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Abstract. A multidatabase system (MDBS) is a facility that allows users access to 
data located in multiple autonomous database management systems (DBMSs). In 
such a system, globaltransactions are executed under the control of the MDBS. In- 
dependently, localtransactions are executed under the control of the local DBMSs. 
Each local DBMS integrated by the MDBS may employ a different transaction 
management scheme. In addition, each local DBMS has complete control over all 
transactions (global and local) executing at its site, including the ability to abort at 
any point any of the transactions executing at its site. Typically, no design or in- 
ternal DBMS structure changes are allowed in order to accommodate the MDBS. 
Furthermore, the local DBMSs may not be aware of each other and, as a conse- 
quence, cannot coordinate their actions. Thus, traditional techniques for ensuring 
transaction atomicity and consistency in homogeneous distributed database sys- 
tems may not be appropriate for an MDBS environment. The objective of this 
article is to provide a brief review of  the most current work in the area of  multi- 
database transaction management. We first define the problem and argue that the 
multidatabase research will become increasingly important in the coming years. 
We then outline basic research issues in multidatabase transaction management 
and review recent results in the area. We conclude with a discussion of open prob- 
lems and practical implications of this research. 

Key Words. Multidatabase, serializability, recovery, reliability, two-level serial- 
izability, transaction. 

1. Introduction 

Recent progress in communication and database technologies has changed the user 
data processing environment. The present data processing situation is characterized 
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by a growing number of  applications that require access to various pre-existing 
local data sources located in heterogeneous hardware and software environments 

distributed among the nodes of a network. Each local data source is a collection of 

data and applications that are run under a particular database management  system 

(DBMS) and are administered/operated under a particular policy or local rules. 

The data sources are pre-existing in the sense that they were created indepen- 

dently, in an uncoordinated way and without considering that one day they may 

need to be integrated. The DBMSs involved are heterogeneous in the sense that 

they operate in different environments and may use different underlying data mod- 

els, data definition and data manipulation facilities, transaction management  and 

concurrency control mechanisms, and physical data structures. 

A multidatabase is composed of  local data sources. Systems that facilitate the 

logical integration of local data sources are called multidatabase systems. Logical 

data integration creates an illusion of a single database system and hides from users 

the intricacies of  different DBMSs and different access methods. It provides users 

with uniform access to data contained in various databases, without migrating the 

data to a new database, and without requiring the users to know either the location 

or the characteristics of different databases and their corresponding DBMSs. Using 

the multidatabase approach, pre-existing applications remain operational and new 

applications may access data in various distributed data sources. 

A multidatabase system (MDBS) is built on top of a number of  local DBMSs that 

manage different local data sources. Access to data located in a local data source 

is accomplished through transactions. A transaction results from the execution of  a 

user program written in a high level programming language (e.g., C, or PASCAL). 
In this article, we assume that each local DBMS ensures the following properties 

(called ACID properties) of  transactions executed at its site: 

• Atomicity: Either all operations of the transaction are properly reflected in 

the database or none are. 

• Consistency: Execution of a transaction in isolation preserves the consistency 

of the database. 

Isolation: Each transaction assumes that it is executed alone in the system 

and the local DBMS guarantees that intermediate transaction results are 

hidden from other concurrently executed transactions. 

• Durability: The values changed by the transaction must persist after the 

transaction successfully completes. 
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To ensure the consistency and isolation properties, each local DBMS generates a 

conflict serializable schedule consisting of operations of local and global transactions 

that were executed at its site. To ensure the atomicity and durability properties, 

each local DBMS uses some form of recovery scheme (e.g., write-ahead log scheme; 

Bernstein et al., 1987). 

The MDBS considers each local DBMS as a black box that operates autonomously, 
without the knowledge of either other local DBMSs or the MDBS system. Local 

autonomy is the main feature that distinguishes the multidatabase systems from 

conventional distributed database systems. There are three main types of autonomy: 

Design autonomy: No changes can be made to the local DBMS software to 

accommodate the MDBS system. Making changes to the existing software of  

the DBMS is expensive, may result in performance degradation and, further, 

may render pre-existing applications inoperative. 

Execution autonomy: Each local DBMS should retain complete control over 

the execution of transactions at its site. An implication of this constraint is 

that a local DBMS may abort a transaction executing at its site at any time 

during its execution, including the time when a global transaction is in the 

process of being committed by the MDBS. 

Communication autonomy: Local DBMSs integrated by the MDBS are not 

able to coordinate the actions of global transactions executing at several 

sites. This constraint implies that local DBMSs do not share their control 

information with each other or with the MDBS system. 

Participating DBMSs may have different autonomy levels. For example, some 

sites may be willing to participate in the coordination of a global transaction (low 

communication autonomy) while others may not (high communication autonomy). 

One way to characterize the autonomy levels of sites is to define the interface 
that each local data source offers to user transactions. For example, no airline, bank, 

or car agency would allow external users' transactions to access their data using 

SQL statements. On the other hand, internal users' transactions will be allowed to 

do so. The interfaces can be categorized by the operations they accept from the 

MDBS. Here,  we illustrate some o f  the operations that may be available at a site 

(black box). We partition these operations into two sets. The first one deals with 

transaction operations, while the second one deals with status information. 
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• Transaction operations: 

- Begin transaction. The MDBS requests that a new local transaction 

be initiated. The DBMS typically returns a transaction identification 

to be used in later commands. 

- End transaction. The identified transaction has completed and may be 

committed. 

- Read or Write. Perform indicated action. The action may be low level 

(e.g., read a record or write a record) or high level (e.g., withdraw 

money from an account). Begin and end transaction operations may 

be implicit in action. 

- Abort. Terminate and abort  a transaction. Undo all transaction's effects 

in the database. 

- Commit. Make all changes that a transaction made permanent  in the 

database and purge the transaction from the system 

- Prepare  to Commit. The identified transaction has finished its actions 

and is ready to commit. DBMS guarantees that transaction will not be 

unilaterally aborted and waits for commit or abort decision from the 

MDBS. 

- Service Request. The execution of a procedure is requested (e.g., 

"reserve a seat on a given flight"). A service request is equivalent to 

submitting all the actions of  a local transaction, from begin transaction 

to commit, at once. 

• Status information operations: 

- Get-wait-for-graph. Retrieve the local-wait-for-graph (if one is used) to 

be used in global deadlock detection. (A local-wait-for-graph consists 

of  a set of vertices corresponding to transaction names, and a set of 

edges specifying a waiting relation between transactions. A cycle in the 

graph indicates a deadlock situation.) 

- Get-serialization-order. Retrieve information regarding the commit or- 

der of  transactions. (Such an order  can be represented by a serialization 

graph, where the sets of vertices correspond to transaction names, and 

the set of edges specify serialization order. A cycle in the serialization 

graph indicates a non-serializable schedule.) 

- Inquire. Find out  status (e.g., commit, abort) of a transaction. 
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- Disable transaction class. Certain types of transactions (e.g., identified 

by semantic type, or by read or write access sets) are not allowed to 
commit at this box. 

Thus, each local dam source exports a well defined set of high-level operations that 

may be invoked by users' transactions. This notion of exported high-level operations 

roughly corresponds to the transactions steps (Garcia-Molina et al., 1990; Wachter 

and Reuter, 1992). In addition to the available operations, the global system may 

also use knowledge of the internals of the local DBMS. For example, it may be 

known that a local DBMS uses the two phase locking (2PL) protocol (Eswaran et 

al., 1976), or that it uses a strict, recoverable, or cascadeless concurrency control 

mechanism (Bernstein et al., 1987). As we will see, this information may be of use 

to the MDBS for coordinating global transactions. 

The operations define a spectrum of autonomy. At one end we have sites that 

simply provide a service request interface (see transaction operations above); the 

MDBS is offered a fixed choice of services, and once a request is submitted the 

MDBS has no control as to when it is executed, if at all. At the other end of the 

spectrum the various transaction operations are submitted individually to the local 

DBMS. Thus, the only mechanism that the MDBS can use to guarantee certain 

properties of transaction executions is the mechanism of coordinating a submission 

of transaction's operations. 

A variety of points in the spectrum have been studied in the literature. In 

general, the more autonomy the DBMSs retain, the harder it is to guarantee global 

data consistency (Gligor and Popescu-Zeletin, 1985, 1986). In this article we provide 

an overview of the different points of the spectrum that have been studied and the 

corresponding MDBS transaction mechanisms. Since our focus here is on high level 

autonomy, we will not consider here multidatabase systems where the participating 

local DBMSs export wait-for or serialization-order information (Pu, 1988; Perrizo et 

al., 1991; Soparkar et ai., 1991). Such MDBSs are closely related to homogeneous 

distributed database systems that have been extensively studied (Bernstein et al., 

1987). The results are also applicable to homogeneous distributed database systems 

that allow local sites to retain some level of execution autonomy. 

We start by discussing our multidatabase transaction management model, and 

analyzing the problems that arise in a multidatabase environment. We then classify 

different notions of global database consistency that have been introduced in literature 

so far. Finally, we discuss some open problems that still need to be solved. This 
review is not intended to be comprehensive, but covers major progress to date. 



2. Multidatabase Transaction Model 

In this section we define the base transaction model to be used throughout this 

article. This model is chosen because it is the one that has received the most 

attention in the multidatabase literature. However, we will consider extensions to 

the basic model at later points. We assume that each local DBMS interface includes 

at least read, write, commit, and abort operations. 

An MDBS consists of a number of pre-existing and autonomous local DBMSs 

located at sites Sl, s2 . . . .  , sin, where m > 2. A transaction T / i s  a sequence of 

read (ri) and write (wi) operations terminated by either a commit (ci) or an abort 
(ai) operation. A multidatabase environment supports two types of transactions: 

local transactions, those transactions that access data managed by only a 

single DBMS. These transactions are executed by the local DBMS, outside 

of MDBS control 

global transactions, those transactions that are executed under MDBS control. 

A global transaction consists of a number of subtransactions, each of which 

is an ordinary local transaction from the point of view of local DBMS where 
the subtransaction is executed. 

The local schedule at site sk, denoted by Sk, is a sequence of local and global 

transactions operations resulting from their execution at site sk. Transaction Ti is 
said to be committed (aborted) in Sk if Sk contains ci (al) operation. Transaction 

Ti is active in Sk if it is neither committed nor aborted in Sk. A projection of Sk 

on a set of transactions T is a schedule that contains only operations of transactions 

from T.  A committed projection of schedule Sk is a schedule that contains only 

operations of committed transactions in Sk. 

We say that transactions T / a n d  Tj are in direct conflict in schedule Sk if and 

only if schedule Sk contains operation oi(x) followed by operation oj(z), where 

oi(x) or oj(x) are a write operation and Ti does not abort before o j (x)  is executed. 

We say that transactions T/ and Tj are in indirect conflict in schedule Sk if and 

only if there is a sequence of transactions T1, T2 . . . .  , Tr such that Ti is in direct 

conflict with T1, T1 is in direct conflict with T2 . . . .  , and, finally, Tr is in direct 

conflict with Tj. Transactions T/ and Tj are in conflict if and only if they are in 

direct or indirect conflict. 

Two local schedules are equivalent if they are defined on the same set of 

global and local transactions, have the same operations and the same set of pairs 

of conflicting committed transactions. Schedule Sk is conflict serializable if it is 
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equivalent to a serial schedule. A local serialization graph for schedule Sk is a 

directed graph with nodes corresponding to global and local transactions that are 

committed in Sk and with a set of edges such that Ti --~ Tj if Ti conflicts with 

Tj in Sk. Schedule Sk is serializable if and only if its local serialization graph is 

acyclic (Bernstein et al., 1987). 

A global schedule S is a partial ordered set of all operations belonging to local 

and global transactions such that, for any local site sk, a projection of S on a set 

of global and local transactions executing at site Sk is the local schedule Sk at site 

sk. We say that a global schedule is globalty serializable if and only if there exists a 

total order defined over committed global transactions that is consistent with the 

serialization order of committed global transactions at each of the local DBMSs. 

A union of local serialization graphs is called a global serialization graph. A global 

schedule is globally serializable if and only if its global serialization graph is acyclic 

(Breitbart and Silberschatz, 1988). 

The MDBS software that executes on top of the existing local DBMSs consists 

of a global transaction manager (GTM) and a set of servers, one associated with each 

local DBMS. Each global transaction submits its operations to the GTM. For each 

submitted operation, the GTM determines whether to submit the operation to local 

sites, or to delay it, or to abort the transaction. If the operation is to be submitted, 

the GTM selects a local site (or a set of sites) where the operation should be 

executed. For each submitted r i ( z )  (wi(z)) operation, the GTM determines the 

set of all sites that contain a copy of the global data item x. For a global r i ( x )  

operation, the GTM selects one of these sites as the site where the read operation 

is to be executed, and it translates the r i (x )  into a local read operation. For a 

global wi(z) operation, all these sites must be used in the execution of the global 

write operation. Without loss of generality, we assume here that each global data 

item corresponds to no more than one local data item at each local site. 

The GTM submits global transaction operations to the local DBMSs through the 

server which acts as the liaison between the GTM and the local DBMS. Operations 

belonging to a global subtransaction are submitted to the local DBMS by the server 

as a single transaction. We assume that each local DBMS acknowledges to the 

server (and, in turn, to the GTM) the execution of operations submitted to it. We 

do assume that the actions of a given transaction at a site always end an execution 

with a commit (or abort) operation. 

We do not impose any restrictions on how the various read and wr/te operations 

of a global transaction are executed by the GTM. It is possible in our model for 

several operations of the same transaction to be executed by the GTM at the same 
time (parallel execution) or for no operation of the transaction (except the very 
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first one) to be submitted for execution until the GTM receives an acknowledgment 

from the previous operation of the same transaction (serial execution). The overall 
multidatabase system model is depicted in Figure 1. 

As mentioned earlier, we will also consider variations of base model we have 
presented. In particular, we will consider two variations: 

Service Interface. Many real life examples of multidatabase applications 

are based on a high-level service interface model (Graay, 1986, 1987) (e.g. 

networks of travel agencies, the international interbank clearing system, 

etc.). In the service interface model the GTM submits service requests as 
opposed to individual read, write, abort, and commit actions. A service 

request generates read, write, commit (or abort) at local sites, just like in 

the base model. However, the GTM receives a single acknowledgment, after 
all actions have committed (or aborted). In most cases, global concurrency 
control mechanisms are not significantly affected if one assumes a service 

interface model as opposed to the base model. Where there is some impact, 

we will point it out. 
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• Extended Base Modal. At various points, we will assume that sites provide 

additional operations, such as a prepare-to-commit one. We will also assume 

several types of knowledge about the concurrency control mechanisms used 

at local sites. For each extension, we will study how global transaction 

management is affected. 

3. Multidatabase Transaction Management Issues 

The Global Transaction Manager (GTM) should guarantee the ACID properties 

of global transactions, even in the presence of local transactions that the GTM is 

not aware of. In addition, the GTM should guarantee deadlock-free executions of 

global transactions and it should provide means to recover from any type of system 

failure. In the next three subsections we illustrate the difficulties that may arise. 

3.1 Global Serlalizabllity Problem 

The various local DBMSs may use different concurrency control protocols (e.g., 2PL, 

timestamp ordering, serialization graph testing, etc.). Existing solutions for ensuring 

global serializability in a homogeneous distributed database assume that each site 

uses the same concurrency control scheme and shares its control information; hence 

existing solutions cannot be used in a MDBS environment. 

Since local transactions execute outside the control of the GTM, the GTM can 

guarantee global serializability only through the control of the execution order of 

global transactions. However, in such an environment, even a serial execution of 

global transactions does not guarantee global serializability. The following example 

illustrates this fact. 

Example 3.1: Consider a multidatabase system located at two sites: s l  with data 

items a and b, and s2 with data items c and d. Let T1 and T2 be two read-only 

global transactions defined as follows: 

T i :  rl(a) r l (c )  

T2:  r2(b) r2(d) 

In addition, let T3 and T4 be two local transactions at sites sl  and s2, respectively, 

defined as follows: 
w (a) 

T4: w4(c) w4(d) 
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Assume that transaction T1 is executed and committed at both sites and after that 

transaction T2 is executed and committed at both sites. Such execution may result 

in the following local schedules $1 and $2 generated at sites 81 and a2, respectively: 

S1 : r l (a )  Cl w3(a) w3(b) c3 r2(b) c2 
$2:  w4(c) rl(C) c1 r2(d) c2 w4(d) c ,  

As a result, transaction T1 is serialized before T2 at $1 and after T2 at s2; hence 

global serializability is not maintained. [] 

In Example 3.1, the problem arises because the local transactions create in- 

direct conflicts between global transactions. Since the GTM is not aware of local 

transactions, it is also not aware of these indirect conflicts. This phenomenon is a 

cause of major difficulties in trying to ensure global serializability in a multidatabase 

environment. 

3.2 Global Atomiclty and Recovery Problems 

The global atomicity requirement dictates that either all the subtransactions of a 

transaction commit, or they all abort. In a homogeneous distributed database system, 

atomicity of transactions is ensured by an atomic commit protocol (Bernstein et al., 

1987). This protocol requires that the participating local sites provide a prepared 

state for each subtransaction. The subtransaction should remain in the prepared 

state until the coordinator decides whether to commit or abort the transaction. 

If we wish to preserve the execution autonomy of each of the participating 

local DBMSs, then we must assume that local DBMSs do not export a transaction's 

prepared state. In such an environment, a DBMS can unilaterally abort a subtrans- 

action any time before its commit. This not only leads to global transactions that 

are not atomic, but to incorrect global schedules, as illustrated below. 

Example 3.2: Consider a global database consisting of two sites Sl with data item 

a, and as2 with data item c. Consider the following global transaction Ti: 

TI: r l  (a) wl (a) W 1 (C) 

Suppose that T1 has completed its read/write actions at both sites and the GTM 

sends commit requests to both sites. Site s2 receives the commit and commits 

its subtransaction. However, site s 1 decides to abort its subtransaction before the 

commit arrives. Therefore, at site $1 the local DBMS undoes the T1 actions. After 

this is accomplished a local transaction T2: 
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w2(.) 

is executed and committed at the site. 

At this point, the resulting global schedule is incorrect, as it only reflects the 

s2 half of T1. To correct the situation, say the GTM attempts to redo the missing 

actions by resubmitting to sl  the missing write wl (a). The local DBMS, however, 

considers this operation as a new transaction Ta that is not related to T1. Thus, 

from the local DBMS viewpoint, the committed projection of the 81 schedule is: 

However, Ta's write operation is the same as wl (a) as far as the MDBS is concerned. 

Thus, this execution results in the following non-serializable schedule $1: 

[] 

We note that if the local DBMSs provide a prepare-to-commit operation, and 

they participate in the execution of a global commit protocol, then the problems 

shown in Example 3.2 can be avoided. In particular, in that example, the GTM 

does not issue the commit actions for T1 until both sites have acknowledged the 

prepare-to-commit. Because 81 is prepared for T1, it cannot abort it and the 

situation shown in Example 3.2 does not arise. However, as discussed above, this 

will violate the execution autonomy requirement. 

There is an ongoing debate as to whether sites in a MDBS will provide prepare-to- 

commit operations and thereby give up their execution autonomy. One side argues 

that the two phase commit protocol (with the prepared-to-commit operation) is 

becoming a standard, so that soon all DBMSs will provide this service. The other 

side argues that there will always be autonomous sites that will want to preserve their 

execution autonomy, and therefore will not want to export the prepare-to-commit 

operation, even if their local DBMSs provide it. This is because they do not want 

their site to hold resources (e.g., locks) on behalf of a remote transaction, which 

may last for an indefinite amount of time. The first camp counter-argues that with 

modern networks and computers, global transactions will be very fast, so the time 

that a site needs to block its resources is minimal. So the site administrators will 

not mind allowing the prepare-to-commit. Furthermore, they claim, the operator at 

a site can always manually release a transaction that hangs for too long (e.g., break 
locks manually). So if a transaction ever waits too long in its prepare-to-commit 
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state, it can be aborted. The second camp then counter-argues that if the prepare- 

to-commit commitment can be broken by the operator, then sites can unilaterally 

abort after all, so we are back at square one. 

Without taking sides in the argument, we believe it is important to study both 

scenarios, with or without prepare-to.commit at the sites. In this article, we will 

review both cases. 

3.3 Global Deadlock Problem 

Consider a multidatabase system where each local DBMS uses a locking mechanism 

to ensure local serializability. We assume that each local DBMS has a mechanism 

to detect and recover from local deadlocks. However, in such systems there is a 

possibility of a global deadlock that cannot be detected by the GTM. 

Example 3.3: Consider a multidatabase system located at two sites: Sl with data 

items a and b, and s2 with data items c and d. Local DBMSs at both sites use 

the two phase locking protocols to guarantee local serializability. Let T 1 and T2 

be two global transactions defined as follows: 

T i :  r l ( a )  r l ( d )  

T 2 :  r2(c)  r : (b )  

In addition, let T3 and T4 be two local transactions at sites Sl and s2, respectively, 

defined as follows: 
T3: w3(b) w3(a) 
T4: w4(d) w4(c) 

Assume that T1 has executed rl(a) and T2 has executed r2(c). ~ t e r  that, at site 
~1, the local transaction executes w3(b), submits w~(a), and is forced to wait for 
a lock on a that is kept by T1. At site s2, transaction T4 executes w4(d) ,  submits 

w4(c) and is forced to wait for a lock on c that is kept by T2. Finally, transactions 

T1 and T2 submit their last operations and a global deadlock ensues. [] 

Due to the design autonomy, local DBMSs may not wish to exchange their 

control information and therefore will be unaware of the global deadlock. Similarly, 

the MDBS is not aware of local transactions and, therefore, will be also unaware of 

the deadlock. In Section 7 we will discuss what the GTM can do to ensure deadlock 

freedom. 
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4. Global Serializability Schemes 

In this section, we describe techniques for ensuring global serializability in a failure 

and abort free environment. That is, we assume that each transaction, whether 

local or global, will always successfully complete once it has been submitted for 

execution. Under this assumption, no aborts of global transactions by local DBMSs 

due to the local deadlocks are permitted. This is clearly not a realistic assumption. 

However, studying this simplified scenario yields a formal understanding of the 

synchronization issues that arise in dealing with independent concurrency control 

mechanisms. Failures and aborts will be considered in Section 6. 

Example 3.1 demonstrates the key problem in guaranteeing globally serializable 

schedules. Local transactions (such as T3) may generate indirect conflicts between 

global transactions that otherwise are not in conflict. In the example, T3 creates 

a dependency T 1 ---1. T 3 -.......4. T 2 and at the second site T4 creates dependencies 

T2 ~ T4 ~ T1. Thus, even though T1 and T2 do not conflict, they are involved 
in a cycle in the global serialization graph. 

To avoid these cycles, the GTM will have to take some action. What action 

is taken depends on the amount of knowledge the GTM has concerning the local 
concurrency control mechanisms. In the subsections that follow we consider various 
scenarios, and for each one explain the types of GTM actions that will ensure 

global serializability. The base scenario (Section 4.1) corresponds to our base 
transaction model (Section 2): the GTM simply knows that each local site generates 
local serializable and deadlock free schedules. Thus, the GTM considers each 

such DBMS as an unlabeled black box. In subsequent scenarios, the GTM assumes 

additional properties (labels) of the sites (black boxes). 

In general terms, the actions taken by the GTM can be of two types: 

• Pessimistic. Global transactions are delayed to avoid serialization graph 

cycles. 

• Optimistic. Cycles or potential cycles are detected and broken by aborting 

global transactions. 

The choice between these two approaches represents a tradeoff: a pessimistic 

approach does not generate transaction aborts but may result in lower concurrency, 

while an optimistic approach may increase concurrency but may result in a large 

number of transaction aborts (Carey and Livny, 1989). 
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4.1 Integration with Unlabeled DBMSs 

Continuing with Example 3.1, consider a snapshot of schedules $1 and $2 depicting 

a situation where the GTM has executed T1 but has not started T2. (The actions 

that have not  beeen executed yet are within brackets.) 

St: vl(a) cl [ w3(a) wz(b) cz v2(b) c2 ] 

The GTM wishes to avoid the future execution shown in the brackets, as it will 

result in a non-serializable schedule. One option would be to delay the execution of 

T2 until the GTM is certain that a serializability cycle cannot occur. Unfortunately, 
since the GTM has no control over site s2, it has no way of knowing when T4 

will complete, and T2 needs to run after T4 to avoid the dependency T2 ~ T4. 
Hence, the pessimistic approach does not work. The optimistic one does not work 

either: when T2 completes it would always have to be aborted since it could have 

participated in a cycle. 
The only practical solution that is known to work in this scenario involves 

forcing conflicts among the global transactions (Georgakopolous et al., 1991). In 
the example, we can force T1 to write some object at every site it accesses data, 
and T2 to read those objects. Thus, if the GTM executes T2 after T1 completes, 
then it ensures that the arc T1 ~ T~ is placed in the global serialization graph. 

This guarantees that the arc T2 ---r T4 ~ T1 cannot be generated at s2, as it 
would create a local cycle. (Remember: the local site generates locally serializable 

schedules.) In the example, when T4 submits its w4(d) action at ss2, the local cycle 

would be detected at T4 and would be aborted. 
In the above example, global serializability was assured since T2 ran after T1 

completed. However, if these two transactions were to run concurrently, then an 

additional mechanism is required to ensure that one site does not generate the 

edge T1 ---> T2 while another site generates T2 ~ T1 in their respective local 
serialization graphs. This is achieved by the use of a special data item--a t icket that 

is maintained at each local site. Only one ticket is required for each local site, but 

tickets at different local sites are different data items. Only global transactions can 
access the ticket. Moreover, each global transaction executing at a site is required 

to read the ticket value, increment it, and write an incremented value into the 

database. Thus, the ticket value read indicates the serialization order of the global 

transactions at the site. 
The algorithm of Georgakopolous et al. (1991) is optimistic: the GTM keeps a 

serialization graph for all active transactions (started but not committed). When a 
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transaction T reads ticket value t at site ai, an arc is entered from every transaction 

that read a ticket less than t at si to T.  If T completes all of its actions and is 

not involved in a cycle, it is committed, or else it is aborted. In Georgakopolous 

et al. (1991) it is shown that the ticket method guarantees global serializability. 

The ticket idea can also be used in a pessimistic way. In this case, global 

transactions are assigned a priori a global serialization order, and the tickets they 

should read are determined in advance. If a transaction submits its operation outside 

of a local site ticket order, it waits. 

The performance of the ticket method has not been fully evaluated. It may 

lead to numerous aborted transactions (optimistic) or low concurrency (pessimistic). 

This same problem exists with most of the mechanisms we will survey later in this 

section, so it may be an inherent problem in trying to achieve global serializability 

with autonomous sites. 

In closing of this subsection, we mention an article that has proposed the site- 

graph mechanism as a way for ensuring global serializability in an environment where 

the local sites are assumed to be unlabeled black boxes (Breitbart and Silberschatz, 
1988). The proposed scheme, however, causes some transactions to be postponed 

indefinitely, unless the local sites tell the GTM when transactions such as T4 (in 

our example) have completed. Unfortunately, this violates local autonomy. This 

site-graph mechanism is described further in Section 4.2.1. 

4.2 Integration with Labeled DBMSs 

We may be able to lind global mechanisms that allow more concurrency if we 

assume certain properties about the local sites. For example, suppose that the local 

sites use a basic timestamp ordering concurrency control algorithm. Returning to 

Example 3.1, say that execution has proceeded to the point indicated below (where 

the actions that have not been executed are again shown in brackets): 

~1: rl(a) Cl w3(a) w3(b) c3 r2(b)[c2 I 

Consider now site s2. Sometime during Tl 's  execution, it received a timestamp, say 

t l .  Sometime after T2 starts, it will also receive a timestamp, t2. Since T1 and T2 

do not overlap in time, t2: > : t l .  The basic timestamp mechanism ensures that 

transactions are serialized in timestamp order, hence there can be no dependency 

T2 ~ " "  ~ T1 in the local serialization graph. If T 4 were allowed to perform 

its second write action, it would create such a dependency; thus the local DBMS 

at s2 will abort T4. 
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This suggests a simple strategy for ensuring globally serializable schedules in an 

MDBS environment where each local DBMS is using a basic timestamp ordering 

concurrency control algorithm. The idea is to run global transactions serially. If 

transactions are not overlapped, we know that they will be assigned increasing 

timestamps, serialized in the proper order at each site, and the global schedule 

will be serializable. This simple scheme, however, forces global transactions to run 

serially. In the next three subsections we discuss MDBS systems that are able to 

concurrently execute global transactions by exploiting knowledge about properties 

of local schedules. 

4.2.1 Strongly Serializable DBMSs. The following definition captures the essential 

property of timestamp ordering that lets us achieve global serializability. Actually, 

most concurrency control algorithms have this same property. 

Definition 4.1. Let ,5' be a serializable schedule. We say that schedule ,5' is strongly 
serializable if and only if for every two transactions Ti and Tj in S, if the last 

operation of Ti (commit or abort) precedes the first operation of Tj, then there is 

some serial schedule equivalent to ,5' where T/ precedes Tj (i.e., T/ precedes Tj 
in the S's serialization order). [] 

Assuming that a transaction receives a timestamp at the time of executing of its 
first operation, the basic timestamp ordering concurrency control algorithm ensures 
that a local schedule is strongly serializable. 1 Thus, as shown above, the GTM 

can ensure global serializability (when local schedules are strongly serializable) by 

executing global transactions serially. There are, however, several ways in which 

we can do better. For example, we note that if T1 and T2 execute at disjoint sites, 

there is no need to execute them serially. This suggests an algorithm where the 

GTM keeps a lock per site (the locks are kept at the GTM level, and not at the 

sites) (Alonso et al., 1987). Before a transaction can start, it must acquire the locks 
for all the sites it will run on. When it completes, the transaction releases its site 
locks. This ensures that transactions that could have generated a cycle like the one 

of Example 3.1 are run serially with respect to each other, thus avoiding the cycle 

due to the strong serializability of the local sites. 

1. Without this assumption the basic timestamp ordering algorithm may generate a not strongly serializable 
schedule. For example, W2(X)  r 3 ( x )  ¢3 Wl (y) Cl w2(y) c2 can be generated by the basic time- 
stamp ordering algorithm (Bernstein et al., 1987). However, in this case the timestamp for T1 was assigned 
before the first statement of T 1 was executed. 
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The lock-per-site approach is still overly restrictive. For example, consider two 

transactions: T1 is to run at sites Sl and 82, and T2 is to run at sites s2 and ..s3. If they 

run concurrently, a dependency may be generated at s2, either T1 ~ " "  ~ T2 

or T2 ~ • • • ~ T1. But since T1 and T2 do not interact at any other site, it does 

not matter: no global cycle can be generated in the global serialization graph. 

This idea leads to essentially the site-graph algorithm of Breitbart and Silberschatz 

(1988). The GTM maintains a bipartite graph, with transactions and sites as the 

nodes. When a new transaction T/ is to be run, an arc is entered in the graph 

connecting the Ti node to each site node where Ti will run. If there are no cycles, 

Ti runs. If a cycle invohdng Ti exists, then T / i s  delayed until the cycle disappears. 

To illustrate, say we try to run the schedule of Example 3.1. When T1 starts, 

arcs (T1, s l )  and (T1, s2) are entered. When T2 starts, arcs (T2, Sl) and (T2, 

s2) are entered, creating a cycle. Thus, T2 is delayed until T~ completes all of its 

actions. Since T1 and T2 are not overlapped, and since all local sites are strongly 

serializable, T1 is serialized before T2 at all sites. So a global cycle is avoided. If, 

on the other hand, T2 runs only at sites s2 and s3, then there would be no cycle 

in the site graph and T2 could run concurrently with T1. 

In the site graph algorithm, a transaction (node) cannot be removed from the 

graph upon the transaction's commit, if the transaction has a path in the graph that 

is connected to an uncommitted transaction. An aborted transaction, however, can 

be removed from the site graph as soon as it is aborted. 

Another idea is to use altruistic locking to improve concurrency (Alonso et al., 

1987; Salem et al., 1989). To illustrate, say T1 runs at sites s l ,  s2, and s3, in that 

order. That is, T1 first executes all of its actions at 81 (including commit), then 

it executes at s2, and then at s3, with no overlapping of its actions at these sites. 

Suppose we run a second transaction, T2, in the wake of T1, that is, T2 executes at 

s l  after T1 finished, and then runs at s2 after T1 finished there. Even though both 

T1 and T2 are executing concurrently, they are never overlapped at any one site, 

and T2 always follows T1. Hence, no site will generate a dependency T2 ~ • • • T1 

and the global schedule will be serializable. 

There are various ways to implement altruistic locking (Alonso et al., 1987). A 

simple way is to use site locks as before, except that transactions can release locks 

early if they know they have finished all processing at a site. However, the lock is 

not fully released; it is left in a "marked" state. Other transactions that request a 

site lock that is marked, can obtain the lock, but are then forced to be in the wake 

of the original transaction. The GTM must ensure that the relationship "is in the 

wake of" has no cycles. The latter can be done by keeping a wake-graph in which 

there is an edge between T / a n d  Tj if Tj is in the wake of Ti. 
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All the mechanisms we have described for strongly serializable local schedules 

are pessimistic. However, optimistic versions can easily be developed. For instance, 

in the site graph approach, instead of delaying transactions involved in a cycle, we 

could abort them. 

4.2.2 Serialization-PointBasedDBMSs The notion of a strongly serializable schedule 

is closely related to that of a schedule that consists of transactions each of which has a 

serialization point (Pu, 1988). A serialization point of a transaction is a distinguished 

action that determines the serialization order of the transaction in the schedule. For 

instance, in a concurrency control scheme based on timestamps, the distinguished 

action corresponds to the assignment of a timestamp to the transaction. When the 

transaction arrives and reads its timestamp, it will be serialized by the scheduler 

relative to other transactions according to its timestamp. That is, if two transactions 

contain conflicting operations and the scheduler serialized T1 before T2, then the 

timestamp of T1 is smaller than the timestamp of T2. Thus, a schedule that is 

generated by a timestamp scheduler consists of transactions in which each has a 

serialization point in the schedule. 

In the 2PL scheme (Eswaran et al., 1976), the serialization point of a transaction 

corresponds to the operation of the first lock release. Once again, if transaction 

Ti contains a conflicting operation with Tj, and T/ is serialized before Tj, then 

Ti releases its first lock before Tj does. This leads us to introduce the following 

definition. 

Definition 4.2 Let S be a serializable schedule consisting of transactions T1, T2, 

. . . ,  Tn. We say that schedule S is an sp-schedule if and only if there exists a 

mapping sp from transactions to actions such that: 

1. sp(Ti): = : ok where ok : E : T / ; a n d  

2. If sp(Ti) occurs before sp(Tj) in S, then there exists a serial schedule 

equivalent to S in which T/ precedes Tj. [] 

If the serialization point of Ti precedes Tj in S, then no dependencies of the form 

Tj ~ . . .  ~ Ti are allowed in local serialization graph for ,5'. 

The class of sp-schedules is a proper subset of the class of strongly serializable 

schedules. To see that any sp-schedule is strongly serializable, consider an sp-schedule 

S. Say Ti precedes and does not overlap Tj. Note that sp(Ti) must map to a T/ 

action, and hence sp(Ti) must precede sp(Tj). Thus, there is an equivalent serial 

schedule where Ti precedes Tj. To see that not all strongly serializable schedules 

are sp-schedules, consider the following example: 
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S :  : r l ( a ) :  w2(a ) :  w3(b): e2: c3: r l ( b ) :  c 1 

First, it is a serializable schedule, equivalent to T3, T1, T2. Since every transaction 

is overlapped with the others, the schedule is strongly serializable. Unfortunately, 

there is no serialization point assignment for T 1. That is, sp(T1) should map 

to rl(a) to make sure that sp(T1) precedes sp(T2). At the same time, sp(T1) 

needs to map to r l (b )  or cl so that sp(T3) precedes sp(T1). Thus, S is not an 
sp-schedule. 

Since local sp-schedules are strongly serializable, it is possible to use the global 

concurrency control schemes outlined in the previous section. However, if each 

local DBMS notifies the GTM in advance what action will constitute the serialization 

point, then one could obtain global serializability more efficiently. For example, a 

timestamp scheduler might indicate that the first action submitted is the serialization 

point (i.e., when the transaction receives its timestamp). In this general model, each 

site could define a different action to be the serialization point. For example, one 

site could say first actions are serialization points (it runs a timestamp algorithm) 

and another site could say last actions are (it runs a two phase locking protocol). 

The global concurrency control mechanisms can then be extended for this 

more general model (Mehrotra et al., 1992a). As before, the key idea is that the 

serialization points for transactions that may lead to cycles are executed in the 

same order at all sites. To enforce this, an analogy can be drawn to centralized 

DBMS (Mehrotra et al., 1992a): Each site Sk is viewed as a single data object, 

Ok. If a transaction issues actions at sk, it is viewed as issuing actions on Ok. Two 

serialization point actions, spi(ok) and spj(ok), always conflict. Other actions 

do not conflict. If the GTM ensures that the schedule in the analogous model is 

serializable, then it ensures that the global schedule in the real system is globally 

serializable. 

4.2.3 Strongly Recoverable DBMSs If we restrict our notion of serialization points 

so that they must occur at the end of each transaction, i.e., at its commit action, 

then we can obtain a GTM that is more efficient than those for strongly serializable 

schedules. The following definition captures this notion. (Here and in the next 

section we consider the general notion of schedule and its committed projections). 

Definition 4.3 We say that schedule Sk is strongly: recoverable if, for all pairs 

of transactions Ti and Tj, if T / i s  in direct conflict with Tj in Sk and Tj commits 

in Sk, then Tj does not execute its commit before Ti commits (Breitbart, 1991; 

Raz, 1991). (See definition of direct conflict in Section 2.) I:1 
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Every strongly recoverable schedule is also recoverable (Bernstein et al., 1987). 

Indeed, let Sk be a strongly recoverable schedule. Let us assume that transaction Tj 
reads-x-from transaction Ti. Then, by definition of strong recoverability, if transaction 

Tj commits then it commits after transaction T/ commits in Sk and, therefore, 

satisfies a condition of recoverability. Since every strongly recoverable schedule is 

serializable and not every recoverable schedule is serializable, we maintain that a 
class of strongly recoverable schedules is a proper subclass of recoverable schedules. 

Strongly recoverable schedules are a proper subset of sp-schedules. To see this, 

consider a strongly recoverable schedule S and let sp(Ti) map to ci. Consider 

two transactions T/, Tj such that sp(Ti) precedes sp(Tj) in S, i.e., ci precedes 

cj. Suppose that there is no equivalent serial schedule where Ti precedes Tj. For 

this to be true, there must be dependency graph arcs Tj --~ . . .  --~ Ti. Because 
S is strongly recoverable, this means that cj precedes the commit points of the 
intermediate transactions in the dependencies, which, in turn, precede ci. Since we 

know that ci precedes cj, our supposition must be false. Thus, ap(Ti) precedes 

sp(Tj) in S implies there must be some serial schedule where T/precedes Tj, so 

S is an sp-schedule. To see that strongly recoverable schedules are a proper subset 

of sp-schedules, consider the schedule: 

S: rl(x ) w 2 ( x  ) c 2 c 1. 

Schedule S is an sp-schedule, but it is not strongly recoverable. 

The various concurrency control mechanisms discussed in literature (i.e., 2PL, 
timestamp ordering [Bernstein et al., 1987], optimistic [Kung and Robinson, 1981], 
etc.) can be easily modified to ensure that they generate strongly recoverable 

schedules (Raz, 1991, Breitbart et al., 1991a). 

To see why the knowledge that local sites generate strongly recoverable schedules 

(as opposed to strongly serializable or sp-schedules) leads to higher concurrency 

of the global concurrency control mechanism, let us return to the strategy of 

executing global transactions serially. If local sites generate strongly serializable 

or sp-schedules, the GTM avoids cycles by making sure global transactions do not 

overlap (see Section 4.2.1). With strongly recoverable local schedules, however, it 
is sufficient to ensure that transactions do their commit processing serially (i.e., 

between the time a global transaction issues its first commit at a site and its last 

commit at another site, no other global transaction issues any commits). To explain 

why this works, let us return to a slightly modified version of Example 3.1: 

$2: W4(C) FI(¢) r2(d)  4(e) c1 c2 [ w4(d) c4 ] 
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The actions in brackets again represent future actions. Here the actions of Ti and 

T2 are interleaved (i.e., T2 reads at s2 before T1 commits). A site that generates 

strongly serializable or sp-schedules would permit the remaining actions to take place, 

leading to a non-serializable global schedule. However, a strongly recoverable site 

would not. Because of strong recoverability, sites will not allow paths of the form 

T2 ~ "-- ~ T1. In this particular example, the path T2 --~ T4 ~ T1 is not 

allowed because it would imply that c 2 precedes c4 and ¢4 precedes cl (impossible 

since cl precedes c2). Thus, when T4 attempts the future actions, it will be aborted. 

A strongly recoverable local scheduler in essence is giving the GTM control 

of the serialization points. That is, when the GTM submits the commit for T1, it 

knows that it will be serialized before any global transactions whose commits are 

submitted later. 

This same idea can be applied to the other global concurrency control mechanisms 

of Section 4.2.1. For example, the site-graph algorithm (Breitbart and Silberschatz, 

1988) becomes the commit-graph algorithm. In the commit-graph approach, the 

GTM maintains a commit-graph that is similar to the site-graph. Unlike the site- 

graph approach in which the edges corresponding to a transaction are inserted 

when the transaction starts execution, in the commit graph the edges corresponding 

to a transaction are inserted just before the commit process of the transaction is 

started. This permits all transactions to be executed concurrently, except during 

their commit phase. The commit phases of transaction that may be involved in a 

global cycle (as determined by the commit graph) are executed serially. 

4.2.4 Rigorous DBMSs. Some local concurrency control mechanisms are even more 

restrictive than the ones we have reviewed so far, and can, in turn, lead to even 

more efficient global scheduling schemes. For example, consider an MDBS where 

all local sites use the strict two phase locking protocol (Bernstein et al., 1987), which 

is the most popular type of mechanism used. In this environment, the following 

undesirable schedule of Example 3.1 cannot occur, even if no global concurrency 

control is present (the actions in brackets again represent future action): 

SI: rl(a) [ w3(a) w3(b) c3 r2(b) c2 ] 
S:: [ w,(d) ] 

At site s2, T4 keeps a lock on ¢ until it commits. Hence, T1 cannot read ¢, and is 

delayed. If T1 runs after T4 at $2, then the undesirable dependency T 4 ~ T1 does 

not happen. Unfortunately, the use of the strict 2PL at each participating site does 
not automatically guarantee global serializability, as the next example illustrates. 
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Example 4.1 Consider a multidatabase system located at two sites: s l  with data 

items a and b, and s2 with data items c and d. Let T1 and T2 be two read-only 

global transactions, and let Ta and T4 be two local transactions. The schedules at 

sites 81 and s2 are, respectively: 

$ 1 :  : w~(a) :  c1: r3 (a ) :  w3(b):  c3: r2(b):  c2 

$2 : : W2(X): C2: r4(x): w4(y): C4: r l (y) :  c1 

[] 

At each site, the schedules can be produced by strict two phase locking (they 

are actually serial at each site). However, the dependencies T1 ~ T3 ~ T2 and 

T2 ~ T4 ~ T1 exist and the global schedule is not serializable. 

This problem can be avoided if the GTM does not issue any commits for 

a transaction until all of its actions have been completed. In Example 4.1, the 

operation cl at s l  would be delayed until rl(y) at s2 is acknowledged. In turn, 

T3 would block until T1 commits, and the above schedule could not lake place. (It 

may lead to a global deadlock, though.) It can be shown that delaying the commits 

until a transaction completes all of its read/write actions is enough to guarantee 

global serializability. No additional synchronization between global transactions is 
required in this case. 

The following definition captures what it is about strict 2PL that ensures global 

serializability. 

Definition 4.4 Breitbart et al. (1991a) have slated that schedule Sk is rigorous 
if, for all pairs of transactions T /and  Tj, if T/ is in direct conflict with Tj in Sk 
and Tj commits in Sk, then Tj does not execute its conflicting operation before 

Ti commits. [] 

It is shown that if local DBMS schedulers are rigorous and the GTM does not 

schedule the commits of a transaction until all previous operations of the same 

transaction have completed their execution, then the global schedule is serializable 

(Breitbart et al., 1991a). As we have stated, the strict 2PL protocol generates 

rigorous schedules. Other protocols can be easily modified to generate rigorous 
schedules. For example, basic timestamp ordering can be made rigorous by blocking 

transactions that either try to read or write data which were previously written 

by uncommitted transaction or try to write data which were previously read by 

uncommitted transaction (Breitbart et al., 1991a). 
It is important to note that if local sites only provide a service request interface 

(Section 2), then the GTM cannot delay the commits as required (Breitbart et al., 

1991a). In Example 4.1, if the GTM sends a service request to Sl on behalf of T1, 
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it is actually sending the entire subtransaction wl ( a ) :  c1, so ¢1 cannot be delayed 
and this global schedule could occur. In this case, the GTM would have to use 

additional global transaction synchronization, as is done for strongly recoverable 

local schedules. 

It is not hard to see that any rigorous schedule must be strongly recoverable. 

Say S is a rigorous schedule with a conflict between operations opi and opj where 

opi occurs first in S. Because S is rigorous, el must precede opj. And clearly opj 
precedes cj (see Section 2). Thus, ¢i precedes cj and S is strongly recoverable. 

Note that not all strongly recoverable schedules are rigorous. For example, the 

schedule S: r l (x)  w2(x)  ¢1 c2 is strongly recoverable but not rigorous. 

In summary, we have a hierarchy of local schedule classes, going from the 

most general to the most restrictive: serializable, strongly serializable, sp-schedules, 

strongly recoverable, and rigorous. Each class is a proper subset of the next 

most general one. We have also shown that as the local scheduler becomes more 

restrictive, the global GTM can be more permissive in coordinating global transactions 

operations. Indeed, we have seen that if every local DBMS generates a rigorous 

schedule, then the GTM does not perform any operation coordination. For the 

case of strongly recoverable local schedules, the GTM only needs to coordinate an 

execution of global transactions commit operations. If each local DBMS generates 

a sp-schedule, then the GTM needs to coordinate transaction serialization point 

operations for each local site. Finally, in the case of local strongly serializable 

schedules, the GTM should coordinate an execution of all operations of global 

transactions. 

5. Alternative Consistency Notions 

As we have seen, guaranteeing global serializability may result (in some environments) 

in poor performance due either to a low degree of concurrency or the large number 

of aborted transactions. Moreover, as we shall see later, when we discuss failures, it 

is very hard to obtain global serializability in some cases. Thus, several researchers 

have suggested notions of correctness that are weaker than global serializability. In 

this section we survey some of these notions, still assuming that neither failures nor 

unilateral aborts of global transactions can take place. 

5.1 Local Serlalizability 

Global serializability guarantees that all consistency constraints are satisfied. If 
global serializability is to be dropped, then it is important to guarantee consistency 
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in some other way. Consistency is usually defined in terms of integrity constraints 

that must hold among various data items. Thus, it is important to study constraints 

and look for alternative ways of satisfying them. 

In a MDBS, there are two types of constraints: local ones that involve data 

items located at a single site, and global ones that involve data items located at 

more than a single site. It can be argued that in some multidatabase applications 

there are no global constraints, since each site was developed independently, and 

sitees may wish to remain independent (Garcia-Molina, 1991a). For example, airlines 

run independent reservations systems with no global constraints among them. The 

systems do interact (e.g., at the reservation system of airline Y one can reserve a 

seat on airline X ' s  flight), but each system only cares about the consistency of its 

own data. 

Fortunately, local constraints are easy to maintain. Essentially, each site can 

run a local concurrency control mechanism that ensures that the local schedule is 

serializable. This, in turn, ensures (with one catch explained below) that all local 

constraints are satisfied, with no need for any global synchronization among sites. 

The resulting global schedule is not globally serializable, but is locally serializable as 

defined below (Garcia-Molina and Kogan, 1988; Korth et al., 1988). 

Definition 5.1 A global schedule S is locally serializable (LSR) if for every site si, 
the local schedule is serializable. 13 

Given an initial database state, an execution of a set of transactions T results in 

a final database state. An execution also produces a schedule which represents the 

sequence of read, write, abort, commit operations. For each transaction T/ E T ,  

an execution also defines a database state read by each Ti. 

Definition 5.2 We say that an execution is strongly correct if the final state produced 

is consistent and the state read by each transaction T/ E T is consistent (i.e., any 

values read by T / s a t i s ~  constraints that span them). [] 

To show that LSR schedules guarantee strongly correct executions, we need 

to rule out certain types of "unusual" transactions (Mehrotra et al., 1991b), as 

illustrated by the following example. 

Example 5.1 Consider an MDBS where data item a is stored at site s l  and data 

item b is stored at s2. Suppose that we have two constraints: a > 0 and b > 0. 
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Consider the following two transactions: 

T1 : a : =  - 1  

i f :  (b > 0):  t h e n :  a : =  1 

T2 :  b : = - I  

i f :  (a  > 0):  t h e n :  b : =  1 

Note that both T1 and T2 are valid transactions: given any initial state that 

is consistent, they transform the database into a consistent state. Consider the 

following executions at the two sites. We use the notation r i (a ,  : x )  (wi (a ,  : x))  
for a read (write) action of transaction T / o n  item a, where x is the value read 

(written). 

S1: w l ( a ,  : -- 1) r z (a ,  : -- 1) 
,5'2: w2(b , :  - 1) r l ( b , :  - 1) 

Each local schedule is serializable. Nevertheless, the final state a = -1, b = -1 is 

inconsistent. O 

One simple way to avoid the type of problems shown in Example 5.1 above is 

to require that local sites run a two-phase locking (2PL) protocol, and, in addition, 

global transactions adhere to the 2PL policy in acquiring and releasing their local 

locks. In Example 5.1, if sites Sl and s2 were following the 2PL protocol, then 

transaction T1 would not release the lock on a until after it has read the value of 

b (since it may be required to write on data item a, in case the value of b > 0) 

and T2 would not release the lock on b until after it has read the value of a. As a 

result, T1 will wait for T1 to release the lock on b, and T2 will wait for T1 to release 

the lock on a thus resulting in a deadlock. Hence, the execution as in Example 5.1 

will not be permitted. The requirement that the local schedulers follow the 2PL 

protocol is quite reasonable since most practical concurrency mechanisms follow 

such a protocol. 
There are other ways to avoid the type of problems shown in Example 5.1, 

which place restrictions on the structure of the various transactions: 

1. Force transactions to be Local Database Preserving. If we look at T1 (in example 

5.1) from site sa's point of view, the local actions of 711 do not constitute 

a valid local transaction. That is, there is an initial state (a > 0, b < 0) 

that is locally consistent, and when 711 runs, it transforms it into a locally 

inconsistent state (a = -1). Thus, from 8i's point of view, T1 is breaking the 
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rules: The correct operation of T1 depends on the correctness of some data 

(b) over which s l  has no control. The problem can be avoided if we require 

that any transaction that runs at site 8i preserves consistency regardless of the 

state of other sites. Such transactions are called Local Database Preserving 

(LDP) (Mehrotra et al., 1991a). If transactions are LDP and all constraints 

are local, it is easy to show that LSR schedules guarantee strongly correct 

executions. 

. Force transactions to have a fixed structure. A transaction that always has the 

same read/write pattern is termed a fired-structure transaction (Mehrotra et 

al., 1991b). That is, regardless of what it reads, it will read and write the same 

items, in the same order. Transaction T1 in Example 5.1 is not fixed-structure: 

it may or may not write a. To make it a fixed-structure transaction, we could 

rewrite it as, say: 

T1 : a : =  - 1  

i f :  ( b >  0):  t hen :  a : =  1: e l s e :  a : =  - 1  

In this case, the scenario shown in Example 5.1 could not arise. The schedule 

at site s l  would be $1: w l ( a )  r2(a)  w l ( a )  and would be non-serializable. 

In general, it can be shown that if all transactions are fixed-structure (and 

constraints are local), then a LSR schedule guarantees that all executions 

are strongly correct. 

The requirement that all transactions be LDP is not unreasonable. Local transactions 

are always LDP, so the requirement does not affect the autonomy of sites. Most 

practical global transactions will be LDP anyway; if not, they can be made LDP 

with little effort, provided that the local constraints are known. The requirement 

for all transactions to be fixed structure may, however, be less reasonable since it 

requires even local transactions to be fixed-structure which violates local autonomy. 

Note that transactions that only contain assignment and alternation statements can 

always be converted into fixed structure transactions. For example, as we illustrated 

earlier, the transactions in Example 5.1 could be made fixed-structure. However, 

if transactions contains loops, there may not be an easy way to make them fixed 

structure. 

In Du and Elmagarmid (1989) a third strategy has been suggested for making 

LSR schedules preserve constraints. A transaction Ti is NVD if it has no value 
dependencies (Du and Elmagarmid, 1989); that is, if its actions at a site never depend 

in any way on the values read at another site. Both T1 and T2 in Example 5.1 have 
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value dependencies. If  a transaction is NVD, then it is clearly LDP. The converse is 

not true (example: a transaction that writes into item b a value read elsewhere, but b 

is not involved in any constraints). Making transactions NVD ensures executions are 

strongly correct (because transactions are LDP), but as noted in Du and Elmagarmid 

(1989) this is more  restrictive than necessary. 

5.2 Two Level Serlalizab|lity 

The notion of local serializability can be extended as follows. There  are two types of  

data at each site: local data and global data. Three types of constraints are allowed: 

1. Local. Constraints involving local items; each local constraint can involve 

only items at a single site. 

2. Global. Global constraints may span more than one site, but can only involve 

global items. 

3. Global~LocaL These constraints can only span a single site, but may involve 

both local and global items. 

The main restriction on transactions in this model is that local transactions may 

not modify global data. (Global data is usually involved in inter-site constraints; a 

local transaction would be unable to maintain these since it can only run at a single 

site.) For now, no other access restrictions are made. Local transactions can read 

both local and global data, and global transactions can read and write any data. 

This extension is applicable to an MDBS environment that started as a collection 

of independent  databases. These original databases constitute the local data, and 

original transactions only access local data. A new data layer is then added, the 

global data. It  is stored in the same DBMSs at each site, except that it is managed 

by newer transactions that are run through the GTM (global transaction manager).  

Since the new transactions run under the control of  the GTM, it is now feasible to 

enforce global constraints that span the new data. The new transactions are allowed 

to read and write the original local data. Finally, for efficiency, we might want to 

add a third class of  transactions, new local ones. These are run by the local DBMS 

but are allowed to read the new global data. 

It  is important  to note that local and global/local constraints should not involve 

remote  data, even indirectly. For instance, say a l  is a local item, and bl and b2 
are global ones. I tem b2 is at site s2; a l  and bl are at s l .  Also assume we 

have constraints a l  = bl and bl = b2. The global/local constraint a l  = bl is not 

allowed because it induces constraint a l  = b2 which relates a local i tem to a remote  
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item. Not all global/local constraints cause this problem. For example, consider the 

constraints a l  > bl and b2 > bl. 
Since the GTM controls global transactions, it can ensure that the global schedule, 

as far as access by these transactions is concerned, is serializable. Similarly, the local 
concurrency control mechanisms will ensure that the local schedules are serializable. 

This illustrates the notion of  two-level serializability. 

Definition 5.3 A global schedule S is two-levelserializable (2LSR) if it is LSR and 

its projection to a set of  global transactions is serializable (Mehrotra et al., 1991b)fl 
O 

Globally serializable schedules are always 2LSR, but the converse is not true. 

This is illustrated by the following example (Mehrotra et al., 1991b) which also shows 

that 2LSR schedules may violate constraints if they contain "unusual" transactions: 

Example 5.2 Consider an MDBS where there is a single local item a at site s l  

and three global items, b and c at Sl and d at s2. There is one global/local and 

one global constraint: 

a :  > : 0 :  ~ : b :  > : 0  
d:  > : 0 :  ~ : ( b :  > : O : o r : c :  > : 0 )  

Consider the following two global and one local transactions: 

Ti: i f : (a :  < = : O ) : t h e n : c : = l : e l s e : c : = - i  
d : = l  

T2: i f : (a :  < =  : 0 ) : t h e n : b : = - l : e l s e : b : = l  

d : =  - 1  

L3 : a :=  - 1  

Starting from a state where all items have a value of  "1", consider the following 

executions: 

$1: rl(a,: 1) wl(c,: - 1) w z ( a ,  : - 1) r2 (a ,  : - 1) wz(b,: - 1) 

$2: w2(d, : - 1 )  Wl(d, : l) 

2. The notion of  two-level serializability introduced here should not be confused with multi-level serializ- 
ability introduced in Weikum and Schek (1984). It is unfortunate that two semantically different notions 
have the same syntactic name. Here we followed the definitions from Mehrotra et al., (1991b) and Weikum 
and Schek (1984) rather than introduce a different terminology. Hopefully, the rreader will not be confused. 
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The resulting state is a = -1, b = -1, c = -1, d = 1, which is. inconsistent. Note 

that the global schedule is 2LSR but is not globally serializable (at s l  we have 

dependency T1 ~ L3 ~ T2, and at s2 we have T2 --¢ T1). [] 

The problem in this case is with the transactions. From the point of view of 

each site, transactions are LDP, so all local and global/local constraints are satisfied. 

However, the global constraint is being violated because from the point of view of  the 

global data, T1 is not a proper  transaction. Transaction T1 only produces a consistent 

state when a condition external to the global data (a :  > : 0:  ~ : b: > : 0) is 

satisfied. (In particular, say we start with the state a ffi 1, b ffi ¢ = d = -1. As far 

as the global constraints are concerned, it is consistent. Yet T1 will transform it 

into an inconsistent global state.) If T1 were rewritten more sensibly as Ti :  c := 1; 

d := 1, then consistency would be preserved (T1 now enforces global constraints 

regardless of the state of other constraints). 

We define a transaction to be Global Database Preserving (GDP) if it preserves 

global constraints regardless of the state of local data items. This notion is analogous 

to LDP. If we think of the global items as constituting a single database at an imaginary 

site oL then saying a transaction is GDP is equivalent to saying it is LDP at o~. It is 

not hard to see that if all transactions are LDP and GDP, then a 2LSR schedule 

guarantees all executions are strongly correct. 

If we make certain additional assumptions about the access patterns of  trans- 

actions, then it is possible to relax the LDP, GDP requirement (Mehrotra et  al., 

1991b): 

. If global transactions are not allowed to access local data, then we can drop 

the GDP requirement. (Actually, if global transactions cannot read local 

data, then they are necessarily GDP. So the requirement is not dropped; 

it is replaced by a more restrictive one). If we further assume that local 

transactions cannot read global data, and that the global transactions do 

not write local data, then the local and global data are totally decoupled; 

2LSR schedules will always be serializable, without any requirements on the 

transactions. 

. If there are no global/local constraints, then the GDP requirement can be 

dropped. The proof of  this is lengthy (Mehrotra et al., 1991a), but the intuition 

is as follows: Since transactions are LDP, ff the local schedules at each site 

are serializable, then the local constraints will be preserved (regardless of 

whether transactions are GDP or not). Also, the state of local data seen by 

global transactions will be consistent. Furthermore,  since the projection of 
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the schedule onto global transactions is serializable, the state of global data 

items in which a transaction executes is consistent. Thus, since there are 

no global/local constraints, the state in which a global transaction executes 

along with the values of local data items it sees is consistent. (Contrast this 

to the execution in Example 5.2. In the example, T2 is serialized before T1 

in the projection of the schedule onto global transactions. Thus, the state of 

global data items in which the transaction T1 executes is b = -1, d = -1, c 

= 1. Since T1 reads the value of a to be 1, it is inconsistent with the value 

of b = -1.) 

Once we assume that there are no global/local constraints, the remaining LDP 

constraint can be relaxed as follows: 

. If global transactions cannot access local data, it can be shown that the LDP 

requirement can be replaced by one forcing all transactions to have fixed 

structure. 

. If local transactions cannot read global data, and global transactions cannot 

write local data, then the LDP requirement can be dropped entirely. In 
this case, activity on the local data is completely decoupled from the activity 

on the global data. Hence, the fact that local schedules are consistent is 

sufficient to guarantee that local constraaints are always true. 

. If local schedulers are 2PL and global transactions are fixed structure, then 

there is a GTM locking strategy (called two-level two-phase locking) that 

can ensure constraints are satisfied (Mehrotra et al., 1991a). Note that since 

only global transactions are required to be fixed structure, local autonomy 

is not violated. 

A precursor to the notion of 2LSR schedules was the notion of quasi-serializability 

(Du and Elmagarmid, 1989; D u e t  al., 1991b). A global schedule is said to be quasi 
serial if and only if is LSR and there is a total order of global transactions such 

that for any two global transactions T / a n d  Tj if Ti precedes Tj in the total order, 

then all T/operat ions precede all Tj operations in all local schedules in which both 

appear. A global schedule is quasi serializable (QSR) if it is equivalent to a quasi 

serial schedule. Quasi serializable executions are strongly correct, provided there are 

no global/local integrity constraints (Du and Elmagarmid, 1991a). However, since 

the QSR class is a proper subset of 2LSR (Example 5.2 shows a 2LSR schedule that 

is not QSR.), the latter result is a special case of the more general result (Mehrotra 
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et al., 1991a) discussed above. It is not clear to us if there are significant advantages 

to restricting schedules from 2LSR to QSR (Mehrotra et al., 1991b). 

5.3 Other Constraint-Based Criteria 

With 2LSR schedules, the GTM ensures that any global constraint is satisfied 

by executing the global transactions in such a way that the resulting schedule (of 

actions of global transactions) is serializable. A different idea for enforcing global 

constraints is presented by Barbara and Garcia-Molina (1992). The claim is that 

global constraints tend to be very simple in practice and that the GTM can enforce 

them directly, without concerning itself with serializability. A second claim is that 

global constraints tend to be "approximate," giving the GTM even more flexibility 

in enforcing them. 

To illustrate, consider a copy constraint between item ffl at site s l  and Y2 at 

s2. Many applications, especially if they run on independent sites, can tolerate 

some divergence, e.g., the copy constraint may be lYl : -- : g21 : --< : e, where e 

is some application dependent value. In this case, not every update to Yl needs 

to be reproduced at s2 and vice versa. The server at s l  (see Figure 1) can keep 

track of a window of allowable values for Yl, and while 91 remains in this window, 

copies of the new values are not propagated to s2. The advantages of this added 

flexibility will be more apparent when failures are considered in Section 6. 

In summary, when global schedules are assumed to be LSR, all local (and 

global/local) constraints are satisfied (Barbara and Garcia-Molina, 1992). Even 

though global schedules are not 2LSR, global constraints are enforced "manually" 

by the GTM and its servers. It is assumed, of course, that applications declare a 

priori their global constraints. If the constraints fall outside of the repertoire of 

the GTM, then it reverts to enforcing 2LSR schedules. 

5.4 Limitations of Constraint Based Approaches 

In the previous subsections we have described alternative correctness notions 

based upon preservation of the database consistency constraints. Each of the 

correctness notions (LSR, or 2LSRR) can be shown to preserve strong correctness 

of schedules under appropriate restrictions. We have, however, avoided the question 

of whether the preservation of strong correctness is a sufficient consistency guarantee 

for transactions. The answer to this is application dependent. While a strongly 

correct schedule preserves all the database consistency constraints, it may, however, 
not be sufficient for preventing all undesirable executions in certain applications, 
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as illustrated below (Mehrotra et al., 1992a). 

Example 5.3 Consider a banking database located at two sites: s l  with account a, 

and s2 with account b. Suppose that we have constraints specifying that no account 

have a negative balance. Consider transaction T1 that transfers 500 dollars from 

account a to account b, and an audit transaction T2 that reads the balance of both 

a and b. Transaction T1 consists of two subtransactions, a debit subtransaction and 

a credit subtransaction, 

debit." if a > 5 0 0  then a : =  a - - 5 0 0  

else abort 

credit: b := b + 500 

Consider the following schedule: 

Si: rl(a) wl(a) r2(a) 
r2(b) r l(b) w l(b) 

Transactions see non-negative balances, and the final state is also consistent, so 
the schedule is strongly correct. However, in this schedule, the audit transaction 

sees 500 dollars less than the actual sum total of accounts a and b. This may 

be considered an "anomaly" and thus it may not be sufficient for schedules to be 

strongly correct. [] 

Note that in Example 5.3, the execution is neither 2LSR nor QSR (though it 

is strongly correct). Examples in which undesirable executions occur (even though 

the execution is 2LSR and/or QSR) can be similarly constructed. 

In Example 5.3, we could say that there is a second type of correctness criterion, 

in addition to strong correctness. In this case we do not want the transfer transaction 

to be involved in any serialization cycle. One "artificial" way of dealing with this 

problem is to declare another data item total and define an integrity constraint 

t o t a l = a  + b. If this constraint were defined, then the schedule of Example 5.3 

would not be strongly correct and would be avoided. 

However, one could argue that defining additional constraints is not desirable. 

First, there may be no real integrity constraint between accounts a and b; that is, 
if any other transaction sees the value of a and b not equal to to ta l ,  that may 

be quite acceptable. It is only audit transactions that are special. If we declare 

the constraint, we will disallow many executions, not just those involving audits. 

Second, if we were to declare such constraints, we would need to declare data 
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integrity constraints between every two (or in general n)  accounts. This will result 

in lost concurrency and, in general, will reduce strong correctness to serializability; 

that is, the only strongly correct schedules will be serializable ones. 

Thus, in addition to or instead of ensuring strong correctness, it may be useful 

to develop mechanisms that restrict schedules in some way, without requiring 

serializability. This is discussed in the next section. 

5.5 Non.Constraint Based Criteria 

Pu and Left (1991) introduced a notion of Epsilon-Serializability as an alternative 

correctness notion. Transactions are divided into read-only and update transactions. 

The execution of the update transactions is assumed to be serializable, so that 

database consistency is preserved. However, the full schedule of all transactions is 

allowed to be non-serializable, as long as "the number of non-serializable conflicts 

is limited." To illustrate how conflicts are counted, consider the schedule: 

W2(X) r3(x) r3(y) wl(y) rl(Z) w2(z) 

The schedule of update transactions is equivalent to the serial schedule < T1, T2 >. 
However, T3 breaks this order by reading from T2 but not from T1. (That is, T3 

is involved in the cycle T2 ~ T3 ~ T1 ~ T2.) This is counted as T2 exporting 

one conflict and 7'3 importing one conflict. (T1 does not export any conflicts.) The 

limits on conflicts are given by import and export limits: each read-only query has 

an import limit specifying how many conflicts it can be involved in; each update 

transaction is given an export limit giving the maximum number of conflicts. This 

idea is formally captured in the definition below. 

Definition 5.4: m schedule S is c-serial if its projection on the update transactions 

is serial, and the number of conflicts imported by each read-only transaction does 

not exceed its import limit, and the number of conflicts exported by an update 

transaction does not exceed its export limit. A schedule is c-serializable if it is 

equivalent to a c-serial schedule. 1:3 

Note that if the limits of all transactions are set to zero, then c-serializable 

schedules are serializable. Several methods to control consistency divergence are 

proposed in Wu et al. (1992). One of these methods uses an extension of 2PL. Read- 

only transactions are allowed to read data locked by updates, but each such access 

counts as a conflict. If the limits are reached, then such accesses are disallowed. 

Under these conditions the protocol ensures that schedules are c-serializable (Wu 

et al., 1992). 
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One weakness of the original e-serializability approach is that it does not tell us 

how corrupted read data may be. For instance, suppose that we have the constraint 

a + b = c on three bank accounts. A single conflict violation may cause a transaction 

to read values such that a + b is a trillion dollars larger than c. The approach was 

extended in Wu et al. (1992) so that conflicts are measured in a way that is more 

meaningful to the application. 

A different notion of correctness is used in Garcia-Molina (1983). Here transac- 

tions are grouped into disjoint types. An application administrator then determines 

that transactions of certain types can be interleaved arbitrarily without causing con- 

straints to be violated. For example, in a bank it may be safe for deposit transaction 

to interleave with other deposits and with transfer transactions. The concurrency 

control mechanism proposed in Garcia-Molina (1983) uses local locks to ensure 

LSR schedules, and global locks to avoid undesirable interleavings. 

The concept of compatibility is refined in Lynch (1983) and several levels of 

compatibility among transactions are defined. These levels are structured hierarchi- 

cally so that interleavings at higher levels include those at lower levels. Furthermore, 

(Lynch, 1983) introduces the concept of breakpoints within transactions which rep- 

resent points at which other transactions can interleave. This is an alternative to 

the use of compatibility sets. A similar scheme that uses breakpoints to indicate 

the interleaving points, but does not require that the interleavings are hierarchical, 

is presented in Farrag and Ozsu (1989). 

In Mehrotra et al. (1992c), the approach taken is to classify the global transactions 

into two classes: RS-transactions and non RS-transacfions. The GTM protocol 

proposed by Mehrotra et al. (1992c) ensures that no cycle in the serialization 

graph of a global schedule contains any RS-transaction (in addition to ensuring that 

schedules are strongly correct). Returning to Example 5.3, the audit transaction T2 

is an RS-transaction, whereas the transfer transaction T1 is a non RS-transactions. 

Thus, even though the schedule ,-ql is strongly correct, it is not permitted since 

the serialization graph of ,51 contains a cycle involving transaction T2 which is an 

RS-transaction. 

6. Atomicity and Durability 

In this section, we discuss how transaction atomicity and database consistency can be 

preserved in presence of global transactions aborts and failures. In a multidatabase 

system, as in a homogeneous system, failures may range from transaction aborts, 

systems failures, failure of the GTM, to link and communication failures. In addition, 
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in a multidatabase system, a global transaction at a local site can be aborted by a 

local DBMS as a result of normal DBMS operations (such as aborts caused by a local 

deadlock detection procedure) and the same transaction can be. committed at some 

other local sites. In this article we consider such situations as global transaction 

failures. Multidatabase recovery procedures should ensure that the GTM can recover 

both from these unilateral aborts and from failures. Since the recovery procedures 

at each local DBMS ensure atomicity and durability of local transactions and global 

subtransactions, the task of ensuring atomicity and durability of transactions in a 

distributed system reduces to ensuring that each global transaction either commits 

at all the sites, or it aborts at all the sites. 

The key factor that affects the design of the GTM recovery procedures is the 

interface provided by the local DBMSs. As we mentioned in Sections 1 and 3, there 

is an ongoing debate among researchers whether or not local DBMSs will provide a 

prepare-to-commit operation for the transactions. If each local DBMS provides such 

an operation, then the task of ensuring atomicity is relatively simple since an atomic 
commit protocol (e.g., 2PC protocol) can be used. This is discussed in Section 6.1. 

On the other hand, if local DBMSs do not support a prepare-to-commit operation, 

then it is possible that a global transaction commits at some sites and aborts at 

others. Three different mechanisms for ensuring global transaction atomicity have 

been studied. 

1. Redo. The writes of the failed subtransaction are installed by executing 

a redo transaction consisting of all the write operations executed by the 

subtransaction. 

2. Retry. The entire aborted subtransaction, not only its write operations, is 

run again. 

3. Compensate. At each site where a subtransaction of a global transaction 

did commit, a compensating subtransaction is run to semantically undo the 

effects of the committed subtransaction. 

We discuss these approaches in Sections 6.2 through 6.4. While redo and retry 

techniques ensure the standard atomicity of transactions, in the case of compensation 

a weaker notion of atomicity is used, since it is possible that the effects of the 

aborted global transaction are externalized to other transactions. This impacts the 

preservation of consistency in the systems. We will also discuss this issue in Section 

6.4. Finally, each of the above techniques are complementary; that is, it is possible 

to combine them into a single uniform solution. We discuss how this can be done 

in Section 6.5. 
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6.1 Two Phase Commit 

If the local DBMSs support a prepare-to-commit operation, then transaction atom- 

icity and database consistency in a failure prone environment can be ensured by 

augmenting the various concurrency control mechanisms of Section 4 (or Section 

5), with the use of the twophase commit (2PC) protocol (Bernstein et al., 1987) (or 

one of its variations). The 2PC protocol works as follows. At the termination of the 

execution of the transaction's operations, the GTM submits a prepare-to-commit 

operation to each site the transaction executed. On receipt of the prepare-to-commit 

operation, a site votes to commit or to abort the transaction. If the site votes to 

commit the transaction, it enters a prepared state for the transaction. On entering 

the prepared state, the site cedes its right to unilaterally abort the transaction to 

the GTM. The GTM, on receipt of the votes from each site the transaction is to 

be executed, depending upon the votes, either decides to commit or to abort the 

transaction. Each site in the prepared state complies with the decision of the GTM. 

For the 2PC scheme to work, we require that before a site enters a prepared 

state, it must be in a position to commit or abort the transaction as instructed 

by the GTM (even in the presence of failures). Since it is possible that a system 

crash may occur while the site is in a prepared state for a transaction, the site must 

store the updates made by the transaction onto stable storage before entering the 

prepared state. Further, since other transactions may abort while the site is in a 

prepared state, it must also ensure that such aborts do not jeopardize its ability to 

comply with the GTM's decision. 

To achieve this, before entering a prepared state for transaction Ti, the site sk 

must ensure that each transaction T/ from which Ti has read some data item at 

Sk, is committed. Else, it is possible that the GTM decides to commit T/, but since 

Ti read a data item at site Sk written by Tj that is aborted, T / c a n  no longer be 

committed by the local DBMS at Sk. If the local DBMS produces serializable and 

recoverable schedules (Bernstein et al., 1987), then the above property is ensured. 

Note that a class of serializable and recoverable schedules is a proper superclass of 

the class of strongly recoverable schedules (Section 4.2.3). If, in addition, the local 

DBMS produces cascadeless schedules (Bernstein et al., 1987), then the GTM can 

submit a transaction commit as soon as the transaction has completed its read/write 

operations at each local site. In the latter case, the above property will be trivially 

ensured. 

Another practical issue that must be addressed is that of heterogeneous commit 

protocols. To illustrate the problem, suppose that the interface of one local DBMS 

supports operations that are compatible for the execution of a 2PC protocol, whereas 
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another local DBMS's interface supports operations compatible for the execution 

of a three phase commit (3PC) (Bernstein et al., 1987/). The semantics of these 

operations and the actions taken by the local DBMS on their execution may be 

completely different. Thus, combining such local DBMSs to support a global 

commit protocol is a non-trivial task. In addition to differences in the operations 

supported by the local DBMSs for committing global transactions, there may be 

many other implementation level differences among sites, regarding issues such as 

error handling and who controls the global commit. If there were a single standard 

2PC protocol, these problems would be avoided, but it is unlikely that this will 

occur. Already there are several competing "standards," e.g., LU6.2 (Citron, 1991), 

OSI TP (Upton, 1991). Thus, the problem of coordinating heterogeneous commit 

protocols will persist. Some initial work on such coordination is reported by Klein 

(1991). 

As we argued in Section 3, there may be cases where the prepare-to-commit 

operation is not provided by all sites. This may be due to the following: 

1. Sites only offer a Service Request interface, giving remote clients a set of 

services but not control over service commitment; 

2. Sites wish to retain their execution or communication autonomy; or 

3. Performance of 2PC in a distributed system may be inadequate. In particular, 

sites may have to remain in the prepared state for too long, blocking local 

resources; transaction response time and throughput may suffer because of 

this (Barbara and Garcia-Molina, 1992). 

In the rest of this section we consider systems where no global atomic commit 

protocol (2PC) is being used. 

6.2 Redo Approach 

Consider the situation in which the local DBMSs do not support a prepare-to-commit 

operation. In this case, to ensure global transaction atomicity, the GTM may still 

use the 2PC protocol, where the servers (see model definition in Section 2) rather 

than the local DBMSs act as the participants. Since local DBMS do not support a 

prepare-to-commit state, the global transaction may be aborted at the local DBMS 

at any time, even after the server has voted to commit the transaction. If a global 

subtransaction is aborted by the local DBMS after the GTM has decided to commit 

the transaction, the server at the site at which the subtraansaction aborted submits 

a redo transaction consisting of all the writes performed by the subtransaction to 
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the local DBMS for execution. Note that to be able to construct such a redo 

transaction, the server must maintain a server log in which it logs the updates of the 

global subtransactions. In case of failure of the redo transaction, it is repeatedly 

resubmitted by the server until it commits. Since the redo transaction consists of 

only the write operations, it cannot logically fail. 

If the above global commit protocol is used to ensure the atomicity of global 

transactions, then it must be the case that before the server sends to the GTM its 

vote to commit transaction Ti, each transaction from which T / r e a d  some data item 

should have previously committed. If this is not the case, then it is possible that the 

GTM decides to commit a global transaction that reads data items written by an 

aborted transaction. If T /on ly  reads data items written by global transaction, then 

the server can ensure this property by delaying its vote until all such transactions 

from which Ti read some data items are committed. However, since Ti could 

have read a data item written by local transactions, and since the servers have no 

control over the execution of local transactions, this property, in general, can only 

be ensured if the schedules generated by the local DBMS are cascadeless (Bernstein 

et al., 1987). (Note that in the case of homogeneous distributed database systems, 

it is sufficient to ensure that each local DBMS is just recoverable!) Thus, for the 
above commit protocol to be applicable, the schedules produced by the local DBMS 

are required to be cascadeless. 

Another problem with the redo approach is that since the local DBMS considers 

the redo transaction as a different transaction than the global transaction, the 

resulting local schedule may be non-serializable from the MDBS viewpoint. This 

was illustrated in Example 3.2 in which redo transaction T3 is executed to redo the 

write operations performed by the globally committed but locally aborted transaction 

T1. In that example, since the local DBMS considered T3 as a different transaction 

than T1, the resulting local schedule was not serializable from the GTM view point. 

Note that each of our correctness criteria discussed in Section 4 and 5 (that is, 

global serializability, LSR, or 2LSR) require that the schedules at the local DBMSs 

be serializable from the MDBS point of view. We refer to the local schedule as 

being m-serializable (Mehrotra et al., 1992b), if it is serializable from the MDBS 

point of view. M-serializability can be defined as follows. 

Definition 6.1: Let Sj  be a local schedule consisting of local transactions, global 

subtransactions and redo transactions. Let ra(Sj) be a projection of Sj  over 

committed transactions and also over the read operations performed by the global 

transactions that are aborted by the local DBMS but are committed by the GTM. 

Let T/ be such a transaction. In ra(Sj), reads performed by T/ and the write 
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operations belonging to the redo transaction that executed to redo the updates of  

Ti are considered a single transaction. We say that Sqj is m-serializable, if and only 

if m ( S j )  is serializable. [] 

For example, schedule $1 of Example 3.2 is not m-serializable. In order  to 

ensure database consistency, the redo technique must be combined with techniques 

of  ensuring m-serializability of the local schedules. To do so, let us consider the 

global/local data model described in Section 5.2. Let  us assume that the following 

condition holds: 

Global transactions that read local data items at site Sk do not write any 

local data items at sk  that can be accessed by local transactions at Sk. 

If the global transactions are restricted as above, then the non m-serializable schedule 

$1 of Example 3.2 will not occur. To see this, note that in Example 3.2, since the 

local transaction T2 wrote data item a, it must be the case that a is a local data 

item. Since the global transaction both read and wrote data item a, it violated the 

above restriction, thus resulting in a non m-serializable execution. Unfortunately, 

even if the global transactions are restricted as above, m-serializability may not be 

ensured. In Mehrotra et al. (1992b), it is shown that to ensure m-serializability, 

the local schedules besides being cascadeless must further be strongly recoverable, 

and that the GTM must ensure that the projection of the schedule over the global 

transactions' operations is rigorous. 

In Mehrotra et al. (1992b), it is further shown that the requirement of local 

schedules to be strongly recoverable and cascadeless, and of the projection of the 

schedule to global transactions to be rigorous, can be relaxed if we further restrict 

the data items accessed by global transactions as follows: 

Global transactions that read local data items at site sk do not update any 

data item at Sk. 

We have discussed so far how, in the presence of failures, to ensure m- 

serializability if we were to use the redo technique to ensure the atomicity of  

global transactions. To ensure consistency, however, there is a need to further 

guarantee that one of the correctness criteria discussed in Section 4 and 5 is met. 

We would expect that if we were to augment our mechanism for ensuring a cor- 

rectness criterion (that is, global serializability, LSR, 2LSR, etc.) in the absence 

of  failures with techniques for ensuring m-serializability of local schedules, then it 

would suffice to achieve a solution for ensuring that global schedules satisfy the 

correctness criterion even in presence of failures. 
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This would in fact be true if we were to choose either LSR or 2LSR as our 

correctness criterion. Note that a global schedule is LSR if each of the local 

schedules are serializable. Thus, ensuring m-serializability of the local schedules 

suffices to ensure LSR of the global schedule in the face of failures. If  we were 

to ensure the 2LSR correctness criterion of global schedules, then besides ensuring 

m-serializability, we must further ensure that the projection of the global schedule 

onto operations belonging to global transactions (which we refer to as GS) is 
also serializable. Note that to ensure m-serializability itself, the GTM needs to 

ensure rigorousness of GS (in the case of the first weaker restriction on the 

interactions between global and local transactions). Since every rigorous schedule is 

also serializable, 2LSR is trivially ensured. On the other hand, if we were to adopt 

the more restrictive second restriction on global transactions, then to ensure that 

the global schedules are 2LSR, besides ensuring m-serializability, we will further 

need to ensure that the schedule GS is also serializable. We can do so by ensuring 

rigorousness of G S .  However, depending upon the concurrency control protocol 

used to ensure serializability of G S ,  it may be possible to ensure both m-serializability 

of the local schedules and serializability of GS without ensuring rigorousness of 

G S .  This problem still remains open. 
If we were to choose global serializability as our correctness criterion, then 

simply augmenting the GTM concurrency control protocols developed in Section 

4 with techniques of ensuring m-serializability may not suffice to ensure global 

serializability in the presence of failures. To see this, consider the case where each 

local DBMS produces rigorous schedules. In that case, as discussed in Section 4.2.4, 

if the GTM does not issue any commits for a transaction until all of its actions have 

been completed, then global serializability is ensured in the absence of failures. 

Further, to ensure m-serializability we only need to ensure that the schedule GS 
is rigorous. This, however, may not ensure global serializability in the presence of 

failures as it is demonstrated by the following example. 

Example 6.1: Consider a multidatabase system located at two sites: s l  with global 

data items x and y, and s2 with global data items u and v. Let T1 and T2 be 

global transactions and T3 and T4 be local transactions that execute at sites s l  and 

82. 
T1 : Wl(X): Wl('a) 

w (v) 
r (v) 

r,(u): r (v) 
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Suppose that the GTM decides to commit both Ti and T2, but the local DBMS 
at .sl aborts T1. Thus, the following redo transaction T5 is executed to redo the 

updates of Ti: 

Ts: ws(x) 

The above execution results in the following local schedules $1 and $2 at sites s l  

and s2 respectively. 

si:  us(y): 
$2 : WI(U): Cl: F4(U): r4(Y): C4: 1/32(V): ¢2 

Note that the above schedule is not globally serializable even though local schedules 

are m-serializable. [] 

The problem with the above situation is that it is possible for two global 
transactions that are not conflicting to indirectly conflict through local transactions 

due to the presence of failures. So one option of ensuring global serializability 
is to disallow reads of global data items by local transactions and writes of local 
data items by global transactions (while still disallowing reads of local data items by 
global transactions); as mentioned in section 5.2, this guarantees globally serializable 

schedules. 

Another option of ensuring global serializability is to use some mechanism for 

preventing cycles in the global serialization graph through indirect conflicts between 

global transactions. Note that as discussed in Section 4, executing global transactions 

serially, or using one of the site locking, altruistic locking, or the commit graph 

approaches, can be used for this purpose. The scheme developed by Breitbart and 

Silberschatz (1990) and Breitbart et al. (1992) uses the commit graph approach to 
prevent cycles through indirect conflicts. Further, it is assumed there that local 

DBMSs follow the strict 2PL protocol (and thus produce rigorous schedules) and 

rigorousness of GS is ensured (by maintaining global locks and following the strict 

2PL locking scheme on global locks) to ensure m-serializability of the local schedules. 

Wolski and Veijalainen (1990) also propose a related solution. It is called the 

2PC agent method, and it assumes that the participating local DBMSs produce only 

strict schedules. Their method, however, requires that global transactions cannot 

have indirect conflicts at local sites, which is equivalent to saying local transactions 
do not read global data. In subsequent work (Veijalainen and Wolski, 1992), the 

authors extend their method to multidatabase systems with only rigorous local 
DBMSs. 
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Note that if the local DBMSs do not ensure rigorousness of schedules, then since 

global transactions may conflict indirectly through local transactions, the mechanism 

for ensuring global serializability in the absence of failures will itself either prevent 

cycles through indirect conflicts or will detect such cycles. In case the scheme 

prevents such cycles (as is the case for the site graph approach, altruistic locking, 

and the site lock approach) we conjecture that making the scheme failure-resilient 

will be relatively simple. The reason for our conjecture is that the scheme that 

prevents cycles through indirect conflicts in the absence of failures can be easily 

modified to also prevent cycles through indirect conflicts that may be caused due to 

the presence of failures. Thus, to make the scheme failure-resilient we only need 

to ensure that the local schedules are m-serializable. On the other hand, making 

schemes that detect such cycles failure-resilient may turn out to be more difficult 

since simply augmenting the scheme with mechanisms to ensure m-serializability 

may not guarantee global serializability. 

The results discussed so far indicate some weaknesses of the redo approach, 

namely, some restrictions need to be imposed on data access by local and global 

transactions, which may not be suitable for certain applications. It appears that 

these restrictions are unavoidable, if execution autonomy of the local DBMSs is to 
be preserved. One way, however, of removing these restrictions is to exploit the 
semantics of the transactions for the purpose of recovery. We discuss this issue in 

the following subsections. 

6.3 Retry Approach 

Consider global transaction T/ which executes at two sites sl  and s2. On the 

completion of the transaction's operations, the GTM sends a "prepare" message to 

the server at each site. The server, on receipt of the prepare message, sends the 

commit operation for Ti to the local DBMS. It is possible that T/commits at sl  

and aborts at s2. 
Thus, the atomicity of Ti has been violated and because global transactions may 

read and write local data, the redo approach of Section 6.2 cannot be used. There 

are two options in this case." retry and compensate. In this section we consider the 

retry option and in the next section we consider the compensate option. 

To ensure atomicity of Ti, one option that the GTM has is to resubmit the 

failed subtransaction, T/2, at s2 as a new subtransaction T~. This is not a matter 

of simply reproducing the writes of T/2; T~ needs to be run, reading and writing 

possibly different values. This can only be done if the GTM saved the execution 

state of T/ (e.g., local variables in the program that executes T/) that were used 
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by Ti 2, and if the original values read by Ti 2 were not communicated to other Ti 

subtransactions, since those reads are now invalid. In other words, there must be 

no data dependencies between Ti 2 and any other subtraansaction of T/. Techniques 

such as those of Johnson and Zwaenepoel (1990) and Koo and Tueg (1987) can be 

used for checkpointing transaction programs and tracking data dependencies among 

subtransactions. 

Further, it must be the case that subtransaction Ti 2 is retriable (Mehrotra et 

al., 1992d); that is, if T/2 is retried a sufficient number of times (from any database 

state) it will eventually commit. This is important since before the subtransaction is 

retried the state of the local DBMS may be changed due to the execution of other 

local transactions. This should not result in the situation that the subtransaction 

cannot be committed. It must be noted that not every transaction satisfies this 

property. Consider, for example, a subtransaction that is to debit money from a 

bank account. Such a transaction, if retried, depending upon the balance in the 

account, may not successfully complete. On the other hand, if a subtransaction is 

to credit money into a bank account, then we can safely assume that if it is retried 

a sufficient number of times it will eventually successfully complete. 

The technique discussed above describes how the retry approach can be used 

to ensure the atomicity of global transactions. In the presence of multiple global 

transactions, in order to ensure database consistency, we will need to augment the 

retry technique with concurrency control mechanisms as discussed in Section 4 and 

5. If the correctness criterion being ensured is LSR, and since after the transaction 

being retried has successfully committed each local schedule is serializable, no 

concurrency mechanism is required by the GTM. On the other hand if we were 

to ensure 2LSR, then we would need to use one of the protocols to ensure that 

the projection of the schedules over the operations belonging to global transactions 

would be serializable. Note that the GTM must consider the transaction executed to 

retry the aborted subtransaction as one of the subtransactions of the original global 

transactions. We conjecture that ensuring 2LSR is going to be relatively simple. 

If we were to use the retry technique and ensure global serializability, then as in 

the case of redo approach, due to the presence of failures, there may be indirect 

conflicts between global transactions through the local transactions. Thus, we will 

need to use one of the techniques discussed in Section 4 (that is, the site graph 

approach, site locking technique etc.) to prevent cycles from forming through such 

conflicts. 

Thus, in general, the retry technique can be used for ensuring atomicity of 

transactions under the restrictions that subtransactions do not have data dependencies 
and that each subtransaction is retriable. The above scheme for ensuring atomicity 
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was first mentioned in Muth and Rakow (1991). It is clear that due to necessary 

restrictions on the transactions, the retry approach by itself is of limited applicability. 

However, since it is possible to use each of the approaches discussed in conjunction, 

it may provide us with a powerful model. In any case, whenever transactions 

satisfy the required restrictions, the system should be capable of exploiting the retry 

approach. 

6.4 Compensate Approach 

Consider again the situation in the previous subsection in which a transaction Ti is 

committed at site Sl and aborted at s2. In contrast to the retry approach, another 

alternative is to compensate for the committed subtransaction T/2. This may be 

done by executing a compensating transaction CT11 at site Sl, that undoes, from a 

semantic point of view, what T11 did. For instance, if T~ had reserved a seat for a 

given flight, CT~ would cancel that reservation. Since the effects of the transaction 

have been externalized to other local transactions, the resulting state may not be 

the same as if T11 had never executed but will be semantically equivalent to it. 

To see this, consider that transaction T~ had reserved the last available seat for 
the flight. In that case, another transaction, say T2, that tries to reserve a seat will 

be refused a reservation since the flight is already full. Had T~ not executed T2 

would have been able to procure the reservation. Thus, the state that results after 

the execution of CT~ differs from the state that would have resulted had T11 not 

executed at all. This, as in the current flight reservation systems, is nevertheless 

quite acceptable. 

We stress that compensating transaction for a committed global subtransaction 

is by itself a regular transaction and, thus, it must preserve database consistency. 

For this purpose, it may not only consist of an inverse function of the original 

subtransaction but may also consist of certain other actions. In our example, 

transaction T~ that reserved the last available seat, could have triggered another 

transaction T3, that changed the value of a variable full to true (reflecting that the 

flight is fully reserved). If there is an integrity constraint in the system that states 

that the value of the variable full is true, then there are no available seats in the 

flight. If the compensating transaction for the reservation transaction T11 were to 

only cancel the reservation, then the consistency of the database will be violated. 

Therefore, the compensating transaction G'~ must also revert the value of fu l l  
back to false. 

Note that in the above example to compensate for the reservation subtransaction 

T~, the compensating transaction only executed at the site where T~ had executed; 
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that is, at s l .  The reason for this was that the effects of the subtransaction T11 were 

restricted to only the site Sl. If, however, the effects of T# had also spread to other 

sites, then we may need to compensate for T~ at those sites as well. To see this, 

consider that the variable fu l l  in our example is replicated over numerous sites. 

In that case, the compensating transaction CT11 for the subtransaction T11 will also 

need to execute at other sites (besides Sl)  to change back the value of  full to false. 

This is, however, not very practical since, in general, the compensating transaction 

for a subtransaction that has committed at one site needs to execute at all the sites. 

Therefore,  we would like to restrict the compensating activity to only the site at 

which the subtransaction committed. There are at least two ways of achieving this: 

. Prevent any other global transaction from seeing a state written by the 

subtransaction before its compensating transaction has executed; that is, in 

our  example, we need to ensure that no other global transaction is serialized 

between T~ and CTi 1. 

. Restrict global transactions to have no data dependencies between their 

subtransactions. If a global transaction does not have data dependencies, 

then its execution at one site is independent of its execution at the other 

site. In this case, the effects of the committed subtransaction that is to be 

compensated will not be externalized to other sites and thus compensation 

can be restricted to the sites at which the transaction committed. 

In the remainder of the section, we will assume that either of the above conditions 

holds and thus compensating transaction for a global subtransaction is restricted 

to only the site at which the subtransaction executed. As stated above, executing 

compensating transactions do not result in the standard atomicity of  transactions. 

The resulting notion of atomicity is referred to as semantic atomicity (Garcia-Molina, 

1983). 

Definition 6.2 Let T/ be a global transaction. Let  C T /  be a collection of local 

compensating subtransactions CT/1 . . . .  , C T ~ ,  one for each site where Ti executes. 

We say that T / i s  semantical& atomic if and only if either Ti is committed at all sites 

where it executes, or CT?'s are committed at all sites where Ti has committed.D 

Since for many the term "transaction" implies full atomicity, the term saga 
(Garcia-Molina and Salem, 1987) has been used to refer to a collection of semantically 

atomic subtransactions. To ensure semantic atomicity, the GTM must keep a log 

or record of Ti subtransactions that have been committed. In Levy et al. (1991a) 
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an optimistic twophase commit (02PC) protocol is introduced to guarantee semantic 

atomicity. The protocol works as follows. 

When a transaction completes, the GTM sends "prepare" messages to the 

servers at each site, as it is done in the 2PC protocol. However, unlike the 2PC 

protocol, upon receiving the "prepare" message, the servers optimistically try to 

commit their subtransactions at that point. The result is reported to the GTM. If 

all subtransactions committed, then the transaction is declared committed. If not, 

the transaction is declared aborted, and compensating transactions are run for all 

the subtransactions that did commit. In the common case where subtransactions 

are successful, the O2PC lets sites commit sooner than in the 2PC protocol, leading 

to improved performance. The O2PC protocol was also developed independently 

by Muth and Rakow (1991). Processing distributed transactions without an atomic 

global commit protocol was also studied by Hsu and Silberschatz (1991). It must 

be noted that these commit protocols do not require each local DBMS to support 

a prepared state for commitment of multi-site transactions and are thus attractive 

for MDBS environments. 

We have so far ignored the fact that a transaction that is committed at some 

sites and aborted at others may violate database consistency. Consider a global 
transaction T1 consisting of subtransactions Ti 1 and T~ executing at sites ~51 and 

s 2 respectively, where T~ is committed and T12 is aborted. It is possible that such 

a partially committed global transaction may violate inter-site integrity constraints 

between sites s 1 and s 2. Thus, a compensating transaction CT11, besides performing 

an inverse of the function performed by T~, must also ensure that after it commits 

the global constraints between sites 81 and 82 hold. Note that even though the 

execution of the compensating transaction CT~ will reestablish the consistency 

constraint violated due to the partial commitment of a global transaction, it will 

not prevent other global transactions that execute at sites 81 and a2 before CT11 

executes from seeing inconsistent data. Since we require that each transaction sees 

consistent data, such executions must be prevented. There are two ways in which 

this can be done. 

1. Disallow global inter-site integrity constraints. Note that if no such constraints 

are allowed in the system, then the above problem will not arise. 

2. Prevent any transaction from seeing the effects of both the failed (or 

compensated-for) and successful subtransactions of the same global transac- 

tion. Actually, to prevent such executions, a property of schedules, referred 

to as isolation of  recovery (IR) developed by Levy et al. (1991b), needs to be 

ensured. Note that if we disallowed global transactions from being serialized 
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in between a subtransaction and its compensating transaction, then the IR 
property is trMally ensured. 

In either of the above cases, ensuring the semantic atomicity of transactions 
ensures that the effects of the partially committed global transactions have been 

semantically undone. However, as with the redo and retry approaches, in order to 

preserve database consistency, besides ensuring semantic atomicity and isolation of 

recovery (in case there are global inter-site constraints) there is a further need to 

ensure one of the correctness criteria developed in Section 4 and 5. In Levy et 

al. (1991a), a scheme based upon marking sites that ensures isolation of recovery 

as well as global serializability is developed under an assumption that each local 

DBMS follows a strict 2PL protocol. 
In Mehrotra et al. (1992d), another protocol that ensures global serializability 

and isolation of recovery based upon the site graph approach is developed. In 
order to ensure that the global schedules satisfy the IR property, compensating 

transactions for the committed subtransactions of the same global transactions are 
considered as a single global transaction. 

Compensation as a technique of recovery was initially introduced by Gray (1978). 

Schemes based upon compensation were developed by others (Garcia-Molina, 1983; 

Garcia-Molina and Salem, 1987; Korth et al., 1990). In Garcia-Molina and Salem 

(1987), it is suggested that semantic atomicity can also be useful for dealing with 
long lived transactions, even in a centralized database system. The long transaction 

is broken up into subtransactions that commit and release their resources when 

completed. Long duration transactions are used for many scientific and engineering 

applications (Korth and Speegle, 1988). It is also shown that the log and state 

information needed for compensation can be stored within the same application 

database. The notion of sagas is extended in (Garcia-Molina et al., 1991b) to 

nested sagas, where a subtransaction may be further decomposed into steps that 

are compensatable. Other ideas for using semantic atomicity for coping with long 

lived activities are discussed in (Gifford and Donahue, 1985; Reuter, 1989). 
One issue that we have not addressed in this section is that of the design of 

compensating transactions. Note that some subtransactions may not have simple 

compensations. For example, say a subtransaction deposits funds in an account. By 

the time we wish to compensate, the funds may have been withdrawn by another 

transaction. So a compensation may involve charging the customer a penalty or 
sending a message to the legal department. Further, certain transactions may not be 
compensatable (e.g., firing of a missile). The design of compensating transactions 

has been discussed in the literature (Garcia-Molina, 1983; Gray, 1978; Korth et al., 
1990). 
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Compensation mechanisms are closely related to ones that provide multilevel 

serializability for multilevel transactions (Beeri et al., 1988, 1989; Weikum and 

Schek, 1984; Weikum, 1991). That is, we can view each local database as a complex 

"object." High level operations can be issued on these objects; they correspond to 

what we have called subtransactions at a site. High level operations consist of low 

level "actions" on the internals of the object. A concurrency control mechanism 

internal to the object ensures that high level operations are atomic. A higher level 

concurrency control mechanism ensures that operations are interleaved properly. 

In the multilevel transaction model each global transaction can be considered 

as a two level transaction where each local subtransaction is a high level operation 

that the global transaction applies at a local site. Each local subtransaction consists, 

in turn, of local read/write operations that the global subtransaction is using to 

perform a high level global subtransaction operation. Consider, for example, a 

global transaction that transfers money from account a located at site s l  to account 

b located at site s2. In this case withdrawal of money from account a can be 

considered as one operation that, in turn, consists of reading and writing operations 

at site Sl. 

Local transactions, on the other hand, are considered as one level transactions 
(i.e., transactions as defined in our model here). A concurrent execution of local 

and global subtransactions at local sites is defined as correct if it satisfies a notion 

of correct execution of multilevel transactions as it is defined in Weikum (1991). In 

such context the reasoning about global serializability and atomicity can be recast 

into a multilevel transaction model. Such a model lets one exploit the semantics of 

global subtransactions and consequently to relax requirements of global serializability 

without sacrificing global consistency. Work in this direction has been done, but 

the research is in its initial stage (Schek et al., 1991). 

In the multilevel transaction model, a compensation is used to semantically 

undo results of global subtransactions. Compensation achieves semantic atomicity in 
the following sense. Assume that f - 1  is the compensating operation of the global 

subtransaction f .  Now consider the execution sequence f followed by f - 1  such that 

any operation (either another global subtransaction or any read/write operation of any 

global and/or local transaction) that is executed between f and f - 1  commutes with 

both f and f - 1 .  Then we require that no subsequent invocation of a subtransaction 

g could ever detect that both f and f - 1  were actually executed. That is, g has the 

same return values, regardless of whether f was actually compensated or neither 

f nor f - 1  ever occurred. This condition is stronger than the one we imposed 

earlier. On the other hand, it permits use of a powerful apparatus of multilevel 

transaction model for reasoning about global transactions consistency and atomicity. 
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In conclusion of this subsection we conjecture that the compensation conditions 

of the multilevel transaction model can be replaced by the isolation of recovery 

condition as we have discussed in our transaction model. 

6.5 Combination of the Different Approaches 

We have so far described the various approaches that have been studied in the 

literature for ensuring atomicity of global transactions in a multidatabase system. 

Each of the approaches has its own merits and demerits. For example, while the 

redo technique seems attractive since it does not depend upon the semantics of 

the transactions, its applicability is limited due to the restrictions that need to be 

imposed upon the data items accessed by global transactions. On the other hand, 

though the retry and the compensate approaches do not introduce access restrictions, 

they rely on the semantics of the applications. Further, since not every transaction 

is retriable or compensatable, their applicability is also limited. 

One interesting characteristic that the discussed techniques have is that they are 
complementary and can thus be supported together in a single system. This enables 

us to develop a single general solution for ensuring global transaction atomicity such 

that the system can exploit the good features of each of the developed schemes. To 

see how the various schemes can be combined and used together we will first need 

to enhance our global transaction model. A global transaction consists of a set of 

subtransactions, each of which each is associated with one of the following types: 

1. Compensatable. A subtransaction is compensatable if it is possible to undo 

the effects of the subtransaction by executing a compensating transaction. 

2. Retriable. Each subtransaction in this class is retriable; that is, if executed 

from any database state (as long as the database state is consistent) it is 

guaranteed to commit. 

3. Redoable. All the other subtransactions that are neither compensatable, nor 

retriable. 

We assume that the GTM has a priori knowledge of which class a particular 

subtransaction belongs to. For example, this information may be provided by the 

user. Further, we assume that for each compensatable subtransaction, the user 

provides a compensating transaction that can be used to undo the effects of the 

subtransaction. If the user does not specify the type of a certain subtransaction, it 

is assumed to be a redoable subtransaction by default. 
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If the global transactions are as specified above, then the GTM can use each 

of the redo, retry, and compensate approaches in conjunction. For example, to 

do so it may follow the global commit protocol below. For the description of  the 

protocol, we refer to an a-server on which a compensatable subtransaction executes 

as a c-server. Similarly, a server on which a redoable (retriable) subtransaction 

executes is referred to as a vd-server (rt-server).  Further, we distinguish one of 

the subtransactions and refer to it as a pivot (the pivot subtransaction may be 

compensatable, or redoable, or retriable, or none). The server on which the pivot 

executes is referred to as the p-server. 

Consider the following commit protocol that the GTM may use. On the 

completion of the execution of  all the operations of a transaction, the GTM sends 

a prepare message to each of the servers on the sites at which the transaction 

executed. On receipt of a prepare message each r t -server  and each rd-server  

forces the log record it needs to maintain onto stable storage. On the other hand, 

a c-server on receipt of a prepare message, submits the commit operation for the 

subtransaction to the local DBMS. On receipt of a commit acknowledgment from 

each of  the c-servers and an acknowledgment for the prepare message from other 

cohorts, the GTM submits a commit to the p-server. If the pivot is successfully 

committed, then the transaction will be committed. Note that aborting a transaction 

may imply that a compensating transaction needs to be scheduled at the sites on 

which compensatable subtransactions have successfully committed. On receipt of 

the commit acknowledgment from the p-server, the GTM submits a commit to 

the remaining servers. If in case a subtransaction is aborted after the pivot has 

committed (note that the subtransaction must be either a retriable subtransaction 

or a redoable one), it is either retried or a redo transaction is executed for it 

depending upon its type. 

The above protocol combines each of the schemes that we have discussed for 

ensuring atomicity of global transactions. Obviously, we assume that each redo 

subtransaction (except for the pivot) is appropriately restricted and m-serializability 

of  the local schedules is ensured. Similarly, we assume that no other subtransaction 

of  the global transaction depends upon the values of  data items read by each 

retriable subtransaction. The only problem is with regard to the compensatable 

subtransactions. Recall that for the compensation approach to work, we required 

that either there be no data dependencies between subtransactions of  all (not only 

the transaction in question) global transactions that execute at a site on which 

a subtransaction is to be compensated, or that we be able to prevent any other 

global transaction from seeing the intermediate state before the compensating 

transaction is committed. Note that requiring that there be no data dependencies 
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between subtransactions of a global transaction may be unnecessarily restrictive. 

We, therefore, advocate taking the other approach and ensuring that no global 

transaction is serialized between a subtransaction and its compensating transaction. 

It must be noted that it is also possible to further generalize the above protocol 

and exploit the availability of prepare-to-commit state (if certain sites support such 

a state) for committing global transactions. The 2PC sites can be sent the prepare 

message in the first round along with all other servers. Further, a commit decision can 

be communicated to the 2PC servers along with the commit message to the rd-servers 

and the n-servers, after the successful commitment of the pivot subtransaction. Note 

that it is possible that transactions may not contain subtransactions of one (or more ) 

classes. For example, a given transaction may not have any pivot. It is interesting to 

note that if the global subtransaction only consists of compensatable subtransactions, 

then the above protocol reduces to the O2PC protocol discussed in the compensation 

section. Similarly, if there are only redo (retriable) subtransactions, then the protocol 

reduces to the one developed in the redo (retriable) section. Also, if each local 

DBMS supports a prepare-to-commit operation, then the above protocol degenerates 
to the 2PC protocol. 

7. Global Deadlocks 

It has been argued (Agrawal et al., 1987) that the timeout strategy for dealing 

with deadlocks performs poorly in a centralized database, as compared to other 

mechanisms for deadlock detection. However, in a distributed, heterogeneous system 

it may be attractive because of its simplicity and the independence it gives. 

Deadlock detection may also be an option. If sites export wait-for-graph infor- 

mation (see Section 1), then the GTM could run conventional tests to detect cycles 

in the wait-for-graph. However, autonomous sites may not export this information. 

In these cases, it is necessary to devise a strategy for approximating the union 

of the local wait-for-graphs. The basic idea is that if the GTM has submitted an 

action of global transaction T / t o  a local site Sk, and the GTM has not received a 

reply, then Ti could be involved in a wait at sk. If another global transaction Tj 

has executed actions at sk and has not yet committed everywhere, then T/ could 

be waiting, directly or indirectly, for Tj. In this fashion the GTM can construct 

an approximate wait-for-graph: if T/ ---¢ Tj then T/ could be waiting for Tj. If 

a deadlock exists, then there will be a cycle in the approximate wait-for-graph. 

Clearly, the converse is not true; a cycle in the approximate wait-for-graph that is 
not a real deadlock is called a false deadlock. To reduce the likelihood of false 
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deadlocks, the arc Ti ~ Tj may be added to the approximate wait-for graph only 

after T/has been blocked for some threshold amount of time. These ideas are used 

by the deadlock detection schemes of (Breitbart et al., 1991b) and (Scheurermann 

and Tung, 1992). 

Very little work has been done to determine the performance of deadlock 

detection or prevention schemes. In particular, it will be important to evaluate the 

number of false deadlocks that are broken, and to compare detection schemes to 

simple timeouts. It is also important to keep in mind that some of the options we 

have reviewed are deadlock free, mainly the optimistic global controls and strategies 

where there is no global concurrency control. If timeouts or deadlock detection 

are not effective, then the deadlock free approaches may be more attractive for a 

heterogeneous system. 

8. Conclusions 

Multidatabases are one of the very active database research areas. The 1990 

National Science Foundation (USA) Workshop on Future Directions in DBMS 

Research (Silberschatz et al., 1991) named the area of multidatabase as one of the 

two most important research areas for the 90's. In addition, the NSF has sponsored 

a series of Workshops on Heterogeneous Databases (1989, 1990, 1992). We believe 

that multidatabase transaction management is of crucial importance if one is to 

design an effective multidatabase system. 

Our work is motivated by a major problem that exists in the contemporary 

industrial data processing environment--how to manage and guarantee consistency 

of semantically related data residing in heterogeneous computing environments, 

distributed over various DBMSs. Since user organizations in a multidatabase system 

are autonomous and may have substantial capital invested in the DBMS, it is 

unreasonable to assume that they will be willing to make modifications or lose 

control over their DBMSs. Therefore, it is imperative to develop methods that do 

not require major modifications to existing DBMS software but are able to support 

users' data in a consistent and reliable manner. 

It would be much easier to develop future multidatabase systems if operating 

systems, communication interfaces, and database systems were standardized. Al- 

though it is utopian to believe that comprehensive standards will be developed and 

enforced, it is nevertheless important to strive for good standards. For example, if 

TCP/IP, SQL, strict two-phase locking and two-phase commit protocols would be 

accepted by all vendors, the multidatabase transaction management problem would 
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become much more manageable. We believe that research results in multidatabase 

systems will provide meaningful input to the standardization effort currently under 

way. 

Multidatabase transaction management research is still at a very early stage and 

considerably more work needs to be done. In closing, we briefly outline some of 

major needs we see. 

There is a need to study the "low end" of our box spectrum (Section 1). 

There are many applications where one must deal both with transaction processing 

boxes and with boxes that do not have a notion of transz.ction. For example, in a 

cooperative work environment, some of the data may be stored in a conventional 

database system, but other data may be in file systems, CAD systems, information 

retrieval systems, etc. How does one work in this environment, without reverting 

to the lowest common denominator, i.e., without losing transactional capabilities 

altogether? 

There is also a need to understand the performance implications of multi- 

database transaction management. Most research to date has focused on how to 

run transactions in a heterogeneous environment, but we also need to evaluate the 

cost of transaction processing. For instance, how much more expensive will it be to 

run transactions when each box runs a different concurrency control protocol? In 

this paper we assumed that the GTM cannot take an advantage of knowledge about 

mixed types of local DBMSs. For example, if one of the DBMSs is rigorous and 

another one is strongly serializable, then the GTM assumes that each local DBMS 

is strongly serializable; the knowledge that one of the DBMS is more restrictive 

(and, therefore, the GTM could be more permissive) is not used. Availability of 

such knowledge could possibly increase the concurrency level of global transactions 

and improve transaction throughput. 

Full data consistency and serializability can only be achieved in a multidatabase 

system by imposing restrictions that many consider severe. Thus, there is a need to 

identify alternative forms of consistency and ways of restricting "standard" notions 

of consistency so that positive results can be stated rather than impossibility results. 

The notions discussed in Section 5 are a start, but other options for correctness 

include: 

1. partitioned notions of consistencymranging from consistency of a single entity 

up to database consistency. 

2. temporal consistencymfor example, the database is consistent each morning 

at 8 am; no promises (or weaker promises) made at other times. 
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3. degrees of semantic (in)consistency, defined by application-specific predicates. 

4. update-based consistency--assume the database is consistent (even if it is 
not) and apply restrictions to the types of updates that are allowed. 
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