
VLDB Yourna/,2, 181-239 (1992), Invited contribution. Hans J. Schek, Editor

©VLDB
181

Overview of Multidatabase Transaction Management

Yuri Breitbart, Hector Garcia-Molina, Avi Silberschatz

Received May 14, 1992;final version June 26, 1992

Abstract. A multidatabase system (MDBS) is a facility that allows users access to
data located in multiple autonomous database management systems (DBMSs). In
such a system, globaltransactions are executed under the control of the MDBS. In-
dependently, localtransactions are executed under the control of the local DBMSs.
Each local DBMS integrated by the MDBS may employ a different transaction
management scheme. In addition, each local DBMS has complete control over all
transactions (global and local) executing at its site, including the ability to abort at
any point any of the transactions executing at its site. Typically, no design or in-
ternal DBMS structure changes are allowed in order to accommodate the MDBS.
Furthermore, the local DBMSs may not be aware of each other and, as a conse-
quence, cannot coordinate their actions. Thus, traditional techniques for ensuring
transaction atomicity and consistency in homogeneous distributed database sys-
tems may not be appropriate for an MDBS environment. The objective of this
article is to provide a brief review of the most current work in the area of multi-
database transaction management. We first define the problem and argue that the
multidatabase research will become increasingly important in the coming years.
We then outline basic research issues in multidatabase transaction management
and review recent results in the area. We conclude with a discussion of open prob-
lems and practical implications of this research.

Key Words. Multidatabase, serializability, recovery, reliability, two-level serial-
izability, transaction.

1. Introduction

Recent progress in communication and database technologies has changed the user
data processing environment. The present data processing situation is characterized

Yuri Breitbart, Ph.D., is Professor, Department of Computer Science, University of Kentucky, Lexington,
KY 40506. Hector Garda-Molina, Ph.D., is Professor, Department of Computer Science, Stanford Uni-
versity, Stanford, CA 94305. Avi Silberschatz, Ph.D., is Endowed Professor, Department of Computer
Sciences, University of Texas, Austin, TX 78712. (Reprint requests to Dr. Y. Breitbart, Dept. of Computer
Science, 915 Patter~n Office Tower, Lexington, ICY 40506.-00227, USA.)

182

by a growing number of applications that require access to various pre-existing
local data sources located in heterogeneous hardware and software environments

distributed among the nodes of a network. Each local data source is a collection of

data and applications that are run under a particular database management system

(DBMS) and are administered/operated under a particular policy or local rules.

The data sources are pre-existing in the sense that they were created indepen-

dently, in an uncoordinated way and without considering that one day they may

need to be integrated. The DBMSs involved are heterogeneous in the sense that

they operate in different environments and may use different underlying data mod-

els, data definition and data manipulation facilities, transaction management and

concurrency control mechanisms, and physical data structures.

A multidatabase is composed of local data sources. Systems that facilitate the

logical integration of local data sources are called multidatabase systems. Logical

data integration creates an illusion of a single database system and hides from users

the intricacies of different DBMSs and different access methods. It provides users

with uniform access to data contained in various databases, without migrating the

data to a new database, and without requiring the users to know either the location

or the characteristics of different databases and their corresponding DBMSs. Using

the multidatabase approach, pre-existing applications remain operational and new

applications may access data in various distributed data sources.

A multidatabase system (MDBS) is built on top of a number of local DBMSs that

manage different local data sources. Access to data located in a local data source

is accomplished through transactions. A transaction results from the execution of a

user program written in a high level programming language (e.g., C, or PASCAL).
In this article, we assume that each local DBMS ensures the following properties

(called ACID properties) of transactions executed at its site:

• Atomicity: Either all operations of the transaction are properly reflected in

the database or none are.

• Consistency: Execution of a transaction in isolation preserves the consistency

of the database.

Isolation: Each transaction assumes that it is executed alone in the system

and the local DBMS guarantees that intermediate transaction results are

hidden from other concurrently executed transactions.

• Durability: The values changed by the transaction must persist after the

transaction successfully completes.

183

To ensure the consistency and isolation properties, each local DBMS generates a

conflict serializable schedule consisting of operations of local and global transactions

that were executed at its site. To ensure the atomicity and durability properties,

each local DBMS uses some form of recovery scheme (e.g., write-ahead log scheme;

Bernstein et al., 1987).

The MDBS considers each local DBMS as a black box that operates autonomously,
without the knowledge of either other local DBMSs or the MDBS system. Local

autonomy is the main feature that distinguishes the multidatabase systems from

conventional distributed database systems. There are three main types of autonomy:

Design autonomy: No changes can be made to the local DBMS software to

accommodate the MDBS system. Making changes to the existing software of

the DBMS is expensive, may result in performance degradation and, further,

may render pre-existing applications inoperative.

Execution autonomy: Each local DBMS should retain complete control over

the execution of transactions at its site. An implication of this constraint is

that a local DBMS may abort a transaction executing at its site at any time

during its execution, including the time when a global transaction is in the

process of being committed by the MDBS.

Communication autonomy: Local DBMSs integrated by the MDBS are not

able to coordinate the actions of global transactions executing at several

sites. This constraint implies that local DBMSs do not share their control

information with each other or with the MDBS system.

Participating DBMSs may have different autonomy levels. For example, some

sites may be willing to participate in the coordination of a global transaction (low

communication autonomy) while others may not (high communication autonomy).

One way to characterize the autonomy levels of sites is to define the interface
that each local data source offers to user transactions. For example, no airline, bank,

or car agency would allow external users' transactions to access their data using

SQL statements. On the other hand, internal users' transactions will be allowed to

do so. The interfaces can be categorized by the operations they accept from the

MDBS. Here, we illustrate some o f the operations that may be available at a site

(black box). We partition these operations into two sets. The first one deals with

transaction operations, while the second one deals with status information.

184

• Transaction operations:

- Begin transaction. The MDBS requests that a new local transaction

be initiated. The DBMS typically returns a transaction identification

to be used in later commands.

- End transaction. The identified transaction has completed and may be

committed.

- Read or Write. Perform indicated action. The action may be low level

(e.g., read a record or write a record) or high level (e.g., withdraw

money from an account). Begin and end transaction operations may

be implicit in action.

- Abort. Terminate and abort a transaction. Undo all transaction's effects

in the database.

- Commit. Make all changes that a transaction made permanent in the

database and purge the transaction from the system

- Prepare to Commit. The identified transaction has finished its actions

and is ready to commit. DBMS guarantees that transaction will not be

unilaterally aborted and waits for commit or abort decision from the

MDBS.

- Service Request. The execution of a procedure is requested (e.g.,

"reserve a seat on a given flight"). A service request is equivalent to

submitting all the actions of a local transaction, from begin transaction

to commit, at once.

• Status information operations:

- Get-wait-for-graph. Retrieve the local-wait-for-graph (if one is used) to

be used in global deadlock detection. (A local-wait-for-graph consists

of a set of vertices corresponding to transaction names, and a set of

edges specifying a waiting relation between transactions. A cycle in the

graph indicates a deadlock situation.)

- Get-serialization-order. Retrieve information regarding the commit or-

der of transactions. (Such an order can be represented by a serialization

graph, where the sets of vertices correspond to transaction names, and

the set of edges specify serialization order. A cycle in the serialization

graph indicates a non-serializable schedule.)

- Inquire. Find out status (e.g., commit, abort) of a transaction.

185

- Disable transaction class. Certain types of transactions (e.g., identified

by semantic type, or by read or write access sets) are not allowed to
commit at this box.

Thus, each local dam source exports a well defined set of high-level operations that

may be invoked by users' transactions. This notion of exported high-level operations

roughly corresponds to the transactions steps (Garcia-Molina et al., 1990; Wachter

and Reuter, 1992). In addition to the available operations, the global system may

also use knowledge of the internals of the local DBMS. For example, it may be

known that a local DBMS uses the two phase locking (2PL) protocol (Eswaran et

al., 1976), or that it uses a strict, recoverable, or cascadeless concurrency control

mechanism (Bernstein et al., 1987). As we will see, this information may be of use

to the MDBS for coordinating global transactions.

The operations define a spectrum of autonomy. At one end we have sites that

simply provide a service request interface (see transaction operations above); the

MDBS is offered a fixed choice of services, and once a request is submitted the

MDBS has no control as to when it is executed, if at all. At the other end of the

spectrum the various transaction operations are submitted individually to the local

DBMS. Thus, the only mechanism that the MDBS can use to guarantee certain

properties of transaction executions is the mechanism of coordinating a submission

of transaction's operations.

A variety of points in the spectrum have been studied in the literature. In

general, the more autonomy the DBMSs retain, the harder it is to guarantee global

data consistency (Gligor and Popescu-Zeletin, 1985, 1986). In this article we provide

an overview of the different points of the spectrum that have been studied and the

corresponding MDBS transaction mechanisms. Since our focus here is on high level

autonomy, we will not consider here multidatabase systems where the participating

local DBMSs export wait-for or serialization-order information (Pu, 1988; Perrizo et

al., 1991; Soparkar et ai., 1991). Such MDBSs are closely related to homogeneous

distributed database systems that have been extensively studied (Bernstein et al.,

1987). The results are also applicable to homogeneous distributed database systems

that allow local sites to retain some level of execution autonomy.

We start by discussing our multidatabase transaction management model, and

analyzing the problems that arise in a multidatabase environment. We then classify

different notions of global database consistency that have been introduced in literature

so far. Finally, we discuss some open problems that still need to be solved. This
review is not intended to be comprehensive, but covers major progress to date.

2. Multidatabase Transaction Model

In this section we define the base transaction model to be used throughout this

article. This model is chosen because it is the one that has received the most

attention in the multidatabase literature. However, we will consider extensions to

the basic model at later points. We assume that each local DBMS interface includes

at least read, write, commit, and abort operations.

An MDBS consists of a number of pre-existing and autonomous local DBMSs

located at sites Sl, s2 , sin, where m > 2. A transaction T / i s a sequence of

read (ri) and write (wi) operations terminated by either a commit (ci) or an abort
(ai) operation. A multidatabase environment supports two types of transactions:

local transactions, those transactions that access data managed by only a

single DBMS. These transactions are executed by the local DBMS, outside

of MDBS control

global transactions, those transactions that are executed under MDBS control.

A global transaction consists of a number of subtransactions, each of which

is an ordinary local transaction from the point of view of local DBMS where
the subtransaction is executed.

The local schedule at site sk, denoted by Sk, is a sequence of local and global

transactions operations resulting from their execution at site sk. Transaction Ti is
said to be committed (aborted) in Sk if Sk contains ci (al) operation. Transaction

Ti is active in Sk if it is neither committed nor aborted in Sk. A projection of Sk

on a set of transactions T is a schedule that contains only operations of transactions

from T. A committed projection of schedule Sk is a schedule that contains only

operations of committed transactions in Sk.

We say that transactions T / a n d Tj are in direct conflict in schedule Sk if and

only if schedule Sk contains operation oi(x) followed by operation oj(z), where

oi(x) or oj(x) are a write operation and Ti does not abort before o j (x) is executed.

We say that transactions T/ and Tj are in indirect conflict in schedule Sk if and

only if there is a sequence of transactions T1, T2 , Tr such that Ti is in direct

conflict with T1, T1 is in direct conflict with T2 , and, finally, Tr is in direct

conflict with Tj. Transactions T/ and Tj are in conflict if and only if they are in

direct or indirect conflict.

Two local schedules are equivalent if they are defined on the same set of

global and local transactions, have the same operations and the same set of pairs

of conflicting committed transactions. Schedule Sk is conflict serializable if it is

187

equivalent to a serial schedule. A local serialization graph for schedule Sk is a

directed graph with nodes corresponding to global and local transactions that are

committed in Sk and with a set of edges such that Ti --~ Tj if Ti conflicts with

Tj in Sk. Schedule Sk is serializable if and only if its local serialization graph is

acyclic (Bernstein et al., 1987).

A global schedule S is a partial ordered set of all operations belonging to local

and global transactions such that, for any local site sk, a projection of S on a set

of global and local transactions executing at site Sk is the local schedule Sk at site

sk. We say that a global schedule is globalty serializable if and only if there exists a

total order defined over committed global transactions that is consistent with the

serialization order of committed global transactions at each of the local DBMSs.

A union of local serialization graphs is called a global serialization graph. A global

schedule is globally serializable if and only if its global serialization graph is acyclic

(Breitbart and Silberschatz, 1988).

The MDBS software that executes on top of the existing local DBMSs consists

of a global transaction manager (GTM) and a set of servers, one associated with each

local DBMS. Each global transaction submits its operations to the GTM. For each

submitted operation, the GTM determines whether to submit the operation to local

sites, or to delay it, or to abort the transaction. If the operation is to be submitted,

the GTM selects a local site (or a set of sites) where the operation should be

executed. For each submitted r i (z) (wi(z)) operation, the GTM determines the

set of all sites that contain a copy of the global data item x. For a global r i (x)

operation, the GTM selects one of these sites as the site where the read operation

is to be executed, and it translates the r i (x) into a local read operation. For a

global wi(z) operation, all these sites must be used in the execution of the global

write operation. Without loss of generality, we assume here that each global data

item corresponds to no more than one local data item at each local site.

The GTM submits global transaction operations to the local DBMSs through the

server which acts as the liaison between the GTM and the local DBMS. Operations

belonging to a global subtransaction are submitted to the local DBMS by the server

as a single transaction. We assume that each local DBMS acknowledges to the

server (and, in turn, to the GTM) the execution of operations submitted to it. We

do assume that the actions of a given transaction at a site always end an execution

with a commit (or abort) operation.

We do not impose any restrictions on how the various read and wr/te operations

of a global transaction are executed by the GTM. It is possible in our model for

several operations of the same transaction to be executed by the GTM at the same
time (parallel execution) or for no operation of the transaction (except the very

Figure 1. The MDBS Model

server

local . T i , [\ Tj ,
transactions 'k~ ~ ~

DBMS

Site 1

Global Transactions
Ti

GTM

server

 i\v
DBMS

Site n

local
transactions

first one) to be submitted for execution until the GTM receives an acknowledgment

from the previous operation of the same transaction (serial execution). The overall
multidatabase system model is depicted in Figure 1.

As mentioned earlier, we will also consider variations of base model we have
presented. In particular, we will consider two variations:

Service Interface. Many real life examples of multidatabase applications

are based on a high-level service interface model (Graay, 1986, 1987) (e.g.

networks of travel agencies, the international interbank clearing system,

etc.). In the service interface model the GTM submits service requests as
opposed to individual read, write, abort, and commit actions. A service

request generates read, write, commit (or abort) at local sites, just like in

the base model. However, the GTM receives a single acknowledgment, after
all actions have committed (or aborted). In most cases, global concurrency
control mechanisms are not significantly affected if one assumes a service

interface model as opposed to the base model. Where there is some impact,

we will point it out.

189

• Extended Base Modal. At various points, we will assume that sites provide

additional operations, such as a prepare-to-commit one. We will also assume

several types of knowledge about the concurrency control mechanisms used

at local sites. For each extension, we will study how global transaction

management is affected.

3. Multidatabase Transaction Management Issues

The Global Transaction Manager (GTM) should guarantee the ACID properties

of global transactions, even in the presence of local transactions that the GTM is

not aware of. In addition, the GTM should guarantee deadlock-free executions of

global transactions and it should provide means to recover from any type of system

failure. In the next three subsections we illustrate the difficulties that may arise.

3.1 Global Serlalizabllity Problem

The various local DBMSs may use different concurrency control protocols (e.g., 2PL,

timestamp ordering, serialization graph testing, etc.). Existing solutions for ensuring

global serializability in a homogeneous distributed database assume that each site

uses the same concurrency control scheme and shares its control information; hence

existing solutions cannot be used in a MDBS environment.

Since local transactions execute outside the control of the GTM, the GTM can

guarantee global serializability only through the control of the execution order of

global transactions. However, in such an environment, even a serial execution of

global transactions does not guarantee global serializability. The following example

illustrates this fact.

Example 3.1: Consider a multidatabase system located at two sites: s l with data

items a and b, and s2 with data items c and d. Let T1 and T2 be two read-only

global transactions defined as follows:

T i : rl(a) r l (c)

T2: r2(b) r2(d)

In addition, let T3 and T4 be two local transactions at sites sl and s2, respectively,

defined as follows:
w (a)

T4: w4(c) w4(d)

190

Assume that transaction T1 is executed and committed at both sites and after that

transaction T2 is executed and committed at both sites. Such execution may result

in the following local schedules $1 and $2 generated at sites 81 and a2, respectively:

S1 : r l (a) Cl w3(a) w3(b) c3 r2(b) c2
$2: w4(c) rl(C) c1 r2(d) c2 w4(d) c ,

As a result, transaction T1 is serialized before T2 at $1 and after T2 at s2; hence

global serializability is not maintained. []

In Example 3.1, the problem arises because the local transactions create in-

direct conflicts between global transactions. Since the GTM is not aware of local

transactions, it is also not aware of these indirect conflicts. This phenomenon is a

cause of major difficulties in trying to ensure global serializability in a multidatabase

environment.

3.2 Global Atomiclty and Recovery Problems

The global atomicity requirement dictates that either all the subtransactions of a

transaction commit, or they all abort. In a homogeneous distributed database system,

atomicity of transactions is ensured by an atomic commit protocol (Bernstein et al.,

1987). This protocol requires that the participating local sites provide a prepared

state for each subtransaction. The subtransaction should remain in the prepared

state until the coordinator decides whether to commit or abort the transaction.

If we wish to preserve the execution autonomy of each of the participating

local DBMSs, then we must assume that local DBMSs do not export a transaction's

prepared state. In such an environment, a DBMS can unilaterally abort a subtrans-

action any time before its commit. This not only leads to global transactions that

are not atomic, but to incorrect global schedules, as illustrated below.

Example 3.2: Consider a global database consisting of two sites Sl with data item

a, and as2 with data item c. Consider the following global transaction Ti:

TI: r l (a) wl (a) W 1 (C)

Suppose that T1 has completed its read/write actions at both sites and the GTM

sends commit requests to both sites. Site s2 receives the commit and commits

its subtransaction. However, site s 1 decides to abort its subtransaction before the

commit arrives. Therefore, at site $1 the local DBMS undoes the T1 actions. After

this is accomplished a local transaction T2:

191

w2(.)

is executed and committed at the site.

At this point, the resulting global schedule is incorrect, as it only reflects the

s2 half of T1. To correct the situation, say the GTM attempts to redo the missing

actions by resubmitting to sl the missing write wl (a). The local DBMS, however,

considers this operation as a new transaction Ta that is not related to T1. Thus,

from the local DBMS viewpoint, the committed projection of the 81 schedule is:

However, Ta's write operation is the same as wl (a) as far as the MDBS is concerned.

Thus, this execution results in the following non-serializable schedule $1:

[]

We note that if the local DBMSs provide a prepare-to-commit operation, and

they participate in the execution of a global commit protocol, then the problems

shown in Example 3.2 can be avoided. In particular, in that example, the GTM

does not issue the commit actions for T1 until both sites have acknowledged the

prepare-to-commit. Because 81 is prepared for T1, it cannot abort it and the

situation shown in Example 3.2 does not arise. However, as discussed above, this

will violate the execution autonomy requirement.

There is an ongoing debate as to whether sites in a MDBS will provide prepare-to-

commit operations and thereby give up their execution autonomy. One side argues

that the two phase commit protocol (with the prepared-to-commit operation) is

becoming a standard, so that soon all DBMSs will provide this service. The other

side argues that there will always be autonomous sites that will want to preserve their

execution autonomy, and therefore will not want to export the prepare-to-commit

operation, even if their local DBMSs provide it. This is because they do not want

their site to hold resources (e.g., locks) on behalf of a remote transaction, which

may last for an indefinite amount of time. The first camp counter-argues that with

modern networks and computers, global transactions will be very fast, so the time

that a site needs to block its resources is minimal. So the site administrators will

not mind allowing the prepare-to-commit. Furthermore, they claim, the operator at

a site can always manually release a transaction that hangs for too long (e.g., break
locks manually). So if a transaction ever waits too long in its prepare-to-commit

192

state, it can be aborted. The second camp then counter-argues that if the prepare-

to-commit commitment can be broken by the operator, then sites can unilaterally

abort after all, so we are back at square one.

Without taking sides in the argument, we believe it is important to study both

scenarios, with or without prepare-to.commit at the sites. In this article, we will

review both cases.

3.3 Global Deadlock Problem

Consider a multidatabase system where each local DBMS uses a locking mechanism

to ensure local serializability. We assume that each local DBMS has a mechanism

to detect and recover from local deadlocks. However, in such systems there is a

possibility of a global deadlock that cannot be detected by the GTM.

Example 3.3: Consider a multidatabase system located at two sites: Sl with data

items a and b, and s2 with data items c and d. Local DBMSs at both sites use

the two phase locking protocols to guarantee local serializability. Let T 1 and T2

be two global transactions defined as follows:

T i : r l (a) r l (d)

T 2 : r2(c) r : (b)

In addition, let T3 and T4 be two local transactions at sites Sl and s2, respectively,

defined as follows:
T3: w3(b) w3(a)
T4: w4(d) w4(c)

Assume that T1 has executed rl(a) and T2 has executed r2(c). ~ t e r that, at site
~1, the local transaction executes w3(b), submits w~(a), and is forced to wait for
a lock on a that is kept by T1. At site s2, transaction T4 executes w4(d) , submits

w4(c) and is forced to wait for a lock on c that is kept by T2. Finally, transactions

T1 and T2 submit their last operations and a global deadlock ensues. []

Due to the design autonomy, local DBMSs may not wish to exchange their

control information and therefore will be unaware of the global deadlock. Similarly,

the MDBS is not aware of local transactions and, therefore, will be also unaware of

the deadlock. In Section 7 we will discuss what the GTM can do to ensure deadlock

freedom.

193

4. Global Serializability Schemes

In this section, we describe techniques for ensuring global serializability in a failure

and abort free environment. That is, we assume that each transaction, whether

local or global, will always successfully complete once it has been submitted for

execution. Under this assumption, no aborts of global transactions by local DBMSs

due to the local deadlocks are permitted. This is clearly not a realistic assumption.

However, studying this simplified scenario yields a formal understanding of the

synchronization issues that arise in dealing with independent concurrency control

mechanisms. Failures and aborts will be considered in Section 6.

Example 3.1 demonstrates the key problem in guaranteeing globally serializable

schedules. Local transactions (such as T3) may generate indirect conflicts between

global transactions that otherwise are not in conflict. In the example, T3 creates

a dependency T 1 ---1. T 3 -.......4. T 2 and at the second site T4 creates dependencies

T2 ~ T4 ~ T1. Thus, even though T1 and T2 do not conflict, they are involved
in a cycle in the global serialization graph.

To avoid these cycles, the GTM will have to take some action. What action

is taken depends on the amount of knowledge the GTM has concerning the local
concurrency control mechanisms. In the subsections that follow we consider various
scenarios, and for each one explain the types of GTM actions that will ensure

global serializability. The base scenario (Section 4.1) corresponds to our base
transaction model (Section 2): the GTM simply knows that each local site generates
local serializable and deadlock free schedules. Thus, the GTM considers each

such DBMS as an unlabeled black box. In subsequent scenarios, the GTM assumes

additional properties (labels) of the sites (black boxes).

In general terms, the actions taken by the GTM can be of two types:

• Pessimistic. Global transactions are delayed to avoid serialization graph

cycles.

• Optimistic. Cycles or potential cycles are detected and broken by aborting

global transactions.

The choice between these two approaches represents a tradeoff: a pessimistic

approach does not generate transaction aborts but may result in lower concurrency,

while an optimistic approach may increase concurrency but may result in a large

number of transaction aborts (Carey and Livny, 1989).

194

4.1 Integration with Unlabeled DBMSs

Continuing with Example 3.1, consider a snapshot of schedules $1 and $2 depicting

a situation where the GTM has executed T1 but has not started T2. (The actions

that have not beeen executed yet are within brackets.)

St: vl(a) cl [w3(a) wz(b) cz v2(b) c2]

The GTM wishes to avoid the future execution shown in the brackets, as it will

result in a non-serializable schedule. One option would be to delay the execution of

T2 until the GTM is certain that a serializability cycle cannot occur. Unfortunately,
since the GTM has no control over site s2, it has no way of knowing when T4

will complete, and T2 needs to run after T4 to avoid the dependency T2 ~ T4.
Hence, the pessimistic approach does not work. The optimistic one does not work

either: when T2 completes it would always have to be aborted since it could have

participated in a cycle.
The only practical solution that is known to work in this scenario involves

forcing conflicts among the global transactions (Georgakopolous et al., 1991). In
the example, we can force T1 to write some object at every site it accesses data,
and T2 to read those objects. Thus, if the GTM executes T2 after T1 completes,
then it ensures that the arc T1 ~ T~ is placed in the global serialization graph.

This guarantees that the arc T2 ---r T4 ~ T1 cannot be generated at s2, as it
would create a local cycle. (Remember: the local site generates locally serializable

schedules.) In the example, when T4 submits its w4(d) action at ss2, the local cycle

would be detected at T4 and would be aborted.
In the above example, global serializability was assured since T2 ran after T1

completed. However, if these two transactions were to run concurrently, then an

additional mechanism is required to ensure that one site does not generate the

edge T1 ---> T2 while another site generates T2 ~ T1 in their respective local
serialization graphs. This is achieved by the use of a special data item--a t icket that

is maintained at each local site. Only one ticket is required for each local site, but

tickets at different local sites are different data items. Only global transactions can
access the ticket. Moreover, each global transaction executing at a site is required

to read the ticket value, increment it, and write an incremented value into the

database. Thus, the ticket value read indicates the serialization order of the global

transactions at the site.
The algorithm of Georgakopolous et al. (1991) is optimistic: the GTM keeps a

serialization graph for all active transactions (started but not committed). When a

195

transaction T reads ticket value t at site ai, an arc is entered from every transaction

that read a ticket less than t at si to T. If T completes all of its actions and is

not involved in a cycle, it is committed, or else it is aborted. In Georgakopolous

et al. (1991) it is shown that the ticket method guarantees global serializability.

The ticket idea can also be used in a pessimistic way. In this case, global

transactions are assigned a priori a global serialization order, and the tickets they

should read are determined in advance. If a transaction submits its operation outside

of a local site ticket order, it waits.

The performance of the ticket method has not been fully evaluated. It may

lead to numerous aborted transactions (optimistic) or low concurrency (pessimistic).

This same problem exists with most of the mechanisms we will survey later in this

section, so it may be an inherent problem in trying to achieve global serializability

with autonomous sites.

In closing of this subsection, we mention an article that has proposed the site-

graph mechanism as a way for ensuring global serializability in an environment where

the local sites are assumed to be unlabeled black boxes (Breitbart and Silberschatz,
1988). The proposed scheme, however, causes some transactions to be postponed

indefinitely, unless the local sites tell the GTM when transactions such as T4 (in

our example) have completed. Unfortunately, this violates local autonomy. This

site-graph mechanism is described further in Section 4.2.1.

4.2 Integration with Labeled DBMSs

We may be able to lind global mechanisms that allow more concurrency if we

assume certain properties about the local sites. For example, suppose that the local

sites use a basic timestamp ordering concurrency control algorithm. Returning to

Example 3.1, say that execution has proceeded to the point indicated below (where

the actions that have not been executed are again shown in brackets):

~1: rl(a) Cl w3(a) w3(b) c3 r2(b)[c2 I

Consider now site s2. Sometime during Tl 's execution, it received a timestamp, say

t l . Sometime after T2 starts, it will also receive a timestamp, t2. Since T1 and T2

do not overlap in time, t2: > : t l . The basic timestamp mechanism ensures that

transactions are serialized in timestamp order, hence there can be no dependency

T2 ~ " " ~ T1 in the local serialization graph. If T 4 were allowed to perform

its second write action, it would create such a dependency; thus the local DBMS

at s2 will abort T4.

196

This suggests a simple strategy for ensuring globally serializable schedules in an

MDBS environment where each local DBMS is using a basic timestamp ordering

concurrency control algorithm. The idea is to run global transactions serially. If

transactions are not overlapped, we know that they will be assigned increasing

timestamps, serialized in the proper order at each site, and the global schedule

will be serializable. This simple scheme, however, forces global transactions to run

serially. In the next three subsections we discuss MDBS systems that are able to

concurrently execute global transactions by exploiting knowledge about properties

of local schedules.

4.2.1 Strongly Serializable DBMSs. The following definition captures the essential

property of timestamp ordering that lets us achieve global serializability. Actually,

most concurrency control algorithms have this same property.

Definition 4.1. Let ,5' be a serializable schedule. We say that schedule ,5' is strongly
serializable if and only if for every two transactions Ti and Tj in S, if the last

operation of Ti (commit or abort) precedes the first operation of Tj, then there is

some serial schedule equivalent to ,5' where T/ precedes Tj (i.e., T/ precedes Tj
in the S's serialization order). []

Assuming that a transaction receives a timestamp at the time of executing of its
first operation, the basic timestamp ordering concurrency control algorithm ensures
that a local schedule is strongly serializable. 1 Thus, as shown above, the GTM

can ensure global serializability (when local schedules are strongly serializable) by

executing global transactions serially. There are, however, several ways in which

we can do better. For example, we note that if T1 and T2 execute at disjoint sites,

there is no need to execute them serially. This suggests an algorithm where the

GTM keeps a lock per site (the locks are kept at the GTM level, and not at the

sites) (Alonso et al., 1987). Before a transaction can start, it must acquire the locks
for all the sites it will run on. When it completes, the transaction releases its site
locks. This ensures that transactions that could have generated a cycle like the one

of Example 3.1 are run serially with respect to each other, thus avoiding the cycle

due to the strong serializability of the local sites.

1. Without this assumption the basic timestamp ordering algorithm may generate a not strongly serializable
schedule. For example, W2(X) r 3 (x) ¢3 Wl (y) Cl w2(y) c2 can be generated by the basic time-
stamp ordering algorithm (Bernstein et al., 1987). However, in this case the timestamp for T1 was assigned
before the first statement of T 1 was executed.

197

The lock-per-site approach is still overly restrictive. For example, consider two

transactions: T1 is to run at sites Sl and 82, and T2 is to run at sites s2 and ..s3. If they

run concurrently, a dependency may be generated at s2, either T1 ~ " " ~ T2

or T2 ~ • • • ~ T1. But since T1 and T2 do not interact at any other site, it does

not matter: no global cycle can be generated in the global serialization graph.

This idea leads to essentially the site-graph algorithm of Breitbart and Silberschatz

(1988). The GTM maintains a bipartite graph, with transactions and sites as the

nodes. When a new transaction T/ is to be run, an arc is entered in the graph

connecting the Ti node to each site node where Ti will run. If there are no cycles,

Ti runs. If a cycle invohdng Ti exists, then T / i s delayed until the cycle disappears.

To illustrate, say we try to run the schedule of Example 3.1. When T1 starts,

arcs (T1, s l) and (T1, s2) are entered. When T2 starts, arcs (T2, Sl) and (T2,

s2) are entered, creating a cycle. Thus, T2 is delayed until T~ completes all of its

actions. Since T1 and T2 are not overlapped, and since all local sites are strongly

serializable, T1 is serialized before T2 at all sites. So a global cycle is avoided. If,

on the other hand, T2 runs only at sites s2 and s3, then there would be no cycle

in the site graph and T2 could run concurrently with T1.

In the site graph algorithm, a transaction (node) cannot be removed from the

graph upon the transaction's commit, if the transaction has a path in the graph that

is connected to an uncommitted transaction. An aborted transaction, however, can

be removed from the site graph as soon as it is aborted.

Another idea is to use altruistic locking to improve concurrency (Alonso et al.,

1987; Salem et al., 1989). To illustrate, say T1 runs at sites s l , s2, and s3, in that

order. That is, T1 first executes all of its actions at 81 (including commit), then

it executes at s2, and then at s3, with no overlapping of its actions at these sites.

Suppose we run a second transaction, T2, in the wake of T1, that is, T2 executes at

s l after T1 finished, and then runs at s2 after T1 finished there. Even though both

T1 and T2 are executing concurrently, they are never overlapped at any one site,

and T2 always follows T1. Hence, no site will generate a dependency T2 ~ • • • T1

and the global schedule will be serializable.

There are various ways to implement altruistic locking (Alonso et al., 1987). A

simple way is to use site locks as before, except that transactions can release locks

early if they know they have finished all processing at a site. However, the lock is

not fully released; it is left in a "marked" state. Other transactions that request a

site lock that is marked, can obtain the lock, but are then forced to be in the wake

of the original transaction. The GTM must ensure that the relationship "is in the

wake of" has no cycles. The latter can be done by keeping a wake-graph in which

there is an edge between T / a n d Tj if Tj is in the wake of Ti.

198

All the mechanisms we have described for strongly serializable local schedules

are pessimistic. However, optimistic versions can easily be developed. For instance,

in the site graph approach, instead of delaying transactions involved in a cycle, we

could abort them.

4.2.2 Serialization-PointBasedDBMSs The notion of a strongly serializable schedule

is closely related to that of a schedule that consists of transactions each of which has a

serialization point (Pu, 1988). A serialization point of a transaction is a distinguished

action that determines the serialization order of the transaction in the schedule. For

instance, in a concurrency control scheme based on timestamps, the distinguished

action corresponds to the assignment of a timestamp to the transaction. When the

transaction arrives and reads its timestamp, it will be serialized by the scheduler

relative to other transactions according to its timestamp. That is, if two transactions

contain conflicting operations and the scheduler serialized T1 before T2, then the

timestamp of T1 is smaller than the timestamp of T2. Thus, a schedule that is

generated by a timestamp scheduler consists of transactions in which each has a

serialization point in the schedule.

In the 2PL scheme (Eswaran et al., 1976), the serialization point of a transaction

corresponds to the operation of the first lock release. Once again, if transaction

Ti contains a conflicting operation with Tj, and T/ is serialized before Tj, then

Ti releases its first lock before Tj does. This leads us to introduce the following

definition.

Definition 4.2 Let S be a serializable schedule consisting of transactions T1, T2,

. . . , Tn. We say that schedule S is an sp-schedule if and only if there exists a

mapping sp from transactions to actions such that:

1. sp(Ti): = : ok where ok : E : T / ; a n d

2. If sp(Ti) occurs before sp(Tj) in S, then there exists a serial schedule

equivalent to S in which T/ precedes Tj. []

If the serialization point of Ti precedes Tj in S, then no dependencies of the form

Tj ~ . . . ~ Ti are allowed in local serialization graph for ,5'.

The class of sp-schedules is a proper subset of the class of strongly serializable

schedules. To see that any sp-schedule is strongly serializable, consider an sp-schedule

S. Say Ti precedes and does not overlap Tj. Note that sp(Ti) must map to a T/

action, and hence sp(Ti) must precede sp(Tj). Thus, there is an equivalent serial

schedule where Ti precedes Tj. To see that not all strongly serializable schedules

are sp-schedules, consider the following example:

199

S : : r l (a) : w2(a) : w3(b): e2: c3: r l (b) : c 1

First, it is a serializable schedule, equivalent to T3, T1, T2. Since every transaction

is overlapped with the others, the schedule is strongly serializable. Unfortunately,

there is no serialization point assignment for T 1. That is, sp(T1) should map

to rl(a) to make sure that sp(T1) precedes sp(T2). At the same time, sp(T1)

needs to map to r l (b) or cl so that sp(T3) precedes sp(T1). Thus, S is not an
sp-schedule.

Since local sp-schedules are strongly serializable, it is possible to use the global

concurrency control schemes outlined in the previous section. However, if each

local DBMS notifies the GTM in advance what action will constitute the serialization

point, then one could obtain global serializability more efficiently. For example, a

timestamp scheduler might indicate that the first action submitted is the serialization

point (i.e., when the transaction receives its timestamp). In this general model, each

site could define a different action to be the serialization point. For example, one

site could say first actions are serialization points (it runs a timestamp algorithm)

and another site could say last actions are (it runs a two phase locking protocol).

The global concurrency control mechanisms can then be extended for this

more general model (Mehrotra et al., 1992a). As before, the key idea is that the

serialization points for transactions that may lead to cycles are executed in the

same order at all sites. To enforce this, an analogy can be drawn to centralized

DBMS (Mehrotra et al., 1992a): Each site Sk is viewed as a single data object,

Ok. If a transaction issues actions at sk, it is viewed as issuing actions on Ok. Two

serialization point actions, spi(ok) and spj(ok), always conflict. Other actions

do not conflict. If the GTM ensures that the schedule in the analogous model is

serializable, then it ensures that the global schedule in the real system is globally

serializable.

4.2.3 Strongly Recoverable DBMSs If we restrict our notion of serialization points

so that they must occur at the end of each transaction, i.e., at its commit action,

then we can obtain a GTM that is more efficient than those for strongly serializable

schedules. The following definition captures this notion. (Here and in the next

section we consider the general notion of schedule and its committed projections).

Definition 4.3 We say that schedule Sk is strongly: recoverable if, for all pairs

of transactions Ti and Tj, if T / i s in direct conflict with Tj in Sk and Tj commits

in Sk, then Tj does not execute its commit before Ti commits (Breitbart, 1991;

Raz, 1991). (See definition of direct conflict in Section 2.) I:1

200

Every strongly recoverable schedule is also recoverable (Bernstein et al., 1987).

Indeed, let Sk be a strongly recoverable schedule. Let us assume that transaction Tj
reads-x-from transaction Ti. Then, by definition of strong recoverability, if transaction

Tj commits then it commits after transaction T/ commits in Sk and, therefore,

satisfies a condition of recoverability. Since every strongly recoverable schedule is

serializable and not every recoverable schedule is serializable, we maintain that a
class of strongly recoverable schedules is a proper subclass of recoverable schedules.

Strongly recoverable schedules are a proper subset of sp-schedules. To see this,

consider a strongly recoverable schedule S and let sp(Ti) map to ci. Consider

two transactions T/, Tj such that sp(Ti) precedes sp(Tj) in S, i.e., ci precedes

cj. Suppose that there is no equivalent serial schedule where Ti precedes Tj. For

this to be true, there must be dependency graph arcs Tj --~ . . . --~ Ti. Because
S is strongly recoverable, this means that cj precedes the commit points of the
intermediate transactions in the dependencies, which, in turn, precede ci. Since we

know that ci precedes cj, our supposition must be false. Thus, ap(Ti) precedes

sp(Tj) in S implies there must be some serial schedule where T/precedes Tj, so

S is an sp-schedule. To see that strongly recoverable schedules are a proper subset

of sp-schedules, consider the schedule:

S: rl(x) w 2 (x) c 2 c 1.

Schedule S is an sp-schedule, but it is not strongly recoverable.

The various concurrency control mechanisms discussed in literature (i.e., 2PL,
timestamp ordering [Bernstein et al., 1987], optimistic [Kung and Robinson, 1981],
etc.) can be easily modified to ensure that they generate strongly recoverable

schedules (Raz, 1991, Breitbart et al., 1991a).

To see why the knowledge that local sites generate strongly recoverable schedules

(as opposed to strongly serializable or sp-schedules) leads to higher concurrency

of the global concurrency control mechanism, let us return to the strategy of

executing global transactions serially. If local sites generate strongly serializable

or sp-schedules, the GTM avoids cycles by making sure global transactions do not

overlap (see Section 4.2.1). With strongly recoverable local schedules, however, it
is sufficient to ensure that transactions do their commit processing serially (i.e.,

between the time a global transaction issues its first commit at a site and its last

commit at another site, no other global transaction issues any commits). To explain

why this works, let us return to a slightly modified version of Example 3.1:

$2: W4(C) FI(¢) r2(d) 4(e) c1 c2 [w4(d) c4]

201

The actions in brackets again represent future actions. Here the actions of Ti and

T2 are interleaved (i.e., T2 reads at s2 before T1 commits). A site that generates

strongly serializable or sp-schedules would permit the remaining actions to take place,

leading to a non-serializable global schedule. However, a strongly recoverable site

would not. Because of strong recoverability, sites will not allow paths of the form

T2 ~ "-- ~ T1. In this particular example, the path T2 --~ T4 ~ T1 is not

allowed because it would imply that c 2 precedes c4 and ¢4 precedes cl (impossible

since cl precedes c2). Thus, when T4 attempts the future actions, it will be aborted.

A strongly recoverable local scheduler in essence is giving the GTM control

of the serialization points. That is, when the GTM submits the commit for T1, it

knows that it will be serialized before any global transactions whose commits are

submitted later.

This same idea can be applied to the other global concurrency control mechanisms

of Section 4.2.1. For example, the site-graph algorithm (Breitbart and Silberschatz,

1988) becomes the commit-graph algorithm. In the commit-graph approach, the

GTM maintains a commit-graph that is similar to the site-graph. Unlike the site-

graph approach in which the edges corresponding to a transaction are inserted

when the transaction starts execution, in the commit graph the edges corresponding

to a transaction are inserted just before the commit process of the transaction is

started. This permits all transactions to be executed concurrently, except during

their commit phase. The commit phases of transaction that may be involved in a

global cycle (as determined by the commit graph) are executed serially.

4.2.4 Rigorous DBMSs. Some local concurrency control mechanisms are even more

restrictive than the ones we have reviewed so far, and can, in turn, lead to even

more efficient global scheduling schemes. For example, consider an MDBS where

all local sites use the strict two phase locking protocol (Bernstein et al., 1987), which

is the most popular type of mechanism used. In this environment, the following

undesirable schedule of Example 3.1 cannot occur, even if no global concurrency

control is present (the actions in brackets again represent future action):

SI: rl(a) [w3(a) w3(b) c3 r2(b) c2]
S:: [w,(d)]

At site s2, T4 keeps a lock on ¢ until it commits. Hence, T1 cannot read ¢, and is

delayed. If T1 runs after T4 at $2, then the undesirable dependency T 4 ~ T1 does

not happen. Unfortunately, the use of the strict 2PL at each participating site does
not automatically guarantee global serializability, as the next example illustrates.

202

Example 4.1 Consider a multidatabase system located at two sites: s l with data

items a and b, and s2 with data items c and d. Let T1 and T2 be two read-only

global transactions, and let Ta and T4 be two local transactions. The schedules at

sites 81 and s2 are, respectively:

$ 1 : : w~(a) : c1: r3 (a) : w3(b): c3: r2(b): c2

$2 : : W2(X): C2: r4(x): w4(y): C4: r l (y) : c1

[]

At each site, the schedules can be produced by strict two phase locking (they

are actually serial at each site). However, the dependencies T1 ~ T3 ~ T2 and

T2 ~ T4 ~ T1 exist and the global schedule is not serializable.

This problem can be avoided if the GTM does not issue any commits for

a transaction until all of its actions have been completed. In Example 4.1, the

operation cl at s l would be delayed until rl(y) at s2 is acknowledged. In turn,

T3 would block until T1 commits, and the above schedule could not lake place. (It

may lead to a global deadlock, though.) It can be shown that delaying the commits

until a transaction completes all of its read/write actions is enough to guarantee

global serializability. No additional synchronization between global transactions is
required in this case.

The following definition captures what it is about strict 2PL that ensures global

serializability.

Definition 4.4 Breitbart et al. (1991a) have slated that schedule Sk is rigorous
if, for all pairs of transactions T /and Tj, if T/ is in direct conflict with Tj in Sk
and Tj commits in Sk, then Tj does not execute its conflicting operation before

Ti commits. []

It is shown that if local DBMS schedulers are rigorous and the GTM does not

schedule the commits of a transaction until all previous operations of the same

transaction have completed their execution, then the global schedule is serializable

(Breitbart et al., 1991a). As we have stated, the strict 2PL protocol generates

rigorous schedules. Other protocols can be easily modified to generate rigorous
schedules. For example, basic timestamp ordering can be made rigorous by blocking

transactions that either try to read or write data which were previously written

by uncommitted transaction or try to write data which were previously read by

uncommitted transaction (Breitbart et al., 1991a).
It is important to note that if local sites only provide a service request interface

(Section 2), then the GTM cannot delay the commits as required (Breitbart et al.,

1991a). In Example 4.1, if the GTM sends a service request to Sl on behalf of T1,

203

it is actually sending the entire subtransaction wl (a) : c1, so ¢1 cannot be delayed
and this global schedule could occur. In this case, the GTM would have to use

additional global transaction synchronization, as is done for strongly recoverable

local schedules.

It is not hard to see that any rigorous schedule must be strongly recoverable.

Say S is a rigorous schedule with a conflict between operations opi and opj where

opi occurs first in S. Because S is rigorous, el must precede opj. And clearly opj
precedes cj (see Section 2). Thus, ¢i precedes cj and S is strongly recoverable.

Note that not all strongly recoverable schedules are rigorous. For example, the

schedule S: r l (x) w2(x) ¢1 c2 is strongly recoverable but not rigorous.

In summary, we have a hierarchy of local schedule classes, going from the

most general to the most restrictive: serializable, strongly serializable, sp-schedules,

strongly recoverable, and rigorous. Each class is a proper subset of the next

most general one. We have also shown that as the local scheduler becomes more

restrictive, the global GTM can be more permissive in coordinating global transactions

operations. Indeed, we have seen that if every local DBMS generates a rigorous

schedule, then the GTM does not perform any operation coordination. For the

case of strongly recoverable local schedules, the GTM only needs to coordinate an

execution of global transactions commit operations. If each local DBMS generates

a sp-schedule, then the GTM needs to coordinate transaction serialization point

operations for each local site. Finally, in the case of local strongly serializable

schedules, the GTM should coordinate an execution of all operations of global

transactions.

5. Alternative Consistency Notions

As we have seen, guaranteeing global serializability may result (in some environments)

in poor performance due either to a low degree of concurrency or the large number

of aborted transactions. Moreover, as we shall see later, when we discuss failures, it

is very hard to obtain global serializability in some cases. Thus, several researchers

have suggested notions of correctness that are weaker than global serializability. In

this section we survey some of these notions, still assuming that neither failures nor

unilateral aborts of global transactions can take place.

5.1 Local Serlalizability

Global serializability guarantees that all consistency constraints are satisfied. If
global serializability is to be dropped, then it is important to guarantee consistency

204

in some other way. Consistency is usually defined in terms of integrity constraints

that must hold among various data items. Thus, it is important to study constraints

and look for alternative ways of satisfying them.

In a MDBS, there are two types of constraints: local ones that involve data

items located at a single site, and global ones that involve data items located at

more than a single site. It can be argued that in some multidatabase applications

there are no global constraints, since each site was developed independently, and

sitees may wish to remain independent (Garcia-Molina, 1991a). For example, airlines

run independent reservations systems with no global constraints among them. The

systems do interact (e.g., at the reservation system of airline Y one can reserve a

seat on airline X ' s flight), but each system only cares about the consistency of its

own data.

Fortunately, local constraints are easy to maintain. Essentially, each site can

run a local concurrency control mechanism that ensures that the local schedule is

serializable. This, in turn, ensures (with one catch explained below) that all local

constraints are satisfied, with no need for any global synchronization among sites.

The resulting global schedule is not globally serializable, but is locally serializable as

defined below (Garcia-Molina and Kogan, 1988; Korth et al., 1988).

Definition 5.1 A global schedule S is locally serializable (LSR) if for every site si,
the local schedule is serializable. 13

Given an initial database state, an execution of a set of transactions T results in

a final database state. An execution also produces a schedule which represents the

sequence of read, write, abort, commit operations. For each transaction T/ E T ,

an execution also defines a database state read by each Ti.

Definition 5.2 We say that an execution is strongly correct if the final state produced

is consistent and the state read by each transaction T/ E T is consistent (i.e., any

values read by T / s a t i s ~ constraints that span them). []

To show that LSR schedules guarantee strongly correct executions, we need

to rule out certain types of "unusual" transactions (Mehrotra et al., 1991b), as

illustrated by the following example.

Example 5.1 Consider an MDBS where data item a is stored at site s l and data

item b is stored at s2. Suppose that we have two constraints: a > 0 and b > 0.

205

Consider the following two transactions:

T1 : a : = - 1

i f : (b > 0): t h e n : a : = 1

T2 : b : = - I

i f : (a > 0): t h e n : b : = 1

Note that both T1 and T2 are valid transactions: given any initial state that

is consistent, they transform the database into a consistent state. Consider the

following executions at the two sites. We use the notation r i (a , : x) (wi (a , : x))
for a read (write) action of transaction T / o n item a, where x is the value read

(written).

S1: w l (a , : -- 1) r z (a , : -- 1)
,5'2: w2(b , : - 1) r l (b , : - 1)

Each local schedule is serializable. Nevertheless, the final state a = -1, b = -1 is

inconsistent. O

One simple way to avoid the type of problems shown in Example 5.1 above is

to require that local sites run a two-phase locking (2PL) protocol, and, in addition,

global transactions adhere to the 2PL policy in acquiring and releasing their local

locks. In Example 5.1, if sites Sl and s2 were following the 2PL protocol, then

transaction T1 would not release the lock on a until after it has read the value of

b (since it may be required to write on data item a, in case the value of b > 0)

and T2 would not release the lock on b until after it has read the value of a. As a

result, T1 will wait for T1 to release the lock on b, and T2 will wait for T1 to release

the lock on a thus resulting in a deadlock. Hence, the execution as in Example 5.1

will not be permitted. The requirement that the local schedulers follow the 2PL

protocol is quite reasonable since most practical concurrency mechanisms follow

such a protocol.
There are other ways to avoid the type of problems shown in Example 5.1,

which place restrictions on the structure of the various transactions:

1. Force transactions to be Local Database Preserving. If we look at T1 (in example

5.1) from site sa's point of view, the local actions of 711 do not constitute

a valid local transaction. That is, there is an initial state (a > 0, b < 0)

that is locally consistent, and when 711 runs, it transforms it into a locally

inconsistent state (a = -1). Thus, from 8i's point of view, T1 is breaking the

206

rules: The correct operation of T1 depends on the correctness of some data

(b) over which s l has no control. The problem can be avoided if we require

that any transaction that runs at site 8i preserves consistency regardless of the

state of other sites. Such transactions are called Local Database Preserving

(LDP) (Mehrotra et al., 1991a). If transactions are LDP and all constraints

are local, it is easy to show that LSR schedules guarantee strongly correct

executions.

. Force transactions to have a fixed structure. A transaction that always has the

same read/write pattern is termed a fired-structure transaction (Mehrotra et

al., 1991b). That is, regardless of what it reads, it will read and write the same

items, in the same order. Transaction T1 in Example 5.1 is not fixed-structure:

it may or may not write a. To make it a fixed-structure transaction, we could

rewrite it as, say:

T1 : a : = - 1

i f : (b > 0): t hen : a : = 1: e l s e : a : = - 1

In this case, the scenario shown in Example 5.1 could not arise. The schedule

at site s l would be $1: w l (a) r2(a) w l (a) and would be non-serializable.

In general, it can be shown that if all transactions are fixed-structure (and

constraints are local), then a LSR schedule guarantees that all executions

are strongly correct.

The requirement that all transactions be LDP is not unreasonable. Local transactions

are always LDP, so the requirement does not affect the autonomy of sites. Most

practical global transactions will be LDP anyway; if not, they can be made LDP

with little effort, provided that the local constraints are known. The requirement

for all transactions to be fixed structure may, however, be less reasonable since it

requires even local transactions to be fixed-structure which violates local autonomy.

Note that transactions that only contain assignment and alternation statements can

always be converted into fixed structure transactions. For example, as we illustrated

earlier, the transactions in Example 5.1 could be made fixed-structure. However,

if transactions contains loops, there may not be an easy way to make them fixed

structure.

In Du and Elmagarmid (1989) a third strategy has been suggested for making

LSR schedules preserve constraints. A transaction Ti is NVD if it has no value
dependencies (Du and Elmagarmid, 1989); that is, if its actions at a site never depend

in any way on the values read at another site. Both T1 and T2 in Example 5.1 have

207

value dependencies. If a transaction is NVD, then it is clearly LDP. The converse is

not true (example: a transaction that writes into item b a value read elsewhere, but b

is not involved in any constraints). Making transactions NVD ensures executions are

strongly correct (because transactions are LDP), but as noted in Du and Elmagarmid

(1989) this is more restrictive than necessary.

5.2 Two Level Serlalizab|lity

The notion of local serializability can be extended as follows. There are two types of

data at each site: local data and global data. Three types of constraints are allowed:

1. Local. Constraints involving local items; each local constraint can involve

only items at a single site.

2. Global. Global constraints may span more than one site, but can only involve

global items.

3. Global~LocaL These constraints can only span a single site, but may involve

both local and global items.

The main restriction on transactions in this model is that local transactions may

not modify global data. (Global data is usually involved in inter-site constraints; a

local transaction would be unable to maintain these since it can only run at a single

site.) For now, no other access restrictions are made. Local transactions can read

both local and global data, and global transactions can read and write any data.

This extension is applicable to an MDBS environment that started as a collection

of independent databases. These original databases constitute the local data, and

original transactions only access local data. A new data layer is then added, the

global data. It is stored in the same DBMSs at each site, except that it is managed

by newer transactions that are run through the GTM (global transaction manager).

Since the new transactions run under the control of the GTM, it is now feasible to

enforce global constraints that span the new data. The new transactions are allowed

to read and write the original local data. Finally, for efficiency, we might want to

add a third class of transactions, new local ones. These are run by the local DBMS

but are allowed to read the new global data.

It is important to note that local and global/local constraints should not involve

remote data, even indirectly. For instance, say a l is a local item, and bl and b2
are global ones. I tem b2 is at site s2; a l and bl are at s l . Also assume we

have constraints a l = bl and bl = b2. The global/local constraint a l = bl is not

allowed because it induces constraint a l = b2 which relates a local i tem to a remote

208

item. Not all global/local constraints cause this problem. For example, consider the

constraints a l > bl and b2 > bl.
Since the GTM controls global transactions, it can ensure that the global schedule,

as far as access by these transactions is concerned, is serializable. Similarly, the local
concurrency control mechanisms will ensure that the local schedules are serializable.

This illustrates the notion of two-level serializability.

Definition 5.3 A global schedule S is two-levelserializable (2LSR) if it is LSR and

its projection to a set of global transactions is serializable (Mehrotra et al., 1991b)fl
O

Globally serializable schedules are always 2LSR, but the converse is not true.

This is illustrated by the following example (Mehrotra et al., 1991b) which also shows

that 2LSR schedules may violate constraints if they contain "unusual" transactions:

Example 5.2 Consider an MDBS where there is a single local item a at site s l

and three global items, b and c at Sl and d at s2. There is one global/local and

one global constraint:

a : > : 0 : ~ : b : > : 0
d: > : 0 : ~ : (b : > : O : o r : c : > : 0)

Consider the following two global and one local transactions:

Ti: i f : (a : < = : O) : t h e n : c : = l : e l s e : c : = - i
d : = l

T2: i f : (a : < = : 0) : t h e n : b : = - l : e l s e : b : = l

d : = - 1

L3 : a := - 1

Starting from a state where all items have a value of "1", consider the following

executions:

$1: rl(a,: 1) wl(c,: - 1) w z (a , : - 1) r2 (a , : - 1) wz(b,: - 1)

$2: w2(d, : - 1) Wl(d, : l)

2. The notion of two-level serializability introduced here should not be confused with multi-level serializ-
ability introduced in Weikum and Schek (1984). It is unfortunate that two semantically different notions
have the same syntactic name. Here we followed the definitions from Mehrotra et al., (1991b) and Weikum
and Schek (1984) rather than introduce a different terminology. Hopefully, the rreader will not be confused.

209

The resulting state is a = -1, b = -1, c = -1, d = 1, which is. inconsistent. Note

that the global schedule is 2LSR but is not globally serializable (at s l we have

dependency T1 ~ L3 ~ T2, and at s2 we have T2 --¢ T1). []

The problem in this case is with the transactions. From the point of view of

each site, transactions are LDP, so all local and global/local constraints are satisfied.

However, the global constraint is being violated because from the point of view of the

global data, T1 is not a proper transaction. Transaction T1 only produces a consistent

state when a condition external to the global data (a : > : 0: ~ : b: > : 0) is

satisfied. (In particular, say we start with the state a ffi 1, b ffi ¢ = d = -1. As far

as the global constraints are concerned, it is consistent. Yet T1 will transform it

into an inconsistent global state.) If T1 were rewritten more sensibly as Ti : c := 1;

d := 1, then consistency would be preserved (T1 now enforces global constraints

regardless of the state of other constraints).

We define a transaction to be Global Database Preserving (GDP) if it preserves

global constraints regardless of the state of local data items. This notion is analogous

to LDP. If we think of the global items as constituting a single database at an imaginary

site oL then saying a transaction is GDP is equivalent to saying it is LDP at o~. It is

not hard to see that if all transactions are LDP and GDP, then a 2LSR schedule

guarantees all executions are strongly correct.

If we make certain additional assumptions about the access patterns of trans-

actions, then it is possible to relax the LDP, GDP requirement (Mehrotra et al.,

1991b):

. If global transactions are not allowed to access local data, then we can drop

the GDP requirement. (Actually, if global transactions cannot read local

data, then they are necessarily GDP. So the requirement is not dropped;

it is replaced by a more restrictive one). If we further assume that local

transactions cannot read global data, and that the global transactions do

not write local data, then the local and global data are totally decoupled;

2LSR schedules will always be serializable, without any requirements on the

transactions.

. If there are no global/local constraints, then the GDP requirement can be

dropped. The proof of this is lengthy (Mehrotra et al., 1991a), but the intuition

is as follows: Since transactions are LDP, ff the local schedules at each site

are serializable, then the local constraints will be preserved (regardless of

whether transactions are GDP or not). Also, the state of local data seen by

global transactions will be consistent. Furthermore, since the projection of

210

the schedule onto global transactions is serializable, the state of global data

items in which a transaction executes is consistent. Thus, since there are

no global/local constraints, the state in which a global transaction executes

along with the values of local data items it sees is consistent. (Contrast this

to the execution in Example 5.2. In the example, T2 is serialized before T1

in the projection of the schedule onto global transactions. Thus, the state of

global data items in which the transaction T1 executes is b = -1, d = -1, c

= 1. Since T1 reads the value of a to be 1, it is inconsistent with the value

of b = -1.)

Once we assume that there are no global/local constraints, the remaining LDP

constraint can be relaxed as follows:

. If global transactions cannot access local data, it can be shown that the LDP

requirement can be replaced by one forcing all transactions to have fixed

structure.

. If local transactions cannot read global data, and global transactions cannot

write local data, then the LDP requirement can be dropped entirely. In
this case, activity on the local data is completely decoupled from the activity

on the global data. Hence, the fact that local schedules are consistent is

sufficient to guarantee that local constraaints are always true.

. If local schedulers are 2PL and global transactions are fixed structure, then

there is a GTM locking strategy (called two-level two-phase locking) that

can ensure constraints are satisfied (Mehrotra et al., 1991a). Note that since

only global transactions are required to be fixed structure, local autonomy

is not violated.

A precursor to the notion of 2LSR schedules was the notion of quasi-serializability

(Du and Elmagarmid, 1989; D u e t al., 1991b). A global schedule is said to be quasi
serial if and only if is LSR and there is a total order of global transactions such

that for any two global transactions T / a n d Tj if Ti precedes Tj in the total order,

then all T/operat ions precede all Tj operations in all local schedules in which both

appear. A global schedule is quasi serializable (QSR) if it is equivalent to a quasi

serial schedule. Quasi serializable executions are strongly correct, provided there are

no global/local integrity constraints (Du and Elmagarmid, 1991a). However, since

the QSR class is a proper subset of 2LSR (Example 5.2 shows a 2LSR schedule that

is not QSR.), the latter result is a special case of the more general result (Mehrotra

211

et al., 1991a) discussed above. It is not clear to us if there are significant advantages

to restricting schedules from 2LSR to QSR (Mehrotra et al., 1991b).

5.3 Other Constraint-Based Criteria

With 2LSR schedules, the GTM ensures that any global constraint is satisfied

by executing the global transactions in such a way that the resulting schedule (of

actions of global transactions) is serializable. A different idea for enforcing global

constraints is presented by Barbara and Garcia-Molina (1992). The claim is that

global constraints tend to be very simple in practice and that the GTM can enforce

them directly, without concerning itself with serializability. A second claim is that

global constraints tend to be "approximate," giving the GTM even more flexibility

in enforcing them.

To illustrate, consider a copy constraint between item ffl at site s l and Y2 at

s2. Many applications, especially if they run on independent sites, can tolerate

some divergence, e.g., the copy constraint may be lYl : -- : g21 : --< : e, where e

is some application dependent value. In this case, not every update to Yl needs

to be reproduced at s2 and vice versa. The server at s l (see Figure 1) can keep

track of a window of allowable values for Yl, and while 91 remains in this window,

copies of the new values are not propagated to s2. The advantages of this added

flexibility will be more apparent when failures are considered in Section 6.

In summary, when global schedules are assumed to be LSR, all local (and

global/local) constraints are satisfied (Barbara and Garcia-Molina, 1992). Even

though global schedules are not 2LSR, global constraints are enforced "manually"

by the GTM and its servers. It is assumed, of course, that applications declare a

priori their global constraints. If the constraints fall outside of the repertoire of

the GTM, then it reverts to enforcing 2LSR schedules.

5.4 Limitations of Constraint Based Approaches

In the previous subsections we have described alternative correctness notions

based upon preservation of the database consistency constraints. Each of the

correctness notions (LSR, or 2LSRR) can be shown to preserve strong correctness

of schedules under appropriate restrictions. We have, however, avoided the question

of whether the preservation of strong correctness is a sufficient consistency guarantee

for transactions. The answer to this is application dependent. While a strongly

correct schedule preserves all the database consistency constraints, it may, however,
not be sufficient for preventing all undesirable executions in certain applications,

212

as illustrated below (Mehrotra et al., 1992a).

Example 5.3 Consider a banking database located at two sites: s l with account a,

and s2 with account b. Suppose that we have constraints specifying that no account

have a negative balance. Consider transaction T1 that transfers 500 dollars from

account a to account b, and an audit transaction T2 that reads the balance of both

a and b. Transaction T1 consists of two subtransactions, a debit subtransaction and

a credit subtransaction,

debit." if a > 5 0 0 then a : = a - - 5 0 0

else abort

credit: b := b + 500

Consider the following schedule:

Si: rl(a) wl(a) r2(a)
r2(b) r l(b) w l(b)

Transactions see non-negative balances, and the final state is also consistent, so
the schedule is strongly correct. However, in this schedule, the audit transaction

sees 500 dollars less than the actual sum total of accounts a and b. This may

be considered an "anomaly" and thus it may not be sufficient for schedules to be

strongly correct. []

Note that in Example 5.3, the execution is neither 2LSR nor QSR (though it

is strongly correct). Examples in which undesirable executions occur (even though

the execution is 2LSR and/or QSR) can be similarly constructed.

In Example 5.3, we could say that there is a second type of correctness criterion,

in addition to strong correctness. In this case we do not want the transfer transaction

to be involved in any serialization cycle. One "artificial" way of dealing with this

problem is to declare another data item total and define an integrity constraint

t o t a l = a + b. If this constraint were defined, then the schedule of Example 5.3

would not be strongly correct and would be avoided.

However, one could argue that defining additional constraints is not desirable.

First, there may be no real integrity constraint between accounts a and b; that is,
if any other transaction sees the value of a and b not equal to to ta l , that may

be quite acceptable. It is only audit transactions that are special. If we declare

the constraint, we will disallow many executions, not just those involving audits.

Second, if we were to declare such constraints, we would need to declare data

213

integrity constraints between every two (or in general n) accounts. This will result

in lost concurrency and, in general, will reduce strong correctness to serializability;

that is, the only strongly correct schedules will be serializable ones.

Thus, in addition to or instead of ensuring strong correctness, it may be useful

to develop mechanisms that restrict schedules in some way, without requiring

serializability. This is discussed in the next section.

5.5 Non.Constraint Based Criteria

Pu and Left (1991) introduced a notion of Epsilon-Serializability as an alternative

correctness notion. Transactions are divided into read-only and update transactions.

The execution of the update transactions is assumed to be serializable, so that

database consistency is preserved. However, the full schedule of all transactions is

allowed to be non-serializable, as long as "the number of non-serializable conflicts

is limited." To illustrate how conflicts are counted, consider the schedule:

W2(X) r3(x) r3(y) wl(y) rl(Z) w2(z)

The schedule of update transactions is equivalent to the serial schedule < T1, T2 >.
However, T3 breaks this order by reading from T2 but not from T1. (That is, T3

is involved in the cycle T2 ~ T3 ~ T1 ~ T2.) This is counted as T2 exporting

one conflict and 7'3 importing one conflict. (T1 does not export any conflicts.) The

limits on conflicts are given by import and export limits: each read-only query has

an import limit specifying how many conflicts it can be involved in; each update

transaction is given an export limit giving the maximum number of conflicts. This

idea is formally captured in the definition below.

Definition 5.4: m schedule S is c-serial if its projection on the update transactions

is serial, and the number of conflicts imported by each read-only transaction does

not exceed its import limit, and the number of conflicts exported by an update

transaction does not exceed its export limit. A schedule is c-serializable if it is

equivalent to a c-serial schedule. 1:3

Note that if the limits of all transactions are set to zero, then c-serializable

schedules are serializable. Several methods to control consistency divergence are

proposed in Wu et al. (1992). One of these methods uses an extension of 2PL. Read-

only transactions are allowed to read data locked by updates, but each such access

counts as a conflict. If the limits are reached, then such accesses are disallowed.

Under these conditions the protocol ensures that schedules are c-serializable (Wu

et al., 1992).

214

One weakness of the original e-serializability approach is that it does not tell us

how corrupted read data may be. For instance, suppose that we have the constraint

a + b = c on three bank accounts. A single conflict violation may cause a transaction

to read values such that a + b is a trillion dollars larger than c. The approach was

extended in Wu et al. (1992) so that conflicts are measured in a way that is more

meaningful to the application.

A different notion of correctness is used in Garcia-Molina (1983). Here transac-

tions are grouped into disjoint types. An application administrator then determines

that transactions of certain types can be interleaved arbitrarily without causing con-

straints to be violated. For example, in a bank it may be safe for deposit transaction

to interleave with other deposits and with transfer transactions. The concurrency

control mechanism proposed in Garcia-Molina (1983) uses local locks to ensure

LSR schedules, and global locks to avoid undesirable interleavings.

The concept of compatibility is refined in Lynch (1983) and several levels of

compatibility among transactions are defined. These levels are structured hierarchi-

cally so that interleavings at higher levels include those at lower levels. Furthermore,

(Lynch, 1983) introduces the concept of breakpoints within transactions which rep-

resent points at which other transactions can interleave. This is an alternative to

the use of compatibility sets. A similar scheme that uses breakpoints to indicate

the interleaving points, but does not require that the interleavings are hierarchical,

is presented in Farrag and Ozsu (1989).

In Mehrotra et al. (1992c), the approach taken is to classify the global transactions

into two classes: RS-transactions and non RS-transacfions. The GTM protocol

proposed by Mehrotra et al. (1992c) ensures that no cycle in the serialization

graph of a global schedule contains any RS-transaction (in addition to ensuring that

schedules are strongly correct). Returning to Example 5.3, the audit transaction T2

is an RS-transaction, whereas the transfer transaction T1 is a non RS-transactions.

Thus, even though the schedule ,-ql is strongly correct, it is not permitted since

the serialization graph of ,51 contains a cycle involving transaction T2 which is an

RS-transaction.

6. Atomicity and Durability

In this section, we discuss how transaction atomicity and database consistency can be

preserved in presence of global transactions aborts and failures. In a multidatabase

system, as in a homogeneous system, failures may range from transaction aborts,

systems failures, failure of the GTM, to link and communication failures. In addition,

215

in a multidatabase system, a global transaction at a local site can be aborted by a

local DBMS as a result of normal DBMS operations (such as aborts caused by a local

deadlock detection procedure) and the same transaction can be. committed at some

other local sites. In this article we consider such situations as global transaction

failures. Multidatabase recovery procedures should ensure that the GTM can recover

both from these unilateral aborts and from failures. Since the recovery procedures

at each local DBMS ensure atomicity and durability of local transactions and global

subtransactions, the task of ensuring atomicity and durability of transactions in a

distributed system reduces to ensuring that each global transaction either commits

at all the sites, or it aborts at all the sites.

The key factor that affects the design of the GTM recovery procedures is the

interface provided by the local DBMSs. As we mentioned in Sections 1 and 3, there

is an ongoing debate among researchers whether or not local DBMSs will provide a

prepare-to-commit operation for the transactions. If each local DBMS provides such

an operation, then the task of ensuring atomicity is relatively simple since an atomic
commit protocol (e.g., 2PC protocol) can be used. This is discussed in Section 6.1.

On the other hand, if local DBMSs do not support a prepare-to-commit operation,

then it is possible that a global transaction commits at some sites and aborts at

others. Three different mechanisms for ensuring global transaction atomicity have

been studied.

1. Redo. The writes of the failed subtransaction are installed by executing

a redo transaction consisting of all the write operations executed by the

subtransaction.

2. Retry. The entire aborted subtransaction, not only its write operations, is

run again.

3. Compensate. At each site where a subtransaction of a global transaction

did commit, a compensating subtransaction is run to semantically undo the

effects of the committed subtransaction.

We discuss these approaches in Sections 6.2 through 6.4. While redo and retry

techniques ensure the standard atomicity of transactions, in the case of compensation

a weaker notion of atomicity is used, since it is possible that the effects of the

aborted global transaction are externalized to other transactions. This impacts the

preservation of consistency in the systems. We will also discuss this issue in Section

6.4. Finally, each of the above techniques are complementary; that is, it is possible

to combine them into a single uniform solution. We discuss how this can be done

in Section 6.5.

216

6.1 Two Phase Commit

If the local DBMSs support a prepare-to-commit operation, then transaction atom-

icity and database consistency in a failure prone environment can be ensured by

augmenting the various concurrency control mechanisms of Section 4 (or Section

5), with the use of the twophase commit (2PC) protocol (Bernstein et al., 1987) (or

one of its variations). The 2PC protocol works as follows. At the termination of the

execution of the transaction's operations, the GTM submits a prepare-to-commit

operation to each site the transaction executed. On receipt of the prepare-to-commit

operation, a site votes to commit or to abort the transaction. If the site votes to

commit the transaction, it enters a prepared state for the transaction. On entering

the prepared state, the site cedes its right to unilaterally abort the transaction to

the GTM. The GTM, on receipt of the votes from each site the transaction is to

be executed, depending upon the votes, either decides to commit or to abort the

transaction. Each site in the prepared state complies with the decision of the GTM.

For the 2PC scheme to work, we require that before a site enters a prepared

state, it must be in a position to commit or abort the transaction as instructed

by the GTM (even in the presence of failures). Since it is possible that a system

crash may occur while the site is in a prepared state for a transaction, the site must

store the updates made by the transaction onto stable storage before entering the

prepared state. Further, since other transactions may abort while the site is in a

prepared state, it must also ensure that such aborts do not jeopardize its ability to

comply with the GTM's decision.

To achieve this, before entering a prepared state for transaction Ti, the site sk

must ensure that each transaction T/ from which Ti has read some data item at

Sk, is committed. Else, it is possible that the GTM decides to commit T/, but since

Ti read a data item at site Sk written by Tj that is aborted, T / c a n no longer be

committed by the local DBMS at Sk. If the local DBMS produces serializable and

recoverable schedules (Bernstein et al., 1987), then the above property is ensured.

Note that a class of serializable and recoverable schedules is a proper superclass of

the class of strongly recoverable schedules (Section 4.2.3). If, in addition, the local

DBMS produces cascadeless schedules (Bernstein et al., 1987), then the GTM can

submit a transaction commit as soon as the transaction has completed its read/write

operations at each local site. In the latter case, the above property will be trivially

ensured.

Another practical issue that must be addressed is that of heterogeneous commit

protocols. To illustrate the problem, suppose that the interface of one local DBMS

supports operations that are compatible for the execution of a 2PC protocol, whereas

217

another local DBMS's interface supports operations compatible for the execution

of a three phase commit (3PC) (Bernstein et al., 1987/). The semantics of these

operations and the actions taken by the local DBMS on their execution may be

completely different. Thus, combining such local DBMSs to support a global

commit protocol is a non-trivial task. In addition to differences in the operations

supported by the local DBMSs for committing global transactions, there may be

many other implementation level differences among sites, regarding issues such as

error handling and who controls the global commit. If there were a single standard

2PC protocol, these problems would be avoided, but it is unlikely that this will

occur. Already there are several competing "standards," e.g., LU6.2 (Citron, 1991),

OSI TP (Upton, 1991). Thus, the problem of coordinating heterogeneous commit

protocols will persist. Some initial work on such coordination is reported by Klein

(1991).

As we argued in Section 3, there may be cases where the prepare-to-commit

operation is not provided by all sites. This may be due to the following:

1. Sites only offer a Service Request interface, giving remote clients a set of

services but not control over service commitment;

2. Sites wish to retain their execution or communication autonomy; or

3. Performance of 2PC in a distributed system may be inadequate. In particular,

sites may have to remain in the prepared state for too long, blocking local

resources; transaction response time and throughput may suffer because of

this (Barbara and Garcia-Molina, 1992).

In the rest of this section we consider systems where no global atomic commit

protocol (2PC) is being used.

6.2 Redo Approach

Consider the situation in which the local DBMSs do not support a prepare-to-commit

operation. In this case, to ensure global transaction atomicity, the GTM may still

use the 2PC protocol, where the servers (see model definition in Section 2) rather

than the local DBMSs act as the participants. Since local DBMS do not support a

prepare-to-commit state, the global transaction may be aborted at the local DBMS

at any time, even after the server has voted to commit the transaction. If a global

subtransaction is aborted by the local DBMS after the GTM has decided to commit

the transaction, the server at the site at which the subtraansaction aborted submits

a redo transaction consisting of all the writes performed by the subtransaction to

218

the local DBMS for execution. Note that to be able to construct such a redo

transaction, the server must maintain a server log in which it logs the updates of the

global subtransactions. In case of failure of the redo transaction, it is repeatedly

resubmitted by the server until it commits. Since the redo transaction consists of

only the write operations, it cannot logically fail.

If the above global commit protocol is used to ensure the atomicity of global

transactions, then it must be the case that before the server sends to the GTM its

vote to commit transaction Ti, each transaction from which T / r e a d some data item

should have previously committed. If this is not the case, then it is possible that the

GTM decides to commit a global transaction that reads data items written by an

aborted transaction. If T /on ly reads data items written by global transaction, then

the server can ensure this property by delaying its vote until all such transactions

from which Ti read some data items are committed. However, since Ti could

have read a data item written by local transactions, and since the servers have no

control over the execution of local transactions, this property, in general, can only

be ensured if the schedules generated by the local DBMS are cascadeless (Bernstein

et al., 1987). (Note that in the case of homogeneous distributed database systems,

it is sufficient to ensure that each local DBMS is just recoverable!) Thus, for the
above commit protocol to be applicable, the schedules produced by the local DBMS

are required to be cascadeless.

Another problem with the redo approach is that since the local DBMS considers

the redo transaction as a different transaction than the global transaction, the

resulting local schedule may be non-serializable from the MDBS viewpoint. This

was illustrated in Example 3.2 in which redo transaction T3 is executed to redo the

write operations performed by the globally committed but locally aborted transaction

T1. In that example, since the local DBMS considered T3 as a different transaction

than T1, the resulting local schedule was not serializable from the GTM view point.

Note that each of our correctness criteria discussed in Section 4 and 5 (that is,

global serializability, LSR, or 2LSR) require that the schedules at the local DBMSs

be serializable from the MDBS point of view. We refer to the local schedule as

being m-serializable (Mehrotra et al., 1992b), if it is serializable from the MDBS

point of view. M-serializability can be defined as follows.

Definition 6.1: Let Sj be a local schedule consisting of local transactions, global

subtransactions and redo transactions. Let ra(Sj) be a projection of Sj over

committed transactions and also over the read operations performed by the global

transactions that are aborted by the local DBMS but are committed by the GTM.

Let T/ be such a transaction. In ra(Sj), reads performed by T/ and the write

219

operations belonging to the redo transaction that executed to redo the updates of

Ti are considered a single transaction. We say that Sqj is m-serializable, if and only

if m (S j) is serializable. []

For example, schedule $1 of Example 3.2 is not m-serializable. In order to

ensure database consistency, the redo technique must be combined with techniques

of ensuring m-serializability of the local schedules. To do so, let us consider the

global/local data model described in Section 5.2. Let us assume that the following

condition holds:

Global transactions that read local data items at site Sk do not write any

local data items at sk that can be accessed by local transactions at Sk.

If the global transactions are restricted as above, then the non m-serializable schedule

$1 of Example 3.2 will not occur. To see this, note that in Example 3.2, since the

local transaction T2 wrote data item a, it must be the case that a is a local data

item. Since the global transaction both read and wrote data item a, it violated the

above restriction, thus resulting in a non m-serializable execution. Unfortunately,

even if the global transactions are restricted as above, m-serializability may not be

ensured. In Mehrotra et al. (1992b), it is shown that to ensure m-serializability,

the local schedules besides being cascadeless must further be strongly recoverable,

and that the GTM must ensure that the projection of the schedule over the global

transactions' operations is rigorous.

In Mehrotra et al. (1992b), it is further shown that the requirement of local

schedules to be strongly recoverable and cascadeless, and of the projection of the

schedule to global transactions to be rigorous, can be relaxed if we further restrict

the data items accessed by global transactions as follows:

Global transactions that read local data items at site sk do not update any

data item at Sk.

We have discussed so far how, in the presence of failures, to ensure m-

serializability if we were to use the redo technique to ensure the atomicity of

global transactions. To ensure consistency, however, there is a need to further

guarantee that one of the correctness criteria discussed in Section 4 and 5 is met.

We would expect that if we were to augment our mechanism for ensuring a cor-

rectness criterion (that is, global serializability, LSR, 2LSR, etc.) in the absence

of failures with techniques for ensuring m-serializability of local schedules, then it

would suffice to achieve a solution for ensuring that global schedules satisfy the

correctness criterion even in presence of failures.

220

This would in fact be true if we were to choose either LSR or 2LSR as our

correctness criterion. Note that a global schedule is LSR if each of the local

schedules are serializable. Thus, ensuring m-serializability of the local schedules

suffices to ensure LSR of the global schedule in the face of failures. If we were

to ensure the 2LSR correctness criterion of global schedules, then besides ensuring

m-serializability, we must further ensure that the projection of the global schedule

onto operations belonging to global transactions (which we refer to as GS) is
also serializable. Note that to ensure m-serializability itself, the GTM needs to

ensure rigorousness of GS (in the case of the first weaker restriction on the

interactions between global and local transactions). Since every rigorous schedule is

also serializable, 2LSR is trivially ensured. On the other hand, if we were to adopt

the more restrictive second restriction on global transactions, then to ensure that

the global schedules are 2LSR, besides ensuring m-serializability, we will further

need to ensure that the schedule GS is also serializable. We can do so by ensuring

rigorousness of G S . However, depending upon the concurrency control protocol

used to ensure serializability of G S , it may be possible to ensure both m-serializability

of the local schedules and serializability of GS without ensuring rigorousness of

G S . This problem still remains open.
If we were to choose global serializability as our correctness criterion, then

simply augmenting the GTM concurrency control protocols developed in Section

4 with techniques of ensuring m-serializability may not suffice to ensure global

serializability in the presence of failures. To see this, consider the case where each

local DBMS produces rigorous schedules. In that case, as discussed in Section 4.2.4,

if the GTM does not issue any commits for a transaction until all of its actions have

been completed, then global serializability is ensured in the absence of failures.

Further, to ensure m-serializability we only need to ensure that the schedule GS
is rigorous. This, however, may not ensure global serializability in the presence of

failures as it is demonstrated by the following example.

Example 6.1: Consider a multidatabase system located at two sites: s l with global

data items x and y, and s2 with global data items u and v. Let T1 and T2 be

global transactions and T3 and T4 be local transactions that execute at sites s l and

82.
T1 : Wl(X): Wl('a)

w (v)
r (v)

r,(u): r (v)

221

Suppose that the GTM decides to commit both Ti and T2, but the local DBMS
at .sl aborts T1. Thus, the following redo transaction T5 is executed to redo the

updates of Ti:

Ts: ws(x)

The above execution results in the following local schedules $1 and $2 at sites s l

and s2 respectively.

si: us(y):
$2 : WI(U): Cl: F4(U): r4(Y): C4: 1/32(V): ¢2

Note that the above schedule is not globally serializable even though local schedules

are m-serializable. []

The problem with the above situation is that it is possible for two global
transactions that are not conflicting to indirectly conflict through local transactions

due to the presence of failures. So one option of ensuring global serializability
is to disallow reads of global data items by local transactions and writes of local
data items by global transactions (while still disallowing reads of local data items by
global transactions); as mentioned in section 5.2, this guarantees globally serializable

schedules.

Another option of ensuring global serializability is to use some mechanism for

preventing cycles in the global serialization graph through indirect conflicts between

global transactions. Note that as discussed in Section 4, executing global transactions

serially, or using one of the site locking, altruistic locking, or the commit graph

approaches, can be used for this purpose. The scheme developed by Breitbart and

Silberschatz (1990) and Breitbart et al. (1992) uses the commit graph approach to
prevent cycles through indirect conflicts. Further, it is assumed there that local

DBMSs follow the strict 2PL protocol (and thus produce rigorous schedules) and

rigorousness of GS is ensured (by maintaining global locks and following the strict

2PL locking scheme on global locks) to ensure m-serializability of the local schedules.

Wolski and Veijalainen (1990) also propose a related solution. It is called the

2PC agent method, and it assumes that the participating local DBMSs produce only

strict schedules. Their method, however, requires that global transactions cannot

have indirect conflicts at local sites, which is equivalent to saying local transactions
do not read global data. In subsequent work (Veijalainen and Wolski, 1992), the

authors extend their method to multidatabase systems with only rigorous local
DBMSs.

222

Note that if the local DBMSs do not ensure rigorousness of schedules, then since

global transactions may conflict indirectly through local transactions, the mechanism

for ensuring global serializability in the absence of failures will itself either prevent

cycles through indirect conflicts or will detect such cycles. In case the scheme

prevents such cycles (as is the case for the site graph approach, altruistic locking,

and the site lock approach) we conjecture that making the scheme failure-resilient

will be relatively simple. The reason for our conjecture is that the scheme that

prevents cycles through indirect conflicts in the absence of failures can be easily

modified to also prevent cycles through indirect conflicts that may be caused due to

the presence of failures. Thus, to make the scheme failure-resilient we only need

to ensure that the local schedules are m-serializable. On the other hand, making

schemes that detect such cycles failure-resilient may turn out to be more difficult

since simply augmenting the scheme with mechanisms to ensure m-serializability

may not guarantee global serializability.

The results discussed so far indicate some weaknesses of the redo approach,

namely, some restrictions need to be imposed on data access by local and global

transactions, which may not be suitable for certain applications. It appears that

these restrictions are unavoidable, if execution autonomy of the local DBMSs is to
be preserved. One way, however, of removing these restrictions is to exploit the
semantics of the transactions for the purpose of recovery. We discuss this issue in

the following subsections.

6.3 Retry Approach

Consider global transaction T/ which executes at two sites sl and s2. On the

completion of the transaction's operations, the GTM sends a "prepare" message to

the server at each site. The server, on receipt of the prepare message, sends the

commit operation for Ti to the local DBMS. It is possible that T/commits at sl

and aborts at s2.
Thus, the atomicity of Ti has been violated and because global transactions may

read and write local data, the redo approach of Section 6.2 cannot be used. There

are two options in this case." retry and compensate. In this section we consider the

retry option and in the next section we consider the compensate option.

To ensure atomicity of Ti, one option that the GTM has is to resubmit the

failed subtransaction, T/2, at s2 as a new subtransaction T~. This is not a matter

of simply reproducing the writes of T/2; T~ needs to be run, reading and writing

possibly different values. This can only be done if the GTM saved the execution

state of T/ (e.g., local variables in the program that executes T/) that were used

223

by Ti 2, and if the original values read by Ti 2 were not communicated to other Ti

subtransactions, since those reads are now invalid. In other words, there must be

no data dependencies between Ti 2 and any other subtraansaction of T/. Techniques

such as those of Johnson and Zwaenepoel (1990) and Koo and Tueg (1987) can be

used for checkpointing transaction programs and tracking data dependencies among

subtransactions.

Further, it must be the case that subtransaction Ti 2 is retriable (Mehrotra et

al., 1992d); that is, if T/2 is retried a sufficient number of times (from any database

state) it will eventually commit. This is important since before the subtransaction is

retried the state of the local DBMS may be changed due to the execution of other

local transactions. This should not result in the situation that the subtransaction

cannot be committed. It must be noted that not every transaction satisfies this

property. Consider, for example, a subtransaction that is to debit money from a

bank account. Such a transaction, if retried, depending upon the balance in the

account, may not successfully complete. On the other hand, if a subtransaction is

to credit money into a bank account, then we can safely assume that if it is retried

a sufficient number of times it will eventually successfully complete.

The technique discussed above describes how the retry approach can be used

to ensure the atomicity of global transactions. In the presence of multiple global

transactions, in order to ensure database consistency, we will need to augment the

retry technique with concurrency control mechanisms as discussed in Section 4 and

5. If the correctness criterion being ensured is LSR, and since after the transaction

being retried has successfully committed each local schedule is serializable, no

concurrency mechanism is required by the GTM. On the other hand if we were

to ensure 2LSR, then we would need to use one of the protocols to ensure that

the projection of the schedules over the operations belonging to global transactions

would be serializable. Note that the GTM must consider the transaction executed to

retry the aborted subtransaction as one of the subtransactions of the original global

transactions. We conjecture that ensuring 2LSR is going to be relatively simple.

If we were to use the retry technique and ensure global serializability, then as in

the case of redo approach, due to the presence of failures, there may be indirect

conflicts between global transactions through the local transactions. Thus, we will

need to use one of the techniques discussed in Section 4 (that is, the site graph

approach, site locking technique etc.) to prevent cycles from forming through such

conflicts.

Thus, in general, the retry technique can be used for ensuring atomicity of

transactions under the restrictions that subtransactions do not have data dependencies
and that each subtransaction is retriable. The above scheme for ensuring atomicity

224

was first mentioned in Muth and Rakow (1991). It is clear that due to necessary

restrictions on the transactions, the retry approach by itself is of limited applicability.

However, since it is possible to use each of the approaches discussed in conjunction,

it may provide us with a powerful model. In any case, whenever transactions

satisfy the required restrictions, the system should be capable of exploiting the retry

approach.

6.4 Compensate Approach

Consider again the situation in the previous subsection in which a transaction Ti is

committed at site Sl and aborted at s2. In contrast to the retry approach, another

alternative is to compensate for the committed subtransaction T/2. This may be

done by executing a compensating transaction CT11 at site Sl, that undoes, from a

semantic point of view, what T11 did. For instance, if T~ had reserved a seat for a

given flight, CT~ would cancel that reservation. Since the effects of the transaction

have been externalized to other local transactions, the resulting state may not be

the same as if T11 had never executed but will be semantically equivalent to it.

To see this, consider that transaction T~ had reserved the last available seat for
the flight. In that case, another transaction, say T2, that tries to reserve a seat will

be refused a reservation since the flight is already full. Had T~ not executed T2

would have been able to procure the reservation. Thus, the state that results after

the execution of CT~ differs from the state that would have resulted had T11 not

executed at all. This, as in the current flight reservation systems, is nevertheless

quite acceptable.

We stress that compensating transaction for a committed global subtransaction

is by itself a regular transaction and, thus, it must preserve database consistency.

For this purpose, it may not only consist of an inverse function of the original

subtransaction but may also consist of certain other actions. In our example,

transaction T~ that reserved the last available seat, could have triggered another

transaction T3, that changed the value of a variable full to true (reflecting that the

flight is fully reserved). If there is an integrity constraint in the system that states

that the value of the variable full is true, then there are no available seats in the

flight. If the compensating transaction for the reservation transaction T11 were to

only cancel the reservation, then the consistency of the database will be violated.

Therefore, the compensating transaction G'~ must also revert the value of fu l l
back to false.

Note that in the above example to compensate for the reservation subtransaction

T~, the compensating transaction only executed at the site where T~ had executed;

225

that is, at s l . The reason for this was that the effects of the subtransaction T11 were

restricted to only the site Sl. If, however, the effects of T# had also spread to other

sites, then we may need to compensate for T~ at those sites as well. To see this,

consider that the variable fu l l in our example is replicated over numerous sites.

In that case, the compensating transaction CT11 for the subtransaction T11 will also

need to execute at other sites (besides Sl) to change back the value of full to false.

This is, however, not very practical since, in general, the compensating transaction

for a subtransaction that has committed at one site needs to execute at all the sites.

Therefore, we would like to restrict the compensating activity to only the site at

which the subtransaction committed. There are at least two ways of achieving this:

. Prevent any other global transaction from seeing a state written by the

subtransaction before its compensating transaction has executed; that is, in

our example, we need to ensure that no other global transaction is serialized

between T~ and CTi 1.

. Restrict global transactions to have no data dependencies between their

subtransactions. If a global transaction does not have data dependencies,

then its execution at one site is independent of its execution at the other

site. In this case, the effects of the committed subtransaction that is to be

compensated will not be externalized to other sites and thus compensation

can be restricted to the sites at which the transaction committed.

In the remainder of the section, we will assume that either of the above conditions

holds and thus compensating transaction for a global subtransaction is restricted

to only the site at which the subtransaction executed. As stated above, executing

compensating transactions do not result in the standard atomicity of transactions.

The resulting notion of atomicity is referred to as semantic atomicity (Garcia-Molina,

1983).

Definition 6.2 Let T/ be a global transaction. Let C T / be a collection of local

compensating subtransactions CT/1 , C T ~ , one for each site where Ti executes.

We say that T / i s semantical& atomic if and only if either Ti is committed at all sites

where it executes, or CT?'s are committed at all sites where Ti has committed.D

Since for many the term "transaction" implies full atomicity, the term saga
(Garcia-Molina and Salem, 1987) has been used to refer to a collection of semantically

atomic subtransactions. To ensure semantic atomicity, the GTM must keep a log

or record of Ti subtransactions that have been committed. In Levy et al. (1991a)

226

an optimistic twophase commit (02PC) protocol is introduced to guarantee semantic

atomicity. The protocol works as follows.

When a transaction completes, the GTM sends "prepare" messages to the

servers at each site, as it is done in the 2PC protocol. However, unlike the 2PC

protocol, upon receiving the "prepare" message, the servers optimistically try to

commit their subtransactions at that point. The result is reported to the GTM. If

all subtransactions committed, then the transaction is declared committed. If not,

the transaction is declared aborted, and compensating transactions are run for all

the subtransactions that did commit. In the common case where subtransactions

are successful, the O2PC lets sites commit sooner than in the 2PC protocol, leading

to improved performance. The O2PC protocol was also developed independently

by Muth and Rakow (1991). Processing distributed transactions without an atomic

global commit protocol was also studied by Hsu and Silberschatz (1991). It must

be noted that these commit protocols do not require each local DBMS to support

a prepared state for commitment of multi-site transactions and are thus attractive

for MDBS environments.

We have so far ignored the fact that a transaction that is committed at some

sites and aborted at others may violate database consistency. Consider a global
transaction T1 consisting of subtransactions Ti 1 and T~ executing at sites ~51 and

s 2 respectively, where T~ is committed and T12 is aborted. It is possible that such

a partially committed global transaction may violate inter-site integrity constraints

between sites s 1 and s 2. Thus, a compensating transaction CT11, besides performing

an inverse of the function performed by T~, must also ensure that after it commits

the global constraints between sites 81 and 82 hold. Note that even though the

execution of the compensating transaction CT~ will reestablish the consistency

constraint violated due to the partial commitment of a global transaction, it will

not prevent other global transactions that execute at sites 81 and a2 before CT11

executes from seeing inconsistent data. Since we require that each transaction sees

consistent data, such executions must be prevented. There are two ways in which

this can be done.

1. Disallow global inter-site integrity constraints. Note that if no such constraints

are allowed in the system, then the above problem will not arise.

2. Prevent any transaction from seeing the effects of both the failed (or

compensated-for) and successful subtransactions of the same global transac-

tion. Actually, to prevent such executions, a property of schedules, referred

to as isolation of recovery (IR) developed by Levy et al. (1991b), needs to be

ensured. Note that if we disallowed global transactions from being serialized

227

in between a subtransaction and its compensating transaction, then the IR
property is trMally ensured.

In either of the above cases, ensuring the semantic atomicity of transactions
ensures that the effects of the partially committed global transactions have been

semantically undone. However, as with the redo and retry approaches, in order to

preserve database consistency, besides ensuring semantic atomicity and isolation of

recovery (in case there are global inter-site constraints) there is a further need to

ensure one of the correctness criteria developed in Section 4 and 5. In Levy et

al. (1991a), a scheme based upon marking sites that ensures isolation of recovery

as well as global serializability is developed under an assumption that each local

DBMS follows a strict 2PL protocol.
In Mehrotra et al. (1992d), another protocol that ensures global serializability

and isolation of recovery based upon the site graph approach is developed. In
order to ensure that the global schedules satisfy the IR property, compensating

transactions for the committed subtransactions of the same global transactions are
considered as a single global transaction.

Compensation as a technique of recovery was initially introduced by Gray (1978).

Schemes based upon compensation were developed by others (Garcia-Molina, 1983;

Garcia-Molina and Salem, 1987; Korth et al., 1990). In Garcia-Molina and Salem

(1987), it is suggested that semantic atomicity can also be useful for dealing with
long lived transactions, even in a centralized database system. The long transaction

is broken up into subtransactions that commit and release their resources when

completed. Long duration transactions are used for many scientific and engineering

applications (Korth and Speegle, 1988). It is also shown that the log and state

information needed for compensation can be stored within the same application

database. The notion of sagas is extended in (Garcia-Molina et al., 1991b) to

nested sagas, where a subtransaction may be further decomposed into steps that

are compensatable. Other ideas for using semantic atomicity for coping with long

lived activities are discussed in (Gifford and Donahue, 1985; Reuter, 1989).
One issue that we have not addressed in this section is that of the design of

compensating transactions. Note that some subtransactions may not have simple

compensations. For example, say a subtransaction deposits funds in an account. By

the time we wish to compensate, the funds may have been withdrawn by another

transaction. So a compensation may involve charging the customer a penalty or
sending a message to the legal department. Further, certain transactions may not be
compensatable (e.g., firing of a missile). The design of compensating transactions

has been discussed in the literature (Garcia-Molina, 1983; Gray, 1978; Korth et al.,
1990).

228

Compensation mechanisms are closely related to ones that provide multilevel

serializability for multilevel transactions (Beeri et al., 1988, 1989; Weikum and

Schek, 1984; Weikum, 1991). That is, we can view each local database as a complex

"object." High level operations can be issued on these objects; they correspond to

what we have called subtransactions at a site. High level operations consist of low

level "actions" on the internals of the object. A concurrency control mechanism

internal to the object ensures that high level operations are atomic. A higher level

concurrency control mechanism ensures that operations are interleaved properly.

In the multilevel transaction model each global transaction can be considered

as a two level transaction where each local subtransaction is a high level operation

that the global transaction applies at a local site. Each local subtransaction consists,

in turn, of local read/write operations that the global subtransaction is using to

perform a high level global subtransaction operation. Consider, for example, a

global transaction that transfers money from account a located at site s l to account

b located at site s2. In this case withdrawal of money from account a can be

considered as one operation that, in turn, consists of reading and writing operations

at site Sl.

Local transactions, on the other hand, are considered as one level transactions
(i.e., transactions as defined in our model here). A concurrent execution of local

and global subtransactions at local sites is defined as correct if it satisfies a notion

of correct execution of multilevel transactions as it is defined in Weikum (1991). In

such context the reasoning about global serializability and atomicity can be recast

into a multilevel transaction model. Such a model lets one exploit the semantics of

global subtransactions and consequently to relax requirements of global serializability

without sacrificing global consistency. Work in this direction has been done, but

the research is in its initial stage (Schek et al., 1991).

In the multilevel transaction model, a compensation is used to semantically

undo results of global subtransactions. Compensation achieves semantic atomicity in
the following sense. Assume that f - 1 is the compensating operation of the global

subtransaction f . Now consider the execution sequence f followed by f - 1 such that

any operation (either another global subtransaction or any read/write operation of any

global and/or local transaction) that is executed between f and f - 1 commutes with

both f and f - 1 . Then we require that no subsequent invocation of a subtransaction

g could ever detect that both f and f - 1 were actually executed. That is, g has the

same return values, regardless of whether f was actually compensated or neither

f nor f - 1 ever occurred. This condition is stronger than the one we imposed

earlier. On the other hand, it permits use of a powerful apparatus of multilevel

transaction model for reasoning about global transactions consistency and atomicity.

229

In conclusion of this subsection we conjecture that the compensation conditions

of the multilevel transaction model can be replaced by the isolation of recovery

condition as we have discussed in our transaction model.

6.5 Combination of the Different Approaches

We have so far described the various approaches that have been studied in the

literature for ensuring atomicity of global transactions in a multidatabase system.

Each of the approaches has its own merits and demerits. For example, while the

redo technique seems attractive since it does not depend upon the semantics of

the transactions, its applicability is limited due to the restrictions that need to be

imposed upon the data items accessed by global transactions. On the other hand,

though the retry and the compensate approaches do not introduce access restrictions,

they rely on the semantics of the applications. Further, since not every transaction

is retriable or compensatable, their applicability is also limited.

One interesting characteristic that the discussed techniques have is that they are
complementary and can thus be supported together in a single system. This enables

us to develop a single general solution for ensuring global transaction atomicity such

that the system can exploit the good features of each of the developed schemes. To

see how the various schemes can be combined and used together we will first need

to enhance our global transaction model. A global transaction consists of a set of

subtransactions, each of which each is associated with one of the following types:

1. Compensatable. A subtransaction is compensatable if it is possible to undo

the effects of the subtransaction by executing a compensating transaction.

2. Retriable. Each subtransaction in this class is retriable; that is, if executed

from any database state (as long as the database state is consistent) it is

guaranteed to commit.

3. Redoable. All the other subtransactions that are neither compensatable, nor

retriable.

We assume that the GTM has a priori knowledge of which class a particular

subtransaction belongs to. For example, this information may be provided by the

user. Further, we assume that for each compensatable subtransaction, the user

provides a compensating transaction that can be used to undo the effects of the

subtransaction. If the user does not specify the type of a certain subtransaction, it

is assumed to be a redoable subtransaction by default.

230

If the global transactions are as specified above, then the GTM can use each

of the redo, retry, and compensate approaches in conjunction. For example, to

do so it may follow the global commit protocol below. For the description of the

protocol, we refer to an a-server on which a compensatable subtransaction executes

as a c-server. Similarly, a server on which a redoable (retriable) subtransaction

executes is referred to as a vd-server (rt-server). Further, we distinguish one of

the subtransactions and refer to it as a pivot (the pivot subtransaction may be

compensatable, or redoable, or retriable, or none). The server on which the pivot

executes is referred to as the p-server.

Consider the following commit protocol that the GTM may use. On the

completion of the execution of all the operations of a transaction, the GTM sends

a prepare message to each of the servers on the sites at which the transaction

executed. On receipt of a prepare message each r t -server and each rd-server

forces the log record it needs to maintain onto stable storage. On the other hand,

a c-server on receipt of a prepare message, submits the commit operation for the

subtransaction to the local DBMS. On receipt of a commit acknowledgment from

each of the c-servers and an acknowledgment for the prepare message from other

cohorts, the GTM submits a commit to the p-server. If the pivot is successfully

committed, then the transaction will be committed. Note that aborting a transaction

may imply that a compensating transaction needs to be scheduled at the sites on

which compensatable subtransactions have successfully committed. On receipt of

the commit acknowledgment from the p-server, the GTM submits a commit to

the remaining servers. If in case a subtransaction is aborted after the pivot has

committed (note that the subtransaction must be either a retriable subtransaction

or a redoable one), it is either retried or a redo transaction is executed for it

depending upon its type.

The above protocol combines each of the schemes that we have discussed for

ensuring atomicity of global transactions. Obviously, we assume that each redo

subtransaction (except for the pivot) is appropriately restricted and m-serializability

of the local schedules is ensured. Similarly, we assume that no other subtransaction

of the global transaction depends upon the values of data items read by each

retriable subtransaction. The only problem is with regard to the compensatable

subtransactions. Recall that for the compensation approach to work, we required

that either there be no data dependencies between subtransactions of all (not only

the transaction in question) global transactions that execute at a site on which

a subtransaction is to be compensated, or that we be able to prevent any other

global transaction from seeing the intermediate state before the compensating

transaction is committed. Note that requiring that there be no data dependencies

231

between subtransactions of a global transaction may be unnecessarily restrictive.

We, therefore, advocate taking the other approach and ensuring that no global

transaction is serialized between a subtransaction and its compensating transaction.

It must be noted that it is also possible to further generalize the above protocol

and exploit the availability of prepare-to-commit state (if certain sites support such

a state) for committing global transactions. The 2PC sites can be sent the prepare

message in the first round along with all other servers. Further, a commit decision can

be communicated to the 2PC servers along with the commit message to the rd-servers

and the n-servers, after the successful commitment of the pivot subtransaction. Note

that it is possible that transactions may not contain subtransactions of one (or more)

classes. For example, a given transaction may not have any pivot. It is interesting to

note that if the global subtransaction only consists of compensatable subtransactions,

then the above protocol reduces to the O2PC protocol discussed in the compensation

section. Similarly, if there are only redo (retriable) subtransactions, then the protocol

reduces to the one developed in the redo (retriable) section. Also, if each local

DBMS supports a prepare-to-commit operation, then the above protocol degenerates
to the 2PC protocol.

7. Global Deadlocks

It has been argued (Agrawal et al., 1987) that the timeout strategy for dealing

with deadlocks performs poorly in a centralized database, as compared to other

mechanisms for deadlock detection. However, in a distributed, heterogeneous system

it may be attractive because of its simplicity and the independence it gives.

Deadlock detection may also be an option. If sites export wait-for-graph infor-

mation (see Section 1), then the GTM could run conventional tests to detect cycles

in the wait-for-graph. However, autonomous sites may not export this information.

In these cases, it is necessary to devise a strategy for approximating the union

of the local wait-for-graphs. The basic idea is that if the GTM has submitted an

action of global transaction T / t o a local site Sk, and the GTM has not received a

reply, then Ti could be involved in a wait at sk. If another global transaction Tj

has executed actions at sk and has not yet committed everywhere, then T/ could

be waiting, directly or indirectly, for Tj. In this fashion the GTM can construct

an approximate wait-for-graph: if T/ ---¢ Tj then T/ could be waiting for Tj. If

a deadlock exists, then there will be a cycle in the approximate wait-for-graph.

Clearly, the converse is not true; a cycle in the approximate wait-for-graph that is
not a real deadlock is called a false deadlock. To reduce the likelihood of false

232

deadlocks, the arc Ti ~ Tj may be added to the approximate wait-for graph only

after T/has been blocked for some threshold amount of time. These ideas are used

by the deadlock detection schemes of (Breitbart et al., 1991b) and (Scheurermann

and Tung, 1992).

Very little work has been done to determine the performance of deadlock

detection or prevention schemes. In particular, it will be important to evaluate the

number of false deadlocks that are broken, and to compare detection schemes to

simple timeouts. It is also important to keep in mind that some of the options we

have reviewed are deadlock free, mainly the optimistic global controls and strategies

where there is no global concurrency control. If timeouts or deadlock detection

are not effective, then the deadlock free approaches may be more attractive for a

heterogeneous system.

8. Conclusions

Multidatabases are one of the very active database research areas. The 1990

National Science Foundation (USA) Workshop on Future Directions in DBMS

Research (Silberschatz et al., 1991) named the area of multidatabase as one of the

two most important research areas for the 90's. In addition, the NSF has sponsored

a series of Workshops on Heterogeneous Databases (1989, 1990, 1992). We believe

that multidatabase transaction management is of crucial importance if one is to

design an effective multidatabase system.

Our work is motivated by a major problem that exists in the contemporary

industrial data processing environment--how to manage and guarantee consistency

of semantically related data residing in heterogeneous computing environments,

distributed over various DBMSs. Since user organizations in a multidatabase system

are autonomous and may have substantial capital invested in the DBMS, it is

unreasonable to assume that they will be willing to make modifications or lose

control over their DBMSs. Therefore, it is imperative to develop methods that do

not require major modifications to existing DBMS software but are able to support

users' data in a consistent and reliable manner.

It would be much easier to develop future multidatabase systems if operating

systems, communication interfaces, and database systems were standardized. Al-

though it is utopian to believe that comprehensive standards will be developed and

enforced, it is nevertheless important to strive for good standards. For example, if

TCP/IP, SQL, strict two-phase locking and two-phase commit protocols would be

accepted by all vendors, the multidatabase transaction management problem would

233

become much more manageable. We believe that research results in multidatabase

systems will provide meaningful input to the standardization effort currently under

way.

Multidatabase transaction management research is still at a very early stage and

considerably more work needs to be done. In closing, we briefly outline some of

major needs we see.

There is a need to study the "low end" of our box spectrum (Section 1).

There are many applications where one must deal both with transaction processing

boxes and with boxes that do not have a notion of transz.ction. For example, in a

cooperative work environment, some of the data may be stored in a conventional

database system, but other data may be in file systems, CAD systems, information

retrieval systems, etc. How does one work in this environment, without reverting

to the lowest common denominator, i.e., without losing transactional capabilities

altogether?

There is also a need to understand the performance implications of multi-

database transaction management. Most research to date has focused on how to

run transactions in a heterogeneous environment, but we also need to evaluate the

cost of transaction processing. For instance, how much more expensive will it be to

run transactions when each box runs a different concurrency control protocol? In

this paper we assumed that the GTM cannot take an advantage of knowledge about

mixed types of local DBMSs. For example, if one of the DBMSs is rigorous and

another one is strongly serializable, then the GTM assumes that each local DBMS

is strongly serializable; the knowledge that one of the DBMS is more restrictive

(and, therefore, the GTM could be more permissive) is not used. Availability of

such knowledge could possibly increase the concurrency level of global transactions

and improve transaction throughput.

Full data consistency and serializability can only be achieved in a multidatabase

system by imposing restrictions that many consider severe. Thus, there is a need to

identify alternative forms of consistency and ways of restricting "standard" notions

of consistency so that positive results can be stated rather than impossibility results.

The notions discussed in Section 5 are a start, but other options for correctness

include:

1. partitioned notions of consistencymranging from consistency of a single entity

up to database consistency.

2. temporal consistencymfor example, the database is consistent each morning

at 8 am; no promises (or weaker promises) made at other times.

234

3. degrees of semantic (in)consistency, defined by application-specific predicates.

4. update-based consistency--assume the database is consistent (even if it is
not) and apply restrictions to the types of updates that are allowed.

Acknowledgments

The authors are deeply grateful to Sharad Mehrotra for numerous inspiring
discussions during the preparation of this paper, and for his help in the actual
writing of the paper. The authors are also deeply grateful to Gerhard Weikum,
Hans-J. Schek, and Sudarshan Chawathe for inspiring discussions that helped to

organize the ideas presented here. Finally, the authors gratefully acknowledge the
help of Diane Botts with the preparation of this paper.

This material is based in part upon work supported by the Center for Manu-
facturing and Robotics of the University of Kentucky; NSF Grants (IRI-8904932,
IRI-9003341, and IRI-9106450); and grants from the IBM and Hewlett-Packard

corporations.

References

Agrawal, R., Carey, M., and McVoy. L. The performance alternative strategies for
dealing with deadlocks in database management systems. IEEE Transactions on
Software Engineering, 13:1348-1363, 1987.

Alonso, R., Garcia-Molina, H., and Salem, K. Concurrency control and recovery for
global procedures in federated database systems. Data Engineering, 10(3):5--11,

1987.

Beeri, C., Bernstein, P.A., Goodman, N. A model for concurrency in nested trans-

action systems, Journal oftheACM, 36:230-269, 1989.
Beeri, C., Schek, H.-J., and Weikum, G. Multilevel transaction management: The-

oretical art or practical need, Proceedings of the First International Conference on
Extending Database Technology, New York: Springer-Verlag Lecture Notes in

Computer Science, 303, 1988, pp. 134-154.
Barbara, D. and Garcia-Molina, H. The demarcation protocol: A technique for main-

mining linear arithmetic constraints in distributed database systems, Extending
Database Technology Conference, Vienna, 1992.

Bernstein, P.A., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery
in Database ~)~stems. Reading, MA: Addison-Wesley, 1987.

235

Breitbart, Y., Georgakopolous, D., Rusinkiewicz, M., and Silberschatz, A. On rig-
orous transaction scheduling. IEEE Transactions on Software Engineering 17:954---
960, 1991a.

Breitbart, Y., Litwin, W., and Silberschatz, A. Deadlock problems in a multidatabase
environment. Thirty-sixth IEEE Computer Socie 9, International Conference, San
Francisco, Digest of Papers COMPCON, 1991b, pp. 145-151.

Breitbart, Y. and Silberschatz, A. Multidatabase update issues. Proceedings of ACM-
SIGMOD International Conference on Management of Data, Chicago, 1988.

Carey, M. and Livny, M. Parallelism and concurrency control performance in
distributed database machines, Proceedings of ACM-SIGMOD International Con-
ference on Management of Data, Portland, Oregon, 1989.

Citron, A. LU 6.2 directions. Proceedings of the International Workshop on High
Performance Transaction Systems, Asilomar, CA, 1991.

Du, W. and Elmagarmid, A.K. Quasi serializability: A correctness criterion for
global concurrency control in InterBase. Proceedings of the Fifteenth International
Conference on l,~ry Large Databases, Amsterdam, 1989.

Du, W. and Elmagarmid, A.K. Integrity aspects of quasi serializability. Information
Processing Letters, 38:23-28, 1991a.

Du, W., Elmagarmid, A.K., and Kim, W. Maintaining quasi serializability in mul-
tidatabase systems. Proceedings of the Seventh International Conference on Data
Engineering, Kobe, Japan, 1991b.

Eswaran, K, Gray, J., Lorie, R., and Traiger, I. The notion of consistency and
predicate locks in a database system. Communications oftheACM, 19:11, 1976.

Farrag, A.A. and Ozsu, M.T. Using semantic knowledge of transactions to increase
concurrency. ACM Transactions on Database Systems, 14:503-525, 1989.

Garcia-Molina, H. Using semantic knowledge for transaction processing in a dis-
tributed database. ACM Transactions on Database Systems, 8:186-213, 1983.

Garcia-Molina, H. Global consistency constraints considered harmful for hetero-
geneous database systems (position paper), Proceedings of the First International
Workshop on Research Issues on Data Engineering Kyoto, 1991a.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K. Coordinat-
ing multi-transaction activities, Technical Report CS-TR-247-90, Department of
Computer Science, Princeton University, 1990.

Garcia-Molina, H. and Kogan, B. Achieving high availability in distributed databases,
IEEE Transactions on Software Engineering, 14:886-896, 1988.

Garcia-Molina, H. and Salem, K. Sagas. Proceedings of ACM-SIGMOD 1987Inter-
national Conference on Management of Data, San Francisco, 1987.

236

Garcia-Molina, H., Salem, K., Gawlick, D., Klein, J., and Kleissner, K. Modeling
long-running activities as nested sagas, Database Engineering, 14(3):10-25, 1991b.

Georgakopolous, D., Rusinkiewicz, M., and Sheth, A. On serializability of multi-
database transactions through forced local conflicts. Proceedings of the Seventh
International Conference on Data Engineering, Kobe, Japan, 1991.

GilIord, D.IC and Donahue, J.E. Coordinating independent atomic actions, Pro-
ceedings of the IEEE COMPCON, San Francisco, 1985.

Gligor, V. and Popescu-Zeletin, R. Concurrency control issues in distributed hetero-
geneous database management systems. In: Schreiber, F. and Litwin, W., eds.
Distributed Data Sharing Systems, Amsterdam: North-Holland, 1985, pp. 43-56.

Gligor, V. and Popescu-Zeletin, R. Transaction management in distributed hetero-
geneous database management systems, Information Systems, 11:287-297, 1986.

Gray, J.N. Notes on database operating systems. Lecture Notes in Computer Science,
Operating Systems: AnAdvanced Course, volume 60, Berlin: Springer-Verlag, 1978,
pp. 393--481.

Gray, J.N. An approach to decentralized computer systems, IEEE Transactions on
Software Engineering, 12:684--692, 1986.

Gray, J.N. and Anderton, M. Distributed computer systems: Four case studies,
Proceedings of the 1EEE, 75:719-726, 1987.

Hsu, M. and Silberschatz, A. Unilateral commit: A new paradigm for reliable dis-
tributed transaction management. Proceedings of the Seventh International Con-
ference on Data Engineering, Kobe, Japan, 1991.

Johnson, D. and Zwaenepoel, W. Recovery in distributed systems using optimistic
message logging and checkpointing, Journal ofAlgorithms, 11:462-491, 1990.

Klein, J. Advanced rule-driven transaction management, 1EEE COMPCON, San
Francisco, 1991, pp. 562-567.

Koo, R. and Tueg, S. Checkpointing and rollback-recovery for distributed systems,
IEEE Transactions on Software Engineering, 13:23-31, 1987.

Korth, H.E, Kim, W., and Bancilhon, F. On long duration CAD transactions.
Information Sciences, 46:73-107, 1988.

Korth, H.E, Levy, E., and Silberschatz, A. A formal approach to recovery by
compensating transactions. Proceedings of the Sixteenth International Conference
on Fbry Large Databases, Brisbane, 1990.

Korth, H.F and Speegle, G. Formal model of correctness without serializability.
Proceedings of ACM-SIGMOD International Conference on Management of Data,
Chicago, 1988.

Kung, H. and Robinson, J. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, June 1981.

237

Levy, E., Korth, H.E, and Silberschatz, A. An optimistic commit protocol for
distributed transaction management. Proceedings of ACM-SIGMOD International
Conference on Management of Data, Denver, CO, 1991a.

Levy, E., Korth, H.F., and Silberschatz, A. A theory of relaxed atomicity. Proceedings
of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Montreal, 1991b.

Lynch, N. Multi-level atomicity. ACM ~ansactions on Database Systems, 8:484-502,
1983.

Mehrotra, S., Rastogi, R., Korth, H.E, and Silberschatz, A. Maintaining database
consistency in heterogeneous distributed database systems. TechnicalReport TR-
91-04, Department of Computer Science, University of Texas at Austin, 1991a.

Mehrotra, S., Rastogi, R., Korth, H.E, and Silberschatz, A. Non-serializable exe-
cutions in heterogeneous distributed database systems. Proceedings of the First
International Conference on Parallel and Distributed Information Systems, Miami
Beach, FL, 1991b.

Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H.E, and Silberschatz, A. The
concurrency control problem in multidatabases: Characteristics and solutions
Proceedings of the ACM SIGMOD International Conference on Management of Data.
San Diego, CA, 1992a.

Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H.F., and Silberschatz, A. Ensuring
transaction atomicity in multidatabase systems. Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. San
Diego, CA, 1992b.

Mehrotra, S., Rastogi, R., Korth, H.F., and Silberschatz, A. Relaxing serializability
in multidatabase systems. Second International Workshop on Research lssues on
Data Engineering: TPansaction and Query Processing, Mission Palms, AZ, 1992c.

Mehrotra, S., Rastogi, R., Korth, H.F., and Silberschatz, A. A transaction model for
multidatabase systems. Twelfth International Conference on Distributed Computing
Systems, Yokohama, Japan, 1992d.

Muth, P. and Rakow, T.C. Atomic commitment for integrated database systems. Pro-
ceedings of the Seventh International Conference on Data Engineering, Kobe, Japan,
1991.

Perrizo, W., Rajkumar, J., and Ram, P, Hydro: A heterogeneous distributed database
system. Proceedings of ACM-SIGMOD 1991 International Conference on Manage-
ment of Data, Denver, CO, 1991.

Pu, C. Superdatabases for composition of heterogeneous databases. Proceedings of
the Fourth International Conference on Data Engineering, Los Angeles, 1988.

238

Pu, C. and Left, A. Replica control in distributed systems: An asynchronous approach.
Proceedings of ACM-SIGMOD International Conference on Management of Data,
Denver, CO, 1991.

Raz, Y. The principle of commit ordering or guaranteeing serializability in a het-
erogeneous environment of multiple autonomous resource managers. Technical
Report, Digital Equipment Corporation, 1991.

Reuter, A. Contracts: A means for extending control beyond transaction boundaries,
Third International Workshop on High Performance Transaction Systems, Asilomar,
CA, 1989.

Salem, K., Garcia-Molina, H., and Alonso, R. Altruistic locking: A strategy for
coping with long lived transactions. In: Gawlick, D., Haynie, M., and Reuter,
A., eds. Lecture Notes in Computer Sciences, High performance Transaction Systems,
Volume 359, New York: Springer-Verlag, 1989, pp. 176-199.

Schek, H.-J., Weikum, G., and Schaad, W.A. A multilevel transaction approach
to federated DBMS transaction management, Proceedings o f t he International
Workshop on Interoperability in Multidatabase Systems, Kyoto, 1991.

Scheurermann, E and Tung, H.-L. A deadlock checkpointing scheme for multi-
database systems. Proceedings of the Second Workshop on RIDE/TQP Phoenix,
AZ, 1992.

Sha, L , Lehoczky, J.E, and Jensen, E.D. Modular concurrency control and failure
recovery, IEEE Transactions on Computers, 37:146-159, 1988.

Silberschatz, A., Stonebraker, M., and Ullman, J. Database systems: Achievements
and opportunities. Communications oftheACM, 34(10):110-120, 1991.

Soparkar, N.R., Korth, H.E, and Silberschatz, A. Failure-resilient transaction man-
agement in multidatabases. IEEE Computer, 24(12):28--36, 1991.

Upton, IV, E OSI distributed transaction processing, an overview. Proceedings of the
International Workshop on High Performance Transaction Systems, Asilomar, CA,

1991.
Veijalainen, J. and Wolski, A. Prepare and commit certification for decentralized

transaction management in rigorous heterogeneous multidatabases. Proceedings
of the 8th International Conference on Data Engineering Phoenix, AZ, 1992.

Wachter, H. and Reuter, A. The contract model. In: Elmagarmid A.K., ed. Database
Transaction Models for Advanced Applications, San Mateo, CA: Morgan Kaufman,
1992, pp. 220-263.

Weikum, G. Principles and realization strategies of multilevel transaction manage-
ment, ACM Transactions on Database Systems, 16:132-180, 1991.

239

Weikum, G. and Schek, H.-J. Architectural issues of transaction management in
layered systems. Proceedings of the l Oth Conference on l,~ry Large DataBases. Palo
Alto, CA, 1984.

Woiski, A. and Veijalainen, J. 2PC agent method: Achieving serializability in presence
of failures in a heterogeneous multidatabase. Proceedings of the International
Conference on Databases Parallel Architectures and their Applications, Miami, FL,
1990.

Wu, K.-L., Yu, P., and Pu, C. Divergence control for epsilon-serializability Proceeding
of the 8th International Conference on Data Engineering. Phoenix, AZ, 1992.

