency
interval for each item) and (b) versioning (which corresponds to broadcasting
the begin points (cbs) of the currency interval for each item).

Invalidation-based Protocols. Invalidation is based on the following theorem
(proof in [14]).

418 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

Theorem 1. (Updates and Currency) Let tk be a time instance. Let (x, u)
∈ RS(R) and x be read at time instance tx.

Condition (1) If tx ≤ tk, then x is not updated in (begin cycle(tx), tk].
Condition (2a) If tx > tk and begin cycle(tk) = begin cycle(tx), then x is
not updated in (begin cycle(tx), tk].
Condition (2b) If tx > tk and begin cycle(tx) > begin cycle(tk), then x is
not updated in (tk, begin cycle(tx)].

(A) Conditions (1) and (2a) hold for all x in RS(R) if and only if R is
relative oldest-value current with respect to tk.
(B) Conditions (1), (2a) and (2b) hold for all x in RS(R) if and only if R
is relative overlapping current with respect to tk.

An invalidation report is a list with the items that have been updated at the
server since the broadcast of the previous invalidation report. Without loss of
generality, we assume that invalidation reports are broadcast periodically. This
also facilitates selective tuning; a client can estimate the broadcast of the next
invalidation report and tune in at the appropriate time. Let pi be the invalidation
period; invalidation period equal to 0 means that an invalidation report for an
item is broadcast immediately after the item is updated.

For notational convenience, we assume that broadcasting invalidation reports
takes negligible time. Let IRc be the invalidation report that is sent at time
instance c, IRc includes all items that have been updated since the broadcast of
the invalidation report IRc−pi

.
For a time instance t, we use the notation invalidation(t) to denote the

time instance when the invalidation report covering t is broadcast, that is the
time instance t′ ≥ t when the next invalidation report is broadcast. That is,
for c − pi < t ≤ c, invalidation(t) = c. For pi = 0, invalidation(t) = t. In
the case in which the period of broadcasting invalidation reports (pi) is equal
to the update period (pu), invalidation reports are broadcast at the beginning
of each cycle, and IRbegin cycle(t) includes all items that have been updated
since the beginning of the previous cycle, and covers all t, begin cycle(t) − pu

< t ≤ begin cycle(t). In particular, begin cycle(t) is covered by IRbegin cycle(t)
(that is, invalidation(begin cycle(t)) = begin cycle(t)).

The following property relates invalidation reports and updates (proof in
[14]).

Property 1 (Invalidation). For a data item x, let two time instances t1 and t2,
t2 > t1, x is not updated in the time interval [t1, invalidation(t2)] iff x /∈ IRc,
for every c, invalidation(t1) ≤ c ≤ invalidation(t2).

Using Property 1 and Theorem 1, we can design various invalidation pro-
tocols and prove their currency properties. In particular, to guarantee that a
transaction R is oldest-value (overlapping) current with respect to some time
instance, we need to test for each item in its readset whether it is updated in
the specific interval defined in Theorem 1. To do so, we read the corresponding

Characterizing the Temporal and Semantic Coherency 419

invalidation reports specified by Property 1. In the case that the item appears
in any such report, the transaction is aborted.

Note that, using Property 1, guarantees oldest-value (overlapping) currency
with respect to invalidation(tk) as opposed to tk. In other words, the finest
granularity that we can get through invalidation reports is at the time the inval-
idation report is sent; in other words, we can only see the database states DS(t)
that correspond to invalidation points. In the special case in which pi = pu (that
is when invalidation reports are broadcast at the beginning of each cycle), we
get currency with respect to begin points.

If invalidation reports are broadcast more often (small pi), then we need to
read more reports. However, we need to listen to the broadcast for less time,
since the last report to be read is the report that covers t2 and how long after
t2 this report will be broadcast depends on pi.

A specific instance of the invalidation protocol with tk = begin cycle(tbeginR
)

appears in the literature as invalidation lists [13,12] or certification reports [2]
(if we consider only read-only transactions).

A variation of invalidation report is based on re-reading an item that appears
in an invalidation report, instead of aborting the issuing transaction. Such a
method called autoprefetch was proposed in [1]. There, it was used to achieve
overlapping currency with respect to begin cycle(tcommitR

).

Versioning. Another basic approach for ensuring overlapping currency is based
on versions or timestamps [12]. In particular, with each (data item, value) pair in
the broadcast, (x, u) ∈ BCc, we also broadcast a version number or timestamp,
timestamp(x) = cb, where cb is the time instance the value of x was written in
the database. Let t0 = begin cycle(tbeginR

). When R reads x, if timestamp(x)
> t0, R is aborted. It is easy to show (proof in [14]) that

Claim. The versioning protocol ensures that a transaction R is overlapping cur-
rent with respect to t0, t0 = begin cycle(tbeginR

).

The following protocol [12] uses both invalidation reports and versioning.
Let IRti be the first invalidation report that includes an item previously read
by R. Until ti, R reads items as they appear in the broadcast. After ti, R checks
whether timestamp(x) > ti, if so, R is aborted. It is easy to show (proof in [14])
that

Claim. The versioning protocol with invalidation reports ensures that a trans-
action R is overlapping current with respect to ti, where IRti is the first invali-
dation report that includes an item previously read by R.

4 Semantic Coherency

4.1 A Semantic Coherency Framework

The currency properties of a client transaction focus on the timeliness of its
readset. In this section, we consider whether the data read by a transaction are
semantically correct. We relate semantic coherency with database consistency.

420 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

Definition 10. (Database State and its Consistency) A database state
is consistent if it does not violate the integrity constraints [3] defined on the
database. A subset of a database state is consistent if it is a subset of a consistent
database state [15].

Thus, since a readset of a transaction is a subset of a database state, it is
consistent if it is a subset of a consistent database state.

A consistent database state need not necessarily be produced by a set of
server transactions. Hence, various consistency guarantees stronger than corre-
spondence to a consistent database state have been defined, based on transaction
serializability [4,7,20]. All (except one) guarantee that a read-only client trans-
action sees a consistent database state. We discuss them now in increasing order
of “strength”:

Definition 11. (Degrees of Consistency) Let R be a read-only transaction,
then

R is C0 consistent if no consistency requirements are placed on its read-
set. No consistency1 [7] and opportunistic consistency [1] are examples of
occurrence of C0 in the literature.
R is C1 consistent if RS(R) is a subset of a consistent database state. No
other serializability-based requirements are placed on this state. Consistency
[20] and weak consistency [7] are examples of occurrence of C1 in the liter-
ature.
R is C2 consistent if R is serializable with the set of server transactions that
produced values that are seen (either directly or indirectly) by R. Update
consistency [4,16], weak consistency [5] and external consistency [20] are
examples of C2 from the literature.
R is C3 consistent if R is serializable with the set of all server transactions.
Weak consistency [4] is an example of C3 from the literature.
R is C4 consistent if R is serializable with the set of all server transactions
and observes a serial order of server transactions that agrees with the order
in which the server transactions committed.

A schedule is rigorous iff the commit order of transactions is compatible
with the serialization order. So, C4 is C3 plus the requirement that schedules be
rigorous.

Each criterion in the above list strengthens the previous criterion. Let us
examine this list working backwards: C4 demands the serializability of all server
transactions and R. In addition, it demands that the serialization order be consis-
tent with the commit order. C3 is derived by dropping from C4 the requirement
dealing with the serialization order having to agree with the commit order. So,

1 We have retained the original terms, even though some terms like “strong” and
“weak” have been used by different authors to mean different things. By formulating
a framework for discussing correctness requirements, our hope is to shed some light
on their precise meanings.

Characterizing the Temporal and Semantic Coherency 421

C3 simply demands the serializability of all server transactions and R. C2 is de-
rived from C3 by demanding the serializability of a read-only transaction R with
just those server transactions from which R reads data directly or indirectly. C1
drops the requirement of serializability from C2, being satisfied with the readset
simply being consistent. C0 drops even the consistency requirement from C1.

4.2 Relation to Temporal Coherency

In the following, we adapt the definition of the currency interval to reflect that
the server broadcast items from a transactional database system. The temporal
coherency framework holds for this adapted definition as well.

Definition 12. ((Transactional) Currency Interval of an Item) CI(x, R),
the currency interval of x in the readset of R is [cb, ce) where cb is the commit
time of the transaction that wrote the value of x read by R and ce is the commit
time of the transaction that next changes this value. If the value read by R has
not been changed subsequently, ce is infinity.

Our only assumption about concurrency control at the server is that server
schedules are serializable and that only committed values are broadcast. It can
be proved ([14]) that:

Proposition 2. If a client transaction R is overlapping current, then R is C1
consistent.

Overlapping current transactions using the transactional definition of the
currency interval correspond to the ce-vintage transactions of [7]. A transaction
satisfies the t-vintage requirement iff it reflects the updates of all transactions
committed before time instance t and does not reflect any updates due to any
transaction committed after t. Similarly, a concept related to oldest-value cur-
rent transactions are t-bound transactions [7]. A t-bound transaction sees the
results of all transactions committed prior to time instance t but also of some
transactions committed after t. Thus, we may say that a transaction R with
OV Currency(R) = to, is to-bound.

4.3 Achieving Semantic Coherency

Proposition 2 shows that to attain C1 consistency, it suffices to attain overlapping
currency. However overlapping currency is not sufficient to attain stricter notions
of consistency even when a transaction reads all items from the same cycle (proof
in [14]):

Proposition 3. If a client transaction reads all items from a single cycle, it is
C1, but not necessarily C2.

422 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

The Read-Test. As the following theorem shows, in order to efficiently check
for serializability-based consistency (that is, C2, C3, or C4 consistency), the
server schedules should be rigorous. The theorem states (proof in [14]) that
when server schedules are rigorous, checks of consistency violations can be done
when a new item is read by a client transaction. This simplifies the construction
of protocols for attaining semantic coherency.

Theorem 2. (Read-Test Theorem) It suffices to check for C2, C3, or C4
consistency violations when a read-only transaction reads a new data item if and
only if the schedule of server transactions is rigorous.

The proof of the Read-Test theorem also shows that if the server schedule is not
rigorous, then any of the C4, C3, and C2 consistency may be violated anytime a
server transaction Tf writes an item that was previously read by a client trans-
action R and there is some path from Tf to a server transaction T from which
R read an item. This can happen even after R has completed its operations.

Note that even when the server schedules are rigorous, C3 is not equivalent
to C4. For example, let T0, T1, T2 be server transactions and TR be a client
transaction. Consider the schedule w0(y) c0 rR(y) || w1(y)w2(x)c1c2 || rR(x)cR,
where || denotes the beginning of a new cycle. The commit order (which is
compatible with the serializability) order at the server is: T0 → T1 → T2. The
serializability order at the client it is: T0 → T2 → TR → T1, which means that
TR is C3 but not C4.

From Theorem 2, we get that:

Corollary 1. If the server schedule is rigorous and R reads all items from the
same cycle, then R is C4.

Thus, there is a trade-off between temporal and semantic coherency. The
larger the length of the cycle (i.e., the update frequency) the worst the temporal
spread, but the stronger the consistency attained.

Semantic Coherency Protocols. Let us consider what is needed to achieve
C2, C3 and C4 consistency, in the case of rigorous schedules (proofs in [14]).

Corollary 2. Let the server schedule be rigorous, R read x from T , and FollowR

= {Tf : Tf overwrote an item previously read by R}. Then,

C4 Read Test Let tmin = minTf ∈Follow R (tcommitTf
) and tT = tcommitT

, R

is C4 iff tT < tmin.
C3 Read Test R is C3 iff there is no path from any Tf ∈ FollowR to T in
the serialization graph of server transactions.
C2 Read Test R is C2 iff there is no path from any Tf to T that includes only
dependency transaction edges in the serialization graph of server transac-
tions. Dependent transaction edges are those edges that correspond to trans-
actions that R “directly or indirectly reads from”.

Characterizing the Temporal and Semantic Coherency 423

Proposition 4. If a transaction R is C4 consistent, then R is overlapping cur-
rent with respect to tmin of Corollary 2.

The BCC-T1 method [10] provides an implementation of the C4 test. The
commit timestamp of the transaction that last wrote each item is also broadcast
along with the item. In addition, an invalidation report is broadcast periodically
that includes for each data item x that has been updated since the previous
report the pair (x, min t) where min t is the smallest commit timestamp among
all transactions that wrote x. For each transaction R, we also maintain the set
Current RS(R) that includes the (item, value) pairs read by R so far and a
counter count as follows. When for an item (x, value) ∈ Current RS(R) the pair
(x, min t) appears in an invalidation report, we set count equal to min{min t,
count}. For each item read, the Read-Test checks whether the item read has
timestamp less than count. If this does not hold, R is aborted.

The SGT method [13] provides an implementation of the C3 test. The server
maintains a serialization graph SG with all transactions committed at the server.
The server broadcasts periodically the serialization graph to the clients. Each
clients maintains a local copy of the graph. The Read-Test checks for cycles in
the local copy of the graph.

The F-matrix [16] provides an interesting implementation of the C2 test.
Along with each item x, an array C with n elements (where n is the number
of items in the database) is broadcast. C[i] provides information regarding the
transaction that affected the values of both items x and i.

5 Conclusions

In this paper, we have proposed a general theory for characterizing the temporal
and semantic coherency of transactions for an extended client/server environ-
ment in which the server broadcasts items of interest to a large number of clients.
Our model provides the necessary tools for arguing about the correctness and
other properties of the various protocols. In addition, it provides the basis for
new protocols to be advanced. The proposed model can be easily extended for
the case of a cache being maintained at the clients. In this case, clients read items
from the broadcast channel or from the cache. The theory is directly applicable
to caches. if the values in cache are maintained current. It can also be extended
for deferred cache update policies.

References

1. S. Acharya, M. J. Franklin, and S. Zdonik. Disseminating Updates on Broadcast
Disks. In Proceedings of the 22nd International Conference on Very Large Data
Bases (VLDB 96), September 1996.

2. D. Barbará. Certification Reports: Supporting Transactions in Wireless Systems.
In Proceedings of the IEEE International Conference on Distributed Computing
Systems, 1997.

424 E. Pitoura, P.K. Chrysanthis, and K. Ramamritham

3. P. A. Bernstein, V. Hadjilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addisson-Wesley, 1987.

4. P. M. Bober and M. J. Carey. Multiversion Query Locking. In Proceedings of the
1992 SIGMOD Conference, pages 497–510, 1992.

5. A. Chan and R. Gray. Implementing Distributed Read-Only Transactions. IEEE
Transactions on Software Engineering, 11(2):205–212, 1985.

6. A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. Broadcast Protocols to
Support Efficient Retrieval from Databases by Mobile Users. ACM TODS, 24(1),
1999.

7. H. Garcia-Molina and G. Wiederhold. Read-Only Transactions in a Distributed
Database. ACM TODS, 7(2):209–234, 1982.

8. G. Herman, G. Gopal, K.C. Lee, A. Weinreb, “The Datacycle Architecture for
Very High Throughput Database Systems,” Proceedings of the ACM SIGMOD
Conference, New York, 1987.

9. T. Imielinski, S. Viswanathan, and B. R. Badrinanth. Data on Air: Organization
and Access. IEEE Transactions on Knowledge and Data Engineering, 9(3):353–
372, May/June 1997.

10. V. C. S. Lee, S. H. Son, and K. Lam. On the Performance of Transaction Processing
in Broadcast Environments. In Proccedings of the International Conference on
Mobile Data Access (MDA’99), 1999.

11. B. Oki, M. Pfluegl, A. Siegel, D. Skeen, “The Information Bus – An Architecture
for Extensible Distributed Systems,” Proceedings of the SOSP Conference, North
Carolina, December 1993.

12. E. Pitoura and P. K. Chrysanthis. Exploiting Versions for Handling Updates in
Broadcast Disks. In Proceedings of 25th VLDB, pages 114–125, 1999.

13. E. Pitoura and P. K. Chrysanthis. Scalable Processing of Read-Only Transactions
in Broadcast Push. In Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, 1999.

14. E. Pitoura, P. K. Chrysanthis, and K. Ramamritham. Characterizing the Semantic
and Temporal Coherency of Broadcast-Based Data Dissemination (extended ver-
sion). Technical Report TR: 2002-14, Univ. of Ioannina, Computer Science Dept,
2002.

15. R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Korth, and A. Silberschatz. On
Correctness of Non-serializable Executions. In Proceedings of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 97–108,
1993.

16. J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K. Ramamritham.
Efficient Concurrency Control for Broadcast Environments. In ACM SIGMOD
International Conference on Management of Data, pages 85–96, 1999.

17. S. Shekar, D. Liu, “Genesis and Advanced Traveler Information Systems (ATIS):
Killer Applications for Mobile Computing,” MOBIDATA Workshop, New Jersey,
1994.

18. R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In ACM SIGMOD
International Conference on Management of Data, pages 236–246, 1985.

19. White Paper, Vitria Technology Inc. (http://www.vitria.com).
20. W. E. Weihl. Distributed Version Management for Read-Only Actions. ACM

Transactions on Software Engineering, 13(1):56–64, 1987.
21. P. Xuan, S. Sen, O.J. Gonzalez-Gomez, J. Fernandez and K. Ramamritham,

“Broadcast on Demand – Efficient and Timely Dissemination of Data in Mobile
Environments,” IEEE Real-Time Technology and Applications Symposium, pp.
38-48, June 1997.

	Introduction
	The Model
	Model Assumption
	Update Period
	Preliminary Definitions

	Temporal Coherency
	A Temporal Coherency Framework
	Achieving Temporal Coherency

	Semantic Coherency
	A Semantic Coherency Framework
	Relation to Temporal Coherency
	Achieving Semantic Coherency

	Conclusions

